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Abstract: Heat stress impacts ruminant livestock production on varied levels in this alarming
climate breakdown scenario. The drastic effects of the global climate change-associated heat stress in
ruminant livestock demands constructive evaluation of animal performance bordering on effective
monitoring systems. In this climate-smart digital age, adoption of advanced and developing Artificial
Intelligence (AI) technologies is gaining traction for efficient heat stress management. AI has widely
penetrated the climate sensitive ruminant livestock sector due to its promising and plausible scope in
assessing production risks and the climate resilience of ruminant livestock. Significant improvement
has been achieved alongside the adoption of novel AI algorithms to evaluate the performance of
ruminant livestock. These AI-powered tools have the robustness and competence to expand the
evaluation of animal performance and help in minimising the production losses associated with
heat stress in ruminant livestock. Advanced heat stress management through automated monitoring
of heat stress in ruminant livestock based on behaviour, physiology and animal health responses
have been widely accepted due to the evolution of technologies like machine learning (ML), neural
networks and deep learning (DL). The AI-enabled tools involving automated data collection, pre-
processing, data wrangling, development of appropriate algorithms, and deployment of models
assist the livestock producers in decision-making based on real-time monitoring and act as early-stage
warning systems to forecast disease dynamics based on prediction models. Due to the convincing
performance, precision, and accuracy of AI models, the climate-smart livestock production imbibes
AI technologies for scaled use in the successful reducing of heat stress in ruminant livestock, thereby
ensuring sustainable livestock production and safeguarding the global economy.

Keywords: artificial intelligence; deep learning; heat stress; machine learning; neural networks;
ruminant livestock

1. Introduction

Climate change is one of the major threats to the survival and sustainability of climate
sensitive sectors across the globe. The Intergovernmental Panel on Climate Change (IPCC)
has reported that global warming will continue to increase in the near future (2021–2040)
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and is more likely to reach 1.5 ◦C, even under the very low greenhouse gas (GHG) emission
scenario, and likely or very likely to exceed 1.5 ◦C under higher emissions scenarios [1].
As global warming progresses and the magnitude of temperature extremes increase, it has
been forecasted that heat stress affecting livestock will be a major concern affecting the
economy. The increased demand for livestock products in the changing climatic condition
has become a pressing challenge. The climate change-induced exceeding temperature
thresholds leading to decreased productivity in ruminants results in severe economic
loss to the farmers [2]. This necessitated a radical change in the production systems by
adoption of sustainable steps on both the production and consumption fronts to decrease
food insecurity. In addition, ruminant livestock contributes to sustainability by utilising
uncultivable land for food production, converting non-human energy and protein sources
into highly nutritious animal-sourced food, and provides a living for millions of people
worldwide [3]. Thus, directly and indirectly, ruminant livestock rearing contributes to the
global economy. Therefore, sustainable livestock farming is a vast challenge demanding
advanced, cutting-edge climate-resilient management practises. Figure 1 describes the
economic losses incurred in livestock farms as a result of heat stress and signifies the
importance of AI tools in reversing this loss.
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Figure 1. Significance of AI tools in monitoring the productive performance of ruminant livestock
and reducing the heat stress-associated economic loss.

The era of climate-smart livestock farming has stepped into a new phase as we enter
the digital age. Presently, numerous studies on sensors, data collection and processing,
modelling tools and algorithms, artificial neural networks, deep learning (DL), machine
learning (ML), etc. have been conducted in an effort to address issues with animal identifi-
cation, behaviour detection, disease monitoring, environmental control, and other related
problems in livestock production systems. Artificial neural networks (ANNs), Convolu-
tional neural networks (CNNs), DL, adaptive neural fuzzy inference systems (ANFIS), ML,
and pattern recognition (PR) are some of the Artificial Intelligence (AI) models that are
commonly used for modelling, prediction, and management of animal farming [4]. It has
been established that, in this climate challenging situation, identification of sustainable
animals using phenotypic markers identified and integrated using several ML approaches
would create a promising and sustainable livestock sector [5]. The AI technologies can help
to continuously monitor the animals and to implement cost effective strategies to improve
their welfare, as well as accurately predict disease occurrences resulting in reduced use of
drugs and agro-chemicals contributing to sustainable livestock farming [6,7]. Further, the
potential application of these energy-efficient technologies to decrease resource exhaustion
and improve the efficiency of animal management, which in turn contribute to economic
stability with very minimal environmental impacts, results in sustainable livestock produc-
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tion [8]. Figure 2 describes the various AI tools used for monitoring productive functions
in livestock. Thus, a wide range of user-friendly heat stress managing AI technologies are
developed to communicate with livestock farmers and disseminate information about ap-
propriate animal health practises, feeding practises, and management techniques. Further,
the AI technologies improve profitability by providing real-time information about the ani-
mal health status, aiding in early disease diagnosis, the tailoring of accurate feeding plans,
and resource scheduling, thereby contributing to cost-effectiveness [9]. These advanced
interventions improving the profitability of livestock farming would thus empower the
rural livelihood. This review is therefore an attempt to collate information pertaining to the
various AI applications, which aids in heat stress management for sustainable ruminant
livestock production. Table 1 describes the economic values of different ruminant livestock.
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Table 1. Economic values of different ruminant livestock.

Ruminant Species Economic Traits Economic Value

Cattle

• Growth
• Milk production
• Meat production
• Reproduction
• Immune status
• Draught Power
• Manure

• Sale of milk
• Sale of milk products
• Sale of meat
• Sale of meat products
• Sale of calves
• Improved health and more production
• Ploughing the agriculture field
• Sale of manure/fertiliser

Buffaloe

• Growth
• Milk production
• Meat production
• Reproduction
• Immune status
• Draught Power
• Manure

• Sale of milk
• Sale of milk products
• Sale of meat
• Sale of meat products
• Sale of calves
• Improved health and more production
• Ploughing the agriculture field
• Sale of manure/fertiliser
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Table 1. Cont.

Ruminant Species Economic Traits Economic Value

Sheep

• Growth
• Milk production
• Meat production
• Reproduction
• Immune status
• Draught Power
• Manure

• Sale of meat
• Sale of meat products
• Sale of lambs
• Sale of milk
• Sale of milk products
• Improved health and more production
• Sale of manure/fertiliser

Goat

• Growth
• Milk production
• Meat production
• Reproduction
• Immune status
• Draught Power
• Manure

• Sale of meat
• Sale of meat products
• Sale of kids
• Sale of milk
• Sale of milk products
• Improved health and more production
• Sale of manure/fertiliser

2. Significance of AI in Modern Ruminant Livestock Production

By 2050, it is predicted that the demand for animal products will increase by between
60% and 70% [10]. Further, the breakdown of climate has limited resources and hence
effective ruminant livestock production strategies have been postulated to be crucial. In
this regard, constructive evaluation of production, welfare, and the health of ruminant
livestock farms have been employed by adoption of advanced and developing digital
technologies. This has overcome the limitations caused by manual labour involvement
in rearing ruminant livestock. This also implies that manual intensive animal husbandry
practises may no longer be adequate in livestock production systems in this climate change
scenario. Thus, devising effective strategies and methods to assist in gaining larger returns
in animal production is vital. AI in particular is widely employed and popular due to
its ability to efficiently and continuously monitor livestock and their environments. It
helps farmers and producers to make more informed decisions about their operations and
better comprehend animal behaviour and discomfort to effectively manage and improve
production [11]. In addition, these tools can be adopted with ease, as computing power is
now readily accessible to a wide range of livestock producers.

Accurate behavioural monitoring using sensors has the potential to provide a system
for the early diagnosis and assessment of heat stress in the livestock production sector.
It is possible to create a completely automated system for non-invasive data collection,
processing, and interpretation using promising methods of AI application with remote
sensing and ML modelling techniques. In order to forecast heat-stressed animals, methods
that use light detection and ranging (LiDAR) with visual, thermal, multispectral, and
hyperspectral camera inputs can be adopted to predict relatable factors [12]. This can help
by offering valuable details on the intensity of the factors linked to heat stress in livestock.

An advanced approach of using ML algorithms to assess the effect of environmental
stressors on the physiological responses of the animal has been reported, wherein ML mod-
els are employed to rate the impact of environmental factors on dairy cows’ physiological
reactions [13]. Further, the livestock sector is undergoing a robust advancement and major
digital transition that has been prioritised and prompted by the recent technological bloom.
Many operations in smart livestock farming use AI to quantify animal stress objectively and
to evaluate its effect on animal production and welfare. Thus, the potential applications of
AI in monitoring, evaluating and quantifying stress factors by overcoming the challenges
related to the complex nature of animal production systems adds significance in this era of
modern livestock production. Further, it adds value in assisting farmers to raise earnings
by enhancing animal production.
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3. Evaluation of Production Parameters of Heat-Stressed Animals Using
AI Technologies

Unfavourable climatic variations are anticipated to be one of the primary barriers to
ruminant livestock production in the tropics. In particular, high ambient temperatures are
poised to be the main factor limiting animal productivity. Heat stress, being a significant
challenge in the livestock production units, alters the biological systems of the animals, af-
fecting their growth, reproductive capacity, as well as the quantity and quality of milk, meat,
and fibre. In order to construct dynamic, self-calibrating model-based systems that might
enable real-time evaluation and minimization of heat stress, robust monitoring systems are
required. Moreover, technologies with novel AI algorithms are the current mandate of the
hour. These AI technologies might improve the scope of the evaluation of production vari-
ables by commercial producers and livestock owners and thereby minimise the incurring
production losses. Due to its wide application, the development of AI technologies is being
investigated for its potential to improve farm animals’ productive performance.

3.1. Growth

Broadly, environment, nutrient availability and genetic factors are the intricate vari-
ables that might affect the growth of an animal. Heat stress has been shown to have a
negative impact on animal growth performance in tropical and sub-tropical regions around
the world. Heat stress has a noticeable effect on body weight, average daily gain, growth
rate, feed consumption, production efficiency or weight gain per unit of feed energy [14].
A decrease in the body condition score (BCS) of animals under stress could be attributed to
body reserve depletion [2]. Many studies have reported the use of AI in the measurement
of body weight and BCS. For instance, a research finding estimated the body volume of
mature beef cows from depth images, quantified body weight and metabolic weight from
image-projected body volume, and classified the BCS from image-obtained measurements
using an ML-based approach [15]. By adoption of sophisticated ML algorithms like en-
semble models and transfer learning, researchers were able to predict the BCS of dairy
cows with high accuracy [16]. In order to determine the relationships between climatic
factors and growth parameters like the BCS, improvements have been made to the current
prediction models with advanced and automated technologies. It has been reported that
PR models can be utilised to process and analyse information from pictures, videos, and
sounds in a manner similar to how the brain functions through biological perception and
computer realisation in order to characterise growth performances [4]. These models can
help identify animals that exhibit a significant change in growth performance due to heat
stress. The prediction of body weight and BCS using AI technologies would be a novel,
low-cost approach that facilitates livestock producers with limited or no access to weighing
facilities to proactively monitor and manage the livestock herds. In addition, BCS deter-
mination acts as a significant management tool for determining the energy reserves of the
animal under changing and challenging environmental conditions. Thus, the AI based
BCS assessment can be effectively used to monitor the desired output of a livestock farm,
providing a cost effective approach to monitoring the welfare of the animals [17,18].

Specifically, a high temperature environment causes a change in feed resource avail-
ability, which is another stressor that impacts growth variables. In this feed inadequacy
state, an evaluation of the feed conversion efficiency (FCR) of animals using AI technologies
would serve as a significant determinant of growth performance. It has been reported that
a novel system that ranks cows according to their feed conversion efficiency in commercial
farms has proven beneficial in this regard [19]. The three main components of the system
are as follows: the weighing system, which uses a single load cell suspended to measure
feed mass; the image-based cow identification system replacing Radio Frequency Identi-
fication with cameras erected over the feeding area; and an image processing algorithm
that uses the collar numbers of the cows to identify them [19]. This method can be accurate
in identifying efficient, thermo-tolerant animals. Thus, by understanding the alterations
in feed efficiency, it is possible to differentiate possible variations in the thermo-tolerance
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potential of animals under heat stress. Generally, it is expected that heat stress reduces
the feed conversion efficiency in animals, and the thermo-tolerant breeds are considered
to have a higher FCR. This would assist producers in replacing inefficient animals and in
breeding more heat-tolerant, efficient animals that can be profitable for livestock producers.
Feed efficiency, a multifactorial functional trait that reflects the energy balance of an animal,
and which determines its overall productivity, can thus be evaluated.

The ML approaches can thus aid in measuring the altered circulating metabolites in
a heat-stressed animal. For instance, a study in buffalo heifers employed ML algorithms
for predicting feed conversion efficiency, using predictor variables like haematological
parameters and average daily gain, wherein Partial Least Square Regression (PLSR) models
were created using least square means. The study concluded that higher feed conversion
efficiency measures were found to be influenced by Insulin like Growth Factor-1(IGF-1)
and its interactions with other blood parameters [20]. Further, the magnitude of the
estimated interaction effects of blood parameters in relation to feed conversion efficiency
may aid comprehension of the intricate dynamics of blood parameters for growth under
heat-stressed conditions.

3.2. Reproduction

Extreme climatic conditions will place multiple stressors on livestock animals, re-
ducing their reproductive capacity. In this regard, heat stress contributes a major part
in increasing the susceptibility of reproductive systems of the ruminant livestock to heat
waves. The heat-stressed ruminant, in an attempt to avoid hyperthermia, reveal adaptive
changes in physiological functions. Subsequently, these changes, and/or hyperthermia,
cause modifications of non-adaptive physiological functions like reproduction by nega-
tively influencing the hypothalamo–pituitary–gonadal axis [21]. Furthermore, it has been
documented that heat stress alters follicular dynamics and oestrus expression, reduces con-
ception rate, increases embryo mortality, impairs luteal function, disrupts gonadotrophin
and oestradiol secretions, and increases the frequency of silent oestrus and the development
of ovarian cysts in dairy cows [21]. Thus, the quantification of changes in physiological vari-
ables is critical in assessing heat-stressed animals. Hence, responsible AI applications have
aided in the development of advanced and emerging technologies for livestock assessment
by extracting key physiological parameters associated with reproductive function.

It is well established that endocrine dynamics become altered in heat-stressed ani-
mals, resulting in adverse alterations to the oestrus cycle [22]. In this regard, adoption of
advanced AI technologies will aid in assessment of heat stress-associated alterations in
oestrus dynamics in ruminant livestock. For example, an efficient heat detection technique
developed in cattle using supervised ML, based on continuous monitoring of vaginal
temperature (VT) and vaginal conductivity (VC), offers greater advantages due to its flex-
ibility in integrating numerous characteristics [23]. In addition, this AI-based wearable
wireless vaginal sensor device acts as an accurate and efficient oestrus identification model
with high accuracy and sensitivity, identifying oestrus in real-time [23]. Further, evidence
portrays the usage of fuzzy logic technology adopted for classification of oestrus impulses
using a model-based detection approach employing the circular structure of oestrus [24].

To predict oestrus in breeding cows, another study compared the performance of three
ML algorithms, i.e., expectation maximisation, random forests, and CNNs, based on three
behavioural patterns of breeding cows, i.e., oestrus start, peak oestrus activities, and oestrus
finish. The system was designed and put into place to analyse the 3-axis acceleration data
from Internet of Things (IoT) sensors, and, specifically, the CNN performed exceptionally
well in the trial when compared to the traditional machine-learning techniques [25]. Evi-
dence has indicated than an efficient AI-based technique for the assessment of the oestrus
cycle is the use of an ML algorithm based on the correlation of milk parameters, including
density, pH, SNF, specific gravity, fat content, and the age, quantity, and breed of the cow.
Decision tree classifiers and other ML algorithms receive the chosen parameters as input.
Due to higher accuracy and performance, it acts as an efficient classifier and a straight-
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forward technique for identifying oestrus using milk characteristics in animals [26]. The
animals under heat stress conditions also experience silent or indistinct oestrus. However,
the challenging part is the identification of silent oestrus in animals, as there are no outward
manifestations of mounting behaviours [27–29]. As a result, these AI-based solutions may
be used to evaluate heat stress effects on the oestrus cycle effectively.

It has been established that thermal injury to oocytes causes morphological abnormali-
ties, oxidative stress, nuclear fragmentation, and mitochondrial dysfunction, as the ovarian
pool of oocytes is most vulnerable to heat [30]. Considering these heat stress-associated
disruptions, it is crucial to assess the oocyte quality for indirect evaluation of heat stress-
induced damages. It has been suggested that a qualitative identification of oocytes can be
performed by applying advanced methods of neural analysis of graphic data. Thus, use
of ANNs for classifying data in graphic form [31] can be employed, and the adoption of
neural image analysis might enable effective identification of the quality of oocytes [32]
to assess heat stress in animals. Further, as the number of oocytes to be inspected is huge,
involving a laborious and complex process, supervised ML methods like random forest
have been reported to make the analysis task standardised, reducing the inter-subject
variability. It is also a semi-automatic framework to predict and grade the class of oocyte
based on feature-based classification utilising random forests after multi-object parametric
segmentation on the obtained microscopic image [33].

Based on AI techniques such as genetic algorithms (GAs) and ANNs, a study has
revealed its potential use in digital-image processing to assess bovine blastocyst char-
acteristics. The assessment is based on objectively classifying embryo quality by using
mathematical variables that have been extracted from the obtained digital image. Following
automated feature extraction of the images, the output is fed into a supervised learning
process [34]. These advanced AI-based tools might act as a robust method for embryo
analysis under heat-stressed conditions.

It is well established that the conception rate (CR) declines during the summer sea-
son [33,35]. Three distinct back propagation algorithms utilising the temperature humidity
index (THI) and infrared thermography (IRT) temperature as inputs and manually recorded
(rectal temperature) RT as targets were used to develop ANN models. The created approach
would thus have the potential to act as a rapid and economical method for detecting heat
stress with minimum constraint and tracking body temperature in real-time [36]. Moreover,
a study reported the use of a type of ML algorithm, the alternating decision tree, to identify
factors that affect the first-service conception rate in Holstein cows using a comprehensive
dataset that includes details about management, housing, labour, nutrition, genetics, and
climate for individual farms and cows on these farms [37]. This evidence suggests that
AI-based tools can be utilised effectively in predicting the effect of multiple management
practises and environmental factors on the reproductive performance.

Heat stress also has a significant influence on embryonic growth and survival, and it
is validated by a study wherein mild hyperthermia had a profound effect on embryos [30].
Accordingly, heat stress is a significant risk factor for the development of intrauterine
growth restriction (IUGR). Therefore, heat stress effects on embryos can be assessed in-
directly by identifying the potential molecular markers of IUGR. In this regard, a study
reports the use of a combination of ML algorithms to find the molecular markers of IUGR
in sheep or IUGR-related hub genes (IUGR-HGs), which is then integrated into the study
model of ANN for the early detection and evaluation of IUGR [38]. In future, as in human
medicine, the use of ML approaches can be targeted, as multi-parametric ML approaches
show notable improvements over univariate analysis in terms of specificity and sensitivity.
In addition, it is suggested that the adoption of AI and ML techniques can act as a screening
method to identify IUGR foetuses [39].

Moreover, it is vital to evaluate the reproductive performance of an animal under heat
stress conditions using AI-enabled techniques. In this regard, a study finding validates
the use of Matlab Fuzzy Toolbox to design a system which provides information about
the breeding performances of cows, and thereby the reproductive efficiency can be evalu-
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ated [24]. These advancements can thus be readily adopted in assessment of heat stress
effects on the reproductive systems of ruminant livestock.

3.3. Milk, Meat, and Fibre

It is widely established that heat stress has an impact on a number of facets of animal
productivity, as measured by milk [40], meat [41], fibre yield [42] and quality, inflicting
heavy economic losses for the resource-poor farmers. These negative impacts of heat stress
necessitate an advanced and robust assessment tool for enhanced production. In this
regard, AI-enabled tools based on auto-learn models are suggested to play an integral role
in evaluation of heat stress impacts on production variables.

A study finding reports that a significant AI system utilises detailed information from
a robotic dairy farm to enhance or sustain a desired degree of milk quality by mitigating
heat stress [43]. In the same study, it has been suggested that the developed ML models
can provide real-time information on milk volume and quality and real-time data on a
per cow basis for effective heat stress management. Moreover, the study concludes that
only minor technical improvements will be needed to use AI in dairy farms using the
ML models described in the study [43]. Additional evidence regarding the application
of AI in dairy farms reports the use of four ML algorithms (penalised linear regression,
random forests, gradient-boosted machines, and neural networks) to assess the influence
of environmental heat stressors on the physiological responses of dairy cows. These
algorithms remove subjectivity and aid in ranking environmental heat stressors, which
readily supports producers in implementing evidence-based remedies before expected
stressful environmental circumstances arise, thereby improving production [13].

An AI-powered tool has been studied in a dairy farm wherein the algorithms are
designed to extract information from videos and infrared thermal imagery (IRTI) [43]. The
model can be practically applied using red, blue, and green (RGB) camera systems to obtain
all the proposed targets, including eye temperature, which can also be used to model animal
welfare and biotic/abiotic stress. The study is based on implementing computer vision
algorithms to build an ML model based on regression fitting to predict eye temperature,
daily milk productivity, cow milk productivity, milk fat, and milk protein with no signs
of over fitting [44]. These models can be applied through manipulation of the stressful
environment in conventional and robotic dairy farms [43].

There are multiple advantages to ML algorithms that are commonly suggested by
statisticians due to their providing accurate and superior results; these algorithms learn
from the data supplied and additionally reduce the chance of bias by the researcher’s
hypothesis, as in traditional analytical methods [13]. Moreover, it is well established that
ML is a potential method in dairy research that can be utilised in full measure to enhance
decision-making. Since cows are multifactorial systems, ML algorithms may evaluate
integrated data sources to characterise and, in the end, enable cow management based
on all pertinent influencing elements [45]. For instance, a study on lactating Holstein
cows reported the use of data on the age, body mass (BM), days in milk (DIM), daily
milk yield (DMY), and milk temperature (MT) of animals from a robotic dairy farm for a
period of five years along with ambient temperature data from the local weather station to
determine dynamic heat stress thresholds with different stages (comfort stage, milk heat
stress, effective heat stress, and critical heat stress). The decision tree ML model was used to
identify and categorise these thresholds for individual animals. The categorization reached
an excellent accuracy of 79–94%, which can be used as an alert for heat stress to implement
cooling methods during the lactation phase [46]. A study trained and tested a model based
on ML techniques using a random forest algorithm in assessing the milk yield of individual
animals in relation to the varying environmental conditions. The study suggested its use in
milk yield predictions by the model, as the average relative prediction error is minimal [47].

AI-powered tools can be used as prediction models and in studying relationships
between variables. In this regard, a relationship model of physiological, environmental,
and milk productivity by adopting AI in a study has proven beneficial. The model involves
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data collection and storage in a database, following which training and validation using a
Back Propagation Neural Network (BPNN) with genetic algorithm optimisation is enabled.
Consequently, this system has created an intelligent tool that could accurately forecast
milk production in any kind of physical or environmental state. In the same study, based
on sensitivity analysis, the factors that affected milk production were body temperature,
environment temperature, relative humidity, and heart rate due to heat stress, as presented
by the BPNN model. Moreover, the same study validated that effective use of AI models in
determining the relationship between physiological, environmental, and milk productivity
will be practically applicable in deciding the best management practise for improved milk
production [48].

A research finding validated the use of empirical data on medium and maximum
air temperatures around the milk sheds of cows to develop a neural prediction model in
evaluating the milk yield under varied thermal conditions and suggested the model to be a
practical guide for forecasting short-term milk yield in cows [49]. Thus, neural networks
can act as an adaptive system to predict and evaluate the impact of heat stress in addition to
aiding as support to chart out effective management measures. Another method to assess
heat stress is based on the physical activity of cows. In this regard, a study involving the
use of cluster analysis revealed that the temperature and humidity had an impact on the
physical activity of cows milked in automated milking systems. The results revealed that
the physical activity was lower in winter season, whereas lower humidity levels increased
the animal’s physical activity [50]. These clustering techniques relying on unsupervised
ML can thus be adopted in heat stress assessment.

The negative impact of heat stress on meat production is known to be due to pathogen
colonisation due to the high ambient temperature and humidity acting as favourable
conditions in meat and its by-products [51]. Thus, assessment of meat quality is crucial
to improving management practises and safety aspects during extreme environmental
conditions. A study finding reveals a robust, rapid and non-destructive method for beef
quality evaluation based on an artificial vision technology. The study utilised a fuzzy
ARTMAP classifier model that classifies meat samples based on total microbial population
into unspoiled and spoiled [52].

Another research finding reveals a tool based on processing digital images. In the
study, deep CNN architecture has been modelled and trained to categorise images as
“fresh” or “spoiled” following a pre-processing procedure on the recorded images [53]. In
recent years, researchers have studied the application of AI technologies in meat quality
assessments in regard to elements such as evaluating of the sensory qualities of meat (such
as freshness, tenderness, colour, and the texture of meat) [54]. Moreover, the prediction of
physical and chemical markers of meat quality, like pH, shear force, water retention, protein,
and moisture content, have been evaluated using AI tools [55]. Another advanced tool
for assessing meat spoilage is by the use of electronic olfaction. An electronic nose, which
comprises an array of chemical sensors with partial specificity and an appropriate pattern
recognition system, is capable of recognising simple or complex odours [56]. Therefore,
these exciting tools can be used to assess heat stress-induced alterations in meat quality.
There is a lot of established evidence elaborating on the impact of heat stress on meat
quality and quantity. However, carcass evaluations were conducted using conventional
methods until the introduction of AI in the meat industry. The few AI tools that have
been described in this review portray the potential use of these tools in assessing heat
stress-associated changes in meat quality and quantity. But there is no established evidence
of AI tools assessing the meat quality of heat-stressed animals. However, this suggestion
can be considered a critical research gap that can be addressed soon.

It is well established that heat stress conditions present a significant risk, hindering
the efficiency of wool production and thereby inducing severe economic losses for the wool
industry [57]. Hence, forecasting the wool production using cutting edge AI applications
would provide better returns for wool producers and allow them to remain competitive in
the fibre market in this climate change scenario. It is evident that a variety of environmental
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conditions and management techniques, in addition to genetics, have a direct or indirect
impact on the amount and quality of wool produced, and these impacts must be taken
into consideration in forecasts [58]. Fibre diameter and clean fleece weight are affected
by climate and management and are some of the main indicators of wool returns. Thus,
a study reported the most efficient algorithm to predict adult greasy fleece weight, adult
clean fleece weight, adult fibre diameter, adult staple length, and adult staple strength
using flock-specific environmental data and yearling lamb phenotypic data [58]. Thus,
similar models using best performing algorithms in assessing the effect of climate can be
developed in future, which will help wool producers to plan and set up an efficient wool
production system in this climate-breakdown scenario.

4. Evaluation of Genetic Potential of Heat-Stressed Animals Using AI Technologies

Presently, in the face of climate change, heat stress is considered to be an important
challenge especially in regard to tropical livestock production systems. Heat-stress allevia-
tion strategies are multi-faceted, involving efficient management, nutrition, and genetic
approaches [59,60]. In regard to the genetic measures, accurate methods to evaluate the
genetic performance of animals with thermo-tolerant traits is a priority. Vast volumes
of data need to be saved every day due to the creation of “big data” sets as a result of
improvements in genetic technologies [61]. In this regard, AI systems that are frequently
used to evaluate large volumes of data to generate predictions can be adopted, and this
might have important ramifications in planning mitigation strategies. In addition, these
large datasets may reveal a defined modification in the genome of the animal, which
enables it to adapt to a variety of environmental conditions and thus gives clues about
the adaptation of a species. However, the information on adaptation is a combination of
heterogeneous and homogeneous data types, and it may be difficult to determine how one
attribute relates to another. Thus, to go above the limitations of conventional linear models,
it has been reported that AI and ML techniques are being utilised more and more to extract
information from this kind of data [62].

The genetic improvement for thermo-tolerance is not frequently used in the dairy
sector despite the fact that the currently employed genetic measures are sound. However,
it is recognised that the selection of heat tolerance traits is feasible since it is well acknowl-
edged that genetic diversity is linked to the performance of animals under heat stress [63].
Genomic selection is a novel approach to evaluate genetic performance and is being applied
extensively in various regions due to its various advantages over conventional methods.
Accelerating the genomic selection process using AI-enabled technologies would thus be
beneficial. ML has gained traction in livestock genomic prediction, just as its popularity has
surged in other domains. The capacity of ML algorithms to identify patterns in massive,
unstructured datasets, even when information about some possible explanatory factors
is missing, is well recognised. Moreover, ML algorithms are flexible and beneficial when
combining vast amounts of genomic and phenotypic data with biological information from
planned trials to forecast the breeding values of selection candidates [64].

The results of an investigation reveal the extreme flexibility of ML methods using a
random forest algorithm by identifying possibly additive and epistatic quantitative trait
loci (QTL) influencing residual feed consumption in dairy calves [65]. This property can
thus be exploited in heat stress scenarios to identify the QTL influencing thermo-tolerance
in ruminant livestock. It has been established in a study finding that ML has enormous
promise for improving genetic selection and dairy herd management, especially when it
comes to DL techniques for multi-layer ANN implementation [64]. ANN has been proposed
as a potentially useful device for marker-based genomic predictions of complex traits in
animal breeding. Further, the study revealed significant ANN use in regard to noisy and
high-dimensional data, mainly when the trait’s genetic architecture is unclear, thus making
ANN a potent tool for making non-linear genome-enabled predictions [66]. Moreover, a
genome-wide panel of dense markers is used in genomic selection to increase the likelihood
that every QTL is in linkage disequilibrium with at least one SNP. The genomic estimated
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breeding values (GEBVs) are then evaluated [67]. Thus, genomic selection remains an
attractive option for selecting animals based on their heat tolerance, GEBVs, and other
traits [68]. In this regard, AI-directed tools like ANNs and neuro turbid systems have been
reported to help estimate breeding values in dairy cattle [69].

Evaluation of heat-tolerance and selection based on a thermo-tolerance trait is consid-
ered a significant measure. In this regard, study findings have shown the development of
genomic breeding value for heat tolerance in Australian dairy cattle with components such
as a decline in milk, fat, and protein per unit increase in THI when THI increases above the
threshold of 60 [63]. In addition to studying the effects of heat stress on the economically
important milk production trait, other traits like somatic cell score (SCS), which is related
to mastitis, and the milk fat to protein ratio (FPR) trait, which is an indicator for evaluating
negative energy balance and ketosis, are intriguing to study alongside heat stress in order
to enhance the genetics of production parameters [70]. The application of AI- in these
processes is vital, and robust methods integrated with AI-powered tools can be adopted
for evaluating the performance of animals under heat-stressed conditions to strategize
selection programmes and sustainably resolve heat-stress-associated production losses.
However, selecting markers accordingly is crucial, and it is important to highlight the
significance of algorithm selection for efficient genomic prediction [71].

Over many generations, certain native breeds raised in harsh environments, such as
high temperatures and humidity or droughts, have adapted, making them an excellent
resource for breeding. In this alarming climate change scenario, selecting animals resistant
to temperature extremes is crucial. It is critical to comprehend the biological processes
associated with the adaptability of indigenous breeds, particularly identifying the genomic
areas and genes that govern such processes. In this facet, the selection of climate-resilient
animals can be accelerated by genome-wide association studies (GWASs) that aid in iden-
tifying genes governing climate adaption features (e.g., effective thermoregulation, feed
utilisation, and immune system) [72]. ML algorithms have become widely used because
they effectively create prediction models in situations with more features than samples.
In addition, GWAS statistical testing is the conventional method used to find the variants
that affect the desired phenotype; however, due to their diverse range of applications, ML
methods have great potential for improving our understanding of the impacts of these
variations [73].

The ML algorithms prioritise enhancing the precision of predictions at the individual
subject level [74]. Recently, ML techniques have started to complement or even replace
standard statistical genetic approaches [75]. Algorithms, including ensemble, neural net-
works, regression, and classification, have been used for GWASs with many applications.
Further, significant single-nucleotide polymorphisms (SNPs), disease risk assessment and
prediction, epistatic non-linear interaction discovery, and integration with other omics sets
have all been addressed by the ML methods [73]. Thus, these innovative ML algorithms
associated with the computational and statistical pipeline of GWAS can be utilised for the
genetic performance evaluation of animals under heat-stressed conditions and a better
understanding of genetic adaptation. Moreover, the genes identified as candidates for
thermo-tolerance can significantly help in strategising breeding programmes by imple-
menting genomic selection and marker-assisted selection (MAS) in the future. However,
there have been novel developments in GWAS that rely on ML and AI methodologies, such
as DL, but these warrant more investigation in future.

In recent years, there has been an increase in genome-wide detection of selection sig-
natures/selection sweeps due to advancements in high-throughput technologies. Selection
signatures of heat tolerance in Dehong cattle, a Chinese indigenous zebu breed thriving
in hot environments, have been investigated, and the results revealed that heat adapta-
tion of an organism may be influenced by genes related to heat shock, oxidative stress
response, coat colour, feed intake, and reproduction [76]. Selective sweeps can be found
using various techniques, ranging from straightforward applications utilising summary
statistics to intricate statistical procedures. However, these statistical models’ propensity for
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producing erroneous findings when their presumptions are violated is one of their major
issues, and this is where the use of models powered by AI becomes evident. Application of
ML algorithms that approach the task of identifying selection signatures as a classification
problem can be considered. Moreover, researchers can adopt ML to improve these statistical
models’ precision and prediction accuracy and detect selection signatures efficiently [77].
Shortly, advanced ML-powered neural networks in the livestock sector can be adopted to
efficiently handle vast and complex data to detect accurate selection signals [78].

Further, significant DL software with the availability of supercomputing using graph-
ics processing unit technology (GPU) has made it possible to integrate environmental
variables with multi-omics big data [62]. Thus, there are various applications of AI in
genetic evaluation, with a plethora of ML algorithms [62,79] in use and new DL mod-
els being validated with further research concerns [80]. Thus, scalable and responsible
applications using these technologies can be adopted to achieve optimal performance
in heat-stressed conditions and sustain production while selecting features that promote
resistance to heat stress. However, AI technologies are yet to be extensively utilised to
evaluate the genetic potential of heat-stressed ruminants; nonetheless, the review suggests
that the role of AI will become increasingly vital for genetic evaluation. A possible quantum
of the literature evidence related to the genetic evaluation of heat-stressed animals has been
disclosed. Thus, future studies on AI-based genetic evaluation of heat-stressed animals
are warranted, as genetic information can redirect breeding goals. Figure 3 summarises
AI technologies adopted to evaluate production parameters and genetic performance in
livestock ruminants.
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5. AI Technologies for Automated Monitoring of Heat Stress in Livestock

Heat stress in ruminant livestock causes disturbances in their capacity to regulate body
temperature and is manifested by behaviour, physiology, and health alterations. These
indicators can be utilised as an effective tool to offer timely intervention with heat alleviation
measures to suppress heat load. A combination of advanced precision technologies and
AI-powered models can be adopted to monitor heat stress in livestock [81] effectively.
Table 2 summarises the AI technologies adopted for automated monitoring of heat stress in
ruminant livestock based on behaviour, physiology, and animal health data.

5.1. Behavioural Monitoring

Under heat stress conditions, the common behavioural responses in livestock include
alterations in the frequency and duration of feeding, drinking, defecation, urination, lying
time, standing time, rumination time and shade-seeking behaviour. Other than the above
classical heat stress-related behavioural responses, certain behaviours, such as stepping
behaviour [82] and postural alterations in major body regions comprising the head [83],
can also be considered in the behaviour evaluation process. The behavioural responses
vary among various species of ruminant livestock. In this regard, monitoring wallowing
behaviour in the case of buffaloes [84] and increased aggressive behaviour, as reported in
cattle [85] and goats [86], can be considered.

One of the most effective non-invasive ways to gauge the effects of heat stress in
animals is through monitoring the behavioural reactions, among the primary responses
exhibited by animals to combat heat load [87]. Integrating behavioural monitoring devices
with AI-enabled technologies can enhance prediction accuracy and act as a time-conserving
approach. Further, in several additional domains, big data and ML are being tested as
stand-alone approaches or in conjunction with traditional sensors to assess livestock’s
adaptive behaviour [88]. Moreover, these advanced approaches can be adopted readily,
as they are considered superior since several ML algorithms eliminate subjectivity by
considering non-linearity in the data [13].

Daily ambient THI values have been established as having a negative correlation with
feed intake, and the stressors may not have an immediate influence on this production
variable [89]. Moreover, evaluating drinking behaviour wherein heat-stressed animals show
increased water intake to maintain evaporative water loss [90] can be helpful. Thus, the
detection of feeding patterns is vital in predicting heat stress impacts on growth and other
variables, whilst the detection of drinking behaviour can aid in evaluating heat dissipation.
In this regard, a low-cost RGB-D (Red, Green, Blue, Depth) camera and a machine vision
system based on a deep CNN model is another approach adopted to measure the feed
intake of individual animals. The design of this study was such that the data about feed
intake was retrieved from RGB and depth images, and the use of DL algorithms was
developed using CNN models for identification and intake estimation [91]. To minimise
the limitations of conventional behaviour recognition methods, DL techniques have been
implemented to monitor the feeding, drinking, active, and inactive behaviours of goats
housed in groups using video sequences of a top upper-side view [92].

ML algorithms make it possible to determine the number of animals that sustainably
graze on a particular pasture at a given moment [88]. Other advances include ML based on
the Inertial Measurement Unit (IMU) and optical sensors [93]. Moreover, a study finding
suggests the promising use of ML in classifying behavioural responses (lying, standing,
and grazing) of goats using a back-mounted 9-axis multi-sensor (tri-axial accelerometer,
tri-axial gyroscope and tri-axial magnetometer) with ML algorithms. In the study, from
the raw sensor data, over 100 distinct variables were retrieved and two supervised ML
algorithms, K-nearest neighbours (KNNs) and decision tree (DTs), were then used to
classify the variables [94]. The other methodology described in the study is an integration
of the Internet of Things and ML wherein goats were detected using a faster Regional
Convolutional Neural Network (Faster R-CNN) to locate animals (resting and walking)
and recognise eating and drinking behaviour based on the part of the area beyond food
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and water lines whilst using the centre of the object bounding box as the representative
position of the animals [95].

Using novel machine vision technologies can achieve automated, stress-free, non-
contact and economical solutions to meet the needs of animal behaviour monitoring indoors
and outdoors using natural characteristics of the animals (shape, colour and movement)
to observe their behaviour [96]. In addition, it is suggested that extracting features from
video sequences, such as geometric characteristics or colour moment features, is crucial in
identifying individual eating or drinking behaviours and establishing precise mathematical
models, such as CNN or extended short-term memory networks (LSTM) [4,97]. Moreover,
a study finding presenting a comparative analysis of two ML algorithms, including random
forest and support vector machine (SVM), in addition to a DL CNN model, based on
time series data from a 3-axis accelerometer to classify cattle feeding behaviours (eating,
ruminating, and other) can be of practical use, as the results suggest an effectiveness of
these techniques in precisely classifying feeding behaviours, paving the way for efficient
livestock monitoring [98].

It is well established that excretory behaviour varies depending on different environ-
mental conditions, and, specifically, heat stress significantly affects urination and defecation
in livestock ruminants, resulting in a decrease in defecation and urination frequency [99].
Further, the analysis of ruminant faeces can provide valuable clues about the animal’s di-
gestibility and feed intake under heat-stressed conditions. In this regard, a study classified
and evaluated dairy cow faeces using RGB image analysis through an AI (CNN) technique
that can help evaluate the herd’s nutritional status based on the faecal scores [100].

A novel method has been proposed to detect defecation events by fixing a three-axis
accelerometer on the tails of three Japanese Black steers in a pasture. To recognise defecation
occurrences automatically, the study established six variables (maximum, minimum, and
area in convex curve per 30 s for x- and z-axes). It used quadratic discriminant analysis
(QDA) and SVM-ML algorithms, concluding in the use of an accelerometer in effectively
detecting defecation events [101]. Further, another study proposed the potential use of
non-invasive accelerometer sensors in the effective detection of characteristic back arching
during urination and dung events in cows using ensemble ML models to predict urination
and defecation events, as well as in the estimation of urination characteristics (frequency
and duration) [102].

Random forests are ML models that evaluate many regression or classification trees
on a trained dataset and determine the best ensemble ML models. Random forest can
be employed as it is a robust way to classify activity using accelerometer data, allowing
classification accuracy to be tested for specific behaviours [103]. In this regard, a study
employed random forest models on the data collected from a rear-mounted tri-axial ac-
celerometer that reliably identifies ewes exhibiting a characteristic squat when they urinate.
In the same study, accelerometer data revealed a specific pattern for urination, with a 5 s
window providing the best recall and a 10 s window delivering the highest precision. In
addition, ‘State’ behaviours (foraging, walking, running, standing, and lying down) were
also accurately and reliably detected [104].

Animals during high ambient temperature conditions prefer to stand rather than lie
down to maximise the body surfaces accessible to dissipate heat by evapotranspiration,
especially through the skin over the underparts of the animal, which is less covered by
hair, thus exposing skin to cooling air flow [105]. In this regard, the adoption of advanced,
efficient and non-invasive methods of postural behaviour recognition is vital. A study
proposes developing a computer-vision-based system that recognises sow behaviours such
as lying, sitting, standing, kneeling, feeding, drinking, and shifting and automatically
processes and classifies behavioural images effectively [106]. This system can be readily
adopted in ruminants, as it is conducive to investigating behavioural changes.

A DL framework with a detector and faster R-CNN can also be adopted to identify
different postures like standing, sitting, sternal recumbency, ventral recumbency, and
lateral recumbency [107]. Further, using ML algorithms like KNN, some behaviours



Sensors 2024, 24, 5890 15 of 33

were identified by defining walking behaviour as a beat motion for at least 2 s; standing
behaviour as sheep standing on their four legs, head up or down; and lying behaviour
as sheep lying on the ground with or without jaw movement. In the same study, the
results revealed that the combined offline trained classifier and online learning algorithmic
classifier approach is useful in the accurate classification of behaviours in sheep presented
with changing environmental conditions [108], aiding as a potential system to provide
real-time and long-term automated monitoring of behavioural responses.

The use of the ML model for predicting lying behaviour in dairy cows reared on
pastures and indoors has been investigated. The study used the data collected from a
collar-based prototype and cameras in parallel to develop an ML model with efficient pre-
diction of lying behaviour [109]. A research result disclosed the methodological framework
for successfully predicting six behaviours (grazing, walking, ruminating while standing,
ruminating while lying, resting while standing, and resting while lying) in dairy cows
using three-dimensional accelerometer data. In the study, four ML methods (eXtreme
Gradient Boosting, random forest, SVM, and Adaboost) were compared with the conse-
quent application of the Viterbi algorithm, and the findings reveal a superior prediction
capacity using the XGB algorithm followed by Viterbi smoothing, with its potential use for
decision-making and monitoring purposes [110]. Another study applied an ML technique
named Viola–Jones algorithm in modelling classifiers and validating cow standing and
feeding behaviour detectors [111]. Thus, various studies have warranted the accuracy and
efficiency of AI-enabled tools in monitoring postural behaviour responses.

Feeding and rumination patterns have been documented to change in animals under
heat-loaded conditions in order to reduce metabolic heat production, thus serving as a
marker of heat stress [112]. However, manual observations are laborious, time-consuming,
subjective, and prone to individual variance, making adopting AI-powered tools readily
acceptable. A study involved using a novel monitoring system using CNN-based DL
models that proved efficient with 95%, 98%, and 98% average accuracy, recall, and precision,
respectively [113]. Another research effort revealed the use of data collected from an
accelerometer/gyroscope sensor attached to the ear and collar of sheep in developing
a classification system for grazing and rumination behaviour using four ML algorithms
(random forest, SVM, KNN and adaptive boosting). This study’s finding suggests its
use in the development of an automatic device for monitoring grazing and rumination
behaviour [114]. Similarly, another research work was extended to dairy cows raised in
barns, wherein a triaxial acceleration sensor collected data and classification of feeding,
rumination and other behaviours was carried out using three ML algorithms, including
KNN, SVM, and a probabilistic neural network, concluding its practical application due to
high accuracy [115].

Another study reveals the significant use of collar-mounted accelerometer data in
classifying feeding and ruminating behaviours using decision-tree algorithms that have
been found to perform similarly to SVM and Rumiwatch noseband sensors in terms of
accuracy, thus suggesting their implementation on the sensors and the online measurement
of ingestion behaviours [116]. Further, a study proposed a new algorithm called the Chew–
Bite Intelligent Algorithm (CBIA) based on concepts from pattern recognition and ML
areas for classifying masticatory events from the acoustic signals. This work employed
conventional and advanced ML approaches to classify three types of masticatory events:
chew, bite, and chew–bite, demonstrating their robustness if practically adopted [117].
Thus, many studies adopting varied ML algorithms [118,119] have been proposed to assess
rumination behaviour in ruminant livestock.

Thus, the use of AI-powered tools in behavioural monitoring can be exploited to
understand the adaptive mechanism that can aid in strategising solutions. Further, such
efforts to establish behavioural adaptation in animals may reveal key biological indica-
tors that allow us to identify the most adapted animal, and such markers can be used in
breeding programmes to develop a thermo-tolerant breed through marker-assisted selec-
tion [89]; moreover, based on the evidence, it can be suggested that AI-assisted tools can
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be promising in the evaluation of behaviour and thermal status of heat-stressed livestock
under field conditions.

A study on dairy cows aimed at finding non-invasive measures of assessing heat
stress using AI tools. This study demonstrated the application of AI tools as an integrated
approach to measure, predict, and evaluate heat stress [120]. The application of assessing
heat stress responses like altered behaviour (drinking, eating, lying, standing-in, and
standing-out) using a DL-based model; body surface temperature using ghost and channel
attention modules of neural networks; and respiration rate using computer vision along
with the use of four ML algorithms to predict respiration rate, vaginal temperature and
eye temperature, has been demonstrated in the study [120]. Another study in dairy cows
reflects the use of ML-approaches for automatic characterisation of behavioural phenotypes
pertinent to thermo-tolerance [121]. The study prioritised brush to use and drinking
behaviour, considering them to be integral responses to maintaining homeostasis during
heat stress conditions. This study established the application of AI tools in quantifying
behavioural responses to heat stress, which are otherwise laborious to quantify using
traditional methods. Moreover, this approach opens up a provision for producers to make
informed decisions [121]. Further, a study assessed the adoption of AI tools in determining
the onset of heat stress in dairy cows [122]. This study involved using DL-models for
recognising animal behaviours and computing the behavioural indicators of heat stress
in a herd basis [122]. These findings concluded using AI technologies as a non-invasive,
low-cost heat stress alert tools for dairy cows.

In a study on lactating heifers, automated monitoring devices such as smart tag leg and
smart tag neck were used to document the behavioural activity of heifers and established
that the late-gestation exposure to heat stress affects the daily time budget of first-lactation
heifers during both the pre-and postpartum periods. These sensor-based devices were very
effective in assessing the influence of heat stress on heifers’ behaviour [123]. In another
study on dairy cows to determine the season on behaviour, leg tags were used for recording
daily activities, lying time, and the number of steps and standing bouts, and neck tags
were used to measure eating and rumination time [124]. This study provided a better
understanding of how different seasons affect the daily time budget of lactating dairy cows
and may contribute to developing more effective management strategies to decrease the
adverse effects of heat exposure [124].

5.2. Physiological Monitoring

Physiological alterations are among the animal-based indicators of excessive heat
load, and they help the animals cope with the stressful environment. Respiration rate
(RR), pulse rate (PR), rectal temperature (RT), sweating rate (SR), panting rate, and skin
temperature (ST) are the cardinal physiological variables that are altered in heat-stressed
animals [125,126]. Thus, quantifying physiological responses using advanced techniques is
crucial for effective heat stress assessment and management.

Research findings report the use of ML algorithms (penalised linear regression, random
forests, gradient-boosted machines, and neural networks) to assess the impact of several
environmental heat stressors, including air temperature (AT), relative humidity (RH), solar
radiation (SR), wind speed (U), and solar radiation on the physiological responses (RR, ST
and vaginal temperature (VT)) of dairy cows. The same study suggested that an approach
using ML algorithms removes subjectivity and helps in ranking the heat stressors that
would help farmers implement evidence-based remedies before the expected stressful
environmental circumstances occur [13]. An implantable thermometer has been proposed
to monitor core body temperature for a longer duration, wherein the study used ML
techniques to predict core body temperature from the subcutaneous temperature [127].

Another captivating study established a combination of infrared thermography (IRT)
and ML techniques in predicting heat stress non-invasively in sheep. The ANN model
developed in the study revealed the best performance and accuracy when utilising IRT
to predict rectal temperature and detect heat stress with minimal restraining stress [36].
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Further, research findings revealed the implementation of computer vision methods in
estimating heart rate, RR and abrupt movements, and using ML models to predict eye
temperature, milk production, and quality. The study concluded that this technique can
be deployed in conventional dairy farms and can aid in automatically identifying and
manipulating stressful environments within the farm [44]. Similarly, other research results
propose the efficient use of a neural model, accepting IRT, dry bulb temperature, and wet
bulb temperature as inputs to estimate RT. In addition, the study compared a regression
model with the neural model and suggested strongly with evidence that the neural model
has an excellent predictive ability in comparison to the regression model [128]. Similarly,
a study finding indicates that ANN-based models developed using defined weather and
physiological variables predict RR and RT better than the linear regression models and
enable individual assessment of the thermal status of an animal [129]. Another study in
dairy cows predicted RT and RR as a function of dry-bulb air temperature and relative
humidity. Moreover, upon a comparison of different models in the study, it was found that
neuro-fuzzy networks and regression fared equally, while the ANN model demonstrated
the best performance [130]. Another study compared five different models to predict
RR based on dry bulb temperature, dew point temperature, solar radiation, wind speed,
and breed. The study concluded that both the neural network and the fuzzy inference
system performed well in predicting RR [131]. However, recently, a study in dairy cows
has been carried out to overcome the limitation of using limited variables to predict
physiological responses, as the resulting models had poor predictive capability. In this
regard, the study developed ML models utilising comprehensive variables to predict
physiological responses better. The study employed random forests, gradient boosting
machines, ANNs, and regularised linear regression to predict RR, VT, and eye temperature
with 13 predictor variables from three different dimensions, such as production, cow-
related, and environmental factors [132]. In another study, PVDF flexible piezoelectric
sensors were used to record respiratory rhythm in Hu sheep, and the technology provides
potential technical support for future health monitoring and early prediction of diseases in
large farm animals [133].

Thus, several studies adopted ML techniques to predict physiological indicators of heat
stress in livestock ruminants. This evidence suggests the practical application of advanced
AI-enabled technologies to predict physiological alterations or potential circumstances
of when heat stress will occur in livestock animals. This would enable more effective
implementation of management practises while offering a non-invasive way to shield
animals from extreme environments.

A study in dairy buffaloes demonstrated the evaluation of thermoregulatory responses
(skin surface temperature and respiratory rate) and indices related to environmental vari-
ables using an ML approach, wherein an ANN with a single layer was used for the analy-
sis [134]. The study established that the thermal comfort of the animals can be predicted
using the skin surface temperature. Thus, this study stresses the possibility of assessing
animal thermal response [134]. Another study in feedlot heifers evaluated predictive mod-
els (regression models, fuzzy inference systems and a neural network) that can be used
to forecast stressful environments, aiding in the adoption of preventative intervention by
livestock producers [131]. The study describes that the model using a fuzzy inference
system predicted the respiration rate in accordance with environmental data.

5.3. Animal Health Monitoring

It is well established that heat stress is a multi-faceted and ongoing challenge impacting
livestock production. In this regard, animal health monitoring is a crucial indication of
the animal’s welfare state. Moreover, heat stress increases an animal’s vulnerability to
various diseases by suppressing the immune and endocrine systems [135]. The increase in
temperature has also been reported to bring about physiological alterations that negatively
impact the ruminants, resulting in an increased risk of metabolic disorders and health
problems [112]. In addition, the risk of emerging and re-emerging pathogens and disease
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vectors is another facet of climate change-associated temperature extremes [136]. Livestock
diseases bring about a diverse economic impact directly by causing production losses
and indirectly as treatment costs [88]. In addition, extreme heat stress is accompanied by
increased morbidity and mortality rates in livestock. Evaluating disease dynamics and
animal adaptability will be critical to their resilience [137], and thus it is vital to adopt
robust animal health monitoring tools.

Recently, increasing interest in data mining for purposes like enhanced disease diagno-
sis has been driven by expanding animal and environmental data gathered automatically
by sensors for real-time monitoring. ML methods that go beyond traditional regression are
believed to be effective at this task. A study details the application of IRT and ML technolo-
gies, along with the principles of capturing thermal images and parameter data extraction,
in addition to revealing the development and research progress of IRT technology in animal
health evaluation, with a primary focus on bovine disease detection, such as mastitis, lame-
ness, respiratory diseases, and so on, but also on indicators for assessing health status, such
as physiological characteristics, stress, temperament, and oestrus. The study concentrates
mainly on the tasks and applications of ML and DL algorithms in thermal infrared imaging
data processing [138]. In this regard, the practical application of ML and DL algorithms
in detecting heat stress-related diseases must be scrutinised. Another research finding
discloses that the behavioural responses recorded with wearable sensors can be classified
using an AdaBoost ensemble learning algorithm. This study was exclusive, as it employs
ML approaches for multi-class behaviour identification and behaviour quantification in
calves, thereby having plausible potential in animal health and welfare assessment [139].

Many studies have uncovered that under hot environmental conditions, the inci-
dence rate and pathogen count of mastitis increase due to favourable growth conditions
at higher temperatures while reducing the phagocytosis and immune response of the
animals [140,141]. Hence, evaluating the aetiology, pathophysiology, and economic effects
of mastitis using sophisticated methodologies is critical in dairy farming. Considering this,
a study exposes the use of field surveys and the Dairy Herd Improvement Association
(DHIA) dataset to classify the causes of bacterial mastitis in dairy cows using the ANN
model [142]. Similarly, many studies have validated the effective use of neural networks
in the automated detection and prediction of mastitis [143–145]. For instance, another
study discloses the effective use of a recurrent neural network (RNN) model for detecting
clinical mastitis in dairy farms with automated milking systems by integrating various
variables such as milk traits, behavioural characteristics, cow traits, and environmental
variables [146]. Moreover, in this golden era of precision dairying, a rapid and automated
technique for disease identification brought about the use of IRT as an emerging tool for
disease prediction. In addition, algorithms like KNN, SVM, random forest, and CNN
have been adopted for real-time mastitis detection using thermographic images [147].
Similarly, the detection of dairy cow mastitis by DL technology combined with a compre-
hensive detection method, thermal infrared thermography, has been proposed to be highly
accurate [148].

Studies have established the use of SVM for early mastitis detection [149,150]. Further-
more, a study finding uncovers the efficient use of two mastitis detection models, ANN and
adaptive neuro-fuzzy interface systems (ANFIS), for the prediction of subclinical mastitis
with inputs on lactation rank, milk yield, electrical conductivity, average milking duration,
and season [151]. Moreover, the adoption of the ANN model, which uses electronic 3D
motion detectors to detect the early symptoms of mastitis, has also been disclosed as being
effective [152].

It is well known that pests carried by vectors, including flies, ticks, and mosquitoes,
are affected in number and distribution by variations in precipitation and global warming
due to climate change. Furthermore, in hot weather conditions, there is an increase in
the likelihood of disease transmission between hosts [153]. Thus, comprehending the
disease dynamics is vital in evaluating animal heat stress-related health problems. AI has
been reported to be effective in predicting pathogens related to food-borne diseases using
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many popular methods, including decision trees, random forests, KNN, stochastic gradient
descent, and extremely randomised trees, as well as an ensemble model incorporated in all
these systems [154]. Moreover, ML algorithms have been trained using outbreak datasets
and AI models in forecasting disease outbreaks based on transmission dynamics [155].
Using AI technologies poses multiple benefits in human medicine, including monitoring
and prediction [156]. These cutting-edge technologies can be extended to the veterinary
field to efficiently evaluate disease patterns.

A study developed a cost-effective parasite diagnostic system wherein the faecal
samples prepared can be imaged and analysed using a trained CNN to robustly identify
egg species and egg counts with good accuracy and excellent performance [157]. Other
research results reveal that DL-powered Caprine parasite detection aids in enhancing
animal health [158]. In addition, automated learning techniques have been well utilised
in vector-borne disease modelling, aiding in early decision support [159]. AI-enabled
technologies thus significantly impact the early detection and prevention of diseases. They
forecast disease outbreaks by evaluating big datasets from varied sources, allowing for
proactive disease control measures to ensure better survival rates [160]. Thus, varied heat
stress-induced pathology can be diagnosed and predicted by adopting AI tools.

Table 2. AI technologies for automated monitoring of behaviour, physiology, and animal health,
which could be used either directly or indirectly to assess heat stress in ruminant livestock.

Objective Monitored Response Key AI-Technology Advantages Disadvantages Reference

Behavioural
monitoring Feeding

Machine vision
system based on

deep CNN

Accuracy, Cost-efficient,
feasibility and

adaptability of the
model

Requires training
of model with

highly diverse data
[91]

Feeding and drinking Deep learning Detection speed,
Accuracy, cost-efficient

Invalid frames
increases error

rates
[92]

Feeding Machine learning Excellent prediction
accuracy

Difficulties in
behaviour

discrimination
[88]

Feeding Machine learning Accuracy, specificity and
precision Low sensitivity [93]

Grazing, lying and
standing

Machine learning
algorithms: KNN
and decision tree

(DT)

DT algorithm tends to
have low computational
cost, high computation

capacity and low-energy
consumption

Low predictive
accuracies,

Requires large
dataset

[94]

Feeding, drinking,
resting and walking

Integration of
Internet of Things

and machine
learning (Faster

R-CNN)

Higher detection
accuracy and reliability

Low detection
speed [95]

Feeding, drinking, lying,
locomotion, aggression,
reproductive behaviour

Machine vision
system

Non-contact, non-stress,
cost-effective,

commercially applicable
[96]

Feeding and drinking
CNN and long short

term memory
networks

Recognition accuracy

Influence of animal
factors and pen

conditions
influences

performance, False
classification

[4,97]

Feeding

Random forest,
support vector

machine and deep
CNN

Precision, accuracy - [98]
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Table 2. Cont.

Objective Monitored Response Key AI-Technology Advantages Disadvantages Reference

Defecation CNN
Adaptability, high

training and validation
accuracy

Requires large
dataset for

strengthening the
model

[100]

Defecation

Quadratic
discriminant

analysis and support
vector machine

High accuracy
Low

discrimination
power

[101]

Urination and
defecation Machine learning

Low-cost, non-invasive,
faesibile, high precision,
accuracy and sensitivity

- [102]

Urination, foraging,
walking, running,
standing and lying

Random forest
model

Sensitive, high recall
and precision - [104]

Standing, lying and
walking KNN Faesibility, high

accuracy and specificity
Low recall and

precision [108]

Lying Machine learning High sensitivity,
specificity and accuracy Low prediction [109]

Grazing, walking,
ruminating while

standing, ruminating
while lying, resting
while standing and
resting while lying

Machine learning
algorithms: eXtreme

gradient boosting,
random forest,
support vector
machine and

Adaboost

Excellent prediction
accuracy

Low
discrimination

capacity
[110]

Standing and feeding Viola–Jones
algorithm

High accuracy and
sensitivity

Expensive, low
feasibility [111]

Rumination CNN-based deep
learning

High accuracy, recall
and precision - [113]

Grazing and rumination

Machine learning
algorithms: random
forest, KNN, support
vector machine and
Adaptive boosting

High accuracy and
performance

Misclassification
errors, requires

large dataset
[114]

Feeding, rumination and
other behaviours

Machine learning
algorithms: KNN,

support vector
machine and

probabilistic neural
network

High specificity,
precision, recall and

accuracy

Misclassification
errors [115]

Feeding and rumination Decision tree
algorithm

High specificity,
precision, and sensitivity - [116]

Masticatory events
Pattern recognition

and machine
learning

High recognition rate,
precision and recall

High
computational cost [117]

Rumination Machine learning High precision, recall,
specificity, and accuracy Low sensitivity [118,119]

Physiological
monitoring

Respiratory rate, skin
temperature, vaginal

temperature

ML algorithms:
penalized linear

regression, random
forest,

gradient-boosted
machine and neural

networks

High accuracy and
prediction - [13]

Core body temperature Machine learning Good prediction and
accuracy - [127]
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Table 2. Cont.

Objective Monitored Response Key AI-Technology Advantages Disadvantages Reference

Rectal temperature ANN

Cost-effective,
non-invasive, high

accuracy and
performance

[36]

Heart rate respiratory
rate and eye
temperature

Machine learning,
computer vision

High prediction
accuracy, feasibility and

cost-effective
- [44]

Rectal temperature Neural networks Good predictive ability
and performance - [128]

Respiratory rate and
rectal temperature ANN model

Individual level
assessment, good

predictive ability and
accuracy

Requires large
database to

improve efficiency
[129]

Respiratory rate and
rectal temperature

ANN and
neuro-fuzzy network

Good performance and
predictive capacity - [130]

Respiratory rate
Fuzzy interference
system and neural

networks

Fuzzy interference
system has good

performance

Low prediction
accuracy [131]

Respiratory rate, vaginal
temperature and eye

temperature

Random forest,
gradient boosting

machines, ANN and
regularised linear

regression

High prediction capacity
and reliability - [132]

Animal
health

monitoring

Bovine disease detection
(mastitis, lameness,

respiratory diseases and
so on) and indicators of

health status (stress,
temperament and

oestrus)

Machine learning
and deep learning

algorithms

Non-invasive, good
performance - [138]

Behaviour based animal
health and welfare

assessment

Adaboost ensemble
learning algorithm

High accuracy, low
overestimation

Labour
requirements to
label behaviours,

implement
multi-class

quantification
methods for

behaviours with
low prevalence
rate, sampling

frequency required

[139]

Bacterial mastitis ANN model Good performance Low prediction
capacity [142]

Mastitis Neural networks
High classification rate,
sensitivity, specificity

and accuracy

Requires field
validation, low

predictive capacity
[143–145]

Clinical mastitis RNN model
Effective performance,
good sensitivity and

specificity
[146]

Mastitis
KNN, support vector

machine, random
forest and CNN

Non-invasive, rapid and
cost-efficient

Low accuracy due
to limited data [147]

Mastitis Deep learning
High detection accuracy,

sensitivity and
specificity

Extra accessories
required to

improve accuracy
[148]
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Table 2. Cont.

Objective Monitored Response Key AI-Technology Advantages Disadvantages Reference

Mastitis Support vector
machine High sensitivity Average specificity,

low performance [149,150]

Subclinical mastitis

ANN model,
adaptive

neuro-fuzzy
interface system

(ANFIS)

ANN model has high
sensitivity and

specificity

High prediction
error rate [151]

Mastitis ANN model
High accuracy,
sensitivity and

specificity

Low classification
capacity [152]

Food-borne diseases

Decision tree, KNN,
stochastic gradient
descent, extremely
randomised trees

and ensemble model

Good predictability,
high accuracy, recall and

precision of ensemble
model

- [154]

Forecast disease
outbreaks

Machine learning
algorithms Good performance

Data integration,
need for more

resources
[155]

Parasite diagnostic
system CNN Cost-effective, robust

and simple - [157]

Parasite detection aid Deep learning Precise and rapid
classification - [158]

6. Application of AI-Based Technologies for Heat Stress Management in
Ruminant Livestock

Regular animal husbandry management practises have been scrutinised and refined in
recent years due to drastic changes in weather patterns. From this perspective, the advent
of AI-powered tools has plausibly penetrated animal farming in modulating management
measures under varied and adverse environmental conditions. These potent and solidly
built robust technologies have revolutionised the animal farming sector comprehensively
in all aspects related to management. AI is widely used in livestock farm management to
gather and evaluate data to improve decision-making and streamline farming processes.
The AI systems may track and assess animal behaviour, health indicators, and level of
productivity using sensors, IoT devices, and data analytics [9]. Collecting real-time moni-
toring data enables a multi-model behaviour-based heat stress alarm model for strategising
effective management practises and mitigation interventions [90].

The most effective short-term action plans for an impending heat wave event may
involve proactive interventions based on climate forecasts and adjustments depending
on actual environmental demand. Real-time monitoring, identification, and isolation of
individual animals for heat vulnerability are now feasible because of advancements in
animal monitoring technologies. Moreover, by turning on a single- or multi-sensor whole-
farming network using IoT, it is also achievable to automate the mitigation procedure only
for the isolated animal [161]. In addition, a recent innovation of an integrated technique,
the Artificial Intelligence of Things (AIoT), that incorporates AI and IoT, is adopted readily
as it can sense changes in the barn environment and animal diseases. It can swiftly and
automatically respond to problems without human assistance, thereby improving efficiency
and productivity [162].

A study has proposed a heat stress monitoring and mitigation protocol based on on-
animal and off-animal technologies that monitor the heat stress response, which transfers
information to the central data repository that refers the information singly or in combina-
tion with parallel data like environmental parameters to the processing system. The study
disclosed that the processing unit works in the following two ways: responds for the group
of animals by automatically activating heat abatement measures (water spray, air cooling,
and other environmental modifiers) or responds for individual animals by creation of vir-
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tual fencing (VF) around cooling zones only for the animals susceptible to heat stressor or
isolation based on GPS-VF to a separate cooling zone. Moreover, the data repository of this
robust system can be utilised in future for the evaluation of individual animal responses
during heat wave episodes, thereby aiding in the identification of thermo-tolerant animals
that could assist in breeding programmes [90]. Thus, incorporating these automated and
robust systems could help achieve effective heat stress management conditions favourable
for improving efficiency with optimal production.

A typical occurrence in many habitats is the presence of multiple stressors, which
will probably intensify due to climate change [2]. One of the stressors associated with a
hot environment is nutritional stress, as the availability of pastures is significantly limited,
especially in the summer when droughts are widespread. Pasture availability is affected
in terms of quantity and quality, predisposing animals to severe nutritional deficits as a
result. Hence, advanced tools are applied in animal management practises to monitor
pastures effectively. Extensive research on pasture monitoring has created sophisticated
statistical and ML/DL models to forecast characteristics related to fodder quality and
quantity. Moreover, it is found that the fundamental regressive technique for assessing
pasture conditions is supervised learning [163]. The AI-based recognition system can rate
the pastures, which is enabled by the trained algorithm to generate valid recommenda-
tions [164]. However, adopting supervised learning is hampered mainly by the need to
gather a significant number of samples for laboratory analysis to train and validate the data
for models [163]. Moreover, studies have established that, by employing computer vision
and based on the registered image, farmers can estimate the amount of pasture available
for the ruminants; additionally, based on the body weight of the animal, they can assess if
these estimates match the recommended daily allowance [165].

Transportation, an important animal husbandry practise also predisposes animals to
stress during summer, affecting the health and welfare status of the animals. To address
this issue, a study disclosing predictive models integrated with environmental variables
and stress markers can be developed using supervised learning networks to forecast
transport stress in animals [166]. Moreover, other effects due to hyperthermia include
serious impairment of reproductive processes in females by causing adverse effects on the
oestrus cycle. In this respect, effective oestrus identification can aid in effectively managing
the herd. Many AI-based models have been developed to detect oestrus early in ruminant
livestock [167–170]. A recent advancement has uncovered a numerical modelling approach
to project the future heat stress risk in animal husbandry systems. The study proposed
an ANN model powered by an ensemble of regional climate model projections with three
different greenhouse gas concentration scenarios that evaluated heat stress events and
estimated economic and environmental impacts [171]. These cutting-edge research findings
reveal the extent of technological progress in the livestock sector. Another invading research
reports an ML-based heat stress scoring system that aids in evaluating heat stress severity
in cows by utilising different heat abatement techniques [81]. Thus, various innovative
developments in AI pave the way for convincing and adaptable management opportunities
for the successful mitigation of heat stress in animals. Figure 4 illustrates the transmission
pipeline of AI-enabled tools for heat stress management in ruminant livestock production
systems. Lastly, with the help of the Internet of Things, big data, artificial intelligence,
etc., non-contact sensing technologies can better play their role in assessing animal welfare
accurately, and, thus, these agri-sensing technologies could play a significant role in the
future by promoting precision livestock farming [172].
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stock production systems. The process involves automated data collection (behavioural, physio-
logical, health and environmental data), pre-processing and data wrangling (integration of input
data and data preparation), selection and development of appropriate algorithm (build, train and
evaluate model), deployment of the model (integrating model in production environment, predic-
tion/classification) and insightful decision support based on output (real-time welfare assessment,
early stage warning and forecasting).

7. Using of Artificial Intelligence for Promoting Climate-Smart Farming in
Livestock Extension

Livestock extension in developing countries primarily focuses on sharing valuable
information with livestock farmers, capacity-building activities, and technical advice with
a focus on improving their livestock-based livelihoods and enhancing the productivity of
their farm animals for better incomes and well-being in the households. Specific livestock
extension services are mandated to facilitate encounters with farmers on farming technolo-
gies and solutions, such as breeds, feeds, vaccines, disease prevention and control practises,
farm equipment, and packages of practises, and encourage them to put them into practise,
etc. Furthermore, extension services also provide dynamic information services, such as
weather-based advisory services, market information, farmers’ demand-based information
services, and forward and backward linkages. The livestock extension services in develop-
ing countries of the African continent have facilitated uptake technologies among farmers
and enhanced the production and returns from livestock farming [173–177]. Similar to
these trends, the impact of livestock extension work has been reported in the South Asia
region [178,179]. Furthermore, livestock extension acts as an interphase between research
labs and farmers, acting as a feedback system on technologies and also facilitating the
identification of researchable issues.

The livestock extension services in third-world countries are primarily provided
through public sector organisations such as the Ministry of Animal Husbandry/Agriculture
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through their organisational networks at the grassroots level. Public sector organisation
activities are supplemented with non-governmental organisations, farmer’s collectives,
commodity-based producer organisations, and the private sector. Public sector investment
in livestock extension systems is in a declining phase, resulting in a shortage of human
resources and budgets across third-world countries. The reach of the private sector, NGOs,
and farmers’ collectives are restricted to regions with in-country and commodities. This
limits farming communities’ technology uptake. In the case of India, the extent of adoption
of livestock farming technologies ranges from 47 to 55% [180,181], and a productivity gap
of 30 to 72% exists [182]. In addition to these challenges, in the context of climate change,
livestock production needs to be made sustainable, with fewer GHG emissions. Also,
livestock farming needs to be adapted to the changing climate. This scenario demands
building climate-smart livestock extension services.

Climate-smart livestock extension services may leverage information communication
technologies (ICT), including Artificial Intelligence (AI) and machine learning (ML), to
address the challenges within and outside the livestock extension system. Deployment of
ICT tools in livestock extension is in progress. Developmental agencies have been investing
in development applications for feed rationing, breeding, monitoring of animal production
parameters, education of farmers, identification of animals, etc., focusing on individual
farmers using smartphones. However, these ICT applications face challenges in terms
of demand for multiple language services, localisation of information content, and ICT
infrastructure challenges, including issues associated with internet connectivity and access
to smartphones. Thus, the enrobing of communication tools with conventional service
delivery systems will likely increase access to information in the farming community.

Securing information on local farming situations, farmers’ practises, and resources is
mandatory in developing localised content. Secondly, after securing the above information,
there is a demand to generate advisory information as the forecast for farmers. Thirdly, the
generated information must be shared with farmers with limited ICT infrastructures and
tool access. To address these challenges, the Internet of Things, AI (Artificial intelligence)
and ML (machine learning) pave the way. The recent development of non-invasive meth-
ods to quantify animals, physiologic conditions, and climatic stress on animals through
IoT devices helps to relate the external environment with animal physiological parame-
ters [87,183]. Periodically captured animal and environmental data can be subjected to data
ingestion, data pre-processing, and the building of an AI model. The ML algorithm can
be trained to estimate indices such as thermal stress for livestock (ITSC) and an index for
the time spent in the shade (ITS), and, for these kinds of indices, weather-specific advisory
elements can be generated. Using this model, customised livestock advisory information,
forecasts, and alerts can be created. These AI models can be evaluated and deployed along
with conventional extension systems as complementary models to enhance the information
sharing process. Specifically, near real-time advisory services can be generated for clusters
of villages by engaging with local/government farms for data generation. The IoT-enabled
advisory system can be integrated with livestock extension services for real-time data-based
advisory services for the farming community. The integration paves the way for reach-
ing out to farmers who have limited access to ICT infrastructures, smart mobile phones,
computer literacy, etc.

8. Conclusions

The conventional system of heat stress management using data based on visual obser-
vations or climatic indices is impractical, laborious, and prone to human error. In contrast,
the speeded-up technological development and digital metamorphosis have led to drastic
progress, introducing real-time, autonomous, and efficient systems. In this respect, the
rapid progress of AI with its new applications has invaded the livestock sector through the
essential development of intelligent systems that can replicate human abilities like learning,
problem-solving, and decision-making. This revolutionary technology has significantly
penetrated animal farming systems to enable AI where data management is impossible
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manually. The literature provides evidence of consistent innovations of AI models in
animal science with a positive influence and is suggested to be pervasive in terms of its
potential to transform the way livestock producers operate. The diverse disciplines of AI
comprising specialised systems and algorithms have been implemented in the livestock
sector for varied applications, including heat stress management. The precision, accuracy,
and performance of the proposed models have also been convincing for scalable applica-
tions in effective heat stress mitigation in ruminant livestock. The researchers and livestock
producers reconsider the integration of data, analysis, and execution of conclusions by
adopting AI-powered techniques in farm management to warrant decision support in this
alarming climate change scenario. AI has driven several advances in the performance
evaluation, the monitoring and management of ruminant livestock, massive develop-
ments in data collection, storage, and analysis, and extreme sophistication in analysis and
decision-making. These emerging AI technologies have the potential to tackle challenges
effectively and offer improved monitoring and evaluation of stressors associated with high
environmental temperatures. Moreover, in the face of drastic climate fluctuations, robust
and automated monitoring and assessment tools lay the foundation for sustainability in
ruminant livestock production.

9. Future Perspectives

Considering the emerging adoption of AI-enabled techniques in the livestock sector at
the current time, the reported challenges and limitations associated with AI are overlooked.
Primarily, the size of the recorded datasets required to train the models is small, and
thus, the implementation of AI tools in small livestock farms has been challenging and
demands a solution. Big data storage, transmission, compression and feature extraction
require improvement for the efficient use of these techniques in animal farming systems.
Further, a cross-functional and interdisciplinary team involving data analysts, animal
science experts, and subject specialists is vital for developing AI models according to the
farming conditions to improve efficiency and productivity in varied aspects. Advanced
methods for analysing vast amounts of heterogeneous data need to be developed in close
cooperation with experts in computer science, engineering, mathematics, statistics, and
the livestock industry. Further, the security of the data collected is also a concern, as
adulteration and hacking issues need to be restrained. Adopting new and developing
digital technologies in farming systems is crucial for an integrated development with AI-
tools. This would result in productive and successful applications that are simple to scale
up to production. Despite these challenges, the field of animal science is well positioned to
benefit from advances in AI and efficiently address the challenges associated with climate
change. Big data applications for analysing alterations in animal behaviour associated
with hot environments and assessing welfare status will become the mainstream research
priorities in the near future. Therefore, addressing all the above-listed constraints is the
need of the hour in regard to revolutionising livestock farming involving AI applications to
realise the dream of achieving sustainable livestock production to feed the growing human
population by 2050.
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