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Abstract

Background Pulmonary gas exchange is assessed by the transfer factor of the lungs (TL) for carbon

monoxide (TLCO), and can also be measured with inhaled xenon-129 (129Xe) magnetic resonance imaging

(MRI). A model has been proposed to estimate TL from 129Xe MRI metrics, but this approach has not been

fully validated and does not utilise the spatial information provided by three-dimensional 129Xe MRI.

Methods Three models for predicting TL from 129Xe MRI metrics were compared: 1) a previously-

published physiology-based model, 2) multivariable linear regression and 3) random forest regression.

Models were trained on data from 150 patients with asthma and/or COPD. The random forest model was

applied voxel-wise to 129Xe images to yield regional TL maps.

Results Coefficients of the physiological model were found to differ from previously reported values. All

models had good prediction accuracy with small mean absolute error (MAE): 1) 1.24±

0.15 mmol·min−1·kPa−1, 2) 1.01±0.06 mmol·min−1·kPa−1, 3) 0.995±0.129 mmol·min−1·kPa−1. The

random forest model performed well when applied to a validation group of post-COVID-19 patients and

healthy volunteers (MAE=0.840 mmol·min−1·kPa−1), suggesting good generalisability. The feasibility of

producing regional maps of predicted TL was demonstrated and the whole-lung sum of the TL maps agreed

with measured TLCO (MAE=1.18 mmol·min−1·kPa−1).

Conclusion The best prediction of TLCO from 129Xe MRI metrics was with a random forest regression

framework. Applying this model on a voxel-wise level to create parametric TL maps provides a useful tool

for regional visualisation and clinical interpretation of 129Xe gas exchange MRI.

Introduction

Pulmonary gas exchange function is usually evaluated using the carbon monoxide (CO) transfer factor

(TLCO) pulmonary function test (PFT), in which the patient inhales a test gas containing 0.3% CO and

0.3% tracer gas, such as helium, and holds their breath at total lung capacity (TLC) for 10 s [1]. The

dilution of the tracer gas is used to calculate the number of accessible alveolar units (VA) and the rate of

disappearance of CO from the alveolar gas gives the gas exchange efficiency per unit (KCO). Together,

these measurements yield TLCO, which represents the whole-lung average efficiency of gas transfer from

the alveoli to the bloodstream. Although widely used [2], TLCO measurement is a breathing test, measured

at the mouth, and therefore lacks regional gas exchange information.

An alternative method to quantify pulmonary gas transfer is lung magnetic resonance imaging (MRI) with

inhaled hyperpolarised 129Xe gas. 129Xe MRI is commonly used to image lung ventilation, where the
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presence of airway obstruction leads to poor/no ventilation in the form of low/no signal on images [3, 4].

In addition, due to its solubility in the alveolar parenchymal tissue, capillary blood plasma and red blood

cells (RBCs), 129Xe MRI can quantitatively measure regional gas exchange limitation. 129Xe exhibits

distinct magnetic resonance signals when present in the alveoli, when dissolved in the lung tissue and

plasma (collectively referred to as “membrane” (M)) and when in the RBCs [5]. Several methods have

been designed to simultaneously image xenon in each of these three environments [5–9]. The ratios of the

respective signals (RBC:M, RBC:gas and M:gas) are used to quantify gas transfer and are sensitive to gas

exchange limitation in COPD [10–12], interstitial lung disease [7, 13, 14] and post-COVID-19 lung

disease [15–17]. However, these gas exchange ratios lack a well-defined conventional physiological

interpretation, which may hinder their clinical translation.

There are parallels between the measurements made with 129Xe MRI and the constituent components of

TLCO (see Theory below), illustrated in figure 1. A model has been proposed by WANG et al. [18] to exploit

these similarities by using features derived from 129Xe ventilation and gas exchange imaging, along with

VA and KCO from PFT, to predict TLCO. However, the generalisability of this model is not clear, because

the same data were used to both train the model and test its performance, leading to potentially biased

results. Most commonly used TLCO prediction models are based on participant demographics such as age

and sex [19–22]. Indeed, the model-based prediction of TLCO from 129Xe MRI metrics may be improved

by considering age and sex, as both affect 129Xe MRI gas exchange metrics [23–25]. Furthermore,

previous work [18] used the whole-lung average metrics from 129Xe imaging to predict whole-lung TLCO,

which does not utilise the regional information offered by imaging. Here we propose that inputting the

imaging maps to the predictive models instead would allow for regional visualisation of TLCO.

The objectives of this work were therefore to 1) evaluate the model of WANG et al. [18] in a large cohort

of asthma and COPD patients with a rigorous testing and training group validation strategy, and 2) build

upon this model to predict both whole-lung and regional TLCO using 129Xe imaging and participant

demographic data.

TLCO lung function test 129Xe MRI

KCO

DM

VA
VC

�VC

�

VV

RBC signal

RBC: gas

Membrane signal

FIGURE 1 Schematic of the parallels between the underlying physiology measured by the transfer factor of the

lung for carbon monoxide (TLCO) lung function test and xenon-129 (129Xe) magnetic resonance imaging (MRI).

Like the membrane conductance (DM), the
129Xe membrane signal is dependent on the surface area and

thickness of the alveolar membrane. The 129Xe red blood cell (RBC) signal is influenced by both the gas

exchange across the alveolar membrane and the capillary perfusion, so can be linked to the capillary blood

volume (VC). RBC:gas measures the transfer of gas from the alveolus, across the alveolar membrane and into

the RBCs, so is analogous to the transfer coefficient (KCO). VV is the volume of the lung where 129Xe signal is

detected, which is alike to the alveolar volume (VA). θ is the reaction rate of CO with the RBCs. This figure was

partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution

3.0 unported license.
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Theory

TLCO represents the overall conductance of CO from the alveolar gas to the pulmonary capillary blood and

is made up of two components:

1

TLCO

¼
1

DM

þ
1

uVC

(1)

where DM is the membrane conductance and θVC is the capillary blood conductance: θ is the reaction rate

of CO with the RBCs and VC is the capillary blood volume [26]. TLCO also depends on the volume of the

alveoli available for gas exchange, VA:

TLCO ¼ KCOVA (2)

where KCO is the transfer coefficient [1].

The model of WANG et al. [18] uses the following linear regression equations to predict whole-lung TLCO,

where kV, kM and kR are coefficients found by fitting the model to measured data:

VA ¼ kVVV (3)

DM ¼ kMM: gasrelVA (4)

uVC ¼ kRRBC : gasrelVA (5)

129Xe MRI metrics: VV is the lung ventilated volume from ventilation imaging [27] and M:gasrel and

RBC:gasrel are the dissolved 129Xe signal ratio values divided by a healthy reference value. Equations 4

and 5 are then substituted into equation 1:

1

K
¼

1

kMM: gasrel
þ

1

kRRBC : gasrel
(6)

Here, the “CO” has been dropped from KCO to specify that this is the predicted value from 129Xe MRI

metrics. The predicted K and VA values are then multiplied to give the predicted transfer factor, TL.

Materials and methods

Study participants

Models were trained on data from the Advanced Diagnostic Profiling (ADPro) substudy of the NOVEL

observation longiTudinal studY (NOVELTY; ClinicalTrials.gov identifier: NCT02760329) of patients with

asthma and/or COPD [28, 29]. Patients were recruited from primary care and had a mix of physician-

assigned disease severity (mild, moderate or severe). The study involved two visits, at which participants

underwent PFTs and MRI, with the second visit 12±2 months after the first. At visit one, 129Xe ventilation

and gas exchange imaging and PFTs were performed post-bronchodilator, whereas at visit two, 129Xe

imaging and PFTs were carried out both pre- and post-bronchodilator. Models were trained using the visit

one dataset (n=165). Participants who had missing PFT or imaging data (due to missed appointments or

scanner failure) were excluded and so the final training group consisted of 150 participants (table 1). 123

of 150 participants had pre-bronchodilator and 127 of 150 participants had post-bronchodilator 129Xe

imaging and PFT data at visit two.

Model validation was carried out on a separate cohort of 42 participants. 19 of 42 participants were part of

the healthy control group of the Hyperpolarised Xenon Magnetic Resonance PuLmonary Imaging in

PAtIeNts with Long-COVID (EXPLAIN) study [30]. The remaining 23 participants had been hospitalised

due to COVID-19 (the MURCO: MUlti-nuclear MRI in COVID-19 study [17]) and their PFT and 129Xe

MRI data were from 1–12 months after hospital admission (median 6 months). The ADPro, EXPLAIN and

MURCO studies were approved by the National Research Ethics Committee (REC reference numbers 16/

EM/0439, 21/SC/0398 and 9/LO/1115).

MRI acquisition and pulmonary function testing

Imaging was performed on a 1.5T GE HDx whole-body clinical scanner, using hyperpolarised 129Xe gas

generated with a spin exchange optical pumping polariser [31]. 129Xe ventilation imaging was acquired at

end-inspiratory tidal volume with a maximum dose of 0.5 L 129Xe and 0.5 L nitrogen (volume adjusted

according to height; see supplementary table 1), using a three-dimensional (3D) steady-state free precession

sequence and co-registered 1H anatomical imaging [32]. A multi-echo time 3D radial spectroscopic sequence
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TABLE 1 Patient demographics for the testing and validation groups

All asthma and COPD Asthma COPD Asthma + COPD Post-COVID-19 hospitalisation Healthy

Subjects (females), n 150 (75) 76 (39) 24 (17) 50 (19) 23 (3) 19 (13)
Age, years 60.6 (21.4–82.2) 54.2±13.8 66.5±8.4 63.6±10.5 62 (42–79) 40.9±9.5
Weight, kg 80.7±17.4 83.7±17.0 68.4±13.5 82.0±17.5 97.0±16.0 76.8±14.5
Height, cm 168.5±10.4 169.0±9.8 162.0±10.4 170.8±10.3 173.4±9.1 170.5±11.3
FEV1, z-score −0.65 (−4.49–2.66) −0.10 (−3.84–2.66) −1.89±1.60 −1.17±1.16 −0.70±1.00 0.13±0.75
TLCO, mmol·min−1·kPa−1 7.56±2.55 8.48±2.18 5.16±2.46 7.01 (3.61–13.86) 6.00±1.68 8.84±2.19
TLCO, z-score −0.07 (−6.37–3.83) 0.29±1.14 −2.01±2.28 −0.65±1.30 −2.04±1.37 0.33±0.84
KCO, mmol·min−1·kPa−1·L−1 1.38±0.32 1.53±0.24 1.10±0.35 1.27±0.28 1.30±0.17 1.52±0.16
KCO, z-score −0.22 (−4.83–3.00) 0.30±1.07 −1.63±1.86 −0.67±1.29 −0.52±0.78 0.09±0.68
VA, L 5.45±1.27 5.55±1.16 3.99 (2.76–7.81) 5.72±1.22 4.58±0.87 5.82±1.33
VV, L 4.47±0.86 4.46 (2.08–7.28) 4.03±0.74 4.60 (2.96–7.18) 3.80±0.43 4.39±0.74
M:gas 0.0091 (0.0051–0.0157) 0.0099±0.0021 0.0076±0.0017 0.0090±0.0024 0.0113 (0.0089–0.0125) 0.0087±0.0012
RBC:gas 0.0028 (0.0012–0.0068) 0.0031 (0.0017–0.0068) 0.0017 (0.0012–0.0034) 0.0025 (0.0013–0.0058) 0.0021 (0.0013–0.0039) 0.0032±0.0006

Normally distributed variables (determined using Shapiro–Wilk tests) are presented as mean±SD, whereas non-normally distributed variables are presented as median (minimum–maximum). FEV1:
forced expiratory volume in 1 s; TLCO: transfer factor of the lungs for carbon monoxide; KCO: transfer coefficient; VA: alveolar volume; VV: ventilated volume; M:gas: membrane to gas signal ratio;
RBC:gas: red blood cell to gas signal ratio.
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[7] was used for dissolved 129Xe imaging, performed in the same manner with a maximum dose of 1 L
129Xe. For the training data, a flip angle of 40° and a repetition time of 40 ms were used for dissolved-phase

imaging, whereas 22° and 15 ms were used for the validation group. More details on the differences between

the two sequences are provided in the supplementary material. Additional anatomical imaging was performed

using an ultrashort echo time sequence [33]. Measurement of TLCO, KCO and VA were performed using a

Vyaire PFT Pro (Vyaire Medical, Inc., Basingstoke, UK) and in accordance with international

guidelines [34].

TLCO prediction models

Three TL prediction models were evaluated:

1) Physiology-based linear regression: equations 3 and 6 were fitted on the training data, first using the

values of kV, kM and kR from [18] (model 1a) and separately using values found from a least squares

solver to minimise the mean squared error (MSE) and best fit our training data (model 1b) in

MATLAB (version R2022a, MathWorks, Natick, MA, USA). As in [18], RBC:gas and M:gas were

normalised by healthy reference values, which were taken from a previous study [7].

2) Multivariable linear regression: features were chosen by first identifying correlated variables with a

correlation matrix of possibilities (VV, M:gas, RBC:gas, age, sex, height and weight). Strongly

correlated variables were removed, to avoid multi-collinearity. Separate prediction equations were then

formed for KCO and VA by testing the predictive power of linear combinations of the remaining

variables. Model fitting was performed with a linear regression solver from the scikit-learn Python

toolbox (Python 3.9.12) [35].

3) Random forest regression: this is an ensemble machine-learning algorithm which combines predictions

from many uncorrelated decision trees to output a prediction or classification [36]. Two regression

models were trained using scikit-learn [35], to predict K and VA separately, using the features identified

from linear regression modelling. Tree splitting was based on minimisation of the MSE and model

hyperparameters (supplementary table 2) were tuned using a grid search.

For both models 2 and 3, RBC:gas and M:gas were not normalised by the healthy reference values.

Model training and validation

The three models were initially trained using five-fold cross-validation: the training data were split

randomly into five folds of 30 participants (stratified such that each group contained approximately the

same proportion of asthma, COPD and combined asthma and COPD patients), and the models were fitted

on four of the folds, with the remaining fold used to test the fit performance. This was repeated five times

so that each fold acted as the testing data once. The model with the lowest MSE across the cross-validation

folds was chosen as the final model and this was subsequently retrained on the entire training data and

evaluated by applying to the validation set and ADPro visit two data.

Regional TLCO mapping

To derive regional maps of TLCO, the final trained KCO and VA models were applied to each voxel of the

RBC:gas map and a “relative” ventilation map determined from the gas-phase images of the gas exchange

acquisition (figure 2). The maps were masked by applying a noise threshold to the M signal images.

Ventilation distribution maps were found using equation 7:

V r ¼ VV
IrNvoxel

Itotal
, (7)

where Vr is the relative ventilation at position r = (x, y, z), Ir is the gas signal intensity at position r, Nvoxel

is the total number of ventilated voxels (i.e. voxels in the lung mask) and Itotal is the total gas signal

intensity. This intermediate step was required so that the input to the VA model (Vr) had the same units and

order of magnitude as the VV data that the model was trained on. So that the VA,r maps had a clearer

physiological meaning (VV per voxel), the initial VA model output was scaled by Nvoxel. The whole-lung

predictions can be recovered from the regional maps by summing the fractional TL and VA values (TLr and

VA,r) and averaging the rate K (Kr):

TL ¼

X

r

TLr (8)

VA ¼

X

r

VA,r (9)

K ¼ Kr (10)
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Statistical analysis

The predictive power of the models was assessed by calculating the MSE and R2 of the linear fit of

predicted and measured TLCO, the mean absolute error (MAE) between the predicted and measured values

and their Bland–Altman bias. Statistical analysis was carried out with RStudio (R version 4.3.0).

Results

Validation of physiological model

Model 1a: the model using linear regression coefficients from WANG et al. [18] (kV=1.47,

kM=3.55 mmol·min−1·kPa−1·L−1 and kR=4.55 mmol·min−1·kPa−1·L−1) did not fit our training data well

(table 2; MAE=2.66 mmol·min−1·kPa−1). Model 1b: the prediction accuracy was improved by refitting the

values of kV, kM and kR on our dataset (MAE=1.24±0.15 mmol·min−1·kPa−1); the refitted values were:

kV=1.21±0.01, kM=4.51±0.26 mmol·min−1·kPa−1·L−1 and kR=2.97±0.13 mmol·min−1·kPa−1·L−1. Linear

regression and Bland–Altman analysis of the measured and predicted TLCO values are shown in

supplementary figure 1.

TABLE 2 Evaluation of the four transfer factor prediction models on the training data

Model MSE

(mmol2·min−2·kPa−2)

R2 MAE

(mmol·min−1·kPa−1)

Bias (LOA)

(mmol·min−1·kPa−1)

1a 3.49 0.470 2.66 2.41 (−1.56–6.39)
1b 1.63±0.31 0.604±0.028 1.24±0.15 −0.14 (−3.25–2.97)
2 1.16±0.23 0.739±0.069 1.01±0.06 −0.02 (−2.55–2.52)
3 1.13±0.24 0.744±0.063 0.995±0.129 0.02 (−2.50–2.54)

Model 1a: physiological model with coefficients from WANG et al. [18]; 1b: physiological model with refitted
coefficients; 2: multivariable linear regression; 3: random forest regression. For models 1b, 2 and 3, the mean
and SD across the five cross-validation folds is given. MSE: mean squared error; R2: coefficient of determination;
MAE: mean absolute error; LOA: limits of agreement.

RBC:gas

Random forest regression

Multiply

Gas
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0.0060

0

0

0

0

0

Random 
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2

0.007

10

K

0.005
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VA

TL

mmol·min–1·kPa–1
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(÷Nvoxel)

Vr=VV
IrNvoxel
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FIGURE 2 Regional random forest model: information on regional red blood cell (RBC) uptake and gas signal

distribution from dissolved xenon-129 (129Xe) imaging was utilised to produce regional maps of transfer factor

(TL). The transfer coefficient (K ) prediction pipeline was applied to every voxel of the RBC:gas map, along with

patient age and sex, to output a map of predicted K. For the prediction of accessible alveolar volume, an extra

step (equation 7) was required to convert the gas signal map into a map of ventilation distribution (Vr), which

had the required units of litres and order of magnitude. This involved finding the signal intensity of each pixel

(Ir), dividing this by the mean signal intensity (Itotal/Nvoxel) and multiplying this fraction by the ventilated

volume (VV) from 129Xe ventilation imaging. The VA random forest prediction was then applied to each voxel of

this map, along with patient age and sex. The resulting map was renormalised by Nvoxel so that it represented

the ventilation per voxel and summed to give predicted VA. This was then multiplied with the K map to obtain

a map of TL.
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Model development and validation

Model 2: M:gas and height were not included as features in the multivariable linear regression model

because of their dependence on other variables. More information on the choice of model features is

provided in the supplementary material. The final predictive equations were:

K ¼ a1
1

RBC : gas
þ a2Ageþ a3Sexþ a4 (11)

and

VA ¼ b1VVþ b2Ageþ b3Sexþ b4, (12)

where sex is 0 for males and 1 for females. The fitted values of a1,2,3,4 and b1,2,3,4 can be found in

supplementary table 3. Including participant age and sex as predictors improved the prediction of TLCO
compared with model 1b (MAE=1.01±0.06 mmol·min−1·kPa−1).

Model 3: the random forest regression model performed slightly better than linear regression (MAE=0.995±

0.129 mmol·min−1·kPa−1; figure 3a) so was chosen as the final model. The most significant predictor of K

was RBC:gas, whereas sex was the highest-ranking predictor of VA (figure 3b). This is expected because sex

is strongly correlated with height, which in turn is a significant predictor of lung volume [37]. The model

also performed well when applied to the validation data (figure 3c; MAE=0.840 mmol·min−1·kPa−1,
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(bottom) plots for the measured and random forest-predicted transfer factor values for the validation group. TL: transfer factor of the lungs; MSE:

mean squared error; TLCO: TL for carbon monoxide; RBC: red blood cells; VA: alveolar ventilation; V: ventilated volume; PCH: post-COVID-19

hospitalisation; K: transfer coefficient.

https://doi.org/10.1183/23120541.00442-2024 7

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | J.H. PILGRIM-MORRIS ET AL.

 on February 17, 2025 by guest. Please see licensing information on first page for reuse rights. https://publications.ersnet.orgDownloaded from 



MSE=0.647·mmol2·min−2·kPa−2, R2=0.828). For completeness, models 1a, 1b and 2 were also evaluated on

the validation data (supplementary figure 1) and the performance of model 2 was found to be slightly better

that of model 3: MAE=0.744 mmol·min−1·kPa−1, MSE=0.452·mmol2·min−2·kPa−2, R2=0.877.

Regional TLCO prediction

Example predicted TL maps demonstrating differences between four participants with different pathology,

but similar TLCO z-scores, and one healthy volunteer are shown in figure 4. With the addition of regional

gas exchange information, the performance of the random forest model was not improved when compared

with the whole-lung model, but was still reasonably good: MAE=1.18 mmol·min−1·kPa−1,

MSE=1.26·mmol2·min−2·kPa−2, R2=0.736. It also performed well when applied to visit two data from the

same study, for both pre-bronchodilator (MAE=1.30 mmol·min−1·kPa−1, MSE=1.17 mmol2·min−2·kPa−2,

R2=0.747) and post-bronchodilator (MAE=1.14 mmol·min−1·kPa−1, MSE=1.13 mmol2·min−2·kPa−2,

R2=0.756) data. Linear regression and Bland–Altman plots comparing the measured, whole-lung random

forest-predicted and regional random forest-predicted TL values for both visits are shown in supplementary

figure 2. Example TL-constituent KCO and VA maps for one participant with both asthma and COPD are

shown in figure 5. This person had normal measured TLCO (z-score=0.48), but their maps reveal regional

heterogeneity in both ventilation and gas transfer.

Figure 6 shows the predicted TL, K and VA maps for a single slice for a participant with both asthma and

COPD before and after bronchodilator administration. The maps show an increase in the lung mask area

post-bronchodilator, but the gas signal intensity per voxel decreases because the same amount of gas is

distributed over more voxels due to the opening of previously unventilated airways. Changes in the

regional distribution of TL, K and VA following bronchodilator can be assessed by considering the

predicted values for each lung slice (figure 6, bottom panel).

Discussion

In this work, we have demonstrated that random forest regression improves prediction of TL from 129Xe

MRI metrics when compared with a physiology-based model. We then go on to apply this model to create

maps of TL, K and VA. This approach provides a valuable means to visualise these clinical lung physiology
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FIGURE 4 a) Ultrashort echo time (UTE) lung structure images and b) random forest regression-predicted transfer factor of the lung (TL) maps for five

participants and their diagnosis, sex and age, and c) TL for carbon monoxide (TLCO) z-score at visit one. The fourth patient shown in a) had a lack of

xenon-129 signal in the upper right lung due to underlying structural changes (yellow arrows). d) The measured and estimated TL values for each

participant are given, where “WL-RF” refers to the value from the whole-lung random forest model and “R-RF” refers to the value from the sum of TLr
from the regional random forest model over all voxels. M: male; F: female; PCH: post-COVID-19 hospitalisation.
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metrics at a regional level, allowing the contributions from the ventilation distribution and gas uptake rate

to be examined, and links measures from 129Xe gas exchange imaging to well-established physiological

quantities.

Three models for predicting TL from 129Xe MRI data were evaluated. The coefficients from the previously

proposed model [18] did not fit our data well, likely due to differences in MRI acquisition strategies/

parameters and participant disease aetiologies; the previous model was trained on data from healthy

participants and those with obstructive, restrictive and pulmonary–vascular lung disease. It is also possible

that, by not using cross-validation, the coefficients in [18] were reached by finding a suboptimal local

minimum of MSE. In contrast to [18], we found kM>kR, which suggests a greater contribution to the total

impedance from the membrane than the capillary blood, or ventilation–perfusion mismatch.

The addition of participant age and sex in the multivariable linear and random forest regression models

further improved prediction accuracy when compared with the physiology-based model. Age appeared in

both the K and VA prediction, suggesting that TLCO has a second-order age dependence. An age2

dependence represents an accelerated loss of lung function with age and is also found in the TLCO

prediction equations of MUNKHOLM et al. [22]. All models had small SD across the five cross-validation

folds, demonstrating good accuracy and minimal overfitting, but the best-performing model for the training

data was random forest regression. This may be because the model is able to account for nonlinear

relationships [36]; whereas equations 3 and 12 assume a linear relationship between VV (acquired at

functional residual capacity +1 L) and VA (acquired at TLC), the lung volume dependent pathophysiology

in obstructive lung disease means that the relationship is likely to be more complicated.

Beyond improved modelling, a further novel aspect of this work is the application of the random forest

prediction model to produce spatially localised TL, K and VA parametric maps, allowing for regional

visualisation of otherwise global metrics. Combining the information from dissolved-phase and ventilation
129Xe MRI, along with patient age and sex, into a parametric map with defined units may provide a way

for respiratory physicians to easily interpret 129Xe gas exchange MRI. TL mapping could assist in the

phenotyping of patients and in assessing longitudinal changes and treatment response, especially for

patients with both gas exchange limitation and ventilation heterogeneity. One of the key assumptions in the

TLCO PFT is that the inspired test gas is homogeneously distributed throughout the lung. However, in

obstructive lung disease, ventilation is heterogeneous and so this assumption may not be appropriate and

can lead to an underestimation of TLCO [38]. Contrarily, our models use regional gas exchange

measurements from dissolved 129Xe MRI to estimate transfer factor of the lung TL, which are intrinsically

sensitive to the distribution of 129Xe gas in the lungs. This may explain why the models consistently

overestimated TL for COPD patients with low measured TLCO values.

a) TL c) VAb) K

Measured WL-RF R-RF Measured WL-RF R-RF Measured WL-RF R-RF

4.654.051.421.521.736.027.08 4.297.01

0 0.014 0 1.8 0 0.01

TLr (mmol·min–1·kPa–1) Kr (mmol·min–1·kPa–1·L–1) VA, r (L)

FIGURE 5 Random forest regression modelled a) transfer factor of the lung (TL), b) transfer coefficient (K ) and

c) alveolar volume (VA) maps for a 57-year-old female patient with both asthma and COPD for six lung slices,

plus the modelled and measured whole-lung values at visit one. “WL-RF” refers to the value from the

whole-lung random forest model and “R-RF” refers to the value from the regional random forest model.

Although this patient had a normal TL for carbon monoxide (TLCO) (as measured by pulmonary function

testing), their TL map indicates reduced gas exchange. The K map shows a heterogeneous gas transfer rate

which does not match the ventilation distribution.
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TL was often underestimated for participants with high measured TLCO. This may be due to the larger error

on predicted TL (dTL) for higher TLCO values. TL was found from the product of the predicted VA and K

values/maps and so the error on these components is propagated through to TL according to error

propagation formula:

dTL ¼ TL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dVA

VA

� �2

þ
dK

K

� �2
s

(13)

Inherent differences between 129Xe MRI and TLCO measurement, such as the diffusivity and solubility of

the gases used and the lung volumes and body positions, may also limit the predictive power of the

models. Although the random forest and linear regression models improved the prediction of TL, with these

models the ability to estimate the membrane and capillary blood conductance is lost. Another limitation of
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FIGURE 6 Predicted maps of a) transfer factor of the lung (TL), b) transfer coefficient (K ) and c) alveolar volume (VA) for a single lung slice for a

61-year-old female with both asthma and COPD pre- and post-bronchodilator (BD). The sum (mean for Kr) for each slice (posterior to anterior) is

plotted, showing the change in distribution following BD administration. The lung slice is indicated with an arrow. These plots show that VA,r and

TLr increase in the posterior lung following BD, while slightly decreasing in the central and anterior slices.
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our work is the requirement for both ventilation and gas exchange 129Xe imaging, which necessitates two

separate acquisitions with up to 1.5 L of xenon. At present it is not practical to calculate VV from the gas

exchange imaging gas-phase image, because the image resolution (1.25 cm3 voxel size) is too low for

reliable registration with the anatomical proton image. However, image acceleration techniques such as

compressed sensing and rapid spiral k-space encoding gradients may make a combined ventilation and gas

exchange imaging sequence feasible [39].

The models in this work were trained solely on patients with obstructive lung disease and their application

to patients with restrictive and pulmonary–vascular disease and patients from a different site has not been

explored. There are still considerable differences between the 129Xe MRI sequences and acquisition

parameters used between sites, which may limit the application of our models to external data; however,

efforts towards harmonisation are being made through the 129Xe MRI Clinical Trials Consortium [40].

Hence, it is possible that some retraining could be required to tune the model parameters for external data,

but we anticipate that the models themselves and the principle of using regression modelling to map TL

should be generalisable. We have attempted to reduce overfitting by using a five-fold cross-validation

training strategy and used training data from a heterogeneous population with a large range of TLCO values

(1.60–13.86 mmol·min−1·kPa−1). The models performed well on validation data from two different clinical

studies, with different patient groups and acquisition parameters to the training data, suggesting

generalisability to other lung diseases. This is despite the bias between the datasets from differences

in repetition time and flip angle in the dissolved 129Xe imaging sequence. Testing the models on different

patient cohorts and on external data is required to fully assess their generalisability.

In conclusion, regional TLCO can be modelled from 129Xe MRI metrics for patients with obstructive lung

disease. Prediction accuracy was greatest with a random forest regression model which used patient age,

sex and 129Xe MRI-derived VV and RBC:gas as prediction variables. The ability of this model to generate

TL maps presents a useful tool for visualisation and interpretation of regional TL limitation and should help

facilitate the clinical translation of 129Xe gas exchange MRI.
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