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Aims

Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype,

is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability

prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of

our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual

spinopelvic mechanics and patient phenotype for predicting impingement.

Methods

This international, multicentre prospective cohort study across two centres encompassed 157

adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and

extension stances was identified using the virtual range of motion (ROM) tool of the robotic

software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data

to predict impingement presence, direction (flexion or extension), and type. A secondary model

integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess

for any potential enhancement in prediction accuracy.

Results

We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical

planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement

prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy,

while the support vector machine (SVM) determined impingement type with 72.9% accuracy.

After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural

network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had

similar impingement direction prediction rates (around 84.5%).

Conclusion

This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing

a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated

promising accuracy in predicting impingement, its type, and direction. While the addition of

imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined

annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical

integration, external validation and larger-scale testing of this algorithm are essential.
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Take home message

• This study highlights the feasibility of using an artificial

intelligence algorithm to predict impingement in total hip

arthroplasty based on individual spinopelvic mechanics and

patient phenotype.

• The algorithm demonstrated promising accuracy, poten-

tially guiding surgeons in preoperative planning and

intraoperative decision-making.

Introduction

Instability and dislocation represent frequent postopera-

tive complications following primary total hip arthroplasty

(THA), often necessitating early revision surgery.1  Documen-

ted incidence rates range from 0% to 5%,2  while recent

comprehensive data analyzing over 16,000 THAs highligh-

ted an adjusted instability risk between 0.17% and 1.74%.3

Mounting evidence challenges the perceived safety of the

traditional Lewinnek zone, and has underscored that a

significant number of hip dislocations occur within the

purported “safe zone” for cup positioning.2,4  Several surgical

factors play a pivotal role in hip stability, encompassing

the preservation of dynamic and static hip stabilizers and

restoration of joint biomechanics.5  Accurate offset restora-

tion also holds evident biomechanical benefits by enhanc-

ing the abductor moment arm and reducing joint reaction

forces. This may be particularly beneficial for patients with

a rigid spine,6  potentially mitigating impingement and

dislocation risks.7,8  Nevertheless, the single most important

objective for achieving stability is precise implant position-

ing, tailored to the individual’s biomechanics and phe-

notype.5,9  This involves not only the specific anatomical

characteristics of the patient, but also functional aspects

such as spinopelvic interactions.

Current research consensus indicates that, due to

individual variances in spinopelvic anatomy, there is no

one-size-fits-all optimal cup position.10 Spinopelvic motion

involves the complex coordination between the spine, pelvis,

and hips to facilitate postural adjustments. The variation in

sacral slope (ΔSS) is an essential metric for measuring such

dynamic shifts in spinopelvic mobility.5,11 A rigid spinopelvic

structure results in diminished pelvic extension and reduced

acetabular anteversion during the transition to a seated

position. Consequently, there is an increased reliance on

hip joint flexion, amplifying the chances of anterior impinge-

ment and subsequent posterior dislocation when seated.12

With the integration of innovative surgical technologies,

such as computer navigation and robotic arm assistance,

the emphasis has shifted towards personalized, functional

component placement in THA.10,13 The current workflow with

CT-based robotic systems features a virtual range of motion

(ROM) tool, offering real-time feedback on impingement and

the ramifications of component orientation changes.14 An

added benefit of robotic arm-assisted (RO) THA is its capacity

for ample data collection during the preoperative planning

stage and intraoperatively.

In pursuit of enhancing postoperative outcomes, a few

studies have endeavoured to predict instability and estab-

lish a personalized safe zone for component placement.9,15,16

However, there remains a conspicuous absence of studies

leveraging artificial intelligence (AI) to predict instability or

impingement.

To this end, our study evaluated the feasibility of

developing an AI algorithm tailored to individual spinopel-

vic mechanics and patient phenotype for predicting impinge-

ment. We also explored whether integrating imaging data

could further enhance its accuracy.

Methods

Study design and participants

We conducted an international, multicentre prospective

cohort study across two centres in the UK and Luxembourg,

aiming to evaluate the feasibility of an AI algorithm predict-

ing impingement in THA based on patient phenotype and

individual spinopelvic mechanics. The study adhered to the

ethical standards of the 1964 Declaration of Helsinki,17 and

secured ethical approval from the Hôpitaux Robert Schuman

institutional review board (Ref. CIVLU-21–09-037787). The

cohort comprised adult patients undergoing primary RO THA.

We excluded patients undergoing revision surgery for any

reason.

Imaging protocols and radiological analysis

The preoperative imaging protocol for all participants

included a CT for surgical planning and weightbearing

anteroposterior (AP) pelvis radiographs. This was complemen-

ted by standing and relaxed-seated position lateral spine

radiographs. For the seated images, patients were instructed

to sit naturally, ensuring that their femora remained paral-

lel to the ground. All spinopelvic radiological measurements

were performed by two independent researchers from each

institution, with at least one being a consultant surgeon (TV,

FG, PP, AF, FM, RP). The sacral slope (SS) was defined as the

angle subtended by a horizontal line and a tangential line to

the S1 superior endplate. The ΔSS from standing to relaxed-

seated position was used to quantify spinopelvic mobility. The

pelvic incidence (PI) was defined as the angle between a line

joining the tangent to the S1 endplate and a line joining the

femoral head to the S1 endplate centre.18

Surgical techniques and implant details

Surgeries in each institution were performed using the

MAKOplasty total hip application system, version 4.0 (Stryker,

USA). All participants received the following implants: a

cementless, proximally coated femoral stem (Accolade II;

Stryker); a porous acetabular shell (Trident Acetabular System;

Stryker); a highly cross-linked polyethylene liner (X3 10° or 0°;

Stryker); and a ceramic head (Biolox δ; CeramTec, Germany).

A personalized 3D plan was generated using the

preoperative CT. Spinopelvic parameters were inputted into

the MAKO software (version 4.0), which includes a virtual

ROM (vROM) tool for real-time impingement feedback. The

surgical plan was determined with a focus on replicating

the native anatomy as closely as possible. The native centre

of rotation, leg length, and combined offset were aimed

to be restored using the contralateral side as a guide. The

acetabular component was carefully positioned to achieve

adequate bony coverage, avoid anterior prominence, and

prevent irritation of the psoas tendon, which could lead to

postoperative groin pain. In cases of dysplastic acetabula,

special attention was given to the posterior wall to assess

any deficiencies. The femoral stem sizing and positioning were

calculated to preserve leg length and native offset, ensuring
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that the stem did not underfill the canal or compromise the

calcar. Spinopelvic motion was also taken into account; for

example, in patients with a stiff pelvis fixed in anterior tilt,

increasing the offset and/or the inclination and anteversion of

the cup was considered. Conversely, in ‘stuck sitting’ patients,

our approach included the removal of posterior osteophytes,

a decrease in cup anteversion, an increase in femoral offset, or

a decrease in femoral anteversion. At the planning stage, hips

were assessed for impingement in standardized stances: 15°

extension, external rotation, and abduction in standing; and

110° flexion, 40° internal rotation, and 10° adduction in

sitting. Any detected impingement was further categorized

by its direction (anterior/posterior) and type (bone-bone,

implant-implant, or implant-bone). Additionally, planned stem

version, acetabular component orientation, and baseline

characteristics were recorded. Our dataset included various

scenarios of impingement identified intraoperatively, which

were essential for training the AI model to recognize and

Fig. 1

Schematic representation of our artificial intelligence model, illustrating the decision tree, which commences from a distinct feature such as ‘Sacral

Slope Sitting’ or ‘Planned Obliquity’. This bifurcates further into leaves based on specific criteria. For example, the left leaf encompasses patients with

a ‘Sacral Slope Sitting’ measurement beneath Decision Boundary A, whereas its right counterpart includes those exceeding this. In a hierarchical

decision tree, these leaves can split further, based on more features, until the model converges or reaches its maximum depth. Such convergence

aligns with predefined metrics integral to information gain. GBDT, Gradient-Boosted Decision Tree.

Fig. 2

Figure depicting the flow of patients throughout the study and models. THA, total hip arthroplasty.
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predict impingement effectively under real-world conditions.

Intraoperative adjustments to the surgical plan, such as

modifications to the offset and component positioning,

were frequently necessary based on real-time feedback and

intraoperative trialling.

Model description

In this study, we focused on two AI models designed to

predict impingement during hip arthroplasty surgery, taking

into account the individual phenotype, component position-

ing, and spinopelvic mechanics. Our primary model, Light

Gradient-Boosting Machine (LGBM),19 employed AI using

tabular data to predict: 1) the presence of impingement; 2)

whether impingement will occur in flexion or extension; and 3)

the type of impingement (bone-on-bone, implant-on-implant,

implant-on-bone).

Gradient-Boosted Decision Trees (GBDT) and LGBM

generate multiple trees sequentially across iterative learning

Fig. 3

Examples of sub-decision trees in Light Gradient-Boosting Machine.

Table I. Baseline and spinopelvic characteristics of the studied

cohort.

Variable

Patient undergoing robotic

arm-assisted THA (n = 157)

Mean age, yrs (range) 65 (32 to 88)

Sex, n (%)

Female 79 (50.6)

Male 77 (49.4)

Laterality, n (%)

Right 81 (51.9)

Left 75 (48.1)

Mean sacral slope standing, ° (SD) 37.8 (8.8)

Mean sacral slope sitting, ° (SD) 15.2 (12)

Mean pelvic incidence, ° (SD) 53.1 (12.4)

Mean pelvic tilt in standing

position, ° (SD) 15.5 (8.4)

THA, total hip arthroplasty.

Table II. Surgical planning parameters and impingement

characteristics.

Variable

Patient undergoing

robotic arm-assisted

THA (n = 157)

Median planned offset versus opposite hip,

mm (IQR) -1 (-3 to 3)

Median planned offset versus preoperative

hip, mm (IQR) -2 (-5.75 to 1)

Mean planned acetabular component

obliquity, ° (SD) 40.4 (1.3)

Mean planned acetabular component

version, ° (SD) 20.4 (1.5)

Median planned femoral stem version, °

(IQR) 14 (10 to 15)

Impingement, n (%) 100 (64.1)

Impingement direction, n (%)

Anterior (in flexion) 77 (77)

Posterior (in extension) 23 (23)

Type of impingement, n (%)

Bone-on-bone 52 (52)

Implant-on-implant 7 (7)

Implant-on-bone 41 (41)

THA, total hip arthroplasty.
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steps. Figure 1 illustrates the workflow of the GBDT, with

three distinct prediction phases for impingement types, each

executed by a different decision tree in a consecutive manner.

Succeeding trees are trained to predict the residual between

the preceding tree’s prediction and the true values, until either

the residuals nullify or the pre-set maximum tree count is

met (in this case, 3). The LGBM represents a refined variant

of GBDT, designed with the intention of fine-tuning both

learning algorithms and engineering parameters for enhanced

precision. It also employs gradient-based one-side sampling to

adjust sample weights during training, focusing on underfitted

data while maintaining the original distribution.

In our second model, we integrated tabular data

with plain AP pelvis radiographs to assess for any potential

enhancement in prediction accuracy. To incorporate imaging

data, we combined the table multilayer perceptron (MLP)

with a deep convolutional neural network (CNN) using the

Widedeep framework.20 This approach efficiently processes

features from both data types. The radiological analysis

combined a CNN classifier and a MLP classifier. Out of

135 samples, each fold used 108 samples for training and the

Table V. Comparison of results of Light Gradient-Boosting Machine

with or without age, sex, and laterality.

Variable Impingement Direction Type

With baseline demographics 0.667265 0.858205 0.619402

Without baseline demograph-

ics 0.702177 0.85037 0.677778

remaining 27 for validation. Each sample consisted of a table

feeding its predictive components into the MLP classifier to

derive tabular features, and a radiograph feeding into the CNN

classifier to derive image features. These features from both

classifiers were merged and trained against the true category

labels of impingement information using cross-entropy loss.

The CNN segment was designed not to concentrate on specific

measurements, but rather to identify complex patterns in the

images that might be overlooked by medical professionals,

thereby complementing the precise measurements detailed in

the tabular data.

Results

Of the 196 adult patients screened for RO THA, 157 were

included in the primary analysis due to complete datasets

(Figure 2). The participants’ ages spanned from 32 to 88 years,

with an almost even sex representation: 49.4% males (n

= 77) and 50.6% females (n = 79). Analyzing anatomical

parameters, mean standing SS was 37.8° (SD 8.8°) and 15.2°

(SD 12°) when seated. Mean PI was 53.1° (SD 12.4°) and

mean standing spinopelvic tilt (SPT) was 15.5° (SD 8.4°). The

mean planned acetabular version and inclination were 20.4°

(SD 1.5°) and 40.4° (SD 1.3°), respectively, while the median

femoral stem version was 14° (IQR 10 to 15). Prior to employ-

ing AI for impingement prediction, each case underwent

manual impingement modelling using the robotic software

to establish baseline data. The vROM tool revealed that

over 60% of participants showed signs of impingement, with

anterior impingement in about three-quarters of participants.

Bone-on-bone impingement was the most common, seen in

nearly 50% of cases, followed by implant-on-bone at around

40%. These manually curated data were then used to train and

Table III. Variables used in the artificial intelligence model.

Predictors Outcomes

Sacral slope standing

Sacral slope sitting

Pelvic incidence

Pelvic tilt in standing position

Planned offset versus opposite hip

Planned offset versus preoperative hip

Planned acetabular component obliquity

Planned acetabular component version

Planned femoral stem version

Impingement

Impingement direction

Type of impingement

Table IV. Comparative accuracy of different models on predicting impingement, direction, and type.

Input Output LGBM LR SVM

Predictors Impingement 0.702177 0.630020161 0.652620968

Predictors impingement Direction 0.85037 0.853870968 0.818225806

Predictors + impingement + direction Type 0.677778 0.702540323 0.728689516

LGBM, Light Gradient-Boosting Machine; LR, linear regression; SVM, support vector machine.
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validate the AI models, enabling them to predict impinge-

ment based on the observed patterns and surgical planning

parameters.

Exploring the feasibility of an AI algorithm to predict

impingement

To examine the feasibility of a predictive algorithm, we

analyzed the baseline spinopelvic characteristics (Table I) and

the surgical planning and impingement parameters (Table II).

From those, we identified nine essential predictors for our

model (Table III). To ensure a rigorous training and validation

process given our dataset size, we used fivefold cross-valida-

tion. Acknowledging the potential variability, we incorpora-

ted ten random seeds to guide the train-validate data split

and to determine model parameters. In the primary model,

125 samples from each fold were used for training and 32

Fig. 4

Feature importance when training the Light Gradient-Boosting Machine with (below) and without (above) baseline characteristics.

Fig. 5

Illustrations of the tabular model, the convolutional neural network (CNN) model, and the model combining CNN and table multilayer perceptron

(MLP).
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for validation. The results presented are averages from ten

random seeds; each seed was further averaged across the five

folds. Based on previous studies,21 we opted for the LGBM

algorithm over deep-learning methods,19 given its robust

performance with tabular data. We opted for a set of 20 trees

for impingement prediction (Figure 3). The results from the

LGBM model for impingement occurrence, direction, and type

can be seen in Table IV. We also present a comparison with

other algorithms’ accuracy metrics. The logistic regression (LR)

model processes weighted input features and uses a sig-

moid function for predictions. In contrast, the support vector

machine (SVM) organizes input sample features in a high-

dimensional space, subsequently classifying these samples.22

Model accuracy

Using a dataset with nine spinopelvic characteristics and

surgical planning parameters, the LGBM yielded 70.2%

accuracy. When provided with impingement data, both LGBM

and LR estimated impingement direction with approxi-

mately 85% accuracy. When provided with the impinge-

ment direction, SVM reached an accuracy of 72.9% for type

prediction (Table IV). Since impingement prediction was

crucial, we selected the LGBM as our primary model. Sub-

sequently, we explored the impact of integrating baseline

demographics to our model. We noted that adding these

characteristics (age, sex, laterality) neither improved prediction

accuracy nor added value. Instead, they seemed to introduce

potential misclassification risks. Variable importance assess-

ment in LGBM, shown in Figure 4, indicated that age, laterality,

and sex were non-dominant during training. Given these

findings and a slight drop in accuracy (Table V), we omitted

age, sex, and laterality from the final model.

Tabular data and radiograph-based impingement prediction

To evaluate the impact of integrating imaging data on

prediction accuracy, we tested both a MLP and a CNN. For

each tabular data entry, a corresponding radiograph was used.

This combined dataset underwent fivefold cross-validation,

with ten unique random seed settings. Of the 135 sam-

ples, each fold employed 108 samples for training and the

remaining 27 for validation (Figure 5). Table VI presents the

comparative performance of all models. The main observa-

tions were first that the LGBM on tabular data achieved

the highest impingement prediction accuracy of 68.1%, with

the combined image and tabular approach following closely

at 67.5%, surpassing other tabular methods and the CNN

(imaging only). Second, both the image-tabular combination

and the LGBM performed similarly on impingement direction

prediction, with accuracies of 84.39% and 84.54%, respectively.

Lastly, the combined method achieved the highest impinge-

ment type prediction accuracy at 66.4%.

The image-based CNN demonstrated low precision,

likely due to the limited dataset of 135 images and minimal

radiograph annotations.

Discussion

In our pilot study, we demonstrated the viability of a deep-

learning algorithm for predicting impingement based on

individual spinopelvic mechanics and patient phenotype.

The pilot algorithm exhibited good accuracy in predicting

impingement and type (bone-on-bone, implant-on-implant,

implant-on-bone) and excellent accuracy in determining its

direction. The algorithm’s input consisted of preoperative data,

accessible from any 2D or 3D surgical planning software. This

encompassed projected changes in offset, planned femoral

stem version, cup orientation, and spinopelvic metrics. For

arthroplasty surgeons without access to CT-based navigation

or robotic systems offering vROM,23,24 a refined AI algo-

rithm predicting impingement based on individual patient

phenotypes could be instrumental. This prediction tool

could guide preoperative planning and prepare surgeons for

potential intraoperative challenges.

While various studies have delved into the risks of

hip dislocation following THA, to the best of our knowledge

our research is the first attempt to harness AI for impinge-

ment prediction in THA.25 Parallel to our work but distinct in

not utilizing AI, Pryce et al26 pioneered a geometrical model

through computer-aided design (CAD). Widmer,27 in another

related endeavour, employed a 3D CAD model, analyzing

hip movements to identify an impingement-free zone that

was tailored to the individual prosthesis. Elkins et al28 used

a validated metal-on-metal THA finite element model to

delineate optimal acetabular orientations that would both

minimize wear and enhance component stability. Despite

these commendable attempts to visualize impingement,

previous studies have neither fully integrated the spinopelvic

parameters into their predictive models, nor expanded on the

potential of AI.

Our algorithm exhibited good accuracy in impinge-

ment and type prediction, and excellent accuracy in deter-

mining the direction. We used fivefold cross-validation, a

recognized method to ensure model reliability and prevent

Table VI. Prediction accuracies obtained from combining imaging and tabular data versus imaging alone.

Input Output

Table MLP + CNN

(image + tabular) LGBM (tabular)

Table MLP

(tabular) CNN (image) SVM (tabular)

Predictors Impingement 0.675328 0.681225 0.645613 0.64188 0.6375783475783476

Predictors +

impingement Direction 0.843903 0.845499 0.840741 0.388889 0.8134757834757835

Predictors +

impingement +

direction Type 0.664217 0.645014 0.643621 0.3218 0.6583475783475784

CNN, convolutional neural network; LGBM, Light Gradient-Boosting Machine; MLP, multilayer perceptron; SVM, support vector machine.
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overfitting.29–32 Although no universal accuracy benchmark

for AI models exists, domains like healthcare unquestionably

require higher precision. Balagurunathan et al33 outlined an

AI system’s evolution in medicine, from inception to market

introduction. This journey starts with an idea and moves onto

a discovery phase where the algorithm is established based on

an initial cohort study. The subsequent mid-phase encom-

passes system refinement and broader population testing

(clinical trials). The culmination is the late phase, where the

AI product is deemed suitable for widespread deployment.

Within this framework, our work resonates with the early,

proof-of-concept phase.

Our model demonstrated good accuracy in predicting

impingement and its direction, offering valuable insights for

arthroplasty surgeons during the preoperative stage. Such

information can direct necessary adjustments concerning

component positioning and prepare the surgeon for potential

intraoperative challenges. Nevertheless, our model’s perform-

ance in predicting the impingement type showed room for

improvement. Several reasons could account for this: a need

for a more comprehensive and representative dataset, or a

potential revision of the input variables specific to impinge-

ment type prediction. For instance, Chandler et al,34 in a

cadaveric study, indicated that factors such as the head/

neck ratio and neck length influence impingement-free ROM.

Therefore, integrating these parameters might enhance our

model’s accuracy.

When we incorporated imaging into our predictive

deep-learning algorithm using a plain weightbearing AP pelvis

radiograph, we observed no enhancement in accuracy. We

intentionally limited our imaging input to a single preoper-

ative AP pelvis radiograph to ensure broader applicability.

This constraint, however, comes at the expense of conduct-

ing more comprehensive evaluations, such as volumetric

assessments of anatomical structures or precise distance

measurements. Additionally, a complete understanding of

how the morphology and volume of anatomical structures,

particularly the greater trochanter, influence impingement

remains elusive. While CT reconstruction views and axial slices

could offer a pathway to these precise measurements, the

implications of adopting CT scans should be considered and

weighed against their broader applicability.35 Future stud-

ies could leverage detailed annotations, such as landmark

markings or distance measurements, to enhance predictive

accuracy. Furthermore, it is important to acknowledge that

owing to some patients opting out of having their images

used, our sample size for the AI model utilizing both tabular

and imaging data was slightly reduced. This could potentially

have introduced attrition bias and made our sample less

generalizable.

Our study possesses several potential limitations.

Although our comprehensive, prospectively collected data

strengthen our conclusions, a larger sample could further

refine the external validity and performance of our algorithm.

Another consideration is that missing data are inevitable

in real-world, everyday clinical practice. For this study, we

chose to use only patients with a complete dataset. Yet, the

efficiency of our algorithm could be enhanced by incorpo-

rating imputation models to accommodate and adjust for

missing data.36 Moreover, the algorithm’s accuracy could

vary internationally and between different ethnic groups

due to phenotypic differences,37 underscoring the need for

broader validation. We relied on standing and relaxed-seated

position spinal radiographs to evaluate spinopelvic motion;

recent research suggests that this method might overesti-

mate spinal stiffness.38,39 It has also been reported that

approximately 20% of osteoarthritic hips exhibit features of

spinopelvic hypermobility owing to limited hip motion and

a compensatory posterior pelvic tilt in the relaxed-seated

position.40–42 Therefore, integrating flexed-seated radiographs

into the algorithm might enable a more accurate impinge-

ment prediction. Additionally, predicting impingement using

our virtual ROM tool may not fully replicate impingement as

experienced by patients, as not all aspects of impingement

can be modelled with CT scans. This discrepancy highlights a

potential area for future research and algorithm refinement.

Moreover, we confined our imaging input to a single preoper-

ative AP pelvis radiograph to promote broader applicability,

especially for surgeons not utilizing enhanced CT preopera-

tive planning. Future efforts could consider CT reconstruction

views and axial slices for more detailed anatomical insights

and measurements. Another limitation is our exclusive use of

a specific femoral stem and acetabular component, necessitat-

ing validation with other prosthetic designs. It should also

be acknowledged that the specific parameters chosen for

hip motion in this study, aimed at assessing more extreme

functional positions,43 may not be universally applicable.

Variations in impingement and accuracy results could occur

if more conservative parameters are selected, potentially

influencing the generalizability of our findings.

In summary, we used a high-quality, comprehensive,

prospectively collected dataset emulating real-world clinical

scenarios to develop a machine-learning algorithm aiming to

predict impingement, its direction, and type in THA.44 Our

research represents the first study to examine the use of

AI in impingement prediction and external validation of this

algorithm and testing at a larger scale is imperative.
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