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MODULI OF LANGLANDS PARAMETERS

JEAN-FRANÇOIS DAT, DAVID HELM, ROBERT KURINCZUK, AND GILBERT MOSS

Abstract. Let F be a non-archimedean local field of residue characteristic
p, let Ĝ be a split reductive group scheme over Z[ 1

p
] with an action of WF ,

and let GL denote the semidirect product Ĝ ⋊ WF . We construct a moduli
space of Langlands parameters WF → GL , and show that it is locally of finite

type and flat over Z[ 1
p
], and that it is a reduced local complete intersection.

We give parameterizations of the connected components and the irreducible
components of the geometric fibers of this space, and parameterizations of the

connected components of the total space over Z[ 1
p
] (under mild hypotheses)

and over Zℓ for ℓ 6= p. In each case, we show precisely how each connected
component identifies with the “principal” connected component attached to a
smaller split reductive group scheme. Finally, we study the GIT quotient of

this space by Ĝ and give a description of its fibers up to homeomorphism, and
a complete description of its ring of functions after inverting an explicit finite

set of primes depending only on GL .
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References 88

1. Introduction and main results

1.1. Introduction. Let F be a local field with residue characteristic p, and G a
quasi-split connected reductive group over F . Let ℓ be a prime different from p.
A Langlands parameter for G is a continuous L-homomorphism WF → GL (Qℓ);
that is, an ℓ-adically continuous homomorphism from the Weil group WF to the
group of Qℓ-points of the Langlands dual group GL := Ĝ⋊WF of G, such that the
composition with the natural map GL (Qℓ)→WF is the identity.

WhenG is the general linear group GLn, then GL is simply the product GLn×WF ,
and a Langlands parameter for G is simply a continuous representation: WF →
GLn(Qℓ). Such representations vary nicely in algebraic families; in particular, given
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a continuous representation ϕ : WF → GLn(Fℓ), we can associate to it the univer-
sal framed deformation ring R�

ϕ . a complete Noetherian local W (Fℓ)-algebra that

admits a continouous representation ϕuniv : WF → GLn(R
�
ϕ ) such that the pair

(R�
ϕ , ϕ

univ) is universal for pairs (R,ϕ), where R is a complete Noetherian local

W (Fℓ)-algebra and ϕ :WF → GLn(R) is a lift of ϕ.
Given the importance of such deformation spaces in the Langlands program, it

is natural to attempt to construct corresponding “universal deformation spaces”
for Langlands parameters attached to groups G other than GLn. Indeed, Bellovin
and Gee [BG19] and Booher and Patrikis [BP19] independently study a closely
related problem. Specifically, (cf. [BP19], Section 2) define an GL -Weil-Deligne
representation over aW (Fℓ)-algebra A to be a triple (DA, r,N), whereDA is an GL -
bundle over SpecA, r : WF → Aut GL (DA) is a homomorphism with open kernel,
andN is a nilpotent element of the Lie algebra of Aut GL (DA) such that Adr(w)N =
|w|N for all w ∈ WF . Both Bellovin-Gee and Booher-Patrikis construct moduli
spaces of such GL -Weil-Deligne representations, that are schemes locally of finite
type over W (Fℓ), and show that their general fibers are generically smooth and
equidimensional of dimension equal to the dimension of GL .

When A is complete local, and ℓ is invertible in A, Grothendieck’s monodromy
theorem gives a natural bijection between GL -Weil-Deligne representations with
values in A and Langlands parameters with values in A, so the results of Bellovin-
Gee and Booher-Patrikis in some sense give a solution to the problem of finding
universal families for Langlands parameters over G. Their method relies heavily on
the exponential and logarithm maps, which have denominators, and also involves
division by the order of the image of an element of inertia. There is thus reason to
question whether a naive extension of these constructions to situations where ℓ is
not invertible gives the “right” objects, particularly if the prime ℓ is small enough
to divide one of these denominators. For instance, when G = GL2, and ℓ divides
q2 − 1 (where q denotes the order of the residue field of F ), the analogue of the
spaces constructed by Bellovin-Gee and Booher-Patrikis fails to be flat overW (Fℓ).
Since universal framed deformation rings are known to be flat over W (Fℓ), this
means that when G = GL2, naive generalization of the constructions of Bellovin-
Gee and Booher-Patrikis fails to recover the existing theory in such characteristics.
It is reasonable to expect that this failure of flatness persists for more complicated
groups. Such a failure makes these spaces unsuitable for formulating analogues of
Shotton’s “ℓ 6= p Breuil-Mezard” results for GLn [Sho18]. We refer the reader to
section 2.4 for further discussion of this point.

In light of these issues, it is tempting to look at alternative characterizations
of Langlands parameters over fields of characteristic zero, in the hope that they
suggest better behaved moduli problems. There are (at least) three definitions of
a “Langlands parameter over Qℓ” common in the literature:

(1) pairs (r,N), where r : WF → GL (Qℓ) is an L-homomorphism with open

kernel and N ∈ Lie(ĜQℓ
) a nilpotent element, such that Adr(w) = |w|N ,

(2) mapsWF ×SL2(Qℓ)→ GL (Qℓ) whose restriction to the first factor is an L-
homomorphism with open kernel and whose restriction to the second factor
is algebraic, and

(3) L-homomorphisms ϕL :WF → GL (Qℓ) that are ℓ-adically continuous.
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The first of these definitions generalizes in an obvious way to coefficients in an
arbitraryW (Fℓ)-algebra R, and considering the associated moduli problem leads to
the schemes considered by Bellovin-Gee and Booher-Patrikis. The second likewise
generalizes to such algebras R, but the associated moduli space is much less well-
behaved. For instance, the moduli space of unramified pairs (r,N) as in (1) is
connected over Qℓ, whereas the space of unramified maps WF × SL2 → GL as
in (2) is, over Qℓ, a disjoint union over the set of conjugacy classes of unipotent

elements u ∈ Ĝ(Qℓ), of the loci where the image of the matrix ( 1 1
0 1 ) in the SL2

factor is conjugate to u.
It is therefore tempting to try to construct a moduli space of ℓ-adically continuous

L-homomorphisms from WF to GL as in (3). The notion of ℓ-adic continuity for
L-homomorphisms valued in GL (Qℓ) generalizes naturally to complete local rings
of residue characteristic ℓ; this is sufficient for a well-behaved deformation theory
but is insufficient to obtain a moduli space that is locally of finite type. In order
to obtain such a space, one would need a broader notion of ℓ-adic continuity.

Our approach to this question is inspired by previous work of the second au-
thor in [Hel20]. That paper introduces a notion of ℓ-adic continuity for maps
WF → GLn(R) that makes sense for arbitrary W (Fℓ)-algebras R, and constructs
universal families of such representations over a suitable W (Fℓ)-scheme, which we
will denote here by Xn. (This notation differs from that of [Hel20], where what
we call the scheme Xn only appears implicitly, as the disjoint union of the schemes
denoted Xν

q,n). As with the constructions of Bellovin-Gee and Booher-Patrikis, the

scheme Xn is locally of finite type over W (Fℓ), but unlike their construction, the
completion of the local ring of Xn at any Fℓ-point of Xn, corresponding to a map
ϕ : WF → GLn(Fℓ), is the universal framed deformation ring R�

ϕ . In other words,

Xn is a locally of finite-typeW (Fℓ)-scheme that “interpolates” the universal framed
deformation rings of all n-dimensional mod ℓ representations of WF .

The schemes Xn constructed in [Hel20] play a central role in the formulation
and proof of the “local Langlands correspondence in families” for the group GLn,
now proven by two of the authors in [HM18]. (These results, in turn, imply the
existence of the families conjectured by Emerton and the second author in [EH14].)
In particular, the subring of functions on Xn that are invariant under the conju-
gation action on Langlands parameters is naturally isomorphic to the center of the
category of smooth W (Fℓ)[GLn(F )]-modules. Morally, this means that aspects of
the geometry of Xn are reflected in the representation theory of GLn(F ). For in-
stance, the connected components of Xn correspond to the “blocks” of the category
of smooth W (Fℓ)[GLn(F )]-modules.

In this paper our first objective is to generalize the construction of [Hel20] to
the setting of Langlands parameters for arbitrary quasi-split, connected reductive
groups, with an eye towards formulating a conjectural analogue of the local Lang-
lands correspondence in families for such groups. In a departure from previous
work on the subject, we work over the base ring Z[ 1p ] rather than over a ring of

Witt vectors; this introduces some technical complexity but gives us the smallest
possible base ring for such a correspondence. (In particular this allows us to study
chains of congruences of Langlands parameters modulo several different primes.)
We refer the reader to the next subsection for precise definitions.

Second, we aim to understand the geometry of these moduli spaces of Langlands
parameters. Several natural questions arise. It turns out that, as in the setting
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of local deformation theory of Galois representations, the spaces we obtain have a
quite tractable local structure: they are reduced local complete intersections that
are flat over SpecZ[ 1p ], of dimension dimG. Moreover, we give descriptions of the

connected components of these moduli spaces, both over algebraically closed fields
of arbitrary characteristic ℓ 6= p, and (conjecturally) over Z[ 1p ].

Finally, we study the rings of functions on these moduli spaces that are invariant
under Ĝ-conjugacy (or, equivalently, the GIT quotient of the moduli space of Lang-

lands parameters by the conjugation action of Ĝ.) As in the case of GLn, the ring
of such functions is in general quite complicated, and does not admit an explicit
description. (In particular, the corresponding GIT quotients are very far from being
normal.) Nonetheless, we show that after inverting an explicit finite set of primes
(depending only on G), the GIT quotients are quite nice; indeed, they are disjoint
unions of quotients of tori by finite group actions. Over the complex numbers these
connected components coincide with varieties studied by Haines [Hai14].

1.2. The moduli space of Langlands parameters. We now describe in detail
the moduli problem that we study. Following [Hel20], the approach we take is to
“discretize” the tame inertia group. Fix an arithmetic Frobenius element Fr in WF

and a pro-generator s of the tame inertia group IF /PF . These satisfy the relation

Fr sFr−1 = sq. We then consider the subgroup 〈Fr, s〉 = sZ[
1
q
]
⋊ FrZ of WF /PF , we

denote by W 0
F its inverse image in WF , and we endow it with the topology that

extends the profinite topology of PF and induces the discrete topology on 〈Fr, s〉.
Note that (in contrast to the subgroup WF of GF ), the subgroup W 0

F of WF very
much depends on the choices of Fr and s.

Although the topology onW 0
F is finer than the one induced fromWF , the relation

Fr sFr−1 = sq implies that a morphism W 0
F → GL (Qℓ) is continuous if and only

if it is continuous for the topology induced from WF . It follows that restriction to
W 0

F induces a bijection between objects of type (3) and the following objects :

(4) continuous morphisms ϕL : W 0
F → GL (Qℓ) (with either the discrete or the

natural topology on GL (Qℓ)).

These objects are now easy to define over any Zℓ-algebra R since only the discrete
topology of GL (R) is needed. Indeed, they are also defined for any Z[ 1p ]-algebra

and their moduli space over Z[ 1p ] is already interesting.

We therefore consider the following setting:

• Ĝ is a split reductive group scheme over Z[ 1p ] endowed with a finite action

of the absolute Galois group GF (we do not assume that GF preserves a
pinning).

• W 0
F is the inverse image in WF of the subgroup sZ[

1
q
]
⋊ FrZ of WF /PF ,

which depends on the choice of a generator s of the tame inertia group
IF /PF and a lift of Frobenius.
• (P e

F )e∈N is a decreasing sequence of open subgroups of PF that are normal
in WF and whose intersection is {1}.

Note that for any Z[ 1p ]-algebra R, there is a natural bijection between the contin-

uous L-homomorphisms ϕL : W 0
F → GL (R) (with respect to the discrete topology

on GL (R)) and the set of continuous 1-cocycles Z1(W 0
F , Ĝ(R)) on W

0
F with values

in Ĝ(R). If, given ϕL , we denote by ϕ the corresponding cocycle, then this bijection
is characterized by the identity ϕL (w) = (ϕ(w), w) for all w ∈WF .
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Since the cocycles we consider are continuous with respect to the discrete topol-
ogy, we have Z1(W 0

F , Ĝ(R)) =
⋃

e>e0
Z1(W 0

F /P
e
F , Ĝ(R)), where e0 is such that P e0

F

acts trivially on Ĝ. It is easy to see that the functor R 7→ Z1(W 0
F /P

e
F , Ĝ(R)) on

Z[ 1p ]-algebras is represented by an affine scheme of finite presentation over Z[ 1p ],

that we denote by Z1(W 0
F /P

e
F , Ĝ), and that the natural map Z1(W 0

F /P
e
F , Ĝ) −→

Z1(W 0
F /P

e+1
F , Ĝ) is a closed immersion. Moreover, the next proposition implies

that this map is also open, and it follows that the functor R 7→ Z1(W 0
F , Ĝ(R)) is

represented by a scheme Z1(W 0
F , Ĝ), in which each Z1(W 0

F /P
e
F , Ĝ) sits as a direct

summand, and which is the increasing union of all these subschemes.
As a Z[ 1p ]-scheme, the scheme Z1(W 0

F , Ĝ) depends on the choices we made defin-

ingW 0
F as a subgroup ofWF . Indeed, ifW

0′

F is the subgroup arising from a different
choice (Fr′, s′) then there is not typically a canonical isomorphism of Z[ 1p ]-schemes

from Z1(W 0
F , Ĝ) to Z1(W 0′

F , Ĝ). However, there are canonical such isomorphisms
over Zℓ for each ℓ not equal to p (Corollary 4.2). Moreover, we show (Theorem 4.18)

that the GIT quotient Z1(W 0
F , Ĝ) � Ĝ is, up to canonical isomorphism, indepen-

dent of the choices defining W 0
F . We further suspect, but do not prove, that the

corresponding quotient stacks are also canonically isomorphic.
Our study of Z1(W 0

F , Ĝ) relies on the restriction map Z1(W 0
F , Ĝ) −→ Z1(PF , Ĝ).

One crucial point is that the scheme Z1(PF , Ĝ) is particularly well behaved, because
p is invertible in our coefficient rings. Indeed, we prove the following result in the
appendix.

Proposition 1.1. The scheme Z1(PF , Ĝ) is smooth and its base change to Z[ 1p ] is a

disjoint union of orbit schemes. More precisely, there is a set Φ ⊂ Z1(PF , Ĝ(Z[
1
p ]))

such that

(1) Z1(PF , Ĝ)Z[ 1
p
] =

∐

φ∈Φ Ĝ · φ and Ĝ · φ represents the sheaf-theoretic (fppf

or étale) quotient Ĝ/CĜ(φ).

(2) each centralizer CĜ(φ) is smooth over Z[ 1p ] with split reductive neutral com-

ponent and constant π0.

This says in particular that any cocycle φ′ ∈ Z1(PF , Ĝ(R)) is, locally for the

étale topology on R, Ĝ-conjugate to a locally unique φ in Φ.
Via the restriction morphism Z1(W 0

F , Ĝ) −→ Z1(PF , Ĝ), the proposition induces
a decomposition

Z1(W 0
F , Ĝ)Z[ 1

p
] =

∐

φ∈Φ

Ĝ×C
Ĝ
(φ) Z1(W 0

F , Ĝ)φ

where Z1(W 0
F , Ĝ)φ is the closed subscheme of parameters ϕ such that ϕ|PF

= φ.

In Section 3 we further decompose Z1(W 0
F , Ĝ)φ as follows.

Proposition 1.2. For each φ ∈ Φ, there is a finite set Φφ ⊂ Z1(W 0
F , Ĝ(Z[

1
p ]))φ,

which is a singleton if CĜ(φ) is connected, with the following properties :

(1) ∀ϕ̃ ∈ Φφ, ϕ̃(W
0
F ) normalizes a Borel pair in CĜ(φ)

◦

(2) ∀ϕ̃ ∈ Φφ, the map η 7→ η · ϕ̃ defines a closed and open immersion

Z1
Adϕ̃

(W 0
F /PF , CĜ(φ)

◦) →֒ Z1(W 0
F , Ĝ)φ
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(3) The collection of these maps defines an isomorphism

(1.1)
∐

(φ,ϕ̃)

Ĝ×C
Ĝ
(φ)ϕ̃ Z1

Adϕ̃
(W 0

F /PF , CĜ(φ)
◦)

∼
−→ Z1(W 0

F , Ĝ)Z[ 1
p
]

where CĜ(φ)ϕ̃ is the open and closed subgroup scheme of CĜ(φ) that stabi-
lizes the image of (2).

These results are essentially relative versions of the constuctions of [Dat17, Sec-

tion 2]. We note that if Ĝ is a classical group and p > 2, then CĜ(φ) is always

connected. Moreover, if the center of Ĝ is smooth over Z[ 1p ], then we show that

“Borel pair” can be replaced by “pinning” in (1).
In general, this result shows that the crucial case to study is the space of tame

parameters for a tame action of WF that preserves a Borel pair of Ĝ. This case is
thoroughly studied in Section 2. Using the results of that section and the above
decomposition we will get the following result, (Theorem 4.1)

Theorem 1.3. The scheme Z1(W 0
F , Ĝ) is syntomic (flat and locally a complete in-

tersection) over Z1(PF , Ĝ), generically smooth, of pure absolute dimension dim(Ĝ).

Beware that dim Ĝ = dimG + 1 whenever Ĝ is the Langlands dual group of a
reductive group G over F , since the base scheme of Ĝ has dimension 1.

We further conjecture that the summands appearing in the decomposition of (1.1)
are connected. The last proposition reduces this conjecture to proving that for any
Ĝ′ with a tame Galois action preserving a Borel pair, the summand in (1.1) corre-
sponding to tame parameters is connected. In Theorem 4.29 we prove this under

the assumption that the action even preserves a pinning, i.e. when GL
′
is gen-

uinely the L-group of a tamely ramified reductive group G′ over F . This allows us
to deduce our conjecture in many cases. In particular, Theorem 4.5 asserts :

Theorem 1.4. If the center of Ĝ is smooth, then all the summands in the decom-
position of (1.1) are connected.

For G = GLn, where all centralizers are connected, this result says that each
Z1(W 0

F , Ĝ)φ is connected, and may be thought of as the Galois counterpart of the
fact, discovered by Sécherre and Stevens [SS19], that two irreducible representations
of GLn(F ) belong to the same endoclass if and only if they are connected by a series
of congruences at various primes different from p.

The reduction to tame parameters also allows us to obtain a parameterization of
the geometric irreducible components of Z1(W 0

F , Ĝ), that is, the irreducible com-

ponents of Z1(W 0
F , Ĝ)L for an algebraically closed field L of characteristic different

from p. Such components are characterized by “inertial types” (that is, by specif-
ing the restriction of the parameter to the inertia subgroup of W 0

F ), together with
some extra data that accounts for disconnectedness of centralizers. In particular,
combining Corollary 2.4 with this reduction to tame parameters, we find:

Theorem 1.5. For any algebraically closed field L of characteristic different from
p, there is a natural bijection between the irreducible components of Z1(W 0

F , Ĝ)L
and the set of Ĝ(L)-conjugacy classes of pairs (ξ,F0), where ξ is an element in the

image of the restriction map Z1(W 0
F , Ĝ(L))→ Z1(I0F , Ĝ(L)), and F0 is an element

of π0(TĜ(ξ
Fr, ξ′)). [Here ξFr is the conjugate of ξ under the action of Fr on Ĝ,

ξ′ is the composition of ξ with the automorphism “conjugation by Fr” of I0F , and
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TĜ(ξ
Fr, ξ′) is the transporter; that is, the subgroup of ĜL consisting of elements that

conjugate ξFr to ξ′.]
Moreover, this bijection is characterized by the property that for a general L-point

ϕ of the irreducible component of Z1(W 0
F , Ĝ)L corresponding to a pair (ξ,F0), there

exists a Ĝ(L)-conjugate of ξ whose restriction to I0F is equal to ξ, and value at Fr

lies in the component of TĜ(ξ
Fr, ξ′) given by F0.

1.3. The space of parameters over Zℓ. Let us now fix a prime number ℓ 6= p.
For a Zℓ-algebra R, we say that a Ĝ(R)-valued cocycle ϕ is ℓ-adically continuous
if there is some ℓ-adically separated ring R0 such that ϕ comes by pushforward
from some Ĝ(R0)-valued cocycle ϕ0, all of whose pushforwards to Ĝ(R0/ℓ

n) are
continuous for the topology inherited from WF . It is not a priori clear that this
definition is local for any usual topology. But the following result, extracted from
Theorem 4.1, shows it is, and may justify again our approach involving the weird
group W 0

F .

Theorem 1.6. The ring of functions Re
GL of the affine scheme Z1(W 0

F /P
e
F , Ĝ) is

ℓ-adically separated and the universal cocycle ϕe
univ extends uniquely to an ℓ-adically

continuous cocycle
ϕe
ℓ−univ : WF /P

e
F −→ Ĝ(Re

GL ⊗ Zℓ)

which is universal for ℓ-adically continuous cocycles.

The ℓ-adic continuity property of ϕe
ℓ−univ and the ℓ-adic separateness of Re

GL ⊗Zℓ

imply that the restriction of ϕe
ℓ−univ to the prime-to-ℓ inertia group IℓF factors over

a finite quotient. Since the order of this finite quotient is invertible in Zℓ, we can
use the same strategy as before to decompose Z1(W 0

F , Ĝ)Zℓ
using now restriction

of parameters to IℓF . The upshot is a decomposition similar to (1.1)

(1.2) Z1(W 0
F , Ĝ)Zℓ

=
∐

(φℓ,ϕ̃)

Ĝ×C
Ĝ
(φℓ)ϕ̃ Z1

Adϕ̃
(W 0

F /PF , CĜ(φ
ℓ)◦)1

Iℓ
F

Theorem 4.8 asserts that each summand of this decomposition has a geometrically
connected special fiber so, in particular, is connected. The collection of all these
connectedness results for varying ℓ is used in the proof of the connectedness results
over Z[ 1p ].

1.4. The categorical quotient over a field. We now fix an algebraically closed
field L of characteristic ℓ 6= p but we allow ℓ = 0. We consider the categorical
quotient

Z1(W 0
F , Ĝ)L � ĜL = lim

−→
Spec((Re

GL ⊗ L)ĜL).

Recall that the closed points of Z1(W 0
F , Ĝ)L � ĜL correspond to closed Ĝ(L)-orbits

in Z1(W 0
F , Ĝ(L)). A theorem of Richardson tells us that a cocycle ϕ has closed

orbit if and only if its image in GL = Ĝ⋊WF is completely reducible in the sense
that whenever it is contained in a parabolic subgroup of GL , it has to be contained
in some Levi subgroup of this parabolic subgroup.

When ℓ 6= 0, we already know from (1.2) how to parametrize its connected
components, and we now wish to describe them explicitly, at least up to homeo-
morphism. In order to give a unified treatment including ℓ = 0, we (re)label the

connected components of Z1(W 0
F , Ĝ)L � ĜL by the set Ψ(L) of Ĝ(L)-conjugacy

classes of pairs (φ, β) consisting of
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• a completely reducible inertial cocycle φ ∈ Z1(IF , Ĝ(L)).

• an element β in {β̃ ∈ Ĝ(L)⋊ Fr, β̃φ(i)β̃−1 = φ(Fr iFr−1)}/CĜ(φ)
◦.

For such a pair, the centralizer CĜ(φ(IF )) is a (possibly disconnected) reductive

algebraic group over L. So we fix a Borel pair (B̂φ, T̂φ) in CĜ(φ)
◦ and we choose

a lift β̃ of β that normalizes this Borel pair. The adjoint action of β̃ on T̂φ only
depends on β, and so does its action on the Weyl group Ωφ = Ω◦

φ ⋊ π0(CĜ(φ)).

Now for all t̂ ∈ T̂φ we can extend φ uniquely to a cocycle ϕt̂β̃ ∈ Z
1(W 0

F , ĜL) such

that ϕt̂β̃(Fr) = t̂β̃. The following result is Corollary 4.22.

Theorem 1.7. The collection of maps t̂ 7→ ϕt̂β̃ define a universal homeomorphism

∐

(φ,β)∈Ψ(L)

(T̂φ)β � (Ωφ)
β ≈
−→ Z1(W 0

F , ĜL) � ĜL,

which is an isomorphism if char(L) = 0.

In particular, we see that each connected component of Z1(W 0
F , ĜL) � ĜL is

irreducible.
When L = C, this allows us to compare in Section 6.3 our categorical quotient

with Haines’ algebraic variety constructed in [Hai14].

Corollary 1.8. The scheme Z1(W 0
F , ĜC)�ĜC is canonically isomorphic to Haines’

variety.

When L = Fℓ, we give in Theorem 6.8 an explicit condition on ℓ for the homeo-
morphism of the above theorem to be an isomorphism. This involves the notion of
GL -banal prime that we now discuss.

1.5. Reducedness of fibers and GL -banal primes. The obstruction to ob-
taining a description of the GIT quotients over Z[ 1p ] analogous to our description

of the GIT quotients over fields comes from non-reducedness of certain fibers of
Z1(WF , Ĝ). In Theorem 5.7 we determine an explicit finite set S of primes, de-

pending only on GL , such that the fibers of Z1(WF , Ĝ) are geometrically reduced
outside of S.

The reducedness of the fibers mod ℓ, for ℓ outside S implies in particular that
given two distinct irreducible components of the geometric general fiber of Z1(WF , Ĝ),
their reductions mod ℓ remain distinct. Moreover, the reduction of each such com-
ponent has scheme-theoretic multiplicity one.

When GL is the L-group of a quasi-split connected reductive group G over F , the
philosophy underlying Shotton’s “ℓ 6= p Breuil-Mezard conjecture” suggests that
this “multiplicity-preserving” bijection between irreducible components in charac-
teristic zero and characteristic ℓ should correspond, on the representation theoretic
side of the local Langlands correspondence, to a lack of congruences between dis-
tinct “inertial types” for G. It is well-known that such congruences do not appear
when the prime ℓ is banal for G; that is, when ℓ does not divide the pro-order of
any compact open subgroup of G. We therefore call the set of primes ℓ outside
S “ GL -banal” primes, and we show that if G is an unramified group over F with
no exceptional factors, then the GL -banal primes are precisely the primes that are
banal for G, see Corollary 5.29. On the other hand, for certain exceptional groups
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G there exist primes that are banal for G but not GL -banal. It would be an in-
teresting question (which we do not attempt to address in this paper) to find an
explanation for this discrepancy in terms of the representation theory of G.

Finally, we exploit the reducedness of fibers at primes away from S to compute
the GIT quotient Z1(W 0

F /P
e
F , Ĝ) � Ĝ over Z[ 1

Mp ] for a suitable M , divisible by

all GL -banal primes. We refer to Subsection 6.1 for more details on the following
statement, which is essentially Theorem 6.7.

Theorem 1.9. There is a set of triples (φ, β̃, Tφ) consisting of a cocycle φ ∈

Z1(IF , Ĝ(Z[
1

pM ])), an element β̃ ∈ Ĝ(Z[ 1
pM ])⋊Fr such that β̃φ(i)β−1 = φ(Fr iFr−1)

for all i ∈ IF , and an Adβ̃-stable maximal torus of CĜ(φ)
◦, such that the collection

of embeddings Tφ →֒ CĜ(φ) induce an isomorphism of Z[ 1
pM ]-schemes

∐

(φ,β)

(Tφ)Adβ̃
� (Ωφ)

Adβ̃
∼
−→ (Z1(W 0

F /P
e
F , Ĝ) � Ĝ)Z[ 1

pM
].

When GL is the Langlands dual group of an unramified group, M can be taken
as the product of GL -banal primes. In general, a description of the integer M can
be extracted from Proposition 6.2.

1.6. Relation to recent work. This paper has been a long time coming; many of
the main results were already announced at the October 2019 Oberwolfach work-
shop “New developments in the representation theory of p-adic groups”, including
in the reports [Kur19, Dat19]. The key idea of discretizing tame inertia first ap-
peared in the 2016 arXiv version of [Hel20].

At a late stage in the preparation of this paper, Xinwen Zhu ([Zhu21], particularly
Section 3.1) independently generalized the GLn-construction of [Hel20] to construct
a moduli space of Langlands parameters for a general reductive group. Zhu shows,
as we do, that the spaces are flat, reduced local complete intersections, although
he does not always use the same techniques. The overlap in results between Zhu’s
work and our own occurs primarily with results contained in our Section 2 and
Appendix A. In particular, our global study of the connected components, including
the functoriality principle identifying each connected component with the principal
component of a smaller group, our parameterization of the irreducible components,
our study of reducedness of the fibers, and our explicit description of the GIT
quotients by Ĝ do not appear in his work.

Even more recently, Laurent Fargues and Peter Scholze have proposed in [FS21,
Chapter VIII] a different construction of a moduli space of Langlands parameters
over Zℓ, for ℓ 6= p, in which the continuity constraints are dealt with via condensed
mathematics. However, in order to study the main properties of their space and in
particular prove flatness, reducedness and l.c.i., they revert to the same discretiza-
tion process as ours, and their space turns out to be isomorphic to ours after base
change to Zℓ. There is no further overlap with our paper, but they prove an ad-
ditional beautiful result (under some mild hypothesis) : that the formation of the
GIT quotient commutes with arbitrary base change.

1.7. Acknowledgements. The authors are grateful to the organizers of the April
2018 conference on “New developments in automorphic forms” at the Instituto de
Matematicas Universidad de Sevilla, where many of the ideas behind this paper
were first worked out. We are also grateful to the organizers of the October 2019
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Oberwolfach workshop “New developments in the representation theory of p-adic
groups” where most of the results of this paper have been announced. We thank
Jack Shotton, Stefan Patrikis, Sean Howe, Shaun Stevens, and Peter Scholze for
helpful conversations on the subject of the paper. We thank Eugen Hellmann for
organizing an “Oberseminar” on this work, and Sean Cotner, Pol van Hoften, and
Peter Schneider for their comments and corrections. The second author was par-
tially supported by EPSRC grant EP/M029719/1, the third author was partially
supported by EPSRC grant EP/V001930/1, and the fourth author was partially
supported by NSF grant DMS-200127. Finally, we thank the referee for a tremen-
dous list of comments and corrections, which have greatly improved the paper.

2. The space of tame parameters

We begin by considering moduli of tame Langlands parameters for tame groups.
Let F be a non-archimedean local field of residue characteristic p, and let IF , PF

denote the inertia group and wild inertia group of F , respectively. Let O be the
ring of integers in a finite extension K of Q, and Ĝ be a split connected reductive
algebraic group over O[ 1p ], and let (B̂, T̂ ) be a pair consisting of a Borel subgroup

B̂ of Ĝ defined over O[ 1p ] and a split maximal torus T̂ of Ĝ contained in B̂.

We suppose that Ĝ is equipped with an action of WF /PF that preserves the

pair (B̂, T̂ ), and factors through a finite quotient W of WF /PF . Regard W as a

constant group scheme over O[ 1p ], and let GL denote the semidirect product Ĝ⋊W ;

we regard GL as a disconnected algebraic group scheme over O[ 1p ].

Remark 2.1. Given our general motivations, the most natural setup would require
further that the action of WF on Ĝ preserves a pinning of Ĝ, so that GL would
be the L-group of a connected, quasi-split reductive F -group G that splits over a
tamely ramified extension of F . However, in the next section we will reduce the
study of the space of all Langlands parameters to the particular setup above, and
at the moment we are not able to reduce to the case where a pinning is fixed.

On the other hand, the results of this section do not need the hypothesis above
on WF preserving a Borel pair of Ĝ ; it will be useful later when we study the GIT
quotient and parametrize connected components.

Let Fr denote a lift of arithmetic Frobenius toWF /PF , and let s be a topological
generator of IF /PF . We will regard Fr and s as elements ofW . We have Fr sFr−1 =
sq in WF /PF , where q is the order of the residue field of F .

2.1. Parameters, L-homomorphisms, and 1-cocycles. Recall that, in the case
where GL is the L-group of a connected, quasi-split, reductive F -group G, a tame
Langlands parameter for G is a continuous homomorphism ρ : WF /PF → GL (Qℓ),
whose composition with the projection GL (Qℓ) → W is the natural quotient map
WF → W . We will often refer to such a homomorphism as an L-homomorphism.
Note that if ρ is a tame Langlands parameter, there is a unique continuous cocycle ρ◦

in Z1(WF /PF , Ĝ(Qℓ)) such that ρ(w) = (ρ◦(w), w); this gives a bijection between
the set of L-homomorphisms and this set of cocycles.

Let (WF /PF )
0 denote the subgroup ofWF /PF generated by the elements Fr and

s that we fixed above, regarded as a discrete group. Let W 0
F be the preimage of

(WF /PF )
0 in WF . (Note that both these groups depend heavily on the choices we

made for Fr and s!)
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For any O[ 1p ]-algebra R, the set of L-homomorphisms (WF /PF )
0 → GL (R) is

naturally in bijection with the set of cocycles Z1(W 0
F /PF , Ĝ(R)). Unless stated oth-

erwise, we will denote by ϕ a cocycle, and by Lϕ the associated L-homomorphism.
The group Ĝ(R) acts by conjugation on the set of L-homomorphisms (WF /PF )

0 →

GL (R). The corresponding action on Z1(W 0
F /PF , Ĝ(R)) is sometimes called “twisted

conjugation”. We will denote by gϕ the twisted-conjugate of the cocycle ϕ by g.
Explicitly, we have gϕ(w) = gϕ(w)(wg)−1 where wg denotes the given action of w
on g.

2.2. The scheme Z1(W 0
F /PF , Ĝ). The functor that sends R to Z1(W 0

F /PF , Ĝ(R))

is representable by an affine scheme denoted by Z1(W 0
F /PF , Ĝ). Concretely, a

cocycle ϕ is determined by the two elements ϕ(Fr) and ϕ(s) of Ĝ(R). Conversely,
a pair of elements F0, σ0 arises in this way if, and only if the following identitiy
holds in GL (R)

(F0,Fr)(σ0, s)(F0,Fr)
−1 = (σ0, s)

q.

We may thus identify Z1(W 0
F /PF , Ĝ) with the closed subscheme of Ĝ× Ĝ con-

sisting of pairs (F0, σ0) ∈ Ĝ × Ĝ such that the above identity holds in GL . In

particular, Z1(W 0
F /PF , Ĝ) is affine, with coordinate ring R GL , and we have a “uni-

versal pair” (F0, σ0) of elements of Ĝ(R GL ) satisfying the above identity. The

“universal cocycle” ϕuniv on Z1(W 0
F /PF , Ĝ(R GL )) is then the unique cocycle such

that ϕuniv(Fr) = F0 and ϕuniv(s) = σ0. We will also let F and σ denote the uni-
versal elements (F0,Fr) and (σ0, s) of GL (R GL ), respectively, so that the universal

L-homomorphism Lϕuniv is given by Lϕuniv(Fr) = F and Lϕuniv(s) = σ.

Given a O[ 1p ]-algebra R and an R-valued point x of Z1(W 0
F /PF , Ĝ), we will let

Fx, σx, (F0)x, (σ0)x ϕx denote the objects obtained by base change from F , σ, F0,
σ0, and ϕuniv, respectively.

Of course, the universal cocycle ϕuniv cannot possibly extend in any nice way
to a cocycle in Z1(WF /PF , Ĝ(R GL )). However, we will later show that if v is any
finite place of O of residue characteristic ℓ 6= p, then ϕuniv extends naturally to a
cocycle ϕuniv,v in Z1(WF /PF , Ĝ(R GL ,v)), where R GL ,v denotes the tensor product
R GL ⊗O Ov. In order to prove this, we must first understand the geometry of

Z1(W 0
F /PF , Ĝ).

2.3. Geometry of Z1(W 0
F /PF , Ĝ). Let L be an algebraically closed field over

O[ 1p ]. Denote by ℓ its characteristic, and consider the fiber Z1(W 0
F /PF , Ĝ)L of

Z1(W 0
F /PF , Ĝ) over SpecL. We have a map: evs : Z1(W 0

F /PF , Ĝ)L → ( GL )L
that takes a cocycle ϕ to Lϕ(s) or, in other words, a pair (F , σ) to σ. Let ξ
be a point of GL (L) in the image of this map. We denote by Xξ the scheme-

theoretic fiber of this map over ξ; it is a closed subscheme of Z1(W 0
F /PF , Ĝ)L.

Similarly, denote by X(ξ) the locally closed subscheme of Z1(W 0
F /PF , Ĝ)L that is

the preimage in Z1(W 0
F /PF , Ĝ)L of the Ĝ(L)-conjugacy class of ξ in GL (L). In

particular, Z1(W 0
F /PF , Ĝ)(L) is the (set-theoretic) union of the X(ξ)(L), as ξ runs

over a set of representatives for the Ĝ(L)-conjugacy classes of GL (L) in the image
of the map evs.

Let Ĝξ be the Ĝ-centralizer of ξ. This is a possibly non-reduced group scheme
over SpecL that acts on Xξ via g · (Fx, σx) = (Fxg

−1, σx). Moreover, for any
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L-algebra R and any two points x = (Fx, σx) and y = (Fy, σy) of Xξ(R), we have

σx = σy = ξ and F−1
x Fy ∈ Ĝξ(R). Thus Xξ is a Ĝξ-torsor over SpecL.

Now fix an L-point x = (Fx, ξ) in Xξ. We then obtain a surjective morphism :

πx : ĜL × Ĝξ → X(ξ)

that sends (g, g′) to (gFxg
′g−1, gξg−1). Moreover, we have an action of Ĝξ on

ĜL× Ĝξ given by g′′ · (g, g′) = (g(g′′)−1,F−1
x g′′Fxg

′(g′′)−1). This action commutes

with πx and makes ĜL × Ĝξ into a Ĝξ-torsor over X(ξ). In particular, we deduce

that the reduced underlying subscheme of X(ξ) is smooth of dimension dim ĜL.

Lemma 2.2. Let x be an L-point of Z1(W 0
F /PF , Ĝ), and let

σx = σu
xσ

ss
x

be the Jordan decomposition of σx; i.e. σu
x is a unipotent element of GL (L) and

σss
x is a semisimple element that commutes with σu

x . Then the order of σss
x is prime

to ℓ and divides e(qfN − 1), where N is the order of the Weyl group of Ĝ, e is the
order of s in W , and f is the order of Fr in W .

Proof. Let e′ be the prime-to-ℓ part of e (or e′ = e if ℓ = 0). The element (σss
x )

e′

is then a semisimple element σ′
x of Ĝ(L). The element Fx conjugates σ′

x to its

qth power. Thus Ff
x is an element of Ĝ(L) that conjugates σ′

x to its qf th power.
Since σ′

x is semisimple we may assume (conjugating it and Fx appropriately) that

it lies in T̂ (L). Since two elements of T̂ (L) that are conjugate under Ĝ(L) are

also conjugate under the normalizer NĜ(T̂ )(L), there is an element w of the Weyl

group of Ĝ that conjugates σ′
x to its qf th power. Since wN is the identity we have

σ′
x = (σ′

x)
qfN

and the claim follows. �

Corollary 2.3. The image of Z1(W 0
F /PF , Ĝ)(L) in GL (L) under the evaluation

map evs is a union of finitely many Ĝ(L)-conjugacy classes in GL (L).

Proof. Let σ be an L-point in the image of evs, and let σ = σuσss be the Jordan
decomposition of σ. Then σss is semisimple with bounded order, so lies in one
of finitely many conjugacy classes. Moreover, if we fix σss, then σu lies in the
centralizer GL σss of σss in GL , which has reductive connected component of identity,

by [Ste68, Cor. 9.4]. Now, two elements σ, σ′ with semisimple part σss are Ĝ(L)-

conjugate if, and only if, their unipotent parts σu, (σ′)u are Ĝσss(L)-conjugate.
But there are only finitely many unipotent conjugacy classes in GL σss(L) (see, for
instance [FG12], Corollary 2.6, for a proof of this in positive characteristic), and

therefore only finitely many Ĝσss(L)-orbits of unipotent elements of GL σss(L). The
result follows. �

From this finiteness result we deduce that the scheme Z1(W 0
F /PF , Ĝ)L is the

(set-theoretic) union of the subschemes X(ξ), as ξ runs over a set of representatives

for the Ĝ(L)-conjugacy classes of GL (L) in the image of the map evs. In particular,

the irreducible components of Z1(W 0
F /PF , Ĝ)L are the closures of the connected

components of the X(ξ).
We can use this to give a parameterization of the irreducible components of

Z1(W 0
F /PF , Ĝ)L. For any ξ, let TĜ(

Frξ, ξq) be the subscheme of Ĝ consisting of

elements that conjugate Frξ to ξq. We then have:
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Corollary 2.4. For any algebraically closed field L of characteristic ℓ 6= p, the
irreducible components of Z1(W 0

F /PF , Ĝ)L are in bijection with Ĝ-orbits of pairs

(ξ,F0), where ξ is an element of Ĝ⋊ s and F0 is an element of π0(TĜ(
Frξ, ξq))

Proof. The irreducible components of Z1(W 0
F /PF , Ĝ)L are in bijection with the

union, over a set of representatives ξ of the Ĝ(L)-conjugacy classes in the image of
evs, of the connected components of X(ξ). It thus suffices to fix a particular ξ and
show that the connected components of X(ξ) are in bijection with the orbits, of the

Fr-twisted conjugation action of Ĝξ on π0(TĜ(
Frξ, ξq)).

Let X̃(ξ) be the L-scheme that parameterizes tuples (ϕ, g), where ϕ is a cocycle

in Z1(W 0
F /PF , Ĝ)L, and g is an element of Ĝ that conjugates Lϕ(s) to ξ. We have

natural maps:

X(ξ) ← X̃(ξ) → TĜ(
Frξ, ξq),

where the left-hand map forgets g, and the right-hand map sends (ϕ, g) to gϕ(Fr)Frg−1.

The action h · (ϕ, g) = (ϕ, hg) of Ĝξ on X̃(ξ) makes X̃(ξ) into a Ĝξ-torsor over

X(ξ), and thus induces a bijection of π0(X(ξ)) with π0(X̃(ξ))
Ĝξ . On the other hand,

the action h′ · (ϕ, g) = (h
′

ϕ, g(h′)−1) of ĜL on X̃(ξ) makes X̃(ξ) into a ĜL-torsor

over TĜ(
Frξ, ξq), and thus induces a bijection of π0(X̃(ξ)) with π0(TĜ(

Frξ, ξq)). The
claim follows. �

The fact that theX(ξ) have dimension equal to that of dim ĜL also lets us deduce:

Corollary 2.5. The scheme Z1(W 0
F /PF , Ĝ) is flat over O[ 1p ] of pure absolute di-

mension dim Ĝ, and is a local complete intersection.

Proof. Denote S := Spec(O[ 1p ]). The S-scheme Z1 := Z1(W 0
F /PF , Ĝ) is isomorphic

to the fiber, over the identity section S −→ Ĝ, of the map:

Ĝ×S Ĝ→ Ĝ

given by (F0, σ0) 7→ (F0,Fr)(σ0, s)(F0,Fr)
−1(σ0, s)

−q. Since S −→ Ĝ is a regular

immersion of codimension dim Ĝ− 1, any irreducible component Y of Z1 has codi-
mension at most dim Ĝ − 1 in X := Ĝ ×S Ĝ. Since X is irreducible and of finite
type over Z, we have dimY = dimX − codimXY hence dimY ≥ dim Ĝ. Suppose
that dimY > dim Ĝ for some Y . Since the image of Y in S is constructible, it
is not contained in the generic point, and we can find some prime v of O[ 1p ], of
characteristic ℓ, such that the fiber of Y over v is non empty, hence has dimension
greater than dim Ĝ − 1. But Z1(W 0

F /PF , Ĝ)Fℓ
is a set-theoretic union of finitely

many locally closed subschemes of dimension dim ĜFℓ
= dim Ĝ−1, so this is impos-

sible. Thus every irreducible component of Z1 has dimension exactly dim Ĝ, and
codimension dim Ĝ−1 in Ĝ×S Ĝ. Now, since Ĝ×S Ĝ is regular, it follows that Z1 is
a local complete intersection, and in particular is Cohen-Macaulay. Since S is also
regular, and all fibers of Z1 over S have dimension dim Ĝ − 1 = dimZ1 − dimS,
the “miracle flatness” theorem [The Stacks Project, Tag 00R4] implies that Z1 is
flat over S. �

Lemma 2.2 is a pointwise result about the order of σss
x , but it can be turned into

a global statement. Indeed, we will say that an R-point of Ĝ is unipotent if the
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corresponding map SpecR → Ĝ factors through the unipotent locus on Ĝ. If R is
reduced, one can check this pointwise on SpecR.

Proposition 2.6. There exists an integer M , depending only on GL , such that

σM is a unipotent element of Ĝ. When GL = GLn, one can take M = qn! − 1.

Proof. We first prove this when GL = GLn. In this case Lemma 2.2 shows that

at each geometric point x of Z1(W 0
F /PF , Ĝ), the expression (σss

x )
qn!−1 is equal to

the identity. In particular σqn!−1 is an element of GL (R GL ) whose specialization

at every geometric point x of Z1(W 0
F /PF , Ĝ) is unipotent. On the other hand,

by [Hel20], Proposition 6.2, when GL = GLn, Z
1(W 0

F /PF , Ĝ) is reduced. Hence

σqn!−1, seen as a morphism Z1(W 0
F /PF , Ĝ) → Ĝ, factors through the unipotent

locus of Ĝ as claimed. When GL is arbitrary, the result follows by choosing a
faithful representation GL → GLn, and noting that the unipotent locus on GL is
the preimage of the unipotent locus on GLn. �

We will see in the next section that in fact Z1(W 0
F /PF , Ĝ) is reduced for all GL ;

the argument above then shows that in fact σe(qNf−1) is unipotent.

2.4. A construction of Bellovin-Gee. The scheme Z1(W 0
F /PF , Ĝ) is very closely

related to certain affine schemes studied by Bellovin-Gee in section 2 of [BG19].
More precisely, for any finite Galois extension L/F they define a scheme YL/F,φ,N

([BG19], Definition 2.1.2) parameterizing tuples (Φ,N , τ) where Φ is an element of

GL , N is a nilpotent element of Lie(Ĝ), and τ : IL/F → GL is a homomorphism,
that satisfy:

(1) Ad(Φ)N = qN ,
(2) For all w ∈ IL/F , Φτ(w)Φ

−1 = τ(wq), and
(3) For all w ∈ IL/F , Ad(τ(w))N = N .

Let Y ◦
L/F,φ,N denote the closed subscheme of YL/F,φ,N for which the images of

Φ and τ(s) under the map GL → W are Fr and s, respectively. Then Y ◦
L/F,φ,N is

a union of connected components of YL/F,φ,N .
We then have:

Proposition 2.7. FixM such that σM is unipotent, and let L/F be a finite, tamely
ramified Galois extension whose ramification index is divisible by M . Then there is
a natural isomorphism Z1(W 0

F /PF , Ĝ)Qℓ
→ (Y ◦

L/F,φ,N )Qℓ
.

Proof. We give maps in both directions that are inverse to each other. On the
one hand, without any hypotheses on L/F , there is always a map Y ◦

L/F,φ,N →

Z1(W 0
F /PF , Ĝ) over Qℓ that takes a triple (Φ,N , τ) to the L-homomorphism Lϕ

defined by Lϕ(Fr) = Φ and Lϕ(s) = τ(s) exp(N ). In the other direction, given a
cocycle ϕ we can set Φ = Lϕ(Fr), N = 1

M log(Lϕ(s)M ), and let τ : IF → GL (Qℓ) be

the map taking sa to Lϕ(s)a exp(−aN ); the latter factors through IL/F under our
ramification condition on L. These two maps are clearly inverse to each other. �

As this isomorphism involves exponentiation, and division by M , it does not
extend to the special fiber modulo small primes. In fact the space Y ◦

L/F,φ,N can be

quite badly behaved at small primes: for instance, if Ĝ = GL2, and we take L/F
to be a finite, tamely ramified Galois extension of ramification index M divisible
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by q2 − 1 (so that σM is unipotent), then at any prime ℓ dividing q + 1 the fiber
of Y ◦

L/F,φ,N has dimension five, whereas the generic fiber has dimension four. That

is, Y ◦
L/F,φ,N fails to be flat in this setting. One could attempt to remedy this by

replacing Y ◦
L/F,φ,N by the closure of its generic fiber, but even then, at primes ℓ as

above, there is not a bijection between the irreducible components of (Y ◦
L/F,φ,N )Fℓ

and those of Z1(W 0
F /PF , Ĝ)Fℓ

. Indeed, one can verify that the irreducible compo-
nents of the latter behave in a manner consistent with the ℓ 6= p Breuil-Mezard
conjecture of Shotton [Sho18], whereas those of the former do not.

Bellovin-Gee show ([BG19], Theorem 2.3.6) that YL/F,φ,N (and hence Z1(W 0
F /PF , Ĝ))

is generically smooth, by constructing a smooth point on each irreducible compo-
nent of YL/F,φ,N in characteristic zero. We sketch their construction here (or rather,

its adaptation to Z1(W 0
F /PF , Ĝ)), both in the interests of being self-contained and

because we will need it for other purposes.
Fix a prime ℓ 6= p and aQℓ point ξ of GL in the image of the map Z1(W 0

F /PF , Ĝ)→

GL taking ϕ to Lϕ(s). As Z1(W 0
F /PF , Ĝ)Qℓ

is (set-theoretically) the union of

the smooth schemes X(ξ) for such ξ, it suffices to construct a smooth point of

Z1(W 0
F /PF , Ĝ) on each connected component of X(ξ).

Let ξ = ξssξu be the Jordan decomposition of ξ. Since we are in characteristic
zero ξu is a unipotent element of Ĝ, and we may consider its logarithm N , which
is a nilpotent element of the Lie algebra of the centralizer Ĝξss of ξss.

Let λ be a cocharacter of Ĝξss that is an associated cocharacter of N , in the
sense of [BG19], section 2.3. In particular, for all t we have Ad(λ(t))N = t2N . Set

Λ = λ(q
1
2 ) for some square root q

1
2 of q, so that Ad(Λ)N = qN . Then ΛξuΛ−1 =

(ξu)q.
Further let H denote the normalizer, in GL , of the subgroup of GL generated by

ξss. Let Y be the set of g ∈ H such that gξug−1 = (ξu)q. Note that in particular

the map Z1(W 0
F /PF , Ĝ) → GL that takes ϕ to Lϕ(Fr) identifies Xξ with a union

of connected components of Y .

On the other hand Y = Λ ·(H∩ GL
N
). By [Bel16], Proposition 4.9, the inclusion

of H ∩ GL
N
∩ GL

λ
into H ∩ GL

N
is a bijection on connected components, and

by [Bel16], Lemma 5.3 there is a point of finite order on each connected component

of H ∩ GL
N
∩ GL

λ
. Thus on each connected component of Y there is a point of

the form Λc, where c has finite order and commutes with Λ. Then Bellovin and
Gee show, via a cohomology calculation, that when (Λc, ξ) lies in Z1(W 0

F /PF , Ĝ)

it is a smooth point of Z1(W 0
F /PF , Ĝ)Qℓ

. We immediately deduce:

Proposition 2.8. The scheme Z1(W 0
F /PF , Ĝ) is generically smooth (and therefore

reduced.)

Proof. Generic smoothness is immediate since there is a point of the form (Λc, ξ)

on every connected component of X(ξ) for all ξ. Since Z1(W 0
F /PF , Ĝ) is a local

complete intersection there is no embedded locus; that is, Z1(W 0
F /PF , Ĝ) is re-

duced. �

Remark 2.9. We will later give an argument that in fact the fibers Z1(W 0
F /PF , Ĝ)Fℓ

are generically smooth outside of an explicit finite set. This argument is indepen-
dent of (though partially inspired by) the above argument of Bellovin-Gee, and
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certainly implies the above proposition, as well as the separatedness results be-
low. We include the Bellovin-Gee argument here for convenience of exposition, and
because the comparison with their construction is interesting in its own right.

Proposition 2.10. For any prime ℓ 6= p, and any irreducible component Y of
Z1(W 0

F /PF , Ĝ)Qℓ
, there exists a Zℓ-point of Z

1(W 0
F /PF , Ĝ) on Y .

Proof. We have shown that Y contains a point of the form (Λc, ξ) constructed
above. We must show that this point is conjugate to a Zℓ-point. Note that Λ, c
and ξ are contained in GL (L) for some L ⊂ Qℓ finite over Qℓ. Now, since Λ = λ(q

1
2 )

for some cocharacter λ and since q
1
2 is an ℓ-unit for all ℓ 6= p, the element Λ is com-

pact in GL (L) (i.e. the subgroup of GL (L) generated by Λ has compact closure).
Moreover, since c has finite order and commutes to Λ, the element Λc is also com-
pact. Therefore, since Λc normalizes the subgroup of GL (L) generated by ξ, and
some power of ξ is unipotent, the subgroup of GL (L) generated by Λc and ξ has

compact closure. Thus it normalizes a facet of the semisimple building B(Ĝ, L)
and fixes its barycenter x. There is a finite extension L′ of L such that x becomes
an hyperspecial point in B(Ĝ, L′) and is conjugate to the “canonical” hyperspe-

cial point o fixed by Ĝ(OL) under some element g ∈ Ĝ(L′). The fixator of o in
GL (L) is ZĜ(L). G

L (OL), hence the L-homomorphism Lϕ : W 0
F /PF −→ GL (Qℓ)

associated to the pair (g(Λc), gξ) takes values in ZĜ(Qℓ). G
L (Zℓ). Consider its

composition with the quotient map to (ZĜ(Qℓ). G
L (Zℓ))/Ĝ(Zℓ) = Q ⋊ W with

Q := (ZĜ(Qℓ).Ĝ(Zℓ))/Ĝ(Zℓ) = ZĜ(Qℓ)/ZĜ(Zℓ). Since it has relatively compact
image and Q is discrete, it factors over a finite quotientW ′ ofW 0

F /PF . But since Q
is a Q-vector space of finite dimension, we haveH1(W ′, Q) = {1}, so the above com-
position is conjugate, under some element of q ∈ Q, to the trivial L-homomorphism
W 0

F −→ Q⋊W . So if q̃ is any lift of q in ZĜ(Qℓ), the conjugate q̃(Lϕ) associated

to the pair (q̃g(Λc),q̃g ξ) is GL (Zℓ)-valued, as desired. �

Corollary 2.11. For any prime ℓ 6= p, the ring R GL is ℓ-adically separated.

Proof. Since R GL is reduced and flat over O, we have an embedding:

R GL →
∏

Y

OY ,

where Y runs over the irreducible components of R GL . Each OY is affine, integral,
and flat over O, and by Proposition 2.10 contains an integral point. In particular ℓ
is not invertible on OY . Thus it suffices to show that any noetherian integral flat
Zℓ-algebra A in which ℓ is not invertible is ℓ-adically separated. Indeed, suppose a
is a nonzero element of A in the intersection of the ideals generated by ℓi. Then for
each i, there is an ai ∈ A such that ℓiai = a. Each ai is unique since A is integral,
so ai−1 = ℓai. Since the ascending chain of ideals generated by the ai stabilizes,
we have ai = uai−1 for some unit u and integer i. Then, as A is integral, we have
uℓ = 1, contradicting the fact that ℓ is not invertible in A. �

2.5. The universal family. Now that we have shown that R GL is ℓ-adically
separated, we return to the question of extending the parameter ϕuniv to an L-
homomorphism defined on all of WF . As we have already remarked, this is only
possible after tensoring with the completed local ring Ov for some finite place v of O
of residue characteristic ℓ 6= p. The key point is the following notion of continuity,
first introduced in [Hel20] in the case GL = GLn:
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Definition 2.12. Let R be a Noetherian O[ 1p ]-algebra, and let ρ : WF → GL (R)

be a group homomorphism. We say that ρ is ℓ-adically continuous if one of the
following two conditions hold:

(1) The ring R is ℓ-adically separated, and for each n > 0, the preimage of
Un under ρ is open in WF , where Un is the kernel of the map GL (R) →
GL (R/ℓnR).

(2) There exists a Noetherian, ℓ-adically separated O[ 1p ]-algebra R′, a map

f : R′ → R, and an ℓ-adically continuous map ρ′ :WF → GL (R′) such that
ρ = f ◦ ρ′.

If R is ℓ-adically separated and condition (2) in the above definition holds, it is
easy to check that condition (1) holds as well, so the two conditions are consistent

with each other. We will say that a cocycle ϕ ∈ Z1(WF , Ĝ(R)) is ℓ-adically contin-
uous if its associated L-homomorphism Lϕ is ℓ-adically continuous as in the above
definition.

Theorem 2.13. For each finite place v of O of residue characteristic ℓ 6= p, there
exists a unique ℓ-adically continuous cocycle

ϕuniv,v :WF /PF → Ĝ(R GL ⊗O Ov)

whose restriction to (WF /PF )
0 is equal to ϕuniv. Moreover, if R is any Noetherian

Ov-algebra, and ϕ :WF /PF → Ĝ(R) is an ℓ-adically continuous cocycle, then there
is a unique map: f : R GL ⊗O Ov → R such that ϕ = f ◦ ϕuniv,v.

Proof. When GL = GLn, this is proved in [Hel20], Proposition 8.2; we reduce to
this case. Choose a faithful representation τ : GL → GLn defined over O[ 1p ]. Then

τ ◦ Lϕuniv ∈ Hom(W 0
F /PF ,GLn(R GL )) = Z1(W 0

F /PF ,GLn(R GL ))

where GLn is equipped with the trivial action of WF . There is thus a unique map
f : RGLn

→ R GL that takes the universal cocycle on Z1(W 0
F /PF ,GLn) (actually a

homomorphism) to τ ◦ Lϕuniv. Since this universal cocycle extends to an ℓ-adically
continuous cocycle onWF /PF , with values inRGLn

⊗OOv, composing this extension
with f gives an extension of τ ◦ Lϕuniv to an ℓ-adically continuous homomorphism
WF /PF −→ GLn(R GL ⊗O Ov). Denote this homomorphism by Lϕuniv,v. Its re-

striction to W 0
F /PF factors through GL (R GL ⊗O Ov) and is equal to Lϕuniv, so

it only remains to prove that Lϕuniv,v factors through GL (R GL ⊗O Ov) too. But
this follows from the ℓ-adic separatedness of R GL ⊗O Ov and the fact that for each

n ∈ N, we know that the image of Lϕuniv,v(WF ) in GLn(R GL ⊗O Ov/(ℓ
n)) coin-

cides with the image of Lϕuniv,v(W
0
F ), which is contained in GL (R GL ⊗OOv/(ℓ

n)).
Uniqueness and the universal property are now straightforward. �

In light of this, we define a “good coefficient ring” to be a Noetherian ring R
that is an O ⊗ Zℓ-algebra for some ℓ 6= p, and a “good coefficient field” to be a
good coefficient ring that is also a field. Theorem 2.13 then implies that for any
good coefficient ring R, and any cocycle ϕ0 : (WF /PF )

0 → Ĝ(R), there is a unique

ℓ-adically continuous cocycle ϕ :WF /PF → Ĝ(R) extending ϕ0.
In particular, if R is a complete local O-algebra with maximal ideal m, of residue

characteristic ℓ 6= p, then any ℓ-adically continuous cocycle ϕ : WF /PF → Ĝ(R) is
clearly m-adically continuous. Conversely, given an m-adically continous cocycle ϕ :
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WF /PF → Ĝ(R), Theorem 2.13 shows that there is a unique ℓ-adically continuous
cocycle ϕ′ extending the restriction of ϕ to (WF /PF )

0. Then ϕ′ and ϕ are both
m-adically continuous and agree on (WF /PF )

0, so ϕ is also ℓ-adically continuous.
Thus the notions of ℓ-adic and m-adic continuity coincide for cocycles valued in R.

3. Reduction to tame parameters

In this section, we broaden the setting as follows. We consider a split reductive
group scheme Ĝ over Z[ 1p ] endowed with a finite action of WF , but we no longer

assume that this action is tame, nor that it stabilizes a Borel pair.
For any Z[ 1p ]-algebra R, we denote by Z

1(WF , Ĝ(R)) the set of 1-cocycles which

are continuous for the natural topology of the source and the discrete topology on
the target. We use similar notation forW 0

F and any closed subgroup thereof. Recall
that the topology on W 0

F is such that PF , with its natural topology, sits as a closed
and open subgroup.

It will be handy to switch between 1-cocycles and their associated L-morphisms.
In this regard, we usually denote by GL a group scheme of the form Ĝ ⋊W with

W any finite quotient of WF through which the given action on Ĝ factors. Note
that W may be allowed to change according to our needs, but we prefer to keep
it finite in order to work with algebraic group schemes. For the sake of clarity,
we will most often distinguish a 1-cocycle ϕ from its associated L-homomorphism
ϕL := ϕ ⋊ id : WF −→ GL (R), although occasionally it will be more handy to

write ϕ for the L-homomorphism.

3.1. Overview. Our aim is to show how the study of moduli of 1-cocyclesW 0
F −→

Ĝ (and subsequently, moduli of ℓ-adically continuous 1-cocycles WF −→ Ĝ) can be
reduced to the particular case considered in the previous section, namely the case of
tame 1-cocycles valued in a reductive group scheme with a tame Galois action that
stabilizes a Borel pair. The principle is very simple ; suppose R is a Z[ 1p ]-algebra

and ϕ :W 0
F −→ Ĝ(R) is a 1-cocycle, and denote by φ : PF −→ Ĝ(R) its restriction

to PF . Then the conjugation action of W 0
F on Ĝ(R) through Lϕ stabilizes the

centralizer CĜ(R)(
Lφ(PF )) and the restricted action on this subgroup factors over

W 0
F /PF . Denoting by Adϕ this action, an elementary computation shows that the

map η 7→ η · ϕ sets up a bijection

Z1
Adϕ

(W 0
F /PF , CĜ(R)(

Lφ(PF )))
∼
−→ {ϕ′ ∈ Z1(W 0

F , Ĝ(R)), ϕ
′
|PF

= φ}.

By Lemma A.1 in the appendix, the functor on R-algebras R′ 7→ CĜ(R′)(
Lφ(PF ))

is representable by a smooth group scheme over R that we denote by CĜ(φ). More-
over, by [PY02, Thm 2.1], its connected geometric fibers are reductive. Therefore,
one is tempted to see the set Z1

Adϕ
(W 0

F /PF , CĜ(R)(
Lφ(PF ))) as an instance of the

type of tame parameters that were studied in the previous section. However, mak-
ing this idea work requires addressing the following issues :

• The group scheme CĜ(φ) may have non-connected fibers.
• Its neutral component CĜ(φ)

◦ may not be split.
• The action Adϕ may neither be finite nor preserve a Borel pair of CĜ(φ)

◦.

In order to address these issues, the first step is to find a nice set of representatives
of conjugacy classes of continuous cocycles with source PF . Since we prefer to work
with finitely presented objects, we choose a decreasing sequence (P e

F )e∈N of open
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normal subgroups of PF whose intersection is {1}. Then we fix e ∈ N such that

P e
F acts trivially on Ĝ, and we restrict attention to cocycles that are trivial on P e

F .
The following theorem follows from Theorems A.9, A.12 and Proposition A.13 in
the appendix.

Theorem 3.1. There is a number field Ke and a finite set

Φe ⊂ Z
1
(

PF /P
e
F , Ĝ

(

OKe
[ 1p ]
))

, such that

(1) For any OKe
[ 1p ]-algebra R, any cocycle φ : PF /P

e
F −→ Ĝ(R) is étale-locally

Ĝ-conjugate to a locally unique φ0 ∈ Φe.
(2) For any φ ∈ Φe, the reductive group scheme CĜ(φ)

◦ is split over OKe
[ 1p ]

and the component group π0(φ) := π0(CĜ(φ)) is constant.

3.2. Some definitions and constructions. Let φ ∈ Φe. For any OKe
[ 1p ]-algebra

R we denote by Z1(W 0
F , Ĝ(R))φ the set of 1-cocycles W 0

F −→ Ĝ(R) that extend

φ. The functor R 7→ Z1(W 0
F , Ĝ(R))φ is visibly representable by an affine scheme

of finite type over OKe
[ 1p ], namely a closed subscheme of Ĝ × Ĝ. We denote this

scheme by Z1(W 0
F , Ĝ)φ.

Definition 3.2. An element φ ∈ Φe is called admissible if the scheme Z1(W 0
F , Ĝ)φ

is not empty.

In the sequel, it will be convenient to choose our “L-group” GL in the form GL =

Ĝ ⋊We where We is a finite quotient of WF into which PF /P
e
F maps injectively.

For example, we may choose our sequence (P e
F )e such that P e

F = PFe
for some

Galois extension Fe of F and put We = Gal(Fe/F ). Then the L-homomorphism

ϕL associated to ϕ ∈ Z1(W 0
F , Ĝ(R))φ factors through the subgroup1

C GL (R)(φ) :=
{
(g, w) ∈ GL (R), (g, w)Lφ(w−1pw)(g, w)−1 = Lφ(p), ∀p ∈ PF

}
.

Writing the functor C GL (φ) : R 7→ C GL (R)(φ) on OKe
[ 1p ]-algebras as a disjoint

union
⊔

w∈We
TĜ(

wφ, φ) of transporters in Ĝ (where wφ is defined by wφ(p) =

w(φ(w−1pw))), we see from Lemma A.1 that this functor is represented by a smooth
group scheme that sits in an exact sequence

1→ CĜ(φ)→ C GL (φ)→We.

Actually, it follows from the uniqueness of φ0 in i) of Theorem 3.1 that TĜ(
wφ, φ)

is either empty or is a CĜ(φ)-torsor for the étale topology. Therefore, C GL (φ) is
an extension of the constant subgroup We,φ := {w ∈ We, TĜ(

wφ, φ) 6= ∅} of We by

CĜ(φ). Since C GL (φ)◦ = CĜ(φ)
◦ is a split reductive group scheme over OKe

[ 1p ], we

know by general results [Con14, Prop. 3.1.3] that

π̃0(φ) := π0(C GL (φ))

is a separated étale group scheme over OKe
[ 1p ]. Since it is an extension of We,φ by

π0(φ), we see that π̃0(φ) is actually finite étale. Therefore, after maybe enlarging
Ke, we may assume that π̃0(φ) is constant over OKe

[ 1p ]. Now, let us assume that φ

is admissible. Then we have We,φ =We and an exact sequence of abstract groups

1→ π0(φ)→ π̃0(φ)→We → 1.

1Note that, despite the notation, this subgroup is not the centralizer of Lφ in GL .
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Therefore, the affine scheme Z1(W 0
F , Ĝ)φ decomposes as a disjoint union

Z1(W 0
F , Ĝ)φ =

∐

α∈Σ(φ)

Z1(W 0
F , Ĝ)φ,α, where

• Σ(φ) denotes the set of homomorphisms WF −→ π̃0(φ) that extend the
map PF −→ π̃0(φ) given by the composition of Lφ with the projection to
π̃0(φ), and whose composition with π̃0(φ) −→We is the natural projection
WF −→We.
• Z1(W 0

F , Ĝ)φ,α(R) = Z1(W 0
F , Ĝ(R))φ,α is the subset of extensions ϕ of φ

such that the composition of ϕL with the projection to π̃0(φ) is α.

Definition 3.3. We will say that α ∈ Σ(φ) is admissible if the scheme Z1(W 0
F , Ĝ)φ,α

is not empty.

Observe that there are only finitely many admissible elements in Σ(φ) since the

scheme Z1(W 0
F , Ĝ)φ has finitely many connected components.

We now note that two elements ϕ,ϕ′ ∈ Z1(W 0
F , Ĝ(R))φ,α differ by a tame cocycle

valued in CĜ(φ)
◦ (beware the ◦). More precisely, if we write ϕ′(w) = η(w)ϕ(w),

then w 7→ η(w) belongs to Z1
Adϕ

(W 0
F /PF , CĜ(φ)

◦(R)). In other words, the map

η 7→ η · ϕ sets up an isomorphism of R-schemes

Z1
Adϕ

(W 0
F /PF , CĜ(φ)

◦)R
∼
−→ Z1(W 0

F , Ĝ)φ,α,R.

At this point we have dealt with the first two issues mentioned in the beginning of
this section. The next result deals with the third issue and will allow us to reduce
to the tame parameters that were studied in the previous section.

Theorem 3.4. There is a finite extension K ′
e of Ke such that for any admissible

φ ∈ Φe and any admissible α ∈ Σ(φ), there is some ϕα ∈ Z
1(W 0

F , Ĝ(OK′
e
[ 1p ]))φ,α

such that ϕL α(W
0
F ) is finite and Adϕα

preserves a Borel pair of the split reductive
group scheme CĜ(φ)

◦.

Fix φ, α and ϕα as in the theorem. Since ϕL α(W
0
F ) is finite, ϕα extends canon-

ically to WF with ϕL α(WF ) = ϕL α(W
0
F ). So the conjugation action Adϕα

of W 0
F

on the reductive group CĜ(φ)
◦ extends to a finite action of WF , and it has to be

trivial on PF . Since this action stabilizes a Borel pair, we see that the OK′
e
[ 1p ]-

scheme Z1
Adϕ

(W 0
F /PF , CĜ(φ)

◦) is (a base change of) an instance of those tame
moduli schemes studied in Section 2.

Remark 3.5. It is natural to ask whether we can find ϕα so that Adϕα
preserves

a pinning of CĜ(φ)
◦. Our techniques can achieve this when the center of CĜ(φ)

◦ is

smooth, see Remark 3.9. In Theorem 3.12, we give a sufficient condition on Ĝ for
each CĜ(φ)

◦ to have smooth center.

Before we can prove the theorem, we need some preparation. Let us fix a Borel
pair Bφ = (Bφ, Tφ) in CĜ(φ)

◦ and let us denote by Tφ the normalizer in C GL (φ)
of this Borel pair. By [Con14, Prop. 2.1.2], this is again a smooth group scheme
over OKe

[ 1p ]. Since the normalizer of a Borel pair in a connected reductive group

over an algebraically closed field is the torus of the Borel pair, we have (Tφ)
◦ =

CĜ(φ)
◦∩Tφ = Tφ. Since any two Borel pairs in a connected reductive group over an

algebraically closed field are conjugate, we also have π0(Tφ) = π0(C GL (φ)) = π̃0(φ).



MODULI OF LANGLANDS PARAMETERS 21

Moreover, since Tφ is abelian, the conjugation action of Tφ on Tφ factors through
an action

π̃0(φ) −→ AutOKe [
1
p
]−gp.sch.(Tφ).

In particular, any section α ∈ Σ(φ) provides us with an action of WF on the torus
Tφ. This action has to be trivial on PF , since

Lφ(PF ) centralizes CĜ(φ), so that
Lφ(PF ) ⊂ Tφ(OKe

[ 1p ]) acts trivially on Tφ by conjugation. Therefore, the subset

Σ(W 0
F , Tφ(R))φ := {ϕ ∈ Z1(W 0

F , Ĝ(R))φ, ϕL (W 0
F ) ⊂ Tφ(R))}

= {ϕ ∈ Z1(W 0
F , Ĝ(R))φ, Adϕ preserves Bφ}

decomposes as a disjoint union

Σ(W 0
F , Tφ(R))φ =

⊔

α∈Σ(φ)

Σ(W 0
F , Tφ(R))φ,α

where Σ(W 0
F , Tφ(R))φ,α denotes the subset of those ϕ ∈ Σ(W 0

F , Tφ(R))φ such that

the compositionW 0
F

Lϕ
−→ Tφ(R) −→ π̃0(φ) is α. Note that Σ(W 0

F , Tφ(R))φ,α is either
empty or is a principal homogeneous set under the abelian group Z1

α(W
0
F /PF , Tφ(R)).

Varying R, we get a closed affine subscheme Σ(W 0
F , Tφ)φ of Z1(W 0

F , Ĝ)φ which de-
composes as a coproduct of affine OKe

[ 1p ]-schemes

Σ(W 0
F , Tφ)φ =

⊔

α∈Σ(φ)

Σ(W 0
F , Tφ)φ,α

where each Σ(W 0
F , Tφ)φ,α carries an action of the abelian group OKe

[ 1p ]-scheme

Z1
α(W

0
F /PF , Tφ), and is a pseudo-torsor for this action, in the sense of [The Stacks

Project, Tag 0497].
Finally, let W be a finite quotient of WF such that Lφ factors over the image

P ⊂ W of PF in W and α factors over W . Then the same definitions as above
provide us with a OKe

[ 1p ]-scheme Σ(W, Tφ)φ,α, which is a pseudo-torsor for the

natural action of the group OKe
[ 1p ]-scheme Z1

α(W/P, Tφ).

Theorem 3.6. Suppose φ and α are admissible.

(1) Z1
α(W

0
F /PF , Tφ) is a diagonalisable group scheme over OKe

[ 1p ].

(2) Σ(W 0
F , Tφ)φ,α is a fppf torsor under Z1

α(W
0
F /PF , Tφ).

Moreover, these two statements still hold with W 0
F replaced by a sufficiently large

finite quotient W as above.

Before we prove this result, let us see how it implies Theorem 3.4. The claim in
Theorem 3.4 is that there exists an extension K ′

e of Ke such that Σ(W 0
F , Tφ)φ,α has

an OK′
e
[ 1p ]-point ϕ with finite image. In other words, we need to show the existence

of a finite quotient W of WF such that Σ(W, Tφ)φ,α has an OK′
e
[ 1p ]-point. So, from

Theorem 3.6, it suffices to show that any fppf torsor under a diagonalisable group
over OKe

[ 1p ] becomes trivial over OK′
e
[ 1p ] for some finite extension K ′

e. Since a

diagonalisable group is a product of copies of Gm and µm’s, we may treat each of
these groups separately. As long as Gm is concerned, since any fppf Gm-torsor is
also an étale Gm-torsor, it suffices to take K ′

e equal to the Hilbert class field Kh
e of

Ke. On the other hand, when base changed to OKh
e
[ 1p ], a µm-torsor is given as the
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torsor of m-th roots of some element f ∈ OKh
e
[ 1p ]

×, because of the exact sequence

OKe
[ 1p ]

× (.)m

−→ OKe
[ 1p ]

×
−→ H1

fppf (S, µm) −→ H1
fppf (S,Gm)

(.)m

−→ H1
fppf (S,Gm)

where S denotes Spec(OKe
[ 1p ]). Thus we can take for K ′

e a splitting field of Xm−f

over Kh
e in this case.

Proof. (1) Consider the map Z1
α(W

0
F /PF , Tφ(R)) −→ Tφ(R) × Tφ(R) that sends a

1-cocycle η to the pair of elements (η(Fr), η(s)). It identifies Z1
α(W

0
F /PF , Tφ(R))

with the subset of elements (F, σ) in Tφ(R)× Tφ(R) defined by the equation

F · α(Fr)(σ) · α(s)q(F )−1 = σ · α(s)(σ) · · ·α(sq−1)(σ).

This identifies in turn Z1
α(W

0
F /PF , Tφ) with the kernel of the morphism of group

schemes Tφ × Tφ −→ Tφ defined by the ratio of both sides of the equation. But
a kernel of a morphism of diagonalisable groups is diagonalisable. Further, let
W =WF /WF ′ be a finite quotient ofWF for a Galois extension F ′ such that Lφ|PF ′

and α|WF ′
are trivial. Then Z1

α(W/P, Tφ) is the kernel of the natural restriction

map Z1
α(W

0
F /PF , Tφ) −→ Z1

α(W
0
F ′/PF ′ , Tφ), hence is a diagonalisable group too.

(2) We already know that Σ(W 0
F , Tφ)φ,α is finitely presented over OKe

[ 1p ], so it

remains to find a faithfully flat OKe
[ 1p ]-algebra R such that Σ(W 0

F , Tφ(R))φ,α is not

empty. We will actually exhibit an R and a ϕ ∈ Σ(W 0
F , Tφ(R))φ,α such that Lϕ has

finite image. This will also show that the last statement of the theorem holds for
any finite quotient W over which this Lϕ factors.

Warning : for the sake of readibility, we will omit the L from our usual

notation for L-morphisms in the remainder of this proof. It should not
create any ambiguity since we will not have to consider their associated 1-cocycles
anyway.

Existence of a point over a closed geometric point. By the admissibility as-
sumption, the scheme Z1(W 0

F , Ĝ)φ,α is not empty. Since it has finite presentation
over OKe

[ 1p ], Chevalley’s constructibility theorem ensures that it has a non-empty

closed fiber, which in turn ensures that it has a point with finite residue field k
of characteristic 6= p. Note that the associated L-morphism W 0

F −→ GL (k) has
to factor over a finite quotient of W 0

F , hence it is continuous for the topology of
W 0

F induced by the usual topology on WF , and the discrete topology on GL (k).
Therefore, Proposition 3.7 below ensures that Σ(W 0

F , Tφ(k̄))φ,α is not empty. Pick
a point in this set and let ϕ̄ : W 0

F −→ Tφ(k̄) be the L-morphism corresponding to
this point. Note that ϕ̄ also has to factor through a finite quotient of W 0

F , so it
extends uniquely to a continuous morphism from WF .

Lifting this point to characteristic 0. Let us try to lift ϕ̄ to a Witt-vectors
valued point ϕ : WF −→ Tφ(We(k̄)). Here We(k̄) is the ring of integers of the
completed maximal unramified extension of the completion of Ke at the place given
by OKe

[ 1p ] −→ k̄. By smoothness of Tφ, the map Tφ(We(k̄)) −→ Tφ(k̄) is surjective,

so we may choose lifts ϕ̃(w) ∈ Tφ(We(k̄)) of ϕ̄(w) and we may do it in such a way
that

• ϕ̃(w) only depends on ϕ̄(w) and ϕ̃(w) = 1 if ϕ̄(w) = 1.
• ϕ̃(pw) = φ(p)ϕ̃(w) for all w ∈WF and p ∈ PF .
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Note that ϕ̃(w) belongs to the summand TĜ(φ,
wφ) ⋊ w, so that we also have

ϕ̃(wp) = φ(wpw−1)ϕ̃(w) = ϕ̃(w)φ(p) for all w ∈ WF and p ∈ PF . Moreover, the
automorphism (Adϕ̃(w))|Tφ

only depends on the image of ϕ̃(w) in π0(Tφ), which is
the same as that of ϕ̄(w). Hence this automorphism is the one given by the action
of α(w). It follows that the map

c2 : (w,w′) ∈WF ×WF 7→ ϕ̃(w)ϕ̃(w′)ϕ̃(ww′)−1 ∈ ker
(
Tφ(We(k̄)) −→ Tφ(k̄)

)

has finite image, factors over WF /PF ×WF /PF , and is a 2-cocycle from WF /PF

into A := ker(Tφ(We(k̄)) −→ Tφ(k̄)) endowed with the action α. Having finite
image, it is continuous for the discrete topology on A. If this cocycle is cohomo-
logically trivial, that is, if there is some continuous map t : WF /PF → A such
that c2(w,w

′) = t(w)(ϕ̃(w)t(w′))t(ww′)−1, then the map w 7→ ϕ(w) := t(w)−1ϕ̃(w)
is a continuous lift of ϕ̄. Now, if ℓ denotes the characteristic of k̄, the group A is
certainly ℓ′-divisible (i.e. m-divisible for any m prime to ℓ), but not ℓ-divisible, so
that H2(WF /PF , A) is not a priori trivial. However, if Ō denotes the ring of inte-
gers of an algebraic closure of We(k̄), then the group A′ = ker(Tφ(Ō) −→ Tφ(k̄))
is divisible hence, by Lemma 3.8, c2 is cohomologically trivial there, and we get a
lift ϕ of ϕ̄ valued in GL (Ō).

We now modify this lift ϕ so that it has finite image. To do so we introduce the
maximal subtorus Cφ of Tφ on which WF /PF acts trivially. This is the split torus
over We(k̄) whose group of characters is the torsion-free quotient of the WF /PF -
coinvariants of the group of characters of Tφ. Now, pick an integer m such that
ϕ̄(Frm) = 1 and ϕ(Frm) is central in ϕ(WF ) (this is possible since ϕ(IF ) is finite).
The element ϕ(Frm) ∈ A′ then belongs to Tφ(Ō)

WF /PF . Since the group scheme

T
WF /PF

φ is an extension of a finite diagonalizable group scheme by the torus Cφ,

some power of ϕ(Frm), say ϕ(Frm
′

), belongs to Cφ(Ō) ∩ ker(Tφ(Ō) → Tφ(k̄)) =
ker(Cφ(Ō) → Cφ(k̄)). But the latter is a divisible group so we may pick there an

element c such that cm
′

= ϕ(Frm
′

). Consider then ϕ′ : w 7→ c−ν(w)ϕ(w). This is
still a GL (Ō)-valued lift of ϕ̄ and it has finite image.

A section over a quasi-finite flat extension. Now, the existence of such a lift
shows that the morphism of finite presentation Σ(W 0

F , Tφ)φ,α −→ Spec(OKe
[ 1p ])

is dominant and, even better, that there is a finite quotient W of WF such that
Σ(W, Tφ)φ,α −→ Spec(OKe

[ 1p ]) is dominant (with obvious notation). Therefore, we

can find a finite extension K of Ke and an integer N such that Σ(W 0
F , Tφ)φ,α has a

section over OK [ 1N ] that corresponds to a morphism ϕ :WF −→ Tφ(OK [ 1N ]) which
factors over a finite quotient of WF .

Sections over the missing points. Let us fix a prime λ of K that divides N but
not p, and denote by Kλ the completion of K at λ and by Oλ its ring of integers.
Using the inclusion OK [ 1N ] →֒ Kλ we get a morphism ϕ : WF −→ Tφ(Kλ). We
would like to conjugate it, so that it factors though Tφ(Oλ). We will show that this
is possible after maybe passing to a ramified extension of Kλ. Indeed, the problem
is to find some t ∈ Tφ(Kλ) such that tϕ(w)t−1 ∈ Tφ(Oλ) for all w ∈ WF . Observe
that Tφ(Kλ) = Tφ(Kλ)Tφ(Oλ), so that Tφ(Oλ) is a normal subgroup of Tφ(Kλ)
with quotient of the form

Tφ(Kλ)/Tφ(Oλ) = (Tφ(Kλ)/Tφ(Oλ))⋊ π̃0(φ).
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So we see that the existence of t as above is equivalent to the existence of t̄ ∈
Tφ(Kλ)/Tφ(Oλ) such that t̄ϕt̄−1 coincides with the trivial sectionWF

α
−→ π̃0(φ) −→

Tφ(Kλ)/Tφ(Oλ) (we have denoted again by ϕ the composition of ϕ with the pro-
jection to the above quotient). Therefore, the existence of t as above is equiva-
lent to the vanishing of ϕT in H1(W ′, Tφ(Kλ)/Tφ(Oλ)), where ϕT is defined by
ϕ(w) = ϕT (w)⋊α(w) and W

′ is any finite quotient of WF through which ϕ (hence
also α) factors.

Now, let vλ be the normalized valuation on Kλ and let X∗(Tφ) be the group of
cocharacters of Tφ. The pairing (t, µ) 7→ vλ(µ(t)) for t ∈ Tφ(Kλ) and µ ∈ X

∗(Tφ)
induces an isomorphism of abelian groups

Tφ(Kλ)/Tφ(Oλ)
∼
−→ Hom(X∗(Tφ),Z)

which shows that Tφ(Kλ)/Tφ(Oλ) is a free abelian group of rank dim(Tφ) and that
H1(W ′, Tφ(Kλ)/Tφ(Oλ)) has no reason to vanish. However, let K̄λ be an algebraic
closure of Kλ with ring of integers Ōλ and denote by vλ the unique extension of vλ
to K̄λ. Then the same pairing as above induces an isomorphism

Tφ(K̄λ)/Tφ(Ōλ)
∼
−→ Hom(X∗(Tφ),Q)

which shows that Tφ(K̄λ)/Tφ(Ōλ) is a Q-vector space, and therefore that the group
H1(W ′, Tφ(K̄λ)/Tφ(Ōλ)) vanishes. It follows that there is some finite extension
K ′

λ of Kλ with ring of integers O′
λ, and some element t′ ∈ Tφ(K

′
λ) such that

ϕλ := t′ · ϕ(w) · t′−1
defines a section of Σ(W 0

F , Tφ)φ,α over O′
λ.

Conclusion. With ϕ and the ϕλ, we have found a section of Σ(W 0
F , Tφ)φ,α over

the finite fpqc covering
∐

λ|N,λ∤p Spec(O
′
λ) ∪ Spec(OK [ 1N ]) of Spec(OKe

[ 1p ]). Since

Σ(W 0
F , Tφ)φ,α is finitely presented, there also exists a section over a fppf covering.

Moreover, ϕ and the ϕλ’s factor over a finite quotient W of WF , so they provide a
section of Σ(W, Tφ)φ,α over an fpqc covering, and we also deduce that Σ(W, Tφ)φ,α
has a section over an fppf covering of Spec(OE [

1
p ]). �

In the above proof, we have used the following result in order to pass from the
non-emptyness of Z1(W 0

F , Ĝ)φ,α to that of Σ(W 0
F , Tφ)φ,α.

Proposition 3.7. Let K be an algebraically closed field of characteristic different
from p, let ϕ : WF −→

LG(K) be a continuous L-morphism, and let φ := ϕ|PF
.

Then there is another extension ϕ′ = η·ϕ of φ, with η ∈ Z1
Adϕ

(WF /PF , CĜ(φ)
◦(K)),

and whose conjugation action Adϕ′ on CĜ(φ) preserves a Borel pair of CĜ(φ)
◦.

Proof. Fix a Borel pair Bφ of CĜ(φ)
◦. Since CĜ(φ)

◦ acts transitively on its Borel
pairs, we may choose for all w̄ ∈WF /PF an element α(w̄) ∈ CĜ(φ)

◦(K) such that
Adα(w̄) ◦Adϕ(w) stabilizes Bφ, where w is any lift of w̄ inWF (note that the restric-
tion of Adϕ(w) to CĜ(φ)

◦ does not depend on the choice of such a lift). Moreover,
we may and will choose α(w̄) so that it only depends on Adϕ(w), ensuring in turn
that the map w̄ 7→ α(w̄) is continuous. Since the stabilizer of Bφ in CĜ(φ)

◦ is
Tφ, we see that the automorphism Adα(w̄) ◦Adϕ(w) of Tφ does not depend on the
choice of α(w̄), and this defines an action of WF /PF on Tφ by algebraic automor-
phisms. Note that this action is the same as the one given by the image of Adϕ(w) in
Out(CĜ(φ)

◦) through the canonical identification of Tφ with the “abstract” torus
of the root datum of CĜ(φ)

◦. In particular, this action is finite since it factors
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through the quotient of the normalizer of φ(PF ) in
LG by CĜ(φ)

◦, which is a finite
group. Now we remark that the map

(w̄, w̄′) 7→ α(w̄)ϕ(w)α(w̄′)ϕ(w′)(α(w̄w̄′)ϕ(ww′))−1 = α(w̄)Adϕ(w)(α(w̄
′))α(w̄w̄′)−1

defines a continuous 2-cocycle from WF /PF to Tφ(K) with respect to the action
described above. If this cocycle is a coboundary, that is, if there is a continuous
map β :WF /PF −→ Tφ(K) such that

α(w̄)Adϕ(w)(α(w̄
′))α(w̄w̄′)−1 = β(w̄)(Adα(w̄) ◦Adϕ(w)(β(w̄

′)))β(w̄w̄′)−1,

then the map η : w̄ 7→ β(w̄)−1α(w̄) is in Z1
Adϕ

(WF /PF , CĜ(φ)
◦(K)) and the pa-

rameter ϕ′ = η · ϕ normalizes the Borel pair Bφ as desired.
Hence the obstruction to finding η as desired lies in H2(WF /PF , Tφ(K)). How-

ever, since Tφ(K) is a divisible group, the following lemma shows that this coho-
mology group vanishes. �

Lemma 3.8. Denote W =WF /PF and I = IF /PF , and let A be an abelian group
with a finite action of W . We consider only continuous cohomology of W with
respect to the discrete topology on the coefficients.

(1) There is a short exact sequence

1→ H1(W/I,H1(I, A))→ H2(W,A)→ H2(I, A)W/I → 1.

(2) We have H2(I, A) = colim(n,p)=1(A
I/NM (A)n) where

• M is the order of the action of a pro-generator s of I and NM (a) =
as(a) · · · sM−1(a)

• {n ∈ N, (n, p) = 1} is ordered by divisibility and the transition map

AI/NM (A)n → AI/NM (A)n
′

for n|n′ is induced by the map a 7→ an
′/n.

In particular, H2(I, A) = {1} whenever A contains a p′-divisible group of
finite index.

(3) We have H1(W/I,H1(I, A)) = H1(I, A)Fr = [N−1
M (A[p′])/A(s)]Fr where

• A[p′] is the prime-to-p torsion of A and A(s) = {as(a)−1, a ∈ A}.
• Fr is a Frobenius lift in W . Moreover, if m is the order of the action
of Fr on A, then Fr−m acts on H1(I, A) by raising to the power qm.

In particular, H1(W/I,H1(I, A)) = {1} whenever A is a p′-divisible group.

Proof. (1) follows from the Hochschild-Serre spectral sequence with the facts that
W/I = Z and Hn(Z,M) = 1 for any n ≥ 2 and any Z[Z]-module M . Note that the
existence of the spectral sequence follows from Proposition 5 and the subsequent
Remark (2) of [CW74], but the short exact sequence here can also be simply deduced
by taking colimits of similar short exact sequences for discrete quotients W/J with
J ⊂ I open and contained in the kernel of the action of W on A.

(2) By identifying I with the inverse limit of Z/nMZ for (n, p) = 1, we can
write H2(I, A) as the direct limit of H2(Z/nMZ, A), indexed by integers n coprime
to p and ordered by divisibility. The standard formula for the H2 of a cyclic
group tells us that H2(Z/nMZ, A) = As/NM (A)n and that the transition map

As/NM (A)n → As/NM (A)n
′

for n|n′ is induced by the map a 7→ an
′/n. Now,

suppose B is a p′-divisible subgroup of A such that (A/B)N = 1 for some integer
N ≥ 1. Then NM (B) is a p′-divisible subgroup of As hence it is contained in
NM (A)n for all n > 0 with (n, p) = 1. Since NM (A) contains (As)M , we see that
each As/NM (A)n has exponent dividing NM . Moreover this exponent is also prime
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to p since both M and n are prime to p. It follows that, denoting by N ′ the prime-
to-p part of N , the transition maps As/NM (A)n → As/NM (A)n

′

vanish whenever
nN ′M |n′, showing that the colimit vanishes, whence H2(I, A) = 1.

(3) By the continuity constraint on cocycles, the map Z1(I, A) → A, η 7→ η(s)
identifies Z1(I, A) with the subgroup {a ∈ A, ∃n ∈ N, (n, p) = 1, Nn(a) = 1}.
Since NnM (a) = Nn(NM (a)) = NM (a)n, this is also the subgroup {a ∈ A, ∃n ∈
N, (n, p) = 1, NM (a)n = 1}. In other words, with the notation of the lemma we
have Z1(I, A) = N−1

M (A[p′]). As a consequence H1(I, A), being by definition the
quotient of Z1(I, A) by s-conjugacy under A, is also the quotient by the subgroup
A(s), and the formula of (3) follows.

Let us make the action of Fr on H1(I, A) more explicit. Note first that the action
of Fr−1 on Z1(I, A) is given by Fr−1(η)(s) = Fr−1(η(Fr sFr−1)) = Fr−1(η(sq)) =
Fr−1(Nq(η(s))). If m ∈ N is such that Frm acts trivially on A, then Fr−m(η)(s) =

Nqm(η(s)). But since the image Nqm(η(s)) of Nqm(η(s)) in Z1(I, A)/A(s) is η(s)
qm

,

we see that the action of Fr−m on H1(I, A) is simply given by the qm-th power map.
Therefore, the space of Frm co-invariants is the quotient

H1(I, A)Frm = H1(I, A)/
(
H1(I, A)

)qm−1
,

which is trivial whenever H1(I, A) is p′-divisible. The latter holds if Z1(I, A) is
p′-divisible, and this holds in turn if A is p′-divisible. �

Remark 3.9. This lemma is the main point in proving the existence of L-morphisms
that preserve a Borel pair. When the center Zφ of CĜ(φ)

◦ is a torus, and more gen-

erally when it is smooth over OKe
[ 1p ], then Zφ(K) is a p′-divisible group for any alge-

braically closed field K of characteristic not p, so that the same lemma implies that
H2(WF /PF , Zφ(K)) vanishes. In this case, fix a pinning εφ of CĜ(φ)

◦ and consider

its normalizer Zφ in C GL (φ), which is an extension of π0( GL ) by Zφ. Thanks to this
vanishing result, the same argument as in Theorem 3.6 shows that Σ(W ◦

F ,Zφ)φ,α
is a fppf torsor under the diagonalisable group scheme Z1

α(W
0
F /PF , Zφ), and there-

fore that we can find ϕα as in Theorem 3.4 with the additional property that Adϕα

preserves the pinning εφ. In this case, the group scheme CĜ(φ)
◦ · ϕα(WF ) is iso-

morphic to a suitable quotient of the Langlands dual group scheme over OK′
e
[ 1p ] of

some tamely ramified reductive group over F , namely “the” quasi-split reductive
group Gφ,α dual to CĜ(φ)

◦ over F̄ and whose F -structure is induced by the outer
action

WF
α
−→ π̃0(φ) −→ Out(CĜ(φ)

◦).

In particular, when CĜ(φ) is connected, Σ(φ) is trivial so we get a single associated
quasi-split reductive group Gφ over F and, under the hypothesis of this Remark,
we have an isomorphism over OK′

e
[ 1p ]

GL φ = CĜ(φ)⋊Adϕ
We

∼
−→ C GL (φ).

Example 3.10 (Classical groups). Let us assume that p > 2 and consider the case
where GL is a Langlands dual group of a quasi-split classical group G over F , so

that Ĝ is one of Sp2n, SO2n+1 or SO2n. Then the following holds :

(1) CĜ(φ) is connected for all φ ∈ Φe. More precisely, it is isomorphic to a

product Ĝ′ ×GLn1
× · · · ×GLnr

with Ĝ′ of the same type as Ĝ.
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This follows from the fact that the only self-dual irreducible represen-
tation of a p-group is the trivial representation. Indeed, decomposing the
underlying symplectic or orthogonal space as a sum of φ(PF )-isotypic com-
ponents, this fact shows that each pair of dual non-trivial irreducible rep-
resentations contributes a factor GL to the centralizer, while the trivial
representation contributes a classical group of the same sign. We then
deduce the following :

(2) Gφ is a (possibly non split) classical group times a product of restrictions
of scalars of general linear groups and unitary groups.

(3) If G is symplectic, then we can find an extension ϕ of φ such that Adϕ
preserves a pinning of CĜ(φ) (because Ĝ is adjoint and thanks to the pre-

vious remark). In particular we get an isomophism GL φ
∼
−→ C GL (φ) as

above. Recall that even though G is split here, we take GL = Ĝ×We where
PF /P

e
F injects into We.

The next lemma provides many examples to which Remark 3.9 applies.

Lemma 3.11. Let H be a reductive group scheme over Z̄[ 1p ] and let P be a finite

p-group of automorphisms of H. If the center Z(H) of H is smooth over Z̄[ 1p ], then

so is the center Z(HP,◦) of the connected centralizer HP,◦ of P .

Proof. Recall that the center Z of a reductive group scheme is a group of mul-
tiplicative type, associated to an étale sheaf X∗(Z) of finitely generated abelian
groups. In particular, Z is flat over the base, and it is smooth if and only if the
order of the torsion subgroups of all stalks of X∗(Z) are invertible on the base. In
our case, since Spec(Z̄[ 1p ]) is connected, it suffices to check the Q̄-stalk. Hence we

see that Z is smooth if and only if the torsion subgroup of X∗(ZQ̄) has p-power
order, if and only if π0(ZQ̄) has p-power order.

As a consequence, we are reduced to prove a statement for reductive groups
over Q̄. Actually we will prove the following variant, in which we allow non-
connectedness in order to make it easier to argue inductively: if H is a (possibly
non-connected) reductive algebraic group over Q̄ with an action of a p-group P and
such that π0(Z(H

◦)) has p-power order, then π0(Z(H
P,◦)) has also p-power order.

Note that if P1 is a normal subgroup of P with quotient P2 := P/P1, then H
P1 is

a reductive algebraic group and HP = (HP1)P2 . Therefore, if the above statement
is true for the action of P1 on H and that of P2 on HP1 , it is true for the action
of P on H. By using a central series of P , we may thus argue by induction and
we see that it suffices to treat the case where P is cyclic of order p. Moreover,
we may also assume that H is connected since only Z(H◦) and HP,◦ = (H◦)P,◦

appear in the above statement. Now, the quotient morphism H −→ Had induces
a surjective morphism HP,◦

։ (Had)
P,◦ whose kernel is K := Z(H)P ∩ HP,◦.

So π0(K) is dual to the torsion subgroup of X∗(K), which is a quotient of the
torsion subgroup of the coinvariants X∗(Z(H))P , which has p-power order. Since
Z(HP,◦) is an extension of Z((Had)

P,◦) by K, we see that it suffices to prove that
π0(Z((Had)

P,◦)) has p-power order. Note that P permutes the simple factors of
Had, and it suffices to treat the case where this permutation is transitive. If Had is
not simple, then this permutation is also simply transitive (since P is simple), and
(Had)

P is isomorphic to a simple factor of Had (diagonally embedded in Had). So
we are left with the case where Had is simple. Let θ be a generator of P . Note that
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θ is a semi-simple element of Had ⋊P , hence it is in particular quasi-semisimple in
the sense of Steinberg. Let (B, T ) be a Borel pair fixed by θ, and write θ = Adt ◦σ
with σ quasi-central (see [DM18, Def. 1.19]) and t ∈ T θ,◦ = T σ,◦, as per [DM18,
Prop. 1.16 (1)]. If θ is inner on Had, then σ = 1, hence t has order p. Otherwise,
by the classification of quasi-central elements below Proposition 1.22 of [DM94],
we must have p = 2 or p = 3, and σ has always order p, so that t also has order
p. In all cases, Theorem 3.11 of [DM18] implies that the order of π0(Z((Had)

P,◦))
divides p2. �

Using Remark 3.9, we can now strengthen Theorem 3.4 for a certain class of
groups, by replacing “Borel pair” by “pinning”.

Theorem 3.12. Suppose that the center of Ĝ is smooth over Z[ 1p ]. Then there is a

finite extension K ′
e of Ke such that for any admissible φ ∈ Φe and any admissible

α ∈ Σ(φ), there is some ϕα ∈ Z
1(W 0

F , Ĝ(OK′
e
[ 1p ]))φ,α such that ϕL α(W

0
F ) is finite

and Adϕα
preserves a pinning of the split reductive group scheme CĜ(φ)

◦.

4. Moduli of Langlands parameters

We maintain the setup and notation of the previous section. In particular, Ĝ is
a split reductive group scheme over Z[ 1p ] endowed with a finite action of WF , and

GL = Ĝ⋊W is an adjustable associated “L-group” of finite type.

4.1. The moduli space of cocycles. Let us fix a “depth” e ∈ N such that the
action of P e

F on Ĝ is trivial. The functor R 7→ Z1(W 0
F /P

e
F , Ĝ(R)) is representable by

an affine scheme of finite presentation over Z[ 1p ] that we denote by Z
1(W 0

F /P
e
F , Ĝ),

and whose affine ring we denote by Re
GL . By construction, it comes with a universal

1-cocycle

ϕe
univ : W 0

F /P
e
F −→ Ĝ(Re

GL ).

Restriction to PF provides us with a morphism of Z[ 1p ]-schemes

(4.1) Z1(W 0
F /P

e
F , Ĝ) −→ Z1(PF /P

e
F , Ĝ)

with the notation of appendix A. Using the notation of Theorem 3.1, we have a
decomposition of the right hand side over OKe

[ 1p ] as follows

Z1(PF /P
e
F , Ĝ)OKe [

1
p
] =

∐

φ∈Φe

Ĝ · φ,

where Ĝ · φ denotes the orbit of φ, which in this context is a smooth affine scheme
that represents the quotient sheaf Ĝ/CĜ(φ) on the big étale site of OKe

[ 1p ] (see

Remark A.10). This induces in turn a decomposition

(4.2) Z1(W 0
F /P

e
F , Ĝ)OKe [

1
p
] =

∐

φ∈Φadm
e

Ĝ×C
Ĝ
(φ) Z1(W 0

F , Ĝ)φ

with the notation of the last section. Here the summand Ĝ×C
Ĝ
(φ) Z1(W 0

F , Ĝ)φ is

an affine scheme that represents the quotient sheaf of Ĝ×Z1(W 0
F , Ĝ)φ by the action

of CĜ(φ) by right translations on Ĝ and by (twisted) conjugation on Z1(W 0
F , Ĝ)φ.

Recall that φ is called “admissible” if this summand is non-empty and we have
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denoted by Φadm
e the subset of admissible elements. In terms of rings, we have the

decomposition

(4.3) Re
GL ⊗Z[ 1

p
] OKe

[
1

p
] =

∏

φ∈Φadm
e

R GL ,[φ] =
∏

φ∈Φadm
e

(

OĜ ⊗Z[ 1
p
] R GL ,φ

)C
Ĝ
(φ)

.

The [φ]-part of the universal 1-cocycle

ϕ
[φ]
univ : W 0

F /P
e
F −→ Ĝ(R GL ,[φ])

is universal for 1-cocycles ϕ :W 0
F −→ Ĝ(R) such that ϕ|PF

is étale-locally (over R)

Ĝ-conjugate to φ. Over R GL ,φ we have an extension of φ

ϕφ
univ : W 0

F /P
e
F −→ Ĝ(R GL ,φ)

which is universal for 1-cocycles ϕ : W 0
F −→ Ĝ(R) such that ϕ|PF

= φ. The

1-cocycles ϕ
[φ]
univ and ϕφ

univ determine each other in the following ways.

• ϕφ
univ is deduced from ϕ

[φ]
univ by pushing out along the morphism

(

OĜ ⊗Z[ 1
p
] R GL ,φ

)C
Ĝ
(φ)

−→
(

OĜ ⊗Z[ 1
p
] R GL ,φ

)
ε
Ĝ

⊗ id
−→ R GL ,φ

• ϕ
[φ]
univ is deduced from ϕφ

univ by the formula

ϕ
[φ]
univ(w) : OĜ

Ad∗
w−→ OĜ ⊗Z[ 1

p
] OĜ

id⊗ϕ
φ
univ(w)
−→ OĜ ⊗Z[ 1

p
] R GL ,φ

where Ad∗w is induced by the w-twisted conjugation action of Ĝ on itself,

and the composition lands into
(

OĜ ⊗Z[ 1
p
] R GL ,φ

)C
Ĝ
(φ)

.

We now recall the decomposition of the previous section

(4.4) Z1(W 0
F , Ĝ)φ =

∐

α∈Σ(φ)adm

Z1(W 0
F , Ĝ)φ,α

and we fix, for each α ∈ Σ(φ)adm, a 1-cocycle ϕα : W 0
F −→ Ĝ(OK′

e
[ 1p ]) as in

Theorem 3.4. Then we have an isomorphism ρ 7→ ρ · ϕα

(4.5) Z1
Adϕα

((WF /PF )
0, CĜ(φ)

◦)
∼
−→ Z1(W 0

F , Ĝ)φ,α ×OKe [
1
p
] OK′

e
[ 1p ]

where the LHS is a space of tame parameters as studied in Section 2. Accordingly,
we have a decomposition of OKe

[ 1p ]-algebras R GL ,φ =
∏

αR GL ,φ,α and, for each α,

the α-component of ϕφ
univ is given, over R GL ,φ,α ⊗OKe [

1
p
] OK′

e
[ 1p ] by

(4.6) ϕφ,α
univ = ρ GL

ϕα
· ϕα :W 0

F −→ Ĝ
(

R GL ,φ,α ⊗OKe [
1
p
] OK′

e
[ 1p ]
)

where ρ GL
ϕα

is the universal 1-cocycle over Z1
Adϕα

((WF /PF )
0, CĜ(φ)

◦). We are

now in position to prove :

Theorem 4.1. i) The scheme Z1(W 0
F /P

e
F , Ĝ) is syntomic (flat and local complete

intersection) over Z[ 1p ] and generically smooth, of pure absolute dimension dim(Ĝ).

ii) For any prime ℓ 6= p, the ring Re
GL is ℓ-adically separated and the pushforward

of ϕL
e

univ to Re
GL ⊗ Zℓ extends uniquely to a ℓ-adically continuous L-morphism

ϕL
e

ℓ−univ : WF /P
e
F −→ GL (Re

GL ⊗ Zℓ)
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which is universal for ℓ-adically continuous L-morphisms as in Definition 2.12.

Proof. i) Since OK′
e
[ 1p ] is a syntomic cover of Z[ 1p ], it suffices to prove i) after base

change to this ring. In what follows, we implicitly base-change Ĝ and all schemes
introduced above to this ring, but we omit it in the notation to keep it readable. So,
it suffices to prove i) for each summand Ĝ×C

Ĝ
(φ)Z1(W 0

F , Ĝ)φ of the decomposition
(4.2). Consider the morphism

(4.7) Ĝ×C
Ĝ
(φ) Z1(W 0

F , Ĝ)φ −→ Ĝ · φ

obtained by restriction of (4.1). Its base change along the orbit morphism Ĝ −→

Ĝ · φ is the first projection

(4.8) Ĝ× Z1(W 0
F , Ĝ)φ −→ Ĝ

Thanks to the decomposition (4.4) and the isomorphisms (4.5), we may apply

Corollary 2.5 and Proposition 2.8 to deduce that Z1(W 0
F , Ĝ)φ is syntomic over

OK′
e
[ 1p ] and generically smooth, of pure absolute dimension dim(CĜ(φ)). It follows

that the morphism (4.8) is syntomic of pure relative dimension dim(CĜ(φ)) − 1
and that the source space is generically smooth since the target is smooth. Since
the orbit morphism is surjective and smooth (because CĜ(φ) is smooth), the same

property holds for the morphism (4.7) by descent. But the orbit Ĝ.φ itself is smooth

over OK′
e
[ 1p ] (since it is a summand of Hom(PF /P

e
F , Ĝ)) and has relative dimension

dim(Ĝ)− dim(CĜ(φ)). So i) follows.
ii) The ℓ-adic separatedness of Re

Ĝ
follows from Corollary 2.11 and (4.3). More-

over, (4.6) together with Theorem 2.13 show that for each φ ∈ Φe, the univer-

sal L-morphism ϕL
φ

univ extends uniquely and ℓ-adically continuously to an L-

morphism ϕL
φ

ℓ−univ : WF −→ GL (R′
GL ,φ ⊗ Zℓ). Here we have written R′

GL ,φ :=

R GL ,φ⊗OKe [
1
p
]OK′

e
[ 1p ], and we have used the fact that the ϕα occuring in (4.6) has fi-

nite image, hence extends uniquely toWF by continuity. Using the relation between

ϕ
[φ]
univ and ϕφ

univ, we see ultimately that ϕL
e

univ extends to an ℓ-adically continuous

L-morphism ϕL
e

ℓ−univ : WF −→ GL (R′e
GL ⊗ Zℓ) where R′e

GL = Re
GL ⊗ OK′

e
[ 1p ].

We now claim that ϕL
e

ℓ−univ factors through GL (Re
GL ⊗ Zℓ). Indeed, its pushfor-

ward to GL (R′e
GL ⊗ Z/ℓnZ) has the same image as the pushforward of ϕL

e

univ by

continuity, hence it factors through GL (Re
GL ⊗ Z/ℓn) for all n. But since R′e

GL is

locally free of finite rank over Re
GL , the claim follows. The universal property is

straightforward. �

Statement ii) clarifies a bit the dependence of our moduli space Z1(W 0
F /P

e
F , Ĝ)

on our initial choices of a topological generator s of IF /PF and of a lift of Frobenius
Fr in WF /PF when defining the subgroup W 0

F of WF .

Corollary 4.2. For any prime ℓ 6= p, the base change Z1(W 0
F /P

e
F , Ĝ)Zℓ

is indepen-
dent of the choices made to define the subgroup W 0

F , up to canonical isomorphism.

Namely, let W 0′

F be another choice of subgroup, then there is a unique isomorphism

of Zℓ-schemes Z1(W 0
F /P

e
F , Ĝ)Zℓ

∼
−→ Z1(W 0′

F /P
e
F , Ĝ)Zℓ

compatible with the univer-
sal ℓ-adically continuous 1-cocycles on each side.

Besides the above result, our main conjecture over Z[ 1p ] states that the decom-

position (4.4) is the decomposition into connected components.
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Conjecture 4.3. For any pair (φ, α), the OKe
[ 1p ]-scheme Z1(W 0

F , Ĝ)φ,α is con-

nected and remains connected after any finite flat integral base change.

The isomorphisms in (4.5) reduce this conjecture to the following one :

Conjecture 4.4. For any split Ĝ over Z[ 1p ] with a tamely ramified Galois action

that preserves a Borel pair, the tame summand Z1(W 0
F /PF , Ĝ)Z[ 1

p
] is connected.

In Subsection 4.6, we prove the last statement under the additional assumption
that Ĝ has smooth center (Corollary 4.30), or the Galois action preserves a pinning
(Theorem 4.29). Thanks to Theorem 3.12, this is enough to get the following result
towards Conjecture 4.3 :

Theorem 4.5. Conjecture 4.3 holds if the center of Ĝ is smooth over Z[ 1p ].

4.2. Decomposition after localization at a prime ℓ 6= p. For each choice of
a prime ℓ 6= p, statement ii) of Theorem 4.1 allows us to refine the decomposition
(4.3) after tensoring by Zℓ. Indeed, denote by IℓF the maximal closed subgroup of

IF with prime-to-ℓ pro-order. Then, since ϕL
e

ℓ−univ is ℓ-adically continuous, the

kernel Iℓ,eF of ( ϕL
e

ℓ−univ)|Iℓ
F
is open in IℓF . It follows that restriction to IℓF provides

a morphism of Zℓ-schemes

Z1(W 0
F /P

e
F , Ĝ)Zℓ

−→ Z1(IℓF /I
ℓ,e
F , Ĝ)Zℓ

.

But since the finite group IℓF /I
ℓ,e
F has order invertible in Zℓ, we can apply the results

of appendix A. In particular, there is a finite étale extension Λe of Zℓ and a finite

set Φℓ
e ⊂ Z

1(IℓF /I
ℓ,e
F , Ĝ(Λe)) such that

Z1(IℓF /I
ℓ,e
F , Ĝ)Λe

=
∐

φℓ∈Φℓ
e

Ĝ · φℓ,

from which we deduce a decomposition similar to (4.2)

Z1(W 0
F /P

e
F , Ĝ)Λe

=
∐

φℓ∈Φℓ
e

Ĝ×C
Ĝ
(φℓ) Z1(W 0

F /P
e
F , Ĝ)Λe,φℓ ,

where Z1(W 0
F /P

e
F , Ĝ)Λe,φℓ denotes the closed subscheme of Z1(W 0

F /P
e
F , Ĝ)Λe

de-

fined by (ϕe
ℓ−univ)|Iℓ

F
= φℓ. Then we can play the same game as in Subsection

3.2. Namely, taking an L-group Ĝ ⋊ We such that IℓF /I
ℓ,e
F injects into We, we

define C GL (φℓ), π̃0(φ
ℓ) and Σ(φℓ) exactly as in that subsection. This allows us to

decompose further

Z1(W 0
F /P

e
F , Ĝ)Λe,φℓ =

∐

αℓ∈Σ(φℓ)

Z1(W 0
F /P

e
F , Ĝ)Λe,φℓ,αℓ .

We will say again that φℓ and αℓ are admissible if the corresponding summand is
non empty. Moreover, we have an analogue of Theorem 3.4 with the same proof
(actually, the proof simplifies a bit since we work here over a DVR).

Theorem 4.6. There is an integral finite flat extension Λ′
e of Λe such that, for

each admissible φℓ, αℓ, we can find a cocycle ϕαℓ ∈ Z1(W 0
F /P

e
F , Ĝ)Λ′

e,φ
ℓ,αℓ with

finite image and such that Adϕ
αℓ

normalizes a Borel pair of CĜ(φ
ℓ)◦.
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As in Remark 3.9, this can be improved in certain circumstances. Namely, if the
center Z(CĜ(φ

ℓ)◦) is smooth over Λe – equivalently, if ℓ does not divide the order

of X∗(Z(CĜ(φ
ℓ)◦))tors – then one can find ϕαℓ such that Adϕ

αℓ
stabilizes a pinning

of CĜ(φ
ℓ)◦. Using a version of Lemma 3.11 where Z[ 1p ] is replaced by Zℓ and P

is replaced by any solvable group of order prime to ℓ, one obtains the following
analogue of Theorem 3.12.

Theorem 4.7. Assume that the center of Ĝ is smooth over Z(ℓ). Then there is an

integral finite flat extension Λ′
e of Λe such that, for each admissible φℓ, αℓ, we can

find a cocycle ϕαℓ ∈ Z1(W 0
F /P

e
F , Ĝ)Λ′

e,φ
ℓ,αℓ with finite image and such that Adϕ

αℓ

fixes a pinning of CĜ(φ
ℓ)◦.

In particular, this result applies to classical groups whenever ℓ 6= 2.
Fix ϕαℓ as in one of the above theorems. Having finite image, it extends to

WF and the conjugation action Adϕ
αℓ

factors over WF /I
ℓ
F . Then the usual map

ρ 7→ ρ · ϕαℓ provides an isomorphism of Λ′
e-schemes

Z1
Adϕ

αℓ

(
(WF /PF )

0, CĜ(φ
ℓ)◦
)

Λ′
e,1

ℓ

∼
−→ Z1(W 0

F /P
e
F , Ĝ)Λ′

e,φ
ℓ,αℓ

where the subscript 1ℓ on the left hand side denotes the closed and open subscheme
of Z1

Adϕ
αℓ

(
(WF /PF )

0, CĜ(φ
ℓ)◦
)

Λ′
e

where the universal ℓ-adically continuous tame

parameter restricts trivially to IℓF .

Theorem 4.8. For each pair (φℓ, αℓ), the Λe-scheme Z1(W 0
F /P

e
F , Ĝ)Λe,φℓ,αℓ has

a geometrically connected special fiber. In particular, it is connected and its base
change to any integral finite flat extension of Λe remains connected.

We will prove this result after some preparation on categorical quotients. Mean-
while, we note that the second part of the statement follows from the first one since
Z1(W 0

F /P
e
F , Ĝ)Λe,φℓ,αℓ is the spectrum of an ℓ-adically separated Zℓ-algebra. The

collection of these results for all ℓ 6= p will be the main ingredient in the proof of
Theorem 4.5.

4.3. Quotients, moduli spaces of parameters. The group scheme Ĝ acts by
(twisted) conjugation on Z1(W 0

F /P
e
F , Ĝ). There are several type of quotients which

can be considered here : the stacky quotient, the quotient as fppf sheaves, or the

quotient in the category of affine schemes, which is simply Spec((Re
GL )Ĝ). Whatever

type of quotient is considered, let us denote it by H1(W 0
F /P

e
F , Ĝ). Then, (4.2)

induces a decomposition

H1(W 0
F /P

e
F , Ĝ)OKe [

1
p
] =

∐

φ∈Φadm
e

Z1(W 0
F , Ĝ)φ/CĜ(φ),

where the quotients on the right hand side are of the same type. Next, (4.4) gives
for each φ a decomposition

Z1(W 0
F , Ĝ)φ/CĜ(φ)

◦ =
∐

α∈Σ(φ)adm

Z1(W 0
F , Ĝ)φ,α/CĜ(φ)

◦

(beware the ◦) while (4.5) provides for each α an isomorphism

H1
Adϕα

(W 0
F /PF , CĜ(φ)

◦)
∼
−→

(

Z1(W 0
F , Ĝ)φ,α/CĜ(φ)

◦
)

OK′
e
[ 1
p
]
.



MODULI OF LANGLANDS PARAMETERS 33

Now, let us denote by Σ(φ)0 a set of representatives of π0(φ)-orbits in Σ(φ) and
by π0(φ)α the stabilizer of α in π0(φ). Let CĜ(φ)α be the closed subgroup scheme

of CĜ(φ) inverse image of π0(φ)α. It stabilizes the summand Z1(W 0
F , Ĝ)φ,α of

Z1(W 0
F , Ĝ)φ, whence an action of π0(φ)α on H1

Adϕα
(WF 0/PF , CĜ(φ)

◦) through the
last isomorphism. We thus have obtained an isomorphism

H1(W 0
F /P

e
F , Ĝ)OK′

e
[ 1
p
] =

∐

φ∈Φadm
e

∐

α∈Σ(φ)adm0

H1
Adϕα

(W 0
F /PF , CĜ(φ)

◦)/π0(φ)α .

In the case of the affine categorical quotient, we will use the familiar notation

Z1(W 0
F /P

e
F , Ĝ) � Ĝ := Spec((Re

GL )Ĝ).

From the above discussion we deduce :

Proposition 4.9. The affine categorical quotient Z1(W 0
F /P

e
F , Ĝ) � Ĝ is a flat,

reduced, ℓ-adically separated affine scheme of finite presentation over Z[ 1p ] and its

ring of functions decomposes as

(Re
GL )Ĝ ⊗OK′

e
[ 1p ] =

∏

φ∈Φadm
e

∏

α∈Σ(φ)adm0

((

R GL
ϕα

)C
Ĝ
(φ)◦
)π0(φ)α

.

With similar notation, we also have local decompositions for each prime ℓ 6= p

(Re
GL )Ĝ ⊗ Λ′

e =
∏

φℓ∈Φℓ,adm
e

∏

αℓ∈Σ(φℓ)adm0

((

R GL
ϕ
αℓ

,1ℓ

)C
Ĝ
(φℓ)◦

)π0(φ
ℓ)

αℓ

.

Proof. The first decomposition has been explained above and the second one is sim-

ilar, based on section 4.2. The claimed properties of (Re
GL )Ĝ follow from Theorem

4.1 except for its finite generation as a Z[ 1p ]-algebra, which is a difficult result of

Thomason [Tho87, Thm 3.8]. �

4.4. Closed orbits over an algebraically closed field. Let L be an alge-
braically closed field of characteristic ℓ different from p (ℓ = 0 is allowed here).
Let us consider the affine categorical quotient

Z1(W 0
F /P

e
F , Ĝ)L � ĜL = Spec((Re

GL ⊗ L)ĜL).

Its relation with the affine quotient over Z[ 1p ] can be extracted from Alper’s paper

[Alp14], which builds on the work of Seshadri [Ses77] and Thomason [Tho87] on
Geometric Invariant Theory over arbitrary bases.

Proposition 4.10. The canonical map (Re
GL )Ĝ⊗L −→ (Re

GL ⊗L)ĜL is injective.

It is surjective if ℓ = 0 and, when ℓ > 0, there is an integer r such that its image

contains {f ℓ
r

, f ∈ (Re
GL ⊗ L)ĜL}. In particular the canonical morphism of L-

schemes

Z1(W 0
F /P

e
F , Ĝ)L � ĜL −→

(

Z1(W 0
F /P

e
F , Ĝ) � Ĝ

)

L

is a universal homeomorphism, and even an isomorphism when ℓ = 0.
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Proof. The case ℓ = 0 is easy, so we assume that ℓ is prime. Consider first the map

(Re
GL )Ĝ/ℓ(Re

GL )Ĝ −→ (Re
GL /ℓRe

GL )Ĝ. It is injective because Re
GL is ℓ-torsion free.

Moreover, since Ĝ is geometrically reductive over Z[ 1p ] in the sense of [Alp14, Def.

9.1.1] (by Theorem 9.7.5 of [Alp14]), it follows from [Alp14, Rk 5.2.2] that this map
is an “adequate” homeomorphism, in the sense of [Alp14, Def 3.3.1]. In particular
it is “universally adequate”, hence the map of the proposition is adequate too, and
[Alp14, Lemma 3.2.3] insures the existence of r as claimed in the proposition. �

Remark 4.11. In Theorem 6.8, we will get an explicit bound on the set of primes
ℓ for which the canonical morphism of this proposition is an isomorphism.

By classical Geometric Invariant Theory, we know that the L-points of the affine
quotient Z1(W 0

F /P
e
F , Ĝ)L � ĜL correspond bijectively to Zariski closed Ĝ(L)-orbits

in Z1(W 0
F /P

e
F , Ĝ(L)). On the other hand, a theorem of Richardson provides a

criterion to decide when the Ĝ(L)-orbit of ϕ ∈ Z1(W 0
F /P

e
F , Ĝ(L)) is closed.

Definition 4.12. We say that ϕ ∈ Z1(W 0
F /P

e
F , Ĝ(L)) is GL -semisimple if the

Zariski closure ϕL (W 0
F ) of the image of ϕL in GL (L) is a completely reducible

subgroup of GL (L) in the sense of [BMR05].

Let us recall the definition from [BMR05] : a closed subgroup Γ of GL (L) is called
completely reducible if for all R-parabolic subgroups P (L) of GL (L) containing Γ,
there exists a R-Levi subgroup of P (L) containing Γ. Here, and as in [BMR05, ➜6],
we use Richardson’s definition of parabolic and Levi subgroups via cocharacters,
which makes perfect sense for non-connected reductive groups. Actually, the defi-
nition applies verbatim to Γ an arbitrary subgroup, see [BMR05, ➜2.6], and we have
that Γ is completely reductible if and only if its closure is completely reductible,
so that, in the above definition, we may only require that the image ϕL (W 0

F ) be
completely reducible.

It wouldn’t be difficult to check directly that for a continuous 1-cocycle ϕ :
W 0

F → Ĝ(L), the property of being GL -semisimple neither depends on the choice
of an integer e such that ϕL factors throughW 0

F /P
e
F , nor on the particular choice of

L-group we make. Anyway, this fact is also a consequence of Richardson’s theorem
that we now state.

Theorem 4.13 (Richardson). The Ĝ(L)-orbit of ϕ ∈ Z1(W 0
F /P

e
F , Ĝ(L)) is closed

if and only if ϕ is GL -semisimple.

Proof. Recall that the map ϕ 7→ ϕL identifies the set Z1 := Z1(W 0
F /P

e
F , Ĝ(L))

with the set of L-homomorphisms W 0
F /P

e
F −→ GL (L), which is contained in the

set H of all homomorphisms W 0
F /P

e
F −→ GL (L). Both Z1 and H have a natural

reduced L-scheme structure, and Z1 is open and closed in H. In particular, the
Ĝ(L)-orbit of ϕ ∈ Z1 is closed in Z1 if and only the Ĝ(L)-orbit of ϕL is closed in

H. Now, on H the action of Ĝ(L) extends to GL (L) and, since Ĝ has finite index

in GL , we see that the Ĝ(L)-orbit of ϕL is closed if and only if its GL (L)-orbit is
closed.

Now, let w1, · · · , wn be a finite set of generators of the group W 0
F /P

e
F . Then

the map ψ 7→ (ψ(w1), · · · , ψ(wn)) is an GL (L)-equivariant closed embedding of
H into GL

n

L. So we see that the GL (L)-orbit of ϕL in H is closed if and only if
the GL (L)-orbit of ( ϕL (w1), · · · , ϕL (wn)) ∈ GL (L)n is closed in GL (L)n. Now,
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Richardson’s theorem (see Cor 3.7 and ➜6.3 of [BMR05]) tells us that the latter
orbit is closed if and only if the closure of the subgroup of GL (L) generated by
( ϕL (w1), · · · , ϕL (wn)) is completely reducible in the sense recalled above. �

In view of this result, we may drop the GL and simply say that “ϕ is semisimple”.
The following result will be crucial in our study of the affine quotient.

Proposition 4.14. Any semisimple 1-cocycle ϕ : W 0
F → Ĝ(L) extends continu-

ously and uniquely to WF . Moreover, the prime-to-p part |Lϕ(IF )|p′ of the cardi-
nality of ϕL (IF ) is bounded independently of ϕ and of the field L. More precisely,
| ϕL (IF )|p′ divides e.χĜ,F̃r(q)

2 where

• e is the tame ramification of the finite extension F ′ of F given by the kernel
of the map WF −→ π0( GL ),

• F̃r is any lift of Frobenius in WF .
• χĜ,F̃r ∈ Z[T ] is introduced in the appendix B.2.

Remark 4.15. If we restrict attention to fields of characteristic ℓ > 0, then the
statement that ϕ extends continuously to WF is true for all 1-cocycles, by (ii) of
Theorem 4.1. However, there is obviously no uniform bound on | ϕL (IF )|p′ without
the semisimplicity hypothesis, when we vary the field L.

Proof of the proposition. Recall from [Iwa55, Thm. 2 (iii)] that there exist lifts

s̃ and F̃r of s and Fr in WF such that F̃r.s̃.F̃r
−1

= s̃q and that WF decomposes

as a semi-direct product WF = PF ⋊ 〈s̃, F̃r〉. Accordingly, W 0
F decomposes as

W 0
F = PF ⋊ 〈s̃, F̃r〉. Then we see that a continuous 1-cocycle ϕ from W 0

F extends
continuously to WF if and only if ϕL (s̃) has finite order, in which case this order
is prime-to-p, the extension is unique, and it satisfies ϕ(WF ) = ϕ(W 0

F ).
Let us now assume that ϕ is GL -semisimple and show that ϕL (s̃) then has finite

order. Let F ′ and e be as in the statement of the proposition. Note that s̃e ∈WF ′

and thus ϕL (s̃)e ∈ Ĝ(L). Since ϕL (PF ′) is finite, there certainly is an integer
m such that ϕL (s̃)em commutes with ϕL (PF ′). This means that 〈 ϕL (s̃)em〉 is a
normal subgroup of ϕL (I0F ′), which is a normal subgroup of ϕL (W 0

F ) (here we have

set I0F ′ = IF ′ ∩W 0
F ′). Taking Zariski closures, we get that 〈 ϕL (s̃)em〉 is a normal

subgroup of ϕL (I0F ′), which is a normal subgroup of ϕL (W 0
F ). Now recall from

[BMR05, Thm 3.10] that any normal closed subgroup of a completely reducible

closed subgroup of GL (L) is completely reducible. So we infer that 〈 ϕL (s̃)em〉,
hence also 〈 ϕL (s̃)em〉, is a completely reducible subgroup of GL (L), hence also

a completely reducible subgroup of Ĝ(L). This means that ϕL (s̃)em is a semi-

simple element of Ĝ(L). Since it is conjugate to its q-power under ϕL (F̃r) ∈ Ĝ(L),
Proposition B.3 (2) shows that ϕL (s̃)em has finite order, and this order divides
χĜ,Adϕ(F̃r)

(q) = χĜ,F̃r(q).

It now remains to estimate m and prove that m = χĜ,F̃r(q) works. For this,

we may assume that ϕ belongs to some Z1(W 0
F , Ĝ)φ,α and write ϕ = ρ · ϕα as in

(4.5). By construction ϕL α has finite image in GL (Z[ 1p ]). Let m be the order of

the element ϕL α(s̃)
e, which lies in Ĝ(Z[ 1p ]). Then we have

ϕL (s̃)em = ρ(s̃).Adϕα(s̃)(ρ(s̃)) · · ·Adϕα(s̃)em−1(ρ(s̃)) ∈ CĜ(φ)
◦(L),
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hence ϕL (s̃)em commutes with ϕ(PF ′) as desired. But observe now that ϕL α(s̃)
e is

also a semisimple element of Ĝ(Q) that is conjugate to its qth-power under ϕL α(F̃r).
Hence, as above, its order m divides χĜ,F̃r(q). �

Let us denote by NĜ the l.c.m of all | ϕL (IF )|p′ for ϕ and L varying as in the

proposition, and where GL is the minimal L-group, i.e. GL = Ĝ ⋊ Γ with Γ the

image of WF −→ Aut(Ĝ).

Corollary 4.16. For each “depth” e, there is an open normal subgroup IeF of IF
with index dividing NĜ.[PF : P e

F ] such that any semisimple cocycle ϕ :W 0
F /P

e
F −→

Ĝ(L) is trivial on IeF ∩W
0
F , and therefore extends canonically to WF /I

e
F .

Proof. Define IeF to be the intersection of the kernels of the L-homomorphisms
ϕL : W 0

F /P
e
F −→ GL (L) associated to all semisimple cocycles ϕ : W 0

F /P
e
F −→

Ĝ(L) with L an algebraically closed field of characteristic ℓ 6= p. Here GL is the
minimal L-group, as above. Then PF ∩ I

e
F contains P e

F , hence it is open in PF of
index dividing that of P e

F . Moreover, by the above proposition, the cyclic group
IF /(PF .I

e
F ) is killed by NĜ, hence I

e
F has open image in IF /PF . It follows that I

e
F

is open in IF and that its index divides NĜ.[PF : P e
F ]. �

With IeF as in this corollary, we may consider the Ĝ-stable closed subscheme

Z1(WF /I
e
F , Ĝ) of Z1(W 0

F /P
e
F , Ĝ) consisting of 1-cocycles that are trivial on IeF .

We will denote by Se
GL its affine ring, which is thus a quotient of Re

GL .

Proposition 4.17. i) The homomorphism of rings

(4.9) (Re
GL )Ĝ −→ (Se

GL )Ĝ

is injective and its image contains {fN , f ∈ (Se
GL )Ĝ} for some integer N > 0.

ii) The corresponding morphism of schemes

(4.10) Z1(WF /I
e
F , Ĝ) � Ĝ −→ Z1(W 0

F /P
e
F , Ĝ) � Ĝ

is a finite universal homeomorphism and becomes an isomorphism after extending
scalars to Q.

Proof. i) Injectivity of (4.9). For any algebraically closed field L in which p is

invertible, the last corollary tells us that all closed orbits of Z1(W 0
F /P

e
F , Ĝ)(L) are

contained in Z1(WF /I
e
F , Ĝ)(L), hence the morphism (4.10) is bijective on L-points.

It follows that the kernel of (4.9) is contained in the nilradical of (Re
GL )Ĝ, which is

trivial since Re
GL is reduced, being syntomic over Z[ 1p ] and generically smooth by

Theorem 4.1.
Image of (4.9). By [Alp14, Thm 9.7.5], Ĝ is geometrically reductive in the

sense of [Alp14, Def. 9.1.1]. By the characterization of this property given in
[Alp14, Lem 9.2.5 (2)’], it follows that the map (4.9) is “universally adequate”.
Then, Proposition 3.3.5 of [Alp14] provides the desired N (note that the map

(Re
GL )Ĝ −→ (Se

GL )Ĝ is of finite type since (Se
GL )Ĝ is finitely generated over Z[ 1p ]

by [Tho87, Thm 3.8]).
ii) now follows from Lemmas 3.1.4 and 3.1.5 of [Alp14]. �
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Note that the ring Se
GL may not share the nice properties of Re

GL ; it may not

be reduced nor be flat over Z[ 1p ]. However, the last proposition implies that the

nilradical of (Se
GL )Ĝ coincides with its Z[ 1p ]-torsion ideal. Moreover, the fact that

(4.10) is an isomorphism after tensoring by Q shows that (Z1(W 0
F /P

e
F , Ĝ)� Ĝ)Q is

canonically independent of our initial choice of subgroup W 0
F in WF . Actually, we

can do better with a little more work :

Theorem 4.18. The affine quotient Z1(W 0
F /P

e
F , Ĝ)�Ĝ is canonically independent

of the choice of a topological generator s of IF /PF and a lift of Frobenius Fr in
WF /PF in the definition of the subgroup W 0

F .

Proof. Let (Fr′, s′) be another choice, leading to a subgroup W 0′

F of WF . Denote

by Re′

GL the affine ring of Z1(W 0′

F /P
e
F , Ĝ). Denote by ι the embedding (4.9) and

by ι′ the analogous embedding (Re′

GL )Ĝ →֒ (Se
GL )Ĝ. For each prime ℓ 6= p, we

have a canonical isomorphism (Re′

GL )Ĝ⊗Zℓ ≃ (Re
GL )Ĝ⊗Zℓ from Corollary 4.2. By

construction it commutes with the base changes of ι and ι′ to Zℓ, which means that

ι((Re
GL )Ĝ)⊗ Zℓ = ι′((Re′

GL )Ĝ)⊗ Zℓ inside (Se
GL )Ĝ ⊗ Zℓ. This implies that ℓ is not

in the support of the quotient Z[ 1p ]-module (ι((Re
GL )Ĝ) + ι′((Re′

GL )Ĝ))/ι((Re
GL )Ĝ).

Since this is true for all ℓ 6= p, it follows that this quotient is 0, hence ι((Re
GL )Ĝ) =

ι′((Re′

GL )Ĝ) inside (Se
GL )Ĝ. �

We may wonder whether such an independence result still holds for the stacky
quotient. We believe that, at least, the categories of quasi-coherent sheaves on such
stacks might be equivalent.

4.5. Geometric connected components in positive characteristic. Wemain-
tain our setup of an algebraically closed field L of characteristic ℓ 6= p, and
we assume that ℓ > 0. In order to parametrize the connected components of
Z1(W 0

F /P
e
F , Ĝ)L, we first observe that, since Ĝ is connected, the canonical mor-

phism

Z1(W 0
F /P

e
F , Ĝ)L −→ Z1(W 0

F /P
e
F , Ĝ)L � ĜL

induces a bijection on the respective sets of connected components. Hence, Propo-
sition 4.17 invites us to study the connected components of Z1(WF /I

e
F , Ĝ)L � ĜL.

Note : in order to lighten the notation a bit we will sometimes denote by H1 the
categorical quotient of cocycles modulo the relevant group action.

Using restriction to IℓF , we have already obtained a decomposition

H1(WF /I
e
F , ĜL) =

∐

φℓ∈Φℓ,adm
e

∐

αℓ∈Σ(φℓ)adm

(

H1
Adϕ

αℓ

(
WF /I

e
F I

ℓ
F , CĜ(φ

ℓ)◦L
))

�π0(φℓ)
αℓ

.

The following result shows that each summand is connected and will provide a
topological description of these summands.

Proposition 4.19. Assume that the action of WF on Ĝ is trivial on IℓF and sta-

bilizes a Borel pair (B̂, T̂ ). Then the following holds.

(1) The reduced fixed-points subgroup (ĜL)
IF is a connected reductive subgroup

of ĜL and the reduced fixed-points subgroup (T̂L)
IF is a maximal torus of
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(ĜL)
IF whose Weyl group is the IF -fixed subgroup ΩIF of the Weyl group

Ω of T̂ in Ĝ.
(2) The closed immersion Z1(WF /IF , Ĝ

IF
L ) →֒ Z1(WF /I

e
F I

ℓ
F , ĜL) induces an

homeomorphism

Z1(WF /IF , Ĝ
IF
L ) � ĜIF

L −→ Z1(WF /I
e
F I

ℓ
F , ĜL) � ĜL.

(3) The map t 7→ (ϕ : Fr 7→ t⋊ Fr) induces an isomorphism

(T̂ IF
L )Fr � ΩWF

∼
−→ Z1(WF /IF , Ĝ

IF
L ) � ĜIF

L .

Proof. (1) The group IF acts on Ĝ through a cyclic ℓ-power quotient, any generator

of which is a quasi-semisimple automorphism of Ĝ (in the sense of Steinberg).
Therefore, the first assertion follows from Thm 1.8 i) (reductivity) and Cor. 1.33
(connectedness) of [DM94].

(2) We first make the following observation. If φ : IF −→ Ĝ(L) is a semisimple

cocycle trivial on IℓF , then it is Ĝ(L)-conjugate to the trivial cocycle (note that
the latter is indeed semisimple by the characterization given in [BMR05, Cor 3.5

(v)]). To prove this, let us use the “minimal” L-group Ĝ ⋊ Γ, where Γ is the

image of WF in Aut(Ĝ). Then the image C of IF in Γ is a cyclic ℓ-group. Let s̄
be the image of the pro-generator s of IF /PF in C. By [Ste68, 7.2], the element
Lφ(s) := (σ, s̄) normalizes a Borel subroup of Ĝ. After conjugating by some element

of Ĝ(L) we may assume that it normalizes B̂, thus Lφ factors trough the minimal

R-parabolic subgroup B̂ ⋊ C of Ĝ ⋊ C. Since φ is assumed to be semisimple, Lφ
should factor through some R-Levi subgroup of B̂ ⋊ C. But these Levi subgroups
are B̂-conjugated to T̂ ⋊C. Therefore we may conjugate again Lφ so that it factors
through T̂ ⋊ C, which means that φ ∈ Z1(C, T̂ (L)). But since T̂ (L) is a ℓ-torsion

free divisible group, we have H1(C, T̂ (L)) = {1}, which means that φ is conjugate
to the trivial cocycle.

We deduce that the subset Z1(IF /I
e
F I

ℓ
F , Ĝ(L))

ss of Z1(IF /I
e
F I

ℓ
F , Ĝ(L)) that

consists of semisimple cocycles is closed, since it is a single orbit and this orbit
is closed by definition of semisimple. Moreover this closed subset identifies with
Ĝ(L)/Ĝ(L)IF . By pull-back, we deduce that the subset Z1(WF /I

e
F I

ℓ
F , Ĝ(L))

IF−ss

of Z1(WF /I
e
F I

ℓ
F , Ĝ(L)) that consists of all cocycles ϕ : WF −→ Ĝ(L) such that

ϕ|IF is semisimple, is closed and identifies with Ĝ(L)×Ĝ(L)IF Z1(WF /IF , Ĝ(L)
IF ).

Now by [BMR05, Thm 3.10] we know that any semisimple ϕ : WF −→ Ĝ(L)
has semisimple restriction to IF , so that the above closed subset contains all closed
orbits of Z1(WF /I

e
F I

ℓ
F , Ĝ(L)). So denote by Z1(WF /I

e
F I

ℓ
F , ĜL)

IF−ss the (reduced)

closed subscheme of Z1(WF /I
e
F I

ℓ
F , ĜL) associated to this closed subset. Then the

same argument as in Proposition 4.17 shows that the canonical morphism

Z1(WF /I
e
F I

ℓ
F , ĜL)

IF−ss � ĜL −→ Z1(WF /I
e
F I

ℓ
F , ĜL) � ĜL

is a finite universal homeomorphism. Using that

Z1(WF /I
e
F I

ℓ
F , Ĝ)

IF−ss
L = ĜL ×

Ĝ
IF
L Z1(WF /IF , Ĝ

IF
L )

we infer statement (2).

(3) This is [DM15, Prop. 7.1] applied with G1 = ĜIF ⋊ Fr and T1 = T̂ IF ⋊ Fr,

and σ = t⋊ Fr for any element t ∈ T̂ IF such that t⋊ Fr is quasi-central (note that

(T̂ IF )σ = (T̂ IF )Fr and (ΩIF )σ = (ΩIF )Fr). �
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We now use the results and notation of Subsection 4.2 to spread out this result.

Corollary 4.20. Let φℓ ∈ Φℓ
e and αℓ ∈ Σ(φℓ)0 be admissible, and fix ϕ := ϕαℓ ∈

Z1(W 0
F /P

e
F , Ĝ(Λ

′
e))φℓ,αℓ with finite image and such that Adϕ

αℓ
normalizes a Borel

pair (Bφℓ , Tφℓ) of CĜ(φ
ℓ)◦. We denote by Ω◦

φℓ the Weyl group of Tφℓ in CĜ(φ
ℓ)◦

and by Ωφℓ = Ω◦
φℓ ⋊ π0(φ

ℓ) its “Weyl group” in CĜ(φ
ℓ).

(1) Let CĜL
(ϕ|IF ) = (ĜL)

ϕ(IF ) be the reduced centralizer of Lϕ(IF ) in ĜL.

(a) CĜL
(ϕ|IF )

◦ is reductive with maximal torus (Tφℓ,L)
ϕ(IF ) and Weyl

group (Ω◦
φℓ)

ϕ(IF ).

(b) π0(CĜL
(ϕ|IF )) = π0(φ

ℓ)ϕ(IF ) and the “Weyl group” of (Tφℓ,L)
ϕ(IF ) in

CĜL
(ϕ|IF ) is (Ωφℓ)ϕ(IF ) ≃ (Ω◦

φℓ)
ϕ(IF ) ⋊ π0(φ

ℓ)ϕ(IF ).

(2) The natural closed immersion

Z1
Adϕ

(WF /IF , CĜL
(ϕ(IF ))

◦) →֒ Z1
Adϕ

(WF /I
e
F I

ℓ
F , CĜL

(φℓ)◦)

induces an homeomorphism

H1
Adϕ

(WF /IF , CĜL
(ϕ(IF ))

◦) −→ H1
Adϕ

(WF /I
e
F I

ℓ
F , CĜL

(φℓ)◦)

which is equivariant for the natural actions of π0(φ
ℓ)αℓ = π0(φ

ℓ)ϕ(WF ).
(3) The map t 7→ (ϕt : Fr 7→ t⋊ Fr) induces an isomorphism

(T
ϕ(IF )

φℓ,L
)ϕ(Fr) � (Ω◦

φℓ)
WF

∼
−→ H1

Adϕ
(WF /IF , CĜL

(ϕ|IF )
◦)

and subsequently an isomorphism

(T
ϕ(IF )

φℓ,L
)ϕ(Fr) � (Ωφℓ)WF

∼
−→

(

H1
Adϕ

(WF /IF , CĜL
(ϕ|IF )

◦)
)

�π0(φℓ)
αℓ

.

Proof. (1)(a) we have CĜ(ϕ|IF )
◦ = ((CĜ(φ

ℓ)
Lϕ(IF ))◦ = ((CĜ(φ

ℓ)◦)
Lϕ(IF ))◦ and

(1) of the previous proposition applied to CĜ(φ
ℓ)◦ implies ((CĜ(φ

ℓ)◦)
Lϕ(IF ))◦ =

(CĜ(φ
ℓ)◦)

Lϕ(IF ). For (1)(b), observe first that the fact that Ωφℓ is a split ex-

tension Ω◦
φℓ ⋊ π0(φ

ℓ) of π0(φ
ℓ) by Ω◦

φℓ comes from the fact it contains the sub-

group NC
Ĝ
(φℓ)(Tφℓ , Bφℓ)/Tφℓ ≃ π0(φ

ℓ). Since the action of WF through Adϕ on

CĜ(φ
ℓ) stabilizes Tφℓ and Bφℓ , the induced action on Ωφℓ preserves the semi-

direct product decomposition, hence in particular the ϕ(IF )-invariants are given
by (Ωφ)

ϕ(IF ) = (Ω◦
φ)

ϕ(IF ) ⋊ π0(φ
ℓ)ϕ(IF ). Moreover we have H1(IF , Tφℓ(L)) = 1

since IF acts on the uniquely ℓ-divisible abelian group Tφℓ(L) through a cyclic

ℓ-group, therefore the map NC
Ĝ
(φℓ)(Tφℓ , Bφℓ)ϕ(IF ) −→ π0(φ

ℓ)ϕ(IF ) is surjective,

which shows that π0(CĜL
(ϕ(IF ))) = π0(φ

ℓ)ϕ(IF ).

(2) follows from (2) of the last proposition except for the equivariance under the
group π0(φ

ℓ)αℓ = π0(φ
ℓ)ϕ(WF ) which is straightforward.

The first statement of (3) follows directly from (3) of the last proposition, and we
infer the second statement from the equality (Ωφ)

ϕ(WF ) = (Ω◦
φ)

ϕ(WF )⋊π0(φ
ℓ)ϕ(WF ),

which we already explained above. �

Applying this corollary to L = Fℓ we see that the special fiber of the Λe-scheme
Z1(W 0

F /P
e
F , Ĝ)Λe,φℓ,αℓ of subsection 4.2 is geometrically connected. This finishes

the proof of Theorem 4.8.

Corollary 4.21. There are natural bijections between the following sets :



40 JEAN-FRANÇOIS DAT, DAVID HELM, ROBERT KURINCZUK, AND GILBERT MOSS

(1) The set of connected components of Z1(W 0
F /P

e
F , Ĝ)Λe

(2) The set of connected components of Z1(W 0
F /P

e
F , Ĝ)Fℓ

= Z1(WF /P
e
F , Ĝ)Fℓ

(3) The set of pairs (φℓ, [αℓ]) with φℓ ∈ Φℓ,adm
e and [αℓ] a π0(φ

ℓ)-conjugacy
class in Σ(φℓ)adm.

(4) The set of Ĝ(Fℓ)-conjugacy classes of admissible pairs (φℓ, αℓ) where φℓ ∈

Z1(IℓF /I
ℓ,e
F , Ĝ(Fℓ)) and α

ℓ ∈ Σ(φℓ).

(5) The set of Ĝ(Fℓ)-conjugacy classes of admissible pairs (φ, α) where φ ∈

Z1(IF /I
e
F , Ĝ(Fℓ))

ss is GL -semisimple and α ∈ Σ(φ).

(6) The set of Ĝ(Fℓ)-conjugacy classes of pairs (φ, β) where φ ∈ Z
1(IF /I

e
F , Ĝ(Fℓ))

ss

is GL -semisimple and β ∈ π̃0(φ) is the image of some element in C GL (φ)∩

(Ĝ(Fℓ)⋊ Fr) = {β̃ ∈ Ĝ(Fℓ)⋊ Fr, β̃Lφ(i)β̃−1 = Lφ(Fr .i.Fr−1)}.

(7) The set of equivalence classes in Z1(WF /P
e
F , Ĝ(Fℓ)) for the relation defined

by ϕ ∼ ϕ′ if and only if there is ĝ ∈ Ĝ(Fℓ) such that ϕ|Iℓ
F

= ĝϕ′
|Iℓ

F

and

π ◦ ϕ = π ◦ ĝϕ′ with π the map C GL (ϕ|Iℓ
F
) ։ π0(C GL (ϕ|Iℓ

F
)).

Moreover, one can replace Fℓ by any algebraically closed field L of characteristic ℓ.

Proof. The bijections between (1), (2) and (3) follow from Theorem 4.8 which we
have just proved. The bijection between (3) and (4) follows from the definitions,
and so does the bijection between (4) and (7). We now describe bijections between
(4), (5) and (6) in a circular way.

(4)→(5). Start with an admissible pair, (φℓ, αℓ). Choose an extension ϕ of φℓ

that preserves some chosen Borel pair of CĜ(φ
ℓ)◦. Then φ := ϕ|IF is certainly

GL -semisimple and α := π ◦ ϕ is an element of Σ(φ) (here π is the projection
C GL (φ) −→ π̃0(φ) as usual). We need to check that any other choice ϕ′ leads to a
conjugate of (φ, α). Since all Borel pairs are conjugate, we may assume that ϕ′ and
ϕ fix the same Borel pair, and denote it by (Bφℓ , Tφℓ) . Then ϕ′ = η · ϕ for some

η ∈ Z1
Adϕ

(WF /I
ℓ
F , Tφℓ). Since H1

Adϕ
(IF /I

ℓ
F , Tφℓ) = 0 (because Tφℓ is uniquely

ℓ-divisible), we have H1
Adϕ

(WF /I
ℓ
F , Tφℓ) = H1

Adϕ
(WF /IF , (Tφℓ)IF ), which means

that we can “Adϕ-conjugate” η by an element t ∈ Tφℓ so that it factors through a

cocycle in Z1
Adϕ

(WF /IF , T
IF
φℓ ). So, after conjugating ϕ′ by t, it has the form η · ϕ

with η ∈ Z1
Adϕ

(WF /IF , T
IF
φℓ ). We now certainly have (η · ϕ)|IF = ϕ|IF and, since

T IF
φℓ is connected, we also have π ◦ (η · ϕ) = π ◦ ϕ.

(5)→(6). To a pair (φ, α) we associate (φ, β) with β := α(Fr).

(6)→(4). Start with a pair (φ, β) and put φℓ := φ|Iℓ
F
. Choose a lift β̃ of β in

C GL (φ)∩(Ĝ(Fℓ)⋊Fr). Then there is a unique extension ϕ of φ such that ϕ(Fr) = β̃.

This extension certainly factors through C GL (φℓ) and we put αℓ := πℓ ◦ ϕ with

πℓ : C GL (φℓ) −→ π̃0(φ
ℓ). Note that any other choice of lift of β is of the form cβ̃

with c ∈ CĜ(φ)
◦. Since CĜ(φ)

◦ is contained in CĜ(φ
ℓ)◦, such a choice defines the

same αℓ.
The composition of these three applications, starting from any set (4), (5) and

(6) is easily seen to be the identity. �

We finish this paragraph with another view on the topological description of
the affine categorical quotient Z1(W 0

F /P
e
F , ĜL)� ĜL that we have obtained above,

which makes it strikingly similar to what we will get over fields of characteristic 0.
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For a pair (φ, β) as in (6) of the last corollary and a Borel pair (Bφ, Tφ) of the
reductive algebraic group CĜL

(φ)◦ we have an action of β on the torus Tφ and on

its Weyl group Ωφ = Ω◦
φ ⋊ π0(φ) in CĜ(φ) (namely, the conjugation action of any

lift β̃ of β in C GL (φ) that preserves (Bφ, Tφ)). Putting together the last corollary
and the previous proposition, we get :

Corollary 4.22. Let Ψe(L) be a set of representatives of ĜL-conjugacy classes

of pairs (φ, β) as in (6) of the last corollary. For each such pair, choose a lift β̃
of β in C GL (φ) that normalizes a Borel pair (Bφ, Tφ) of CĜ(φ)

◦, and denote by

ϕL β̃ : WF −→ GL (L) the corresponding extension of Lφ. Then the collection of

morphisms Z1
Adβ

(WF /IF , Tφ) −→ Z1(W 0
F /P

e
F , ĜL), η 7→ η · ϕβ̃ induce an homeo-

morphism
∐

(φ,β)∈Ψe(L)

(Tφ)β � (Ωφ)
β ≈
−→ Z1(W 0

F /P
e
F , ĜL) � ĜL,

where (Tφ)β denotes the β-coinvariants of Tφ (i.e. the cokernel of the morphism
Tφ −→ Tφ, t 7→ t−1β(t)).

In Theorem 6.8 we will see that these homeomorphisms are actually isomor-
phisms when ℓ is “ GL -banal”.

4.6. Connected components over Z[ 1p ]. In this subsection, we assume that the

action of WF on Ĝ is trivial on PF and stabilizes a Borel pair (B̂, T̂ ), and we study

the connectedness of the depth 0 scheme Z1(W 0
F /PF , Ĝ) considered in Section 2,

and of all its base changes to finite flat integral extensions of Z[ 1p ]. Our general

strategy relies on what we already know about the connected components of the
base change to Zℓ for all ℓ 6= p. The following result implements this strategy under
some additional hypothesis, that are fulfilled for example if the action of WF on
Ĝ is unramified. After proving it, we will show that this additional hypothesis is
more generally satisfied when the action of IF stabilizes a pinning.

Proposition 4.23. Assume that there is a prime ℓ0 6= p such that, for each sub-
group I of finite index of IF , the Z[ 1p ]-group scheme ĜI has connected geometric

fibers, and is smooth over Z[ 1
ℓ0p

]. Then the Z[ 1p ]-scheme Z1(W 0
F /PF , Ĝ) is con-

nected, and so are all its base changes to finite flat integral extensions of Z[ 1p ].

Proof. Let C be a connected component of Z1(W 0
F /PF , Ĝ). Since C is flat and of

finite type over Z[ 1p ], we certainly have C(Q) 6= ∅. Let us consider the set I of open

subgroups I of IF that contain PF and such that

C(Q) ∩ Z1(WF /I, Ĝ
I)(Q) 6= ∅.

By Proposition 4.17 (ii), the set I is not empty, so we may pick a maximal I ∈ I.
We claim that I has ℓ0-power index in IF . Indeed, suppose the contrary, let

ℓ 6= ℓ0 be a prime that divides [IF : I] and let I ′ ⊃ I be the unique subgroup
of IF such that I ′/I is the ℓ-primary part of IF /I. Since I ∈ I, there is a con-

nected component CI of Z1(WF /I, Ĝ
I) contained in C and such that CI(Q) 6= ∅.

Our hypothesis on Ĝ and [DM94, Thm 1.8] imply that ĜI is reductive over Z[ 1
ℓ0p

],

hence Lemma 4.24 (2) applies and ensures that CI(Fℓ) is not empty. Moreover, by

looking fibrewise and using again [DM94, Thm 1.8], we see that the pair (B̂I , T̂ I)
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is a Borel pair of ĜI over Z[ 1
ℓ0p

]. Now, since I ′/I has ℓ-power order, we can repeat

the argument of the proof of (2) of Proposition 4.19 and deduce that the injec-

tive map Z1(WF /I
′, ĜI′

(Fℓ))
IF−ss →֒ Z1(WF /I, Ĝ

I(Fℓ))
IF−ss induces a bijection

between the respective sets of conjugacy classes, which in turn implies that the mor-
phism Z1(WF /I

′, ĜI′

)Fℓ
�ĜI′

Fℓ
−→ Z1(WF /I, Ĝ

I)Fℓ
�ĜI

Fℓ
is a homeomorphism, and

consequently that the morphism Z1(WF /I
′, ĜI′

)Fℓ
→֒ Z1(WF /I, Ĝ

I)Fℓ
induces a

bijection on π0. Therefore, there is a component CI′ of Z1(WF /I
′, ĜI′

) that maps
into CI , hence also into C, and such that CI′(Fℓ) 6= ∅. But since the index of I ′ in
IF is prime to ℓ, Lemma 4.24 (3) ensures that CI′(Q) 6= ∅, which contradicts the
maximality of I unless I ′ = I.

Now that we know that I has ℓ0-power index in IF , we shrink it so that it still
has ℓ0-power index in IF and its image in Aut(Ĝ) has prime-to-ℓ0 order. For this

new I, Lemma A.1 ensures that the group scheme ĜI is also smooth at ℓ0, hence, by
Lemma 4.24 (2) again, we have CI(Fℓ0) 6= ∅. But the map Z1(WF /IF , Ĝ

IF )Fℓ0
→֒

Z1(WF /I, Ĝ
I)Fℓ0

induces a bijection on π0, by the same argument as above, hence

CI contains a component CIF of Z1(WF /IF , Ĝ
IF ), and so does C. So we have

shown that the closed immersion Z1(WF /IF , Ĝ
IF ) →֒ Z1(W 0

F /PF , Ĝ) is surjective

on π0, and our statement follows from the fact that Z1(WF /IF , Ĝ
IF ) ≃ ĜIF is

connected, under our assumption. Moreover, the same argument works similarly
after base change to any integral finite flat extension of R of Z[ 1p ] by reducing

modulo prime ideals of R rather than prime numbers. �

Lemma 4.24. Let ℓ 6= p be a prime, and let I ⊂ IF be a subgroup of finite index
that contains PF and such that the group scheme ĜI is reductive over Z(ℓ). Then,

for any connected component C of Z1(WF /I, Ĝ
I), we have :

(1) If L is an algebraically closed field and a Z(ℓ)-algebra with C(L) 6= ∅, then

C(L) contains a semisimple cocycle valued in NĜI (T̂ I)(L).

(2) C(Q) 6= ∅ ⇒ C(Fℓ) 6= ∅.
(3) If ℓ does not divide the index [IF : I], then C(Fℓ) 6= ∅ ⇒ C(Q) 6= ∅.

Proof. We lighten the notation a bit by putting Ĥ := ĜI , BĤ := B̂I and TĤ := T̂ I .

The action of WF /I on Ĥ stabilizes the Borel pair (BĤ , TĤ) and factors over some

finite quotient W . We also put HL := Ĥ ⋊W and we still denote by s the image
of s in W .

(1) If C(L) is not empty, then C(L) certainly contains a semisimple 1-cocycle

ϕ ∈ Z1(WF /I, Ĥ(L)). As usual, we denote by ϕL the associated L-homomorphism
WF /I −→ HL (L). By [Ste68, 7.2] the element ϕL (s) of HL (L) normalizes a Borel

subgroup of Ĥ. Since C is stable under conjugation by Ĥ, we may conjugate
ϕ so that ϕL (s) normalizes BĤ . Then ϕL (s) belongs to the R-Borel subgroup

BĤ(L) ⋊W of HL (L). Since ϕ is semisimple, ϕL (s) generates a completely re-

ducible subgroup of HL (L), hence it belongs to a R-Levi subgroup of BĤ ⋊W .
Since all these R-Levi subgroups are BĤ -conjugate to TĤ ⋊W , we may conjugate

further ϕ so that ϕL (s) ∈ TĤ(L) ⋊ s. In this situation, (TĤ(L) ϕL (s))◦ is a max-

imal torus of (Ĥ(L) ϕL (s))◦ whose centralizer in Ĥ(L) is TĤ(L), [DM94, Thm 1.8

iv)]. Now, ϕL (Fr) normalizes (Ĥ(L) ϕL (s))◦ = (Ĥ(L) ϕL (s)q )◦, hence it conjugates
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(TĤ(L) ϕL (s))◦ to another maximal torus therein. Pick c ∈ (Ĥ(L) ϕL (s))◦ that con-

jugates back this torus to (TĤ(L) ϕL (s))◦. So c. ϕL (Fr) normalizes (TĤ(L) ϕL (s))◦,

hence also its centralizer TĤ(L) in Ĥ(L). Hence the unique 1-cocycle ϕc :WF /I −→

Ĥ(L) such that
{

L(ϕc)(s) := Lϕ(s) ∈ TĤ(L)⋊ s
L(ϕc)(Fr) := c. ϕL (Fr) ∈ NĤ(TĤ)(L)⋊ Fr .

is valued in NĤ(TĤ)(L) as desired, and it remains to prove that ϕc belongs to

C(L). But the cocycle ϕc makes sense for any c ∈ (Ĥ(L) ϕL (s))◦, so it is an element

in the image of an algebraic morphism (Ĥ(L) ϕL (s))◦ −→ Z1(WF /I, HL (L)). Since
the source of this morphism is connected, its image is contained in C(L).

(2) Let us first prove that C(Q) contains a 1-cocycle ϕ such that ϕL has finite
image, which is here equivalent to ϕL (Fr) having finite order. By (1), we may
start with ϕ valued in NĤ(TĤ)(Q). Then, a convenient power ϕL (Fr)r of ϕL (Fr)

belongs to (TĤ(Q) ϕL (s))◦. But the latter is a divisible group, so it contains an

element t such that t−r = ϕL (Fr)r. Then, the cocycle ϕt defined as above has

finite image. Now, we argue as in Proposition 2.10 with the building of Ĥ(Qℓ) to

see that ϕt can be Ĥ(Qℓ)-conjugated so that it becomes Ĥ(Zℓ)-valued. Then its

image in Z1(WF /I, Ĥ(Fℓ)) belongs to C(Fℓ).
(3) By (1) we may start with ϕ ∈ C(Fℓ) taking values in NĤ(TĤ)(Fℓ), and

we will show that it can be lifted to a 1-cocycle WF /I −→ NĤ(TĤ)(Zℓ). As in
the proof of Theorem 3.6, the obstruction to lifting ϕ belongs to H2(WF /I,K)
where K is the kernel of the reduction map NĤ(TĤ)(Zℓ) −→ NĤ(TĤ)(Fℓ), which

is also the kernel of the reduction map TĤ(Zℓ) −→ TĤ(Fℓ). In particular, K is a
uniquely ℓ′-divisible abelian group. Since IF /I has prime to ℓ order, it follows that
H1(IF /I,K) = H2(IF /I,K) = {0}. Since we also have H2(WF /IF ,K

IF ) = {0},
we see that H2(WF /I,K) = 0 and there is no obstruction to lift ϕ. �

Proposition 4.23 shows in particular that Z1(W 0
F /PF , Ĝ) is connected in the case

where IF acts trivially on Ĝ. We will now show this connectedness property in the
more general case where IF preserves a pinning of Ĝ. The next lemma starts with
a particular subcase.

Lemma 4.25. Assume that Ĝ is semi-simple and simply connected, and that IF
stabilizes a pinning of Ĝ. Then, for any subgroup I of finite index of IF , the closed
subgroup scheme ĜI has connected geometric fibers and is smooth over Spec(Z[ 1

2p ]).

Proof. The connectedness of geometric fibers is Steinberg’s theorem in [Ste68, Thm

8.2], so we focus on the smoothness of ĜI . Consider the action of I on the set of

simple factors of Ĝ. By treating distinct I-orbits seperately, we may assume that I
has a single orbit, so that Ĝ = indII′Ĝ′ where Ĝ′ is simple and I ′ has finite index in

I. Then ĜI = (Ĝ′)I
′

, so we are reduced to the case where Ĝ is simple. In this case,

the image of I in Aut(Ĝ), which is cyclic since PF acts trivially, has order either 2

or 3. If it has order 2, the smoothness of ĜI over Z[ 1
2p ] follows from Lemma A.1. If

it has order 3 then Ĝ = Spin8. Over fields of characteristic 0, it is known that the
subgroup of Spin8 fixed by the triality automorphism is G2. It may be true that

ĜI = G2 in our context too, but we find it easier to argue as follows. The big cell
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C = Û−T̂ Û associated to the Borel pair (T̂ , B̂) is stable under I, and it suffices

to prove smoothness of CI = (Û−)I T̂ I Û I . Since Ĝ is simply connected, T̂ I is a
torus by Steinberg’s theorem, hence it is smooth. By symmetry, it remains to prove
smoothness of Û I . Choose an ordering of the set Φ+/I of I-orbits of positive roots
and, for each orbit ᾱ ∈ Φ+/I, choose an ordering of this orbit. To these choices is

associated a decomposition Û =
∏

ᾱ∈Φ+/I Ûᾱ with Ûᾱ =
∏

α∈ᾱ Ûα. Now, the point

here is that there is no pair of I-conjugate positive roots whose sum is again a root.
This implies that Ûα and Ûα′ commute with each other if α, α′ ∈ ᾱ, and it follows
that Û I =

∏

ᾱ Û
I
ᾱ. This also implies that the I-invariant pinning (Xα)α∈∆ (with

Xα a basis of Lie(Ûα)) can be extended to an I-invariant pinning (Xα)α∈Φ+ for all

positive roots. Then, to each Xα corresponds an isomorphism Ga
∼
−→ Ûα and the

product of these isomorphisms induces (Ga)diag
∼
−→ Û I

ᾱ. Whence the smoothness

of Û I
ᾱ. �

Remark 4.26. (1) The same lemma holds with “adjoint” instead of “simply con-
nected”. The reference to Steinberg’s result has to be replaced by a reference to
[DM94, Remarque 1.30] for example (note that a pinning-preserving automorphism
is quasi-central in the sense of [DM94]).

(2) If Ĝ = SL2n+1 with a topological generator of IF acting by the non-trivial
automorphism that preserves the standard pinning, then (SL2n+1)

IF is not smooth
over Z(2). For example, with standard coordinates x = x12, y = x23, z = x13 for

the upper unipotent subgroup Û of SL3, the invariants Û I are given by equations
x = y and xy = 2z. However, it is likely that in any simple simply connected case
not of type A2n, the I-invariants are smooth over Z. During the reviewing process
of this paper, this expectation was indeed proved (and the above lemma reproved
and generalized) in [ALRR22, Thm 1.1 (3)].

This lemma, together with Proposition 4.23, shows that Z1(W 0
F /PF , Ĝ)Z[ 1

p
] is

connected for Ĝ as in the lemma. In order to spread a bit this result, we will use
the next two lemmas.

Lemma 4.27. Assume given another split reductive group Ĝ′ over Z[ 1p ] equipped

with an action of WF /PF and with an equivariant surjective morphism Ĝ′ f
−→ Ĝ

whose kernel is a torus. Then the morphism Z1(W 0
F /PF , Ĝ

′)
f∗−→ Z1(W 0

F /PF , Ĝ)
induces a surjection on π0.

Proof. Put Ŝ := ker f . For any prime ℓ 6= p and ϕ ∈ Z1(WF /PF , Ĝ(Fℓ)), the

obstruction to lifting ϕ to an element of Z1(WF /PF , Ĝ
′(Fℓ)) lies in the group

H2(WF /PF , Ŝ(Fℓ)), which vanishes by Lemma 3.8 since Ŝ(Fℓ) is a divisible group.
Therefore the map

f∗ : Z1(WF /PF , Ĝ
′(Fℓ)) −→ Z1(WF /PF , Ĝ(Fℓ))

is surjective. Since any connected component of Z1(W 0
F /PF , Ĝ) has Fℓ-points for

some ℓ (and even for all ℓ), this implies the lemma. �

Lemma 4.28. There exists a split reductive group Ĝ′ over Z[ 1p ] equipped with an

action of WF /PF and an equivariant surjective morphism Ĝ′ −→ Ĝ whose kernel
is a torus, and such that, for all open subgroups I of IF , we have :
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(1) (Ĝ′)I has geometrically connected fibers, and

(2) (Ĝ′)I is smooth over Z[ 1
2p ] if IF preserves a pinning of Ĝ.

Proof. By Theorem 5.3.1 of [Con14] (or [MR070b, Exp XXII, ➜6.2]), there is a

unique closed semi-simple subgroup scheme Ĝder of Ĝ over Z[ 1p ] that represents

the fppf sheafification of the set-theoretical derived subgroup presheaf. Further,
by Exercise 6.5.2 of [Con14], there is a canonical central isogeny Ĝsc −→ Ĝder

over Z[ 1p ], such that all the geometric fibers of Ĝsc are simply connected semi-

simple groups. Being canonical, the action of WF /PF on Ĝder lifts uniquely to

Ĝsc and still preserves a Borel pair or a pinning, depending on the case. Now
denote by R(Ĝ) the radical of Ĝ, which is a split torus. Then the natural morphism

R(Ĝ)×Ĝsc −→ Ĝ is aWF -equivariant central isogeny. We already know that (Ĝsc)
I

satisfies properties (1) and (2) for finite index any subgroup I ⊂ IF , by Lemma

4.25. On the other hand, R(Ĝ)I is the diagonalisable group associated to the

abelian group X∗(R(Ĝ))I of I-coinvariants in X∗(R(Ĝ)), which may have torsion.

LetW be a finite quotient ofWF /PF through which the action ofWF on Ĝ factors.

Choosing a dual basis of the lattice X∗(R(Ĝ)), we get aWF -equivariant embedding

X∗(R(Ĝ)) →֒ Z[W ]dimR(Ĝ) where the target has torsion-free I-coinvariants for all

I. Dually we get a surjectiveWF -equivariant morphism of tori Ŝ ։ R(G) such that

(Ŝ)I is a torus, hence is smooth with connected geometric fibers. Thus we have

a WF -equivariant surjective morphism Ĝ′′ := Ŝ × Ĝsc ։ Ĝ whose source satisfies
both properties (1) and (2), but whose kernel D, a diagonisable subgroup, is not
necessarily a torus.

Now let us choose a surjective WF -equivariant morphism X −→ X∗(D) such
that X is a permutation module (i.e. WF permutes a Z-basis of X) and such that
for every finite index subgroup I ⊂ IF , the map on I-invariants XI −→ X∗(D)I

is surjective. For example, one can take X =
⊕

I Z[W/I] ⊗ YI where I runs over
subgroups of the image of IF inside W and YI is any free abelian group mapping
surjectively to X∗(D)I . Dually, we have a WF -equivariant embedding D →֒ Ŝ′ of

D into the split torus Ŝ′ over Z[ 1p ] with character group X∗(Ŝ′) = X. Since its

character group is a permutation module, the torus Ŝ′ satisfies both properties (1)

and (2). Namely, (Ŝ′)I is a torus for any finite index subgroup I ⊂ IF . Now, by

[MR070b, Exp. XXII ➜4.3] the quotient Ĝ′ := Ŝ′ ×D Ĝ′′ is representable by a split

reductive group scheme, which by construction is a WF -equivariant extension of Ĝ
by the torus Ŝ′. Let us prove that Ĝ′ has property (1). Fix a prime ℓ 6= p and look
at the exact sequence

(Ŝ′(Fℓ)× Ĝ
′′(Fℓ))

I −→ Ĝ′(Fℓ)
I −→ H1(I,D(Fℓ)) −→ H1(I, Ŝ′(Fℓ)× Ĝ

′′(Fℓ)).

Since I is procyclic, say with topological generator t, we have H1(I,D(Fℓ)) ≃

D(Fℓ)I = (D/(id−t)D)(Fℓ) = Hom(X∗(D)I ,F
×
ℓ ). Therefore, it follows that the

map H1(I,D(Fℓ)) −→ H1(I, Ŝ′(Fℓ)) identifies with the map

Hom(X∗(D)I ,F
×
ℓ ) −→ Hom(X∗(Ŝ′)I ,F

×
ℓ ),

hence it is injective since the map X∗(S′)I −→ X∗(D)I is surjective. It follows
that the map

(Ŝ′(Fℓ)× Ĝ
′′(Fℓ))

I −→ Ĝ′(Fℓ)
I



46 JEAN-FRANÇOIS DAT, DAVID HELM, ROBERT KURINCZUK, AND GILBERT MOSS

is surjective. But the source of this map is a connected variety since X∗(S′) is
a permutation module, so the target is also connected as desired. This proves
the connectedness of the closed geometric fibers of (Ĝ′)I , and that of the generic

geometric fiber follows since (Ĝ′)I is smooth with reductive neutral component,
hence étale component group, after restriction to a suitable open subset of SpecZ[ 1p ].

Let us now prove that Ĝ′ has property (2). So we assume that IF preserves a pinning

of Ĝ, which implies that it also preserves a pinning of Ĝ′′ and Ĝ′, and we shall prove
smoothness of (Ĝ′)I over Z[ 1

2p ]. Since the big cell (Û ′−T̂ ′Û ′)I = (Û ′−)I(T̂ ′)I(Û ′)I

is non-empty and (Ĝ′)I is connected, it suffices to prove its smoothness. We already

know from Lemma 4.25 that (Û ′−)I and (Û ′)I are smooth over Z[ 1
2p ] so we may

concentrate on the diagonalisable subgroup (T̂ ′)I . But, by the same argument as for
property (1) above, this diagonalisable group has geometrically connected fibers, so
this is a torus (because the base is connected and has fibers of at least two distinct
residual characteristics), and in particular it is smooth. �

Putting the last two lemmas and Proposition 4.23 together, we get the following
result.

Theorem 4.29. If IF preserves a pinning of Ĝ, the scheme Z1(W 0
F /PF , Ĝ)Z[ 1

p
] is

connected.

Corollary 4.30. If the center of Ĝ is smooth, then Z1(W 0
F /PF , Ĝ)Z[ 1

p
] is connected.

Proof. Indeed, in this case there is ϕ ∈ Z1(W 0
F /PF , Ĝ)(Z[

1
p ]) such that Adϕ pre-

serves a pinning (see Remark 3.9), and right multiplication by ϕ provides an iso-

morphism Z1
Adϕ

(W 0
F /PF , Ĝ)Z[ 1

p
]

∼
−→ Z1(W 0

F /PF , Ĝ)Z[ 1
p
]. �

5. Unobstructed points

In this section, we fix an algebraically closed field L of characteristic ℓ 6= p. From
5.2 on, we will further assume that ℓ is finite.

5.1. Deformation Theory. Here, for an L-point x of Z1(W 0
F /P

e
F , Ĝ), we are

interested in the tangent space TxZ
1(W 0

F /P
e
F , ĜL) and, in particular, we wish to

compute its dimension. We will need the L-linear continuous representation Adϕx

of W 0
F on the Lie algebra Lie(ĜL) obtained by composing Lϕx with the adjoint

representation of GL .

Recall that an element of TxZ
1(W 0

F /P
e
F , ĜL) is given by a map x̃ : SpecL[ǫ]/ǫ2 →

Z1(W 0
F /P

e
F , Ĝ) whose composition with the natural map SpecL → SpecL[ǫ]/ǫ2

is equal to x. In particular, the zero element x̃0 of TxZ
1(W 0

F /P
e
F , ĜL) is given

by the composition of x with the natural map SpecL[ǫ]/ǫ2 → SpecL. Given
such a x̃ we form a cocycle for Adϕx as follows: for each w ∈ W 0

F , the ele-

ment Lϕx̃(w)
Lϕx̃0

(w)−1 is a tangent vector to Ĝ at the identity element of Ĝ(L);

that is, an element of Lie(ĜL). In this way one obtains a continuous 1-cocycle

W 0
F −→ Lie(ĜL) that lives in Z

1(W 0
F ,Adϕx), and this sets up an isomorphism

(5.1) TxZ
1(W 0

F /P
e
F , ĜL) ≃ Z

1(W 0
F ,Adϕx).

To compute the dimension of this tangent space, we use the following familiar-
looking cohomological lemma.



MODULI OF LANGLANDS PARAMETERS 47

Lemma 5.1. For any finite dimensional L-vector space V with a continuous linear
action of W 0

F , we have :

(1) Hi(W 0
F , V ) = 0 for i > 2,

(2) dimH2(W 0
F , V )− dimH1(W 0

F , V ) + dimH0(W 0
F , V ) = 0

(3) H2(W 0
F , V )∗ ≃ H0(W 0

F , V
∗⊗ω) where ω is the cyclotomic character of WF

and ∗ denotes the L-linear dual.

Proof. The open compact subgroup PF ofW 0
F is a pro-p group, hence the functor of

PF -invariants on continuous L-representations is exact and commutes with taking
L-linear duals. Hence it suffices to prove (1), (2) and (3) for L-representations of
the discrete group W 0 :=W 0

F /PF = 〈s,Fr〉. To this aim, observe that the equality

(1− sq)(1− Fr) = (tq − Fr)(1− s) with tq = 1 + s+ · · ·+ sq−1

in L[W 0], enables us to define the following complex :

0 −→ L[W 0]
δ
−→ L[W 0]⊕ L[W 0]

γ
−→ L[W 0]

ε
−→ L −→ 0,

where







ε is the augmentation map,
γ(f, g) = f(1− Fr)− g(1− s)
δ(h) = (h(1− sq), h(tq − Fr))

We claim that this complex is exact. Admitting this for now, this gives us a
projective resolution of the trivial representation, and shows that H∗(W 0, V ) is the
cohomology of a complex of the form V −→ V ⊕2 −→ V . This implies (1) and (2).
Moreover, this shows that H2(W 0, V ) = V/((1− sq)V + (tq −Fr)V ). Observe that
the inclusion (1 − sq)V ⊂ (1 − s)V has to be an equality for dimension reasons,

since the action of Fr induces an isomorphism (1−s)V
∼
−→ (1−sq)V . Similarly, we

have (1− sq)V = (1− sq
−r

)V for all r ∈ N. Denoting I0 := sZ[
1
q
], this means that

the canonical map V/(1− sq)V −→ VI0 = colimrV/(1− s
q−r

)V is an isomorphism.
Since tq acts as multiplication by q on VI0 this induces in turn an isomorphism

H2(W 0, V )
∼
−→ VI0/(q − Fr)VI0 = (V ⊗ ω−1)W 0 ,

from which we deduce (3).
Let us now prove the exactness of the above complex. Note first that δ is injective

since multiplication by 1 − sq is injective, and ε is clearly surjective. To see that
ker ε = im γ, it suffices to see that 1 − w ∈ L[W 0](1 − Fr) + L[W 0](1 − s) for all
w ∈ W 0, which follows from the fact that s and Fr generate W 0. It remains to
check that ker γ = im δ. So let (f, g) ∈ ker γ. If we can prove that f has the form
f = h(1− sq), then g(1− s) = f(1− Fr) = h(tq − Fr)(1− s), hence g = h(tq − Fr)

since 1− s is not a zero divisor, and (f, g) ∈ im δ. Writing f =
∑

i,j ai,j Fr
i sj with

i ∈ Z and j ∈ Z[ 1q ], it thus suffices to prove that
∑

k∈Z ai,j+qk = 0 for all (i, j). In

the expansion f(1 − Fr) =
∑

i,j bi,j Fr
i sj , we have bi,j = ai,j − ai−1,qj . The fact

that f(1 − Fr) ∈ L[W 0](1 − s) translates into
∑

k∈Z bi,j+k = 0 for all i, j, that is
∑

k∈Z ai,j+k =
∑

k∈Z ai−1,qj+qk for all i, j, which we can rewrite as

∀i, j,
∑

k∈Z

ai,j+qk =
∑

k∈Z

ai+1,j/q+k.

Writing k = r + qk′ in the right hand sum, we get

∑

k∈Z

ai+1,j/q+k =

q−1
∑

r=0

∑

k′∈Z

ai+1,j/q+r+qk′ =

q−1
∑

r=0

∑

k′∈Z

ai+2,j/q2+r/q+k′ =
∑

k∈Z

ai+2,j/q2+k/q.
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Proceeding by induction, we get for any s ∈ N :

∀i, j,
∑

k∈Z

ai,j+qk =
∑

k∈Z

ai+s,(j+qk)/qs .

But for s >> 0, the right hand side vanishes, hence so does the left hand side.
This implies that ker γ = im δ and completes the proof that the complex above is
exact. �

From this lemma and (5.1), we get :

Proposition 5.2. For an L-valued point x : SpecL→ Z1(W 0
F /P

e
F , Ĝ), the dimen-

sion of TxZ
1(W 0

F /P
e
F , ĜL) over L is equal to dim ĜL+dimH0(W 0

F , (Adϕx)
∗⊗ω),

where ω is the cyclotomic character of WF .

Proof. We have seen that the dimension of TxZ
1(W 0

F /P
e
F , ĜL) is equal to that of

Z1(W 0
F ,Adϕx). The latter is equal to the dimension of H1(W 0

F ,Adϕx) plus the
dimension of the space of coboundaries (principal crossed homomorphisms). These
are all of the form w 7→ wy − y, where y is an element of Adϕx. The dimension of
Adϕx is equal to dim ĜL, and those y that give the zero element of Z1(W 0

F ,Adϕx)
are precisely those fixed by W 0

F . Thus we have

dimZ1(W 0
F ,Adϕx) = dimH1(W 0

F ,Adϕx) + dim ĜL − dimH0(W 0
F ,Adϕx).

Hence the proposition follows from the last lemma applied with V = Adϕx. �

Corollary 5.3. The point x is a smooth point of Z1(W 0
F /P

e
F , ĜL) if and only if

H0(W 0
F , (Adϕx)

∗ ⊗ ω) = 0.

Proof. We know that the algebraic L-scheme Z1(W 0
F /P

e
F , ĜL) has pure dimension

dim ĜL. Therefore the local ring at the closed point x has dimension dim ĜL, while
its tangent space has dimension dim ĜL + dimH0(W 0

F , (Adϕx)
∗ ⊗ ω) by the last

proposition. �

Remark 5.4. It is interesting to note that the obstruction theory naturally sug-
gested by the moduli problem is “optimal”, in that it faithfully detects smooth-
ness of points. Namely, let A be a finite length local L-algebra with residue
field L, x̃ : SpecA → Z1(W 0

F /P
e
F , ĜL) a map whose composition with the map

SpecL → SpecA is equal to x, and let A′ be a small extension of A; that is, a
finite length local L-algebra with residue field L, and a principal ideal I ⊆ A′ such
that I is annihilated by the maximal ideal of A′, and an isomorphism A′/I ∼= A.

The problem of lifting x̃ to a map x̃′ : SpecA′ → Z1(W 0
F /P

e
F , ĜL) is equivalent to

lifting the 1-cocycle ϕx̃ :W 0
F /P

e
F −→ Ĝ(A) to a 1-cocycle ϕx̃′ :W 0

F /P
e
F −→ Ĝ(A′).

This problem is standard: let ϕ′ be any lift of ϕx̃ to a continuous function (not

necessarily a cocycle): W 0
F → Ĝ(A′). Then the map taking w1, w2 ∈ W 0

F to
Lϕ

′
(w1w2)

−1Lϕ
′
(w1)

Lϕ
′
(w2) is a 2-cocycle with values in (Adϕx)⊗ I, and we can

adjust our choice of ϕ′ to yield a 1-cocycle ϕx̃′ lifting ϕx̃ if, and only if, this 2-cocycle
is a coboundary. We thus obtain an obstruction theory for Z1(W 0

F /P
e
F , ĜL) in a

formal neighborhood of x with values in H2(W 0
F ,Adϕx) = H0(W 0

F , (Adϕx)
∗⊗ω).

Now, since an unobstructed point is smooth, the last corollary says that the ob-
struction to lifting vanishes if and only if the space which it naturally belongs to
vanishes. For this reason, we will indifferently use the words “unobstructed” or
“smooth” to denote these points in the rest of this section.
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5.2. Existence of unobstructed points. The primary goal of this section is to
show that if the characteristic ℓ of L does not lie in an explicit finite set (de-

pending only on Ĝ and its WF -action), the fiber Z1(W 0
F /P

e
F , ĜL) is generically

smooth. We have already established this smoothness in characteristic zero, so we
assume henceforth that L has finite characteristic ℓ. In this case, the restriction
map Z1(WF /P

e
F , ĜL)

∼
−→ Z1(W 0

F /P
e
F , ĜL) is an isomorphism, so there is no need

to distinguish between W 0
F and WF .

Notation 5.5. Let ϕ : WF → Ĝ(L) be a continuous 1-cocycle. For any g ∈
CĜ(ϕ|IF )(L) there is a unique continuous 1-cocycle ϕg, whose restriction to IF is
ϕ|IF , and such that ϕg(Fr) = gϕ(Fr).

The rough version of our main result here is :

Theorem 5.6. There is a finite set of primes S, depending only on Ĝ and the
image of WF in Out(Ĝ), such that, if ℓ /∈ S, then for any continuous 1-cocycle

ϕ :WF → Ĝ(L), there exists a g ∈ CĜ(ϕ|IF )
◦(L) such that ϕg is unobstructed.

In order to state a more precise version, we need notations (B.2) and (B.3) of

the appendix. In particular, hĜ,1 is the Coxeter number of the root system of Ĝ.

Theorem 5.7. Let Fr be a lift of Frobenius in WF , and denote by e the tame
ramification index of the finite extension of F whose Weil group is the kernel of
WF −→ Out(Ĝ). Then the set S in Theorem 5.6 can be taken as

(1) S = {primes ℓ dividing e.χ∗
Ĝ,Fr

(q)}, whatever Ĝ is.

(2) S = {primes ℓ dividing e.χĜ,Fr(q).(hĜ,1)!} if Ĝ has no exceptional factor.

Here, “exceptional” includes triality forms of D4. Note also that ℓ not dividing
χ∗
Ĝ,Fr

(q) is equivalent to q having order greater than hĜ,Fr in F×
ℓ , which implies

ℓ > hĜ,Fr hence also ℓ > hĜ,1. We will also prove that, in the case where Ĝ has no
exceptional factor and the action of WF is unramified and ℓ > hĜ,1, the condition

χĜ,Fr(q) 6= 0 in Fℓ is also necessary to have generic smoothness.

We now start the proofs of Theorems 5.6 and 5.7. Fix a ϕ as in Theorem 5.6; our
first step will be to reduce to a setting in which the action ofWF on Ĝ is unramified
and stabilizes a pinning, and the image of ϕ|IF is unipotent.

Denote by φℓ the restriction of ϕ to IℓF and by αℓ the composition WF
ϕ
−→

C GL (φℓ) −→ π̃0(φ
ℓ), so that ϕ lies in the closed subscheme Z1(WF /P

e
F , ĜL)φℓ,αℓ ,

as defined in subsection 4.2. Then, according to Theorem 4.8, the connected com-
ponent of Z1(WF /P

e
F , ĜL) that contains ϕ has the form

Ĝ×C
Ĝ
(φℓ)◦ Z1(W 0

F /P
e
F , ĜL)φℓ,αℓ .

Thus we see that ϕ is a smooth point of Z1(W 0
F /P

e
F , ĜL) if and only if it is a

smooth point of Z1(WF /P
e
F , ĜL)φℓ,αℓ .

By Theorem 4.6, there exists ϕ′ ∈ Z1(WF /P
e
F , Ĝ(L))φℓ,αℓ such that the action

of WF on CĜ(φ
ℓ)◦ via Adϕ′ preserves a Borel pair. Actually, we a have better

result in this setting :

Proposition 5.8. We can choose ϕ′ ∈ Z1(WF /P
e
F , Ĝ(L))φℓ,αℓ so that the action

of WF on CĜ(φ
ℓ)◦ via Adϕ′ preserves a pinning.
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Proof. We take up the proof of Proposition 3.7, replacing PF by IℓF and “Borel pair”
by “pinning”. Since the fixator of a pinning of CĜ(φ

ℓ)◦ under conjugation is the

center Z of CĜ(φ
ℓ)◦, the argument of that proof shows that the obstruction to the

existence of a cocycle ϕ′ as in this proposition lies in the group H2(WF /I
ℓ
F , Z(L)).

On the other hand, repeating the proof of Lemma 3.8 forWF /I
ℓ
F instead ofWF /PF

shows that this cohomology group vanishes if Z(L) can be proved to be ℓ-divisible.
To prove this, recall that the group scheme Z is diagonalisable and let M be its

character group. Then we have a (non canonical) decomposition M ≃ Mℓ−tors ×
Mℓ′−tors ×Mfree which induces a decomposition Z ≃ Zℓ × Z

ℓ × TZ , where TZ is
a torus, Zℓ is finite smooth and Zℓ is finite infinitesimal. Correspondingly we get
Z(L) ≃ Zℓ(L) × TZ(L). Now, TZ(L) is clearly ℓ-divisible since L is algebraically
closed and Zℓ(L) has prime-to-ℓ order hence is also ℓ-divisible. �

Choose ϕ′ as in this proposition and recall that the action Adϕ′ on CĜ(φ
ℓ) factors

over the quotient WF /I
ℓ
F . Then we have an isomorphism η 7→ η · ϕ′

Z1
Adϕ′

(WF /I
ℓ
F , CĜ(φ

ℓ)◦)
∼
−→ Z1(WF /P

e
F , ĜL)φℓ,αℓ ,

The isomorphism above shows that ϕ is an unobstructed point of Z1(WF /P
e
F , ĜL)

if, and only if, ϕ · ϕ′−1
is an unobstructed point of Z1

Adϕ′
(WF /I

ℓ
F , CĜ(φ

ℓ)◦). So

we are reduced to study unobstructedness in a much simpler case, but in order to
make this reduction step effective, we need some control on Adϕ′ .

Lemma 5.9. Fix ϕ′ as in Proposition 5.8, let w ∈WF and denote by ow its order
in Out(Ĝ). Then Adϕ′(w) has order dividing ow|ΩĜ| in Aut(CĜ(φ

ℓ)◦), where ΩĜ

denotes the Weyl group of Ĝ.

Proof. Put Ĥ := CĜ(φ
ℓ)◦ and let TĤ be a maximal torus of Ĥ that is part of a

pinning stable under Adϕ′ . Pick a maximal torus T̂ of Ĝ that contains TĤ . Then

there is an element m of the centralizer of TĤ in Ĝ such that gw := mLϕ′(w)

normalizes T̂ . The action of (gw)
ow on X∗(T̂ ) is the action of an element of Ĝ that

normalizes T̂ , so its order divides |ΩĜ|. Hence, Adϕ′(w)ow|Ω
Ĝ
| acts trivially on TĤ

and therefore also on Ĥ, since it stabilizes a pinning and fixes the maximal torus
of this pinning. �

As in Theorem 5.7, denote by e the tame ramification index of the finite extension
of F whose Weil group is the kernel of WF −→ Out(Ĝ). Applying this lemma to a
suitable lift of our generator s of tame inertia, we see that, if we assume that ℓ is
prime to e|ΩĜ| (which is satisfied if ℓ is prime to e and ℓ > hĜ,1), then the action
Adϕ′ is unramified. For this reason, we will now focus on the following particular
setting :

(5.2)

{

– the action of WF on Ĝ is unramified and stabilizes a pinning,
– the restriction of ϕ to IℓF is trivial.

In this setting, GL is the Langlands dual group of a uniquely determined quasi-
split unramified reductive group G over F , and the restriction ϕ|IF is determined

by u := ϕ(s) which is a unipotent element of Ĝ(L). By definition, the cocycle ϕ
corresponds to an unobstructed point if, and only if, q−1 is not an eigenvalue of
(Adϕ)

∗(Fr) on (Lie ĜL)
∗,Ad∗ u.
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Lemma 5.10. Let Ĝ and ϕ be as in (5.2), put u := ϕ(s), and assume that ℓ is

prime to |π1(Ĝad)|. Endow the reductive group Ĝ′ := Ĝad × Ĝab with the unique

action of WF that makes the isogeny π : Ĝ −→ Ĝ′ equivariant, and put ϕ′ := π ◦ϕ.
Then there is g ∈ CĜ(u)

◦(L) such that ϕg is unobstructed if, and only if, there is

g′ ∈ CĜ′(π(u))◦(L) such that ϕ′g
′

is unobstructed.

Proof. As with any isogeny, π induces an isomorphism from the unipotent subvari-
ety of Ĝ to that of Ĝ′. In particular, the map CĜ(u)(L)

π
−→ CĜ′(π(u))(L) is surjec-

tive for all unipotent u ∈ Ĝ(L), and so is the map CĜ(u)
◦(L)

π
−→ CĜ′(π(u))◦(L).

Therefore, it suffices to prove that ϕ is unobstructed if and only if ϕ′ is unob-
structed. Note that kerπ = ker(Ĝder −→ Ĝad) is a finite diagonalisable group

scheme whose order divides the order of π1(Ĝad), hence is prime to ℓ by our as-
sumption. So π is a separable isogeny and dπL induces a (Adϕ,Adϕ′)-equivariant

isomorphism Lie(ĜL)
∼
−→ Lie(Ĝ′

L), and the desired property follows. �

Remark 5.11. Let π : Ĝ −→ Ĝ′ be as in the lemma or, more generally, any
surjective morphism with central Fr-stable kernel. Then any ϕ′ ∈ Z1(WF /I

ℓ
F , Ĝ

′)

lifts through π, in the sense that there is some ϕ ∈ Z1(WF /I
ℓ
F , Ĝ) such that ϕ′ =

π ◦ ϕ. Indeed, let ϕ(s) ∈ Ĝ(L) be the unique unipotent element above ϕ′(s), and

let ϕ(Fr) ∈ Ĝ(L) be any lift of ϕ′(Fr). Then (ϕ(Fr) ⋊ Fr)ϕ(s)(ϕ(Fr) ⋊ Fr)−1 is
unipotent and above ϕ′(s)q, so it is equal to ϕ(s)q.

This lemma allows us to reduce further the setting (5.2) to the cases where Ĝ is
a torus or an adjoint group. Dealing with tori is quite easy :

Lemma 5.12. If Ĝ as in (5.2) is a torus, then the following are equivalent :

(1) there is an unobstructed ϕ in Z1(WF /I
ℓ
F , ĜL),

(2) any ϕ in Z1(WF /I
ℓ
F , ĜL) is unobstructed,

(3) χĜ,Fr(q) 6= 0 in L.

Proof. For any ϕ in Z1(WF /I
ℓ
F , Ĝ(L)), we have ϕ(s) = 1 and Lϕ(Fr) ∈ Ĝ(L)⋊ Fr,

so the condition for ϕ to be unobstructed is that H0(〈Fr〉, ω⊗Lie(ĜL)
∗) = 0, which

is independent of ϕ, and equivalent to q−1 not being an eigenvalue of (AdFr)
∗ on

Lie(ĜL)
∗. Since Lie(ĜL)

∗ = X∗(Ĝ)⊗ L, we have

det
(

q(AdFr)
∗ − id |Lie(ĜL)

∗
)

= det
(

q Fr− id |X∗(Ĝ)
)

L
= χĜ,Fr(q

−1)L

where the subscripts L denote the image of an integer in L. Hence we see that q−1

is an eigenvalue of (AdFr)
∗ if and only if χĜ,Fr(q

−1) = 0 in L, which is equivalent

to χĜ,Fr(q) = 0 in L since χĜ,Fr is a product of cyclotomic polynomials. �

Let us now deal with the adjoint part. We have a Fr-equivariant decomposition
as a product of simple adjoint groups

(5.3) Ĝad = Ĝ11 × · · · × Ĝ1f1
︸ ︷︷ ︸

Ĝ1

× · · · × Ĝr1 × · · · × Ĝrfr
︸ ︷︷ ︸

Ĝr

where Fr permutes cyclically Ĝi1 → Ĝi2 → · · · → Ĝifi and Frfi restricts to an

outer automorphism of Ĝi1. Accordingly, ϕ decomposes as a product ϕ1× · · · ×ϕr

with ϕi ∈ Z
1(WF , Ĝi(L)) and we see that ϕ is unobstructed if and only if each ϕi

is unobstructed. Denote by Ffi the unramified extension of degree fi of F . Then
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we have a Shapiro morphism Z1(WF , Ĝi) −→ Z1(WFfi
, Ĝi1) given by ϕi 7→ ϕ′

i :=

πi1 ◦ (ϕi)|WFfi

, where πi1 is the projection onto Ĝi1.

Lemma 5.13. The Shapiro morphism Z1(WF , Ĝi) −→ Z1(WFfi
, Ĝi1) is smooth.

Proof. Denote by ϕij := πij ◦ϕi the j-th component of ϕi and define Zi1 to be the
affine scheme whose R-points are given by

Z1i(R) :=
{

f :WF −→ Ĝi1(R), ∀w
′ ∈WFfi

, f(w′w) = f(w′) · w
′

f(w)
}

for any Z[ 1p ]-algebra R. We claim that the map ϕi 7→ ϕi1 induces an isomorphism

Z1(WF , Ĝi)
∼
−→ Zi1. Indeed, denoting by F̃r a lift of Fr inWF , the cocycle condition

on ϕi implies that for any integer j we have

ϕi(w) =
Frj
(

ϕi(F̃r
−j

)−1ϕi(F̃r
−j
w)
)

.

Taking the j-th component, this shows that ϕij is determined by ϕi1 and this gives
a formula for the putative inverse to ϕi 7→ ϕi1. Namely, given f ∈ Zi1(R), define

ϕi :W −→ Ĝi(R) component-wise by ϕij(w) :=
Frj
(

f(F̃r
−j

)−1f(F̃r
−j
w)
)

. Then a

computation shows that ϕi ∈ Z
1(WF , Ĝi(R)) and that this defines the desired in-

verse isomorphism. But now, the map ϕi1 7→ ((ϕi1)|WFfi

, ϕi1(F̃r), · · · , ϕi1(F̃r
fi−1

))

defines an isomorphism Zi1 −→ Z1(WFfi
, Ĝi1) × (Ĝi1)

fi−1 and the Shapiro mor-
phism becomes the projection on the first factor. �

Resuming the discussion above the lemma, we see that ϕ is unobstructed if, and
only if, for each i = 1, · · · , r, the cocycle ϕ′

i : WFfi
−→ Ĝi1(L) is unobstructed.

On the other hand, it follows from the definitions that χĜi,Fr
(T ) = χĜi1,Fr

(T fi) so

that, coming back to a general Ĝ, we have the following equality :

(5.4) χĜ,Fr(T ) = χĜab,Fr
(T )χĜ11,Frf1

(T f1) · · ·χĜr1,Frfr
(T fr ).

In this way, we are reduced to study the case where Ĝ is simple and adjoint.

5.3. The simple adjoint case. In light of the above discussion, we will now focus
on the case where Ĝ is simple adjoint in the setting (5.2).

In this case, it will come in handy to express the unobstructedness condition on
the adjoint representation, as opposed to the coadjoint one. Recall that a prime ℓ
is good for Ĝ if it does not divide the coefficient of any root of Ĝ when expressed
as a linear combination of simple roots. Moreover, ℓ is called very good if it is good
and does not divide the order of the fundamental group of the root system of Ĝ.

Theorem 5.14 (Springer-Steinberg). Suppose Ĝ is simple adjoint and ℓ is very

good for Ĝ. Then a suitable rational multiple of the Killing form on Lie Ĝsc induces
a non-degenerate bilinear form on Lie ĜL.

Proof. According to [SS70, p.180] (see also [GN04, ➜5]), the discriminant of the

Killing form on Lie Ĝsc divided by 2 times the dual Coxeter number of Ĝ is prime
to ℓ. Moreover, since ℓ does not divide the degree of the isogeny Ĝsc −→ Ĝ, this
isogeny induces an isomorphism Lie(Ĝsc)L

∼
−→ Lie ĜL. �
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Since the Killing form is invariant under the automorphism group of Ĝ, we see
that a cocycle ϕ corresponds to an unobstructed point if, and only if, q−1 is not an
eigenvalue of Adϕ(Fr) on (Lie ĜL)

Adu.

Note that (Lie ĜL)
Adu is the Lie algebra of the scheme-theoretic centralizer

CĜL
(u) of u in ĜL, which may not be reduced. Following standard notation,

we denote by Ĝu the reduced centralizer of u, which is a closed smooth algebraic
subgroup of ĜL. The following result of Slodowy will be useful in our discussion
below.

Theorem 5.15. [Slo80, p.38] If ℓ is very good for Ĝ, then CĜL
(u) is smooth for

all unipotent elements u ∈ Ĝ(L), so that CĜL
(u) = Ĝu and (Lie ĜL)

Adu = Lie Ĝu.

Our arguments below will extensively make use of the following tool to construct
points in Z1(WF /I

ℓ
F , Ĝ). Assume that we are given

• a homomorphism λ : SL2 → ĜL and
• an element F ∈ (Ĝ(L) ⋊ Fr)λ, i.e. an element of GL (L) that centralizes λ
and projects to Fr.

Then there is a unique 1-cocycle ϕ : WF /I
ℓ
F −→ Ĝ(L) such that

(5.5) ϕ(s) = λ(U) and Lϕ(Fr) = λ(S)F ,

where S and U denote the matrices

(

q
1
2 0

0 q−
1
2

)

and ( 1 1
0 1 ) in SL2(L), respectively,

and where q
1
2 is a choice of a square root of q in L.

However, we will need a condition to ensure exhaustivity of this construction.
Recall that over characteristic zero fields, for any unipotent element u in Ĝ(L) there

is a homomorphism λ : SL2 → ĜL such that λ(U) = u and, moreover, λ is unique

up to ĜL-conjugacy. In finite characteristic ℓ, the situation is more subtle. An
obvious necessary condition for the existence of λ is that u have order ℓ. When ℓ
is good for Ĝ, this was proven to be sufficient by Testerman in [Tes95]. In order to
study uniqueness, Seitz [Sei00] has introduced the following notion : a morphism

λ : SL2 → ĜL over L is a “good SL2” if the weights of the conjugation action of the
maximal torus T2 ⊂ SL2 on Lie(Ĝ) are bounded above by 2ℓ− 2 (here we identify
T2 to Gm via the map

(
z 0
0 z−1

)
7→ z ).

Theorem 5.16 ([Sei00], Theorems 1.1 and 1.2). Suppose Ĝ is simple adjoint and

ℓ is a good prime for Ĝ, and let u be a unipotent element of Ĝ(L) of order ℓ. Then

there is a “good SL2” λ : SL2 → ĜL such that λ(U) = u. Moreover, any two

such λ are conjugate by an L-point of the unipotent radical Ru(Ĝu). Finally, the

centralizer Ĝλ of λ in Ĝ is reductive, and Ĝu = ĜλRu(Ĝu).

In order to ensure that all non-trivial unipotent elements of Ĝ(L) have order ℓ,
we will henceforth assume that

ℓ > h, where h = hĜ,1 is the Coxeter number of Ĝ.

Indeed, since h is one plus the height of the highest positive root of Ĝ, it follows from
Proposition 3.5 of [Sei00] and the Bala-Carter classification, that any nontrivial

unipotent element of Ĝ(L) has order ℓ under this hypothesis. Moreover, such an ℓ

is also automatically good for Ĝ, so that Seitz’ theorem applies to any u under this
hypothesis, and even very good for Ĝ, so that Slodowy’s theorem 5.15 also holds.
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Corollary 5.17. Let Ĝ and ϕ be as in (5.2) with Ĝ simple adjoint, and suppose

that ℓ > hĜ,1. Then there is g ∈ (Ĝu)
◦(L) such that ϕg is of the form (5.5)

associated to a pair (λ,F) such that F normalizes a Borel pair (or even a pinning)

of (Ĝλ)
◦.

Proof. Let us choose a “good SL2” λ : SL2 → ĜL with λ(U) = u := ϕ(s). Set

F1 := λ(S)−1.Lϕ(Fr). Then F1 ∈ Ĝ ⋊ Fr centralizes u, so F1λ is a second “good
SL2” that takes U to u. Since any two such are conjugate by an element centralizing

u, we have a unipotent element u′ ∈ Ru(Ĝu) such that u′

λ = F1λ; then F2 = u′
−1F1

centralizes λ and, in particular, normalizes (Ĝλ)
◦. Choose a pinning ε in (Ĝλ)

◦; then

there exists h ∈ (Ĝλ)
◦(L) such that hε = F2ε. Then F := h−1F2 still centralizes λ,

and preserves ε. Now,

Lϕ(Fr) = λ(S)u′hF = (λ(S)u′hλ(S)−1)(λ(S)F)

with u′ in the unipotent radical of Ĝu and h in (Ĝλ)
◦(L). Thus hu′ lies in (Ĝu)

◦(L),

and since λ(S) normalizes (Ĝu)
◦, it follows that λ(S)F ∈ (Ĝu)

◦(L).Lϕ(Fr). �

We now consider a particular case, which shows that the condition χĜ,Fr(q) 6= 0
in L is necessary for the existence of unobstructed translates.

Proposition 5.18. Let Ĝ be simple adjoint, and assume that ℓ > hĜ,1. Then there

exists ϕ as in (5.2) such that ϕ(s) is regular unipotent. Moreover, the following
properties are equivalent :

(1) There is an unobstructed ϕ such that ϕ(s) is regular unipotent.
(2) Any ϕ with ϕ(s) regular unipotent is unobstructed.
(3) χĜ,Fr(q) 6= 0 in L.

Proof. Fix a pinning (T̂ , B̂, (Xα)α∈∆) stable under Fr. The sum E =
∑

α∈∆Xα

is a regular nilpotent element of Lie(Ĝ), which is fixed by Fr. Moreover, the sum

H =
∑

β∈Φ+ β∨ ∈ Lie(T̂L) is also fixed by Fr (here Φ+ denotes the set of positive

roots and we denote by β̌ the image of the associated coroot in Lie(T̂L) ≃ X∗(T̂ )⊗
L). Then the pair (H,E) is part of a unique principal sl2-triple, which is also

fixed under Fr. Now, pick a regular unipotent u ∈ Ĝ(L) and a good SL2, say

λ : SL2 −→ ĜL, such that λ(U) = u. Then, evaluating dλ on the standard basis
sl2 yields another principal sl2-triple. The latter has to be conjugate to (F,H,E)

by some element g ∈ Ĝ(L), which means that, after conjugating by g, we may
assume that λ (and therefore u) is fixed by Fr. Then we can construct ϕ as desired
by putting ϕ(s) := λ(U) and Lϕ(Fr) := λ(S)⋊ Fr.

If ϕ′ is another cocycle with ϕ′(s) regular unipotent, then we may conjugate it so
that ϕ′(s) = ϕ(s) = u, and this does not affect the property of being unobstructed.

Then Lϕ′(Fr) = Lϕ(Fr)g for some g ∈ Ĝu(L), and ϕ
′ is unobstructed if and only

if q−1 is not an eigenvalue of (Adϕ′)(Fr) on Lie(Ĝ)Adu . But under our running

assumption ℓ > hĜ, which implies that ℓ is very good for Ĝ, Theorem 5.15 implies

that Lie(Ĝ)Adu = Lie(Ĝu). Moreover Ĝu is known to be commutative, hence

(Adϕ′)(Fr) = (Adϕ)(Fr) on Lie(Ĝ)Adu and we have the equivalence of (1) and (2).
It remains to study when q−1 is an eigenvalue of (Adϕ)(Fr). Observe that

Lie(Ĝ)Adu coincides with the centralizer Lie(Ĝ)E of E in Lie(Ĝ). Moreover, our
hypothesis ℓ > hĜ,1 implies that ℓ does not divide the order of the Weyl group ΩĜ.
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Therefore, we can use Kostant’s section theorem as in subsection B.4. In particular,
Proposition B.5 tells us that

det
(

qAdλ(S) Fr− id |Lie(Ĝ)Adu

)

= ±χĜ,Fr(q),

which shows that ϕ is unobstructed if and only if χĜ,Fr(q) 6= 0 in L. �

Remark 5.19. Let F be any automorphism of Ĝ and suppose λ is a F-invariant
good SL2 such that u = λ(U) is regular in Ĝ. Then the same proof shows that

det
(

qAdλ(S)F − id |Lie(Ĝ)Adu

)

= ±χĜ,F (q).

In order to study more general unipotent classes, the following lemma will allow
us to use inductive arguments.

Lemma 5.20. Let Ĝ and ϕ be as in (5.2), and let Ŝ be a torus in the centralizer
CĜ(ϕ) of ϕ. Then :

(1) ∃h ∈ Ĝ(L) such that M̂ := hCĜ(Ŝ)h
−1 is a Fr-stable Levi subgroup of Ĝ.

(2) If the h-conjugate hϕ is unobstructed in Z1(WF /I
ℓ
F , M̂), then there is g ∈

(Ĝu)
◦(L) such that ϕg is unobstructed.

Proof. (1) The centralizer C GL (Ŝ) contains Lϕ(Fr), hence it surjects onto π0( GL ).

By [Bor79, Lemma 3.5], it is a “Levi subgroup” of GL in Borel’s sense. It is thus

conjugate by some h ∈ Ĝ(L) to the standard Levi subgroup of a standard parabolic

subgroup of GL . Such standard Levi subgroups are of the form LM = M̂ ⋊ 〈Fr〉.
(2) Since unobstructedness is invariant by conjugacy, we may and will assume

that h = 1. Then observe that Lϕ factors indeed through LM , and also that Lie(M̂)

is the weight 0 subspace of Lie(Ĝ) in the decomposition Lie(Ĝ) =
⊕

κ∈X∗(Ŝ) Lie(Ĝ)κ

of Lie(Ĝ) as a sum of weight spaces for the adjoint action of Ŝ. So, for any element

s ∈ Ŝ(L), unobstructedness of ϕs is equivalent to q−1 not being an eigenvalue of
Lϕ(Fr)s on each Lie(Ĝu)κ. For κ = 0, this property is fulfilled by our hypothesis,

since s acts trivially on Lie(Ĝu)0. For any other κ, this property is fulfilled for

s outside a proper Zariski closed subset of Ŝ, because s commutes with Lϕ(Fr).
Therefore we can find s that works for all κ. �

Following a standard terminology, we will say that a 1-cocycle ϕ is discrete if
CĜ(ϕ) contains no non-central torus of Ĝ. In the case where ϕ is given by a pair

(λ,F) as in Lemma 5.17, this is equivalent to CĜ(λ)
F not containing any non-

central torus of Ĝ, since CĜ(λ) = Ĝλ is a Levi factor of CĜ(ϕ(s)) = Ĝu. In this
case we will also say that the pair (λ,F) is discrete. If ϕ(s) = λ(U) is a distinguished
unipotent element (meaning that its centralizer does not contain any non-central
torus), then ϕ is certainly discrete. The converse is not always true, but we note
that if CĜ(λ) has positive semisimple rank, then ϕ is not discrete.

In the next proposition, we include triality forms of D4 (i.e. any group of type
D4 with action of Fr of order 3) in the “exceptional types”.

Proposition 5.21. Let Ĝ be as in (5.2) with no simple factor of exceptional type.
Assume that ℓ > hĜ,1, i.e. ℓ is greater than the Coxeter numbers of the simple

factors of Ĝ. Then the following are equivalent :

(1) For all ϕ as in (5.2), there exists g ∈ (Ĝϕ(s))
◦ such that ϕg is unobstructed.
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(2) χĜ,Fr(q) 6= 0 in L.

Proof. By Lemma 5.10, Lemma 5.12, decomposition (5.3) and equality (5.4), we

may assume that Ĝ is simple and adjoint. In this case, the implication (1)⇒(2) fol-
lows from Proposition 5.18. So we now focus on the other implication. Using again
Lemma 5.10 together with Remark 5.11 and the fact that χĜ,Fr(q) is insensitive to

isogenies, we may assume that Ĝ is either PGLn, Sp2n or SON . Actually, the PGLn

case can be treated on GLn, since Remark 5.11 also applies to the central morphism
GLn

π
−→ PGLn, while χGLn,Fr(T ) = χPGLn,Fr(T )χZ(GLn),Fr(T ) and χZ(GLn),Fr(T )

divides χPGLn,Fr(T ) for n > 1.

So let Ĝ be either GLn, Sp2n or SON . Then Fr acts on Ĝ by an automorphism
of order at most 2, and we will let GL denote the minimal form of the L-group.
Now let ϕ be as in (5.2). By Corollary 5.17, we may assume that ϕ is given by a
pair (λ,F). Moreover, Lemma 5.20, Proposition B.3 (1) and an inductive argument
allow us to restrict attention to discrete pairs (λ,F).

Case Ĝ = GLN with Fr = id. Let V be an L-vector space of dimension N , and
λ : SL2 −→ GL(V ) a morphism. Since ℓ > N , the SL2-module V is semi-simple

and, for any d ≤ N , the d-dimensional representation Sd = Symd−1(L2) of SL2(L)
is irreducible. Let Vd be the Sd-isotypic part of V . We then have decompositions
V =

⊕

d≥0 Vd and Sd⊗Wd
∼
−→ Vd, whereWd := HomSL2(Sd, Vd). In particular, we

get that GL(V )λ =
∏

d GL(Wd). Since this is a connected group, we may assume
that F = 1. Then we see that (λ, 1) is discrete if and only λ is principal, i.e.
u = λ(U) is regular. In this case we conclude thanks to Proposition 5.18 (note that
this proposition applies directly to PGLn and extends to GLn thanks to Lemma
5.12 and Remark 5.11).

We now assume that V is endowed with a non-degenerate bilinear form of sign
ε and we denote by I(V ) the isometry group, so that I(V ) ≃ SpN if ε = −1
and I(V ) ≃ ON if ε = 1. We take up the above notations, assuming that λ
factors through I(V ). Then each Vd is a non-degenerate subspace of V and the
decomposition V =

⊕

d Vd is orthogonal. Further, each Sd carries a natural non-
degenerate bilinear form of sign (−1)d−1 such that SL2 acts through I(Sd). Then
Wd inherits a non-degenerate form of sign (−1)d−1ε such that the isomorphism

Sd⊗Wd
∼
−→ Vd is compatible with the tensor product form. It follows in particular

that I(V )λ =
∏

d I(Wd). Writing rd := dim(Wd), we have

(1) I(Wd) ≃ Ord ≃ SOrd ⋊Z/2Z if (−1)d−1ε = 1.
(2) I(Wd) ≃ Sprd if (−1)d−1ε = −1.

In particular, π0(I(V )λ) admits a section into I(V )λ, and we may take F in the
image of such a section, so that F has order at most 2. Moreover, we see that
(I(V )λ)

F contains a non-trivial torus whenever there is a symplectic factor (asso-
ciated to some d such that (−1)d−1ε = −1 and Wd 6= 0). Since we may restrict
attention to discrete (λ,F), we will assume that I(V )λ has no symplectic factor.
In particular, this fixes the parity of the d’s such that Vd 6= 0.

We now need to investigate the eigenvalues of qAdF Adλ(S) on Lie(Ĝ)Adu , where
u = λ(U). We have decompositions

Endu(V ) =
∏

d,d′

Homu(Vd, Vd′) ≃
∏

d,d′

HomU (Sd, Sd′)⊗HomL(Wd,Wd′).
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The weights of λ(T2) on Vd are the weights of Sd, i.e. d− 1, d− 3, · · · , 1− d, hence
the weights of Adλ(T2) on Homu(Vd, Vd′) are the same as those on HomU (Sd, Sd′),
i.e. d + d′ − 2i for 1 ≤ i ≤ min(d, d′), each one occurring with multiplicity rdrd′ .
In particular, these weights are bounded above by N − 2 if d 6= d′ (because then
d+ d′ ≤ N) or if d = d′ ≤ N

2 . On the other hand, there is at most one d > N
2 with

Wd 6= 0 and in this case rd = 1. So any weight k > N − 2 of λ(T2) on Endu(V ) is
even and occurs with multiplicity 1. Actually, it is easy to exhibit a weight vector.
Namely, put e := d(λ|Ga

)(1), which is a nilpotent endomorphism of V . We also
have e = log(u) since the logarithm is well defined under our hypothesis ℓ > hĜ,1.

Then e is a weight 2 element of Endu(V ) = Ende(V ) and for any k = 2k′ > N − 2,

the element ek
′

generates the subspace of weight k whenever it is non-zero. In other
words, we have a decomposition

Endu(V ) =
〈

ek
′
〉

k′≥⌊N
2 ⌋
⊕ Endu(V )≤N−2

where the last term is the sum of weight spaces of weight ≤ N − 2.
Now, let τ denote the involution ψ 7→ −ψ∗ of End(V ) associated with the bi-

linear form on V . We have Lie(I(V ))Adu = Endu(V )τ and τ(Hom(Vd, Vd′)) =

Hom(Vd′ , Vd). Using the fact that τ(ek
′

) = (−1)k
′+1ek

′

, we get :

Lie(I(V ))Adu = Endu(V )τ =
〈

ek
′
〉

k′≥⌊N
2 ⌋, odd

⊕ Endu(V )τ≤N−2.

Case Ĝ is symplectic or odd orthogonal. In this case, Fr acts trivially and we

have χĜ,Fr(T ) =
∏⌊N

2 ⌋
d=1 (T

2d − 1). The eigenvalues of qAdϕ(Fr) = qAdF Adλ(S)

on Endu(V )τ≤N−2 are of the form ±qk for k such that 0 < 2k ≤ N . For such an

eigenvalue to be equal to 1, we need that q be a root of T 2k−1, which is a factor of
χĜ,Fr(T ). On the other hand each non-zero ek is an eigenvector of qAdϕ(Fr) with

eigenvalue qk+1. Of course eN = 0, so k ≤ N − 1 and we have seen that k must be
odd. So k + 1 is even, between 2 and N . Therefore, an eigenvalue qk+1 is 1 in L
only if q is a root of χĜ,Fr(T ), as desired.

Case Ĝ is even orthogonal. Here we set Ĝ = SO(V ), endowed with an outer
action of Fr of order f = 1 or 2. In these cases, setting N = 2n, we have

χĜ,Fr(T ) = (Tn + (−1)f )
n−1∏

d=1

(T 2d − 1).

We will take advantage of the fact that, when f = 2, we have O(V ) ≃ L SO(V ). A
pair (λ,F) thus defines a L-homomorphism Lϕ for SO(V ) endowed with a trivial,
resp. quadratic, action of Fr if detF = 1, resp. if detF = −1.

As above, each ek is an eigenvector of qAdϕ(Fr) with eigenvalue qk+1 with k+ 1

even. Moreover we have eN−1 = 0 (no Jordan matrix of rank N is orthogonal), so
k + 1 ≤ N − 2 and we see that qk+1 = 1 only if q is a root of χĜ,Fr(T ).

Next, the weight spaces with weight < N−2 are treated exactly as in the previous
case, but the weight space Endu(V )τN−2 of weight N − 2 needs more attention.
Indeed, we already know that the eigenvalues of qAdϕ(Fr) on this weight space are
of the form ±qn, but we need more precise information since, for example, Tn + 1
does not divide χĜ,Fr(T ) when f = 1, and Tn − 1 may not divide χĜ,Fr(T ) when
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f = 2. Since Homu(Vd, Vd′)N−2 is zero unless d+ d′ = N , we have to consider two
cases.

(1) V = Vd ⊕ Vd′ ≃ Sd ⊕ Sd′ , with (necessarily) d and d′ odd and, say d > d′. In
this setting, F belongs to the center {±1}× {±1} of O(Vd)×O(Vd′). Writing F =
(εd, εd′), we see that F acts on Homu(Vd, Vd′) and Homu(Vd′ , Vd) by multiplication
by εdεd′ , and since d and d′ are odd, we have εdεd′ = detF . Now we have

Endu(V )τN−2 = 〈en−1〉τ ⊕ (Homu(Vd, Vd′)⊕Homu(Vd′ , Vd))
τ
N−2 .

So if detF = 1, the action of F on Endu(V )τN−2 is trivial, hence the eigenvalue of
qAdϕ(Fr) is q

n and we are done, since Tn−1 divides χĜ,Fr(T ) when f = 1. Suppose

now detF = −1. Then F acts on the second summand of Endu(V )τN−2 by −1, so
the eigenvalue of qAdϕ(Fr) is −q

n, which is fine since Tn+1 divides χĜ,Fr(T ) when
f = 2. On the other hand, F acts trivially on the first summand, but the latter is
non-zero only if n is even, in which case Tn − 1 also divides χĜ,Fr(T ).

(2) V = Vn. Then we may decompose V as an orthogonal sum of two λ(SL2)-
stable non-degenerate subspaces V = V 1

n ⊕ V
2
n . Moreover, since n has to be odd,

(e|V i
n
)n−1 is not in Endu(V )τ so we have

Endu(V )τN−2 =
(
Homu(V

1
n , V

2
n )⊕Homu(V

2
n , V

1
n )
)τ

N−2
.

On the other hand, O(V )λ ≃ O2 acts on this space through its component group
{±1} with the non trivial element acting as ψ 7→ ψ∗. So, in particular, F acts by
multiplication by detF . The eigenvalue of qAdϕ(Fr) is thus detF .q

n and it equals
1 only if qn − detF = 0, hence also only if χĜ,Fr(q) = 0.

Case Ĝ = GLN and Fr 6= id. Here we have χĜ,Fr(T ) =
∏N

d=1(T
d − (−1)d).

We continue with the same notations V, λ, u etc, and we assume that there is
F ∈ (Ĝ ⋊ Fr)λ that fixes a Borel pair of Ĝλ. Using the explicit description Ĝλ =
∏

d GL(Wd), we see that (λ,F) is discrete if and only if rd = 1 for all d (so that

Ĝλ = Gm× · · · ×Gm is the center of
∏

d GL(Vd)) and (Ĝλ)
F = {±1}× · · · × {±1}.

This implies that F normalizes each GL(Vd) and induces the non-trivial element
αd of Out(GL(Vd)). Since u|Vd

is regular, it follows from Proposition 5.18 and the
subsequent remark that no eigenvalue of qAdFλ(S) on Endu(Vd) equals 1 unless
χGL(Vd),αd

(q) = 0 in L, in which case we also have χĜ,Fr(q) = 0 by Proposition

B.3 (1). Let us now focus on the eigenvalues of qAdFλ(S) on each Homu(Vd, Vd′)
for d 6= d′. As we have already seen, the eigenvalues of qAdλ(S) are of the form

q
1
2 (d+d′)−i with 0 ≤ i < min(d, d′). So it remains to understand how F acts. Note

that F2 ∈ (Ĝλ)
F so at least we know that F4 = 1. We distinguish two cases.

(1) Suppose that all the d’s occuring have the same parity. Then there is a non-
degenerate bilinear form on V (symplectic if the d’s are even, orthogonal if they
are odd) such that u ∈ I(V ), see [LS12, Cor. 3.6 (2)] for example. We may then
conjugate λ so that it factors through I(V ). But I(V ) is the fixed-point subgroup of
an involution given by conjugation by an element of the form g⋊Fr. So we may set
F to this element and we have achieved (AdF )

2 = 1. It follows that the eigenvalues
of qAdFλ(S) on each Homu(Vd, Vd′) are of the form ±qk for some integer k ≤ N

2 .

Should such an eigenvalue be equal to 1, we would have q2k−1 = 0, hence a fortiori
χĜ,Fr(q) = 0.

(2) Suppose there are both even and odd d’s. Write (F2)d for the component of
F2 in GL(Vd). This is a central element of GL(Vd) equal to ±1. We then decompose
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V = V+⊕V− where V± =
⊕

d, (F2)d=±1 Vd. We have GL(V )F
2

= GL(V+)×GL(V−),

hence also GL(V )F = GL(V+)
F × GL(V−)

F . But F acts on both GL(V−) and
GL(V+) as an involution that induces the non trivial outer automorphism. So each
GL(V±)

F is an orthogonal or symplectic group. This implies that all d’s occurring in
the decomposition of V+, resp. V−, have the same parity (because all multiplicities
rd are 1). As a consequence, we see that F2 acts on Homu(Vd, Vd′) by multiplication

by (−1)d+d′

. So we now have two subcases :

• if d, d′ have the same parity, the eigenvalues of qAdFλ(S) on Homu(Vd, Vd′)

are of the form ±q
1
2k for some even integer k ≤ d + d′ ≤ N . As before,

should such an eigenvalue be equal to 1, we would have qk − 1 = 0, hence
a fortiori χĜ,Fr(q) = 0.

• if d, d′ have different parities, the eigenvalues of qAdFλ(S) on Homu(Vd, Vd′)

are of the form ζq
1
2k for some odd integer k ≤ d+ d′ ≤ N and a primitive

4th-root of unity ζ in L. This time, should such an eigenvalue be equal to
1, we would have qk + 1 = 0 hence, again, χĜ,Fr(q) = 0.

�

It may be tempting to believe that the nice equivalence of Proposition 5.21
holds in general. However, it fails in the case of triality, i.e. a group of type
D4 with Frobenius acting with order 3. In this case, the irreducible factors of
χĜ,Fr(T ) = (T 2 − 1)(T 6 − 1)(T 8 + T 4 + 1) are Φn(T ) for n = 1, 2, 3, 6, 12. But to

get an equivalence, we need also Φ4(T ) :

Lemma 5.22. Assume that Ĝ = PSO8 with Fr of order 3 (triality), and ℓ > hĜ =
6. Then the following are equivalent :

(1) For all ϕ as in (5.2), there exists g ∈ (Ĝϕ(s))
◦ such that ϕg is unobstructed.

(2) χ′
Ĝ,Fr

(q) 6= 0 in L, where χ′
Ĝ,Fr

(T ) = T 12 − 1.

Proof. As in the proof of Proposition 5.21, we may focus on discrete pairs (λ,F)

with λ : SL2 −→ Ĝ and F ∈ (Ĝ ⋊ Fr)λ (where GL is the minimal L-group, so
that π0( GL ) = Z/3Z). We still denote by λ the unique lift SL2 −→ SO8 and
see SO8 as SL(V ) ∩ I(V ) for an 8-dimensional vector space with a non-degenerate
symmetric bilinear form. With the notation of the proof of Proposition 5.21, there
are only three possible types of decomposition of V associated to such a λ. Either
V = V7 ⊕ V1, or V = V5 ⊕ V3 or, V = V3 ⊕ V1 with V3 = S2

3 and V1 = S2
1 .

(1) Type (7, 1). This is the regular orbit, so it is covered by Proposition 5.18.
(2) Type (5, 3). This is the only distinguished non-regular orbit, so it is stable

under Fr. Therefore, for λ of type (5, 3), there exists F ∈ (Ĝ ⋊ Fr)λ. Since

Ĝλ = Z(Ĝ) = {1}, we have (AdF )
3 = id. On the other hand, the λ(T2)-weights

on Lie(Ĝ)Adu = Endu(V )τ are 2, 4 and 6, so the eigenvalues of qAdFλ(S) are

respectively of the form ζq2, q3 or ζq4 for some 3rd-root of unity ζ. If any of these
numbers equals 1 in L, then q12 = 1, hence χ′

Ĝ,Fr
(q) = 0. However, it is actually

possible to prove that q4 is not an eigenvalue, so that the polynomial χĜ,Fr is still
good for this orbit.

(3) Type (3, 3, 1, 1). This orbit intersects G2 = ĜFr along its non-regular distin-
guished orbit. So we may pick a relevant λ that is centralized by Fr. Then π0( GL λ)
is isomorphic to Z/6Z and contains two elements such that (λ,F) is discrete : Fr

of order 3, and cFr of order 6, where c is the image in Ĝλ of a reflection that
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generates π0(I(V )λ ∩ SL(V )). The weights are 0, 2 and 4. Hence the eigenvalues
of qAdFλ(S) on weight 0 and 2 spaces are of the form ζq2 or ζq for a sixth root of

unity ζ, so they are different from 1 unless q12 = 1. On the other hand, the weight
4 space has dimension 1 and comes from G2. So Fr acts trivially on it, and cFr
acts by ±1. Hence the corresponding eigenvalue is ±q3 and is also different from 1
unless q12 = 1. Now, the computation in G2 of Remark 5.24 shows that −1 is an
eigenvalue of F = cFr on the weight 2 space, so qAdFλ(S) has eigenvalue −q

2, and
it is different from 1 if and only if Φ4(q) 6= 0. �

We now turn to the exceptional groups. Recall the polynomials χ∗
Ĝ,Fr

from (B.3).

Proposition 5.23. Suppose that Ĝ is simple of exceptional type. If χ∗
Ĝ,Fr

(q) 6= 0 in

L, then for all ϕ as in (5.2), there exists g ∈ (Ĝϕ(s))
◦ such that ϕg is unobstructed.

Recall that χ∗
Ĝ,Fr

(q) 6= 0 is equivalent to “q has order greater than hĜ,Fr in L
×”,

which implies ℓ > hĜ,Fr, hence also ℓ > hĜ,1.

Proof. Thanks to Lemma 5.10 and equality (5.4), we may assume Ĝ is adjoint. We
will use the tables in Chapter 11 of [LT11]. These tables cover all the nilpotent
classes of exceptional groups, including a description of the reductive quotient C
of the centralizers (both the neutral component, denoted there by C◦ and the π0,
denoted there by C/C◦), and the weights of an associated cocharacter τ on the Lie
algebra centralizer (denoted by m there). Actually, they even describe the weights
on each subquotient of the central series of the nilpotent part of the Lie algebra
centralizer (with integer n denoting the nth step of the central series).

Using a Springer isomorphism e↔ u between the nilpotent cone and the unipo-
tent variety, we get a table of unipotent classes, and we may identify the centralizers
Ĝu = Ĝe. Then for any good λ associated to u, we have identifications Ĝλ ≃ C,
hence the table provides us with descriptions of (Ĝλ)

◦ = C◦, π0(Ĝλ) = C/C◦ and

the weights m of λ(T2) on Lie(Ru(Ĝu)).
Thanks to Corollary 5.17 we may focus on ϕ associated to a pair (λ,F). Then,

using Lemma 5.20 (together with Proposition 5.21 an inductive argument for the
E series), we may restrict attention to discrete (λ,F). In the case where Fr acts

trivially on Ĝ, this means that, in the tables of loc. cit., we may restrict to classes
such that C◦ is a torus and consider all F ∈ C such that (C◦)F is finite. In
this setting, the exponent of (C◦)F divides the order f of the image F̄ of F in

the component group C/C◦ (since the endomorphism t 7→ t(F̄ t) · · · (F̄
f−1

t) of C
vanishes), hence F has finite order dividing f2, and this order does only depend on
the connected component of C that contains F . So the eigenvalues of qAdFλ(S) =

qAdϕ(Fr) on Lie(Ĝ)Adu are of the form ζq
m
2 +1 for some root of unity ζ whose order

t divides the order of F . Therefore, what we have to check is that, in all cases, we
have t(m2 +1) ≤ hĜ,Fr when t(

m
2 +1) is an integer, or t(m+2) ≤ hĜ,Fr else. In the

only twisted case 2E6 where Fr has order 2, we will apply the same strategy except
that here F ∈ Ĝ⋊ Fr.

Below we list all “discrete” orbits except the regular ones, which are treated in
Proposition 5.18. The numbering is that of [LT11, ➜11].

G2, orbit 3. Here h = 6, m = 2 or 4, and C = S3, so that t = 1, 2 or 3. Hence the
desired inequalities t(m2 + 1) ≤ h = 6 always hold except if t = 3 and m = 4. But
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this case doesn’t happen since the weight 4 subspace is 1 dimensional, so C = S3

acts on it via a character, hence via an element of order 2.

F4, orbit 10. Here h = 12, C = S4 hence t ≤ 4, and the desired inequality holds
trivially for all weights except possibly for weight 6. But the weight 6 subspace
has dimension 2, so the action of C = S4 factors over a quotient isomorphic to S3,
hence t ≤ 3 on this subspace.

F4, orbit 13. Here h = 12, C = S2 hence t ≤ 2 and weights m are even and
≤ 10, hence the desired inequality holds.

F4, orbit 14. Here h = 12 and C = S2, so only the weight m = 14 space might
contradict the desired inequality, but the columns Z♮ and Z of the table show that
C acts trivially on this space, so t = 1 and t(m2 + 1) = 8 ≤ 12.

E6, orbits 17 and 19. Here again, h = 12 and C = S2 or {1}. In each case, the
desired inequalities follow directly from the list of weights.

E6, orbit 11. Our source here is section 9.3.4 of loc.cit. This orbit comes from
the distinguished non regular orbit of a Levi subgroup H of root system D4 and C◦

is the two-dimensional connected center of H, while C normalizes a Borel pair of H
and has component group C/C◦ = S3. The action of S3 on X∗(C◦) is the standard
representation, as can be seen by embedding E6 as a Levi subgroup of E7 and using
the description of the reductive centralizer C7 of this orbit from loc.cit. Therefore,
an element of order 1 or 2 of C/C◦ fixes a subtorus, and we see that if (λ,F) is to
be discrete, then F̄ should have order 3 in C/C◦. Then F itself has order 3 or 9 in
C. To prove it has order 3, we embed E6 as a Levi subgroup of E8 and consider the
reductive centralizer C8 there. Then section 9.3.4 of loc.cit exhibits two elements
c1 and c2 of order 2 in C, whose images generate C/C◦ = C8/C

◦
8 , and that act

on C◦
8 by fixing a pinning. But C◦

8 is a simple group of type D4, so its center has
exponent dividing 2. Hence the element (c1c2)

3, which belongs to C◦ and fixes a
pinning of C◦

8 is central in C◦
8 , hence has order dividing 2. Since we have seen that

c1c2 has order 3 or 9, we conclude it has order 3. Hence F has order 3, and all
desired inequalities follow from the list of weights.

2E6, orbit 11. Here, hĜ,Fr = 18. Again, we refer to section 9.3.4 of loc.cit.,

except that we find it easier to argue with the nilpotent representative e′ := Adg(e)
in their notation (and the same cocharacter τ described in table 3 of their chapter
6). Indeed, for the λ corresponding to (e′, τ), we easily see that h2(−1)⋊Fr ∈ GL λ.

Then, GL λ/( GL λ)
◦ is an extension of Z/2Z by Ĝλ/(Ĝλ)

◦ = C/C◦ = S3. Such an
extension has to be split and contains a central element of order 2. In the present
case, using notations c′2 := gc2g

−1, the element F0 := c′2h2(−1) ⋊ Fr belongs to

(Ĝ ⋊ Fr)λ and its image in GL λ/( GL λ)
◦ is the central element of order 2. A

computation shows that F0 acts on ( GL λ)
◦ = C◦ by inversion. It follows that

the pair (λ,F0) is discrete and that, more generally, a pair (λ,F) is discrete if,
and only if, writing F = cF0 for some c ∈ C, the image of c in C/C◦ has order
1 or 3. Putting F1 := c′1c

′
2F0, this means that any F such that the pair (λ,F)

is discrete is a C◦-translate of F0 or F±1
1 . Let us compute their orders. Since

F2
0 ∈ C◦ is fixed by inversion, we have F4

0 = 1. On the other hand, since F0

is central in π0( GL λ), there is some c ∈ C0 such that (c′1c
′
2)F0(c

′
1c

′
2)

−1 = F0c,
which yields (c′1c

′
2)F

2
0 (c

′
1c

′
2)

−1 = F0cF0c = F2
0 c

−1c = F2
0 . Hence F2

0 belongs to
the c′1c

′
2-fixed subgroup of C◦, which has order 3. This implies F2

0 = 1. On the
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other hand, there is some c′ ∈ C◦ such that F3
1 = F0c

′, which, as above, implies
F6

1 = (F0c
′)2 = F2

0 = 1. Having computed the orders 2 and 6, we now see that
the desired inequalities follow from the list of weights, except maybe for weight 6
when F = F±1

1 . However,an easy computation shows that the action of F0 on the
weight 6 space is trivial, so that the action of F1 on it actually has order 3, and
the desired inequalities hold too.

2E6, orbits 14, 16, 18. Here Ĝλ = C = Gm, and F should map to the non-trivial
element of π0( GL λ) = π0( GL ), so F has order dividing 4. The desired inequalities
are then straightforward for weights ≤ 7 since h = 18. For the weight 8, 10 or
14 spaces, we use the fact that C◦ acts trivially on them, so AdF has order t ≤ 2
there, whence the wanted inequality.

2E6, orbits 17. Here Ĝλ = C = {±1}, hence F2 = ±1, and F has a priori order 2
or 4. But the representative e of the table is visibly invariant under Fr, which means
that we can pick u and λ invariant under Fr, and set F = Fr or F = (−1).Fr. In
each case, F has order 2 and the desired inequalities follow from the list of weights.

2E6, orbit 19. Here Ĝλ = C = {1}, so F2 = 1, and the desired inequalities
follow from the list of weights (recall h = 18).

E7, orbit 24. Here h = 18, C◦ is a torus and π0(C) = S2. So F has order
dividing 4. The desired inequality 4(m2 + 1) ≤ h = 18 holds for all weights, except
weight 8, but C◦ acts trivially on this weight space, so AdF has order t = 2 there
and the inequality holds too.

E7, orbits 33, 37,41,42,43. In these cases C = S3 or S2 or {1}, and the inequalities
are straightforward, except for the weight 18 space in orbit 41, where we need to
use the column Z to ensure C acts trivially on this weight space.

E7, orbit 39. Here C◦ = Gm and C/C◦ = S2 acts non trivially on C◦, but C is
not a semi-direct product of C◦ by S2, so F has order 4 with F2 = −1 ∈ (C◦)F .
However, the explicit form of C◦ given in the table shows that it acts with even
weights on all root subgroups (trivially on the simple roots of the Levi subsystem
E6 and with weight 2 on the remaining simple root). Hence AdF has order 2, and
the desired inequalities follow since all weights are even and less than 16.

E8, orbit 41. Here h = 30 and C = S5, so t ≤ 6. Hence the desired inequalities
are at least satisfied for all weights≤ 8. This leaves us with the 4-dimensional weight
10 space Z10, which is stable under C = S5. We claim that Z10 is isomorphic to the
standard representation of S5. This implies that the eigenvalues of the elements of
order 6 of S5 have order 1, 2 or 3, and not 6. So t ≤ 5 on this space, and the desired
inequalities still hold. To justify the claim, we use the notation of 9.3.17 of [LT11].
There, the authors exhibit three elements c1, c2 and c3 that generate C = S5,
as well as a basis z110, · · · , z

4
10 of Z10. The element c1 is a 5-cycle, and all zi10 are

eigenvectors of Ad(c1), with respective eigenvalues ζ, ζ3, ζ4, ζ2 where ζ is a primitive
5th-root of unity. This implies that Z10 is either the standard representation or its
twist by the sign character. To show it is the untwisted standard representation,
it suffices to show that the trace of a transposition is 2. According to loc.cit. the
element c2c3 is a transposition. The action of Ad(c2) and Ad(c3) on Z10 is not
made explicit in loc.cit. but according to the authors (private communication),
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they are given by matrices

Ad(c2) =







0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0






,Ad(c3) =

1+2φ
5







−1 φ 1 1 + φ
φ 1 1 + φ −1
1 1 + φ −1 φ

1 + φ −1 φ 1






,

where φ = ζ2 + ζ3. Thus the trace of Ad(c2c3) is
(1+2φ)(2+4φ)

5 = 2, as desired.

E8, orbits 47, 50, 52. Here h = 30 and C = Gm and C/C◦ = S2. So F has order
dividing 4, which makes directly all desired inequalities hold except for weights 14
and 16 subspaces, but the latter are fixed by C◦ according to column Z♯, so AdF
has order t ≤ 2 there, and the inequalities hold too.

E8, orbits 54, 58, 60, 62, 63, 65, 66, 67, 68. Here C = S3, S2 or {1}, and all
inequalities are straightforward, except for the one dimensional weight 22 space in
orbit 60 and weight 34 space in orbit 66. But the latter are fixed by C in each case
according to column Z, so t = 1 there and the inequalities still hold.

E8, orbit 55. Here C◦ = Gm and C/C◦ = S2. The table features a lift c in C
of the non-trivial element of C/C◦. One can compute that c2 = 1 (e.g. by using
the list of positive roots of E8 in Bourbaki). So we can take F = c and the desired
inequalities follow from the list of weights.

�

Remark 5.24. Consider the orbit 3 of G2, on page 73 of [LT11]. The reflection
c2 exchanges the two root vectors e11 and e21, which have both weight 2. So −1 is
an eigenvalue of F := c2 on the space generated by these vectors, hence −q2 is an
eigenvalue of qAdFλ(S). But Φ4(T ) does not divide χG2,1(T ) = (T 2 − 1)(T 6 − 1),
so we see that in this case the equivalence of Proposition 5.21 with the polynomial
χĜ,Fr really fails, just as for 3D4. It fails also for F4 due to the weight 8 space

of orbit 13, which requires Φ5 and Φ10 (depending on F) although none of these
polynomials divides χF4,1. The same orbit and the same weight space viewed in
E6 and 2E6 through the identification of F4 with the fixed points of the outer
involution (orbit 17 in loc.cit.) again requires Φ5 and Φ10, although Φ10 does not
divide χE6,1 and Φ5 does not divide χ2E6,Fr. In orbit 33 of E7, taking F = c1, the
weight 8 space requires Φ15, which does not divide χE7,1. Finally, in orbit 66 of E8,
taking F = c, the weight 26 space requires Φ28, which does not divide χE8,1. Note
it is certainly possible in each case to compute explicitly a polynomial χ′ dividing
χ∗ for which equivalence between χ′(q) 6= 0 and generic smoothness holds.

For convenience of the reader, we include a table showing the prime factors of
χĜ,β in Z[T ] for the exceptional types.

type of Ĝ, β 3D4 G2 F4 E6
2E6 E7 E8

{

n,Φn|χĜ,β

} {
1, 2, 3
6, 12

} {
1, 2
3, 6

} {
1, . . . , 4,
6, 8, 12

} {
1, . . . , 6,
8, 9, 12

}






1, . . . , 4
6, 8, 10
12, 18







{
1, . . . , 10,
12, 14, 18

}






1, . . . , 10, 12
14, 15, 18
20, 24, 30







Corollary 5.25. Let G be as in (5.2). If χ∗
Ĝ,Fr

(q) 6= 0 in L, then for any ϕ as in

(5.2), there is g ∈ Ĝ◦
ϕ(s) such that ϕg is unobstructed.
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Proof. This follows from Lemma 5.10, Lemma 5.12, decomposition (5.3), Propo-
sition 5.21, Lemma 5.22 and Proposition 5.23. Note again that χ∗

Ĝ,Fr
(q) 6= 0 is

equivalent to q having order greater than hĜ,Fr, which implies ℓ > hĜ,Fr hence also

ℓ > hĜ. It also implies that χĜ,Fr(q) 6= 0. �

Proof of Theorem 5.7. (1) We assume that ℓ does not divide eχ∗
Ĝ,Fr

(q). Fix ϕ ∈

Z1(WF , Ĝ(L)) and choose ϕ′ as in Proposition 5.8. By Lemma 5.9, the action Adϕ′

of WF on Ĥ := CĜ(ϕ(I
ℓ
F ))

◦ is unramified and η := ϕ · (ϕ′)−1 ∈ Z1(WF /I
ℓ
F , Ĥ(L)).

By Proposition B.3, we have χ∗
Ĥ,Adϕ(Fr)

(q) 6= 0 in L, so the last Corollary gives us an

element h ∈ (Ĥη(s))
◦ such that ηh is unobstructed in Z1(WF /I

ℓ
F , Ĥ(L)). We have

explained after Proposition 5.8 that ηh · ϕ′ is then unobstructed in Z1(WF , Ĝ(L)),

but we have (Ĥη(s))
◦ = (Ĝτ )

◦ and ηh · ϕ′ = (η · ϕ′)h = ϕh.

(2) We assume here that Ĝ has no exceptional factor, that ℓ > hĜ,1, and that

ℓ does not divide χĜ,Fr(q). Then we repeat the above argument, observing that

Ĥ = CĜ(ϕ(I
ℓ
F )) is again a group with no exceptional component. Indeed, it suffices

to check this in a classical group where it is fairly standard. However, the action of
ϕ′(Fr) on Ĥ may feature instances of triality. Fortunately, this is harmless because
the modified polynomial χ′

Ĥ,Fr
still divides χĜ,Fr. Indeed, if Φ12(T ) divides χĜ,Fr

for Ĝ a classical group, then so does Φ4(T ).
�

5.4. GL -banal primes. We keep the general setup of this section.

Proposition 5.26. Let ℓ 6= p be a prime. Then the following are equivalent :
(1) For every algebraically closed field of characteristic ℓ, and every continuous

L-homomorphism ϕ : WF → GL (L), there is g ∈ CĜ(ϕ(IF ))
◦ such that ϕg is

unobstructed.
(2) For any e ∈ N and any finite place v of OKe

[ 1p ] such that the residue field kv

has characteristic ℓ, the fiber Z1(W 0
F /P

e
F , Ĝkv

) of Z1(W 0
F /P

e
F , Ĝ) is reduced.

Proof. Assume (1). It suffices to prove reducedness for kv replaced by its alge-

braic closure L. Let x be an L-point of Z1(W 0
F /P

e
F , ĜL) contained on exactly one

irreducible component of Z1(W 0
F /P

e
F , ĜL). Let τ be the restriction of ϕx to IF ;

there then exists a g ∈ Ĝ◦
τ (L) such that ϕg

x is unobstructed. The corresponding L-

point y of Z1(W 0
F /P

e
F , ĜL) is smooth and lies in the same irreducible component of

Z1(W 0
F /P

e
F , ĜL) as x, so that irreducible component is generically reduced. Since

x was arbitrary, we deduce that Z1(W 0
F /P

e
F , ĜL) is generically reduced; since it is

also a local complete intersection, it must be reduced.
Now assume (2). Following the same reduction process as above Proposition 5.8,

we may assume that GL and ϕ are as in (5.2). Recall from the discussion above
Lemma 2.2 the map

ĜL × Ĝ
◦
ϕ(s) −→ Z1(WF /I

ℓ
F , Ĝ)L, (h, g) 7→

h(ϕg).

We have shown there that Z1(WF /I
ℓ
F , Ĝ)L is covered by the images of finitely many

of these maps, and that these images all have the same dimension. This implies that
the closure of these images are the irreducible components of Z1(WF /I

ℓ
F , Ĝ)L. In
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particular, the image of the above map is dense in one of the components that con-
tain ϕ. Therefore, since reducedness implies generic smoothness of all components,
we get (1). �

Definition 5.27. A prime ℓ 6= p is GL -banal if the properties of the last proposition
hold for ℓ.

One way to view this reducedness of fibers from a philosophical standpoint is
to say that there are no nontrivial “congruences” between Langlands parameters
modulo an GL -banal prime ℓ: the closures of distinct irreducible components in
characteristic zero remain distinct modulo ℓ. One expects that this should corre-
spond, on the other side of the local Langlands correpondence, to a lack of nontrivial
congruences between admissible smooth representations of the reductive group G
over F whose L-group is GL . So this should be related to the representation theo-
retic notion of “banal”. Recall indeed that, for a reductive group G over F , a prime
ℓ 6= p is called banal if it does not divide the order of a torsion element of G(F ).
For the sake of precision, we will reterm this as “G-banal”.

Lemma 5.28. Suppose that G is a reductive group over OF .

(1) A prime ℓ 6= p is G-banal if and only if it does not divide the order of
G(kF ).

(2) The set of G-banal primes only depends on the isogeny class of G.
(3) We have |G(kF )| = qN · χG,Fr(q) where N is the dimension of a maximal

unipotent subgroup of G.

Proof. (1) Let g ∈ G(F ) have finite order prime to p. Then it stabilizes a facet
of the Bruhat-Tits building of G(F ), and fixes its barycenter. This barycenter
becomes a hyperspecial point in the building of G(F ′) for some totally ramified
extension of F . So the order of g divides |G(kF ′)|, but kF ′ = kF . Conversely, let
ℓ be a prime that divides |G(kF )| and pick an element ḡ ∈ G(kF ) with order ℓ.
Choose a lift g ∈ G(OF ) of ḡ and consider the topological Jordan decomposition
g = gasgtu of g as in [Spi08, Thm 2.38]. Then gas ∈ G(OF ) and it has order ℓ.

(2) This follows from (1), see the proof of Theorem B.4.
(3) This is the Chevalley-Steinberg formula, see Theorem B.4.

�

Corollary 5.29. Suppose G is an unramified group over F with no exceptional
factor, denote by GL = Ĝ ⋊ 〈Fr〉 its Langlands dual group, and let ℓ be a prime
greater than the Coxeter number of G. Then ℓ is GL -banal if and only if it is
G-banal.

Proof. This follows from the above lemma together with Proposition 5.21, and the
equality χĜ,Fr(T ) = χG,Fr(T ). �

It is a bit surprising that our results in Lemma 5.22 and Remark 5.24 show that
this equivalence does not hold for exceptional groups.

6. The GIT quotient in the banal case

Our aim in this section is to get a complete description of the affine quotient
Z1(W 0

F /P
e
F , Ĝ) � Ĝ after base change to Z[ 1N ] for some sufficiently well controlled

integer N . Our strategy rests on the universal homeomorphism (4.10)

Z1(WF /I
e
F , Ĝ) � Ĝ −→ Z1(W 0

F /P
e
F , Ĝ) � Ĝ.
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We have already singled out the so-called GL -banal primes, which are particu-
larly well behaved for the RHS. On the other hand, the integer NĜ defined above
Corollary 4.16 plays a particular role regarding the LHS:

Lemma 6.1. The structural morphism Z1(WF /I
e
F , Ĝ) −→ Spec(Z[ 1p ]) is smooth

over Spec(Z[ 1
pN

Ĝ
]).

Proof. Since the finite group IF /I
e
F has invertible order in Z[ 1

pN
Ĝ
], Lemma A.1

tells us that Z1(IF /I
e
F , Ĝ) is smooth over Spec(Z[ 1

pN
Ĝ
]). Let φuniv denote the

universal 1-cocycle IF /I
e
F −→ Ĝ(OZ1(IF /Ie

F
,Ĝ)). Then the map ϕ 7→ ϕ(Fr) identifies

Z1(WF /I
e
F , Ĝ) with the Ĝ-transporter from Frφuniv to φuniv, as a scheme over

Z1(IF /I
e
F , Ĝ). Hence, by Lemma A.1 again, the restriction map Z1(WF /I

e
F , Ĝ) −→

Z1(IF /I
e
F , Ĝ) is also smooth, and the lemma follows. �

Recall that the universal homeomorphism (4.10) becomes an isomorphism after
tensoring by Q. The next result gives a bound on the set of integers that actually
need to be inverted.

Proposition 6.2. The morphism Z1(WF /I
e
F , Ĝ) � Ĝ −→ Z1(W 0

F /P
e
F , Ĝ) � Ĝ of

(4.10) is an isomorphism after inverting NĜ and the non GL -banal primes.

Proof. Consider the dual map (4.9) on rings of functions (Re
GL )Ĝ −→ (Se

GL )Ĝ. We

already know it is injective and its cokernel is a torsion abelian group. Let ℓ 6= p be
an associated prime of this cokernel. If ℓ does not divide NĜ, there is no ℓ-torsion

in Se
GL (by the last lemma), hence the reduced map (Re

GL )Ĝ⊗Fℓ −→ (Se
GL )Ĝ⊗Fℓ

is not injective. But this map induces a bijection on Fℓ-points, so its kernel lies

in the Jacobson radical, and we deduce that (Re
GL )Ĝ ⊗ Fℓ is not reduced. On the

other hand, (Re
GL )Ĝ is an ℓ-adically saturated submodule of Re

GL , so that the map

(Re
GL )Ĝ ⊗ Fℓ −→ (Re

GL ⊗ Fℓ)
Ĝ is actually injective. So we infer that Re

GL ⊗ Fℓ is

not reduced, hence ℓ is not GL -banal. �

Remark 6.3. When GL is the Langlands dual group of an unramified group,
Proposition 5.18 and the estimate of Proposition 4.14 show that the prime divisors
of NĜ are non GL -banal. We believe this is true in general.

In view of the last proposition, we focus in the next subsection on the explicit
description of Z1(WF /I

e
F , Ĝ) � Ĝ, over Z[ 1

pN
Ĝ
]. The description that we obtain in

Theorem 6.7 bears a striking analogy with the usual description of the Bernstein
center. Actually, in Subsection 6.3, we extend scalars to C and we show that our
description gives back Haines’ definition of a structure of algebraic variety on the
set of semisimple complex Langlands parameters.

6.1. Description of Z1(WF /I
e
F , Ĝ)� Ĝ over Z[ 1

pN
Ĝ
]. Since the order of IF /I

e
F is

invertible in Z[ 1
pN

Ĝ
], we can obtain decompositions of Z1(WF /I

e
F , Ĝ)Z[ 1

pN
Ĝ

] similar

to (4.2) and (4.4) by restricting cocycles to IF instead of restricting to PF . Indeed,
we first infer the following results from Theorems A.7, A.9, A.12 and A.13 in the
appendix.
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Proposition 6.4. There is a finite extension K̃e of Ke and a set

Φ̃e ⊂ Z
1
(

IF /I
e
F , Ĝ

(

OK̃e
[ 1
pN

Ĝ
]
))

, such that

• for each φ ∈ Φ̃e, the group scheme CĜ(φ)
◦ is split reductive and π0(φ) :=

π0(CĜ(φ)) is constant over OK̃e
[ 1
pN

Ĝ
] and

• we have an orbit decomposition

Z1(IF /I
e
F , Ĝ)OK̃e

[ 1
pN

Ĝ
] =

∐

φ∈Φ̃e

Ĝ · φ ≃
∐

φ∈Φ̃e

Ĝ/CĜ(φ)

where each summand represents the corresponding étale sheaf quotient.

The above decomposition induces in turn the following ones :

Z1(WF /I
e
F , Ĝ)OK̃e

[ 1
pN

Ĝ
] =

∐

φ∈Φ̃adm
e

Ĝ×C
Ĝ
(φ) Z1(WF , Ĝ)φ.

(6.1) (Z1(WF /I
e
F , Ĝ) � Ĝ)OK̃e

[ 1
pN

Ĝ
] =

∐

φ∈Φ̃adm
e

Z1(WF , Ĝ)φ � CĜ(φ).

Here, Z1(WF , Ĝ)φ is the affine scheme over OK̃e
[ 1
pN

Ĝ
] that classifies all 1-cocycles

ϕ : WF −→ Ĝ such that ϕ|IF = φ and, as usual, we say that φ is admissible if this
scheme is not empty.

Define the Fr-twist of φ by Frφ(i) := Fr(φ(Fr−1 iFr)). Then we have an isomor-
phism ϕ 7→ ϕ(Fr)

Z1(WF , Ĝ)φ
∼
−→ TĜ(

Frφ, φ)

where the RHS denotes the transporter in Ĝ from Frφ to φ for the natural action
of Ĝ on Z1(IF , Ĝ). This isomorphism is CĜ(φ)-equivariant if we let CĜ(φ) act on
the transporter by Fr-twisted conjugation c · t := ctFr(c)−1. On the other hand,
TĜ(

Frφ, φ) is also a left pseudo-torsor over CĜ(φ) under composition (c, t) 7→ ct.

When φ is admissible, TĜ(
Frφ, φ) is actually a CĜ(φ)-torsor for the étale topology,

and the étale sheaf quotient π0(
Frφ, φ) := TĜ(

Frφ, φ)/CĜ(φ)
◦ is a π0(φ)-torsor.

Therefore π0(
Frφ, φ) is representable by a finite étale OK̃e

[ 1
pN

Ĝ
]-scheme and, after

maybe enlarging K̃e, we may and will assume that it is constant. Then we get a
further decomposition

TĜ(
Frφ, φ) =

∐

β∈π0(Frφ,φ)

TĜ(
Frφ, φ)β

which is nothing but the decomposition into connected components, and where each
component is a left CĜ(φ)

◦-torsor. Moreover, the Fr-twisted conjugation action of

CĜ(φ) on TĜ(
Frφ, φ) induces an action of π0(φ) on π0(

Frφ, φ). Denote by π0(φ)β
the stabilizer of β for this action, and by π0(

Frφ, φ)0 a set of representatives of
orbits. Then we get

(6.2) TĜ(
Frφ, φ) � CĜ(φ) =

∐

β∈π0(Frφ,φ)0

(
TĜ(

Frφ, φ)β � CĜ(φ)
◦
)

/π0(φ)β
.

Our next result will allow us to compute each term of this decomposition. Before
we can state it, note that if R is an OK̃e

[ 1
pN

Ĝ
]-algebra and β̃ ∈ TĜ(R)(

Frφ, φ),
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then conjugation by β̃ ⋊ Fr in Ĝ(R) ⋊WF normalizes CĜ(R)(φ). We denote the

automorphism thus induced by Adβ̃ .

Theorem 6.5. Fix a pinning εφ = (Bφ, Tφ, (Xα)α) of CĜ(φ)
◦ over OK̃e

[ 1
pN

Ĝ
].

Then, after maybe enlarging the finite extension K̃e, we can find for each β ∈
π0(

Frφ, φ), a lift β̃ ∈ TĜ(OK̃e
[ 1
pN

Ĝ
])(

Frφ, φ) of β such that Adβ̃ normalizes εφ.

Proof. The proof goes along the same argument as for Theorem 3.4. Let us first do
the translation to the notation of Subsection 3.2. To this aim, choose an L-group
such that IF /I

e
F embeds into π0( GL ). Then we can form the subgroup scheme

C GL (φ) as in Subsection 3.2 and, denoting by Fr the image of Fr in π0( GL ), we see

that the map ϕ 7→ ϕL (Fr) defines an isomorphism

Z1(WF , Ĝ)φ
∼
−→ C GL (φ) ∩ (Ĝ⋊ Fr),

and that the map β̃ 7→ β̃ ⋊ Fr defines a second isomorphism

TĜ(
Frφ, φ)

∼
−→ C GL (φ) ∩ (Ĝ⋊ Fr)

whose composition with the previous one is the isomorphism introduced just above.
Now, define π̃0(φ) and Σ(φ) as above Definition 3.3, so that we have for each
admissible φ a further decomposition

Z1(WF , Ĝ)φ =
∐

α∈Σ(φ)

Z1(WF , Ĝ)φ,α.

Then we have a bijection α 7→ α(Fr) between Σ(φ) and the fiber of the map π̃0(φ)→
π0( GL ) over Fr. On the other hand, we have a natural injection π0(

Frφ, φ) →֒ π̃0(φ)
whose image is precisely the said fiber. So we get a bijection β ↔ α between
π0(

Frφ, φ) and Σ(φ), and it is easily checked that the map ϕ 7→ ϕ(Fr) identifies

Z1(WF , Ĝ)φ,α with TĜ(
Frφ, φ)β .

Now the same proof as that of Theorem 3.4 applies, and actually the stronger
variant of Remark 3.9 applies too, because what is needed from Lemma 3.8 in the
proof of this variant is now trivial : since WF /IF ≃ Z, we have H2(WF /IF , A) =
{0} for any abelian group A with action of WF /IF .

So we get the existence of a finite extension K̃e and, for each α, a cocycle

(6.3) ϕα :WF −→ Ĝ
(

OK̃e
[ 1
pN

Ĝ
]
)

that restricts to φ, induces α, normalizes εφ and has finite image. Writing ϕα(Fr) =

β̃ ⋊ Fr provides us with the desired element β̃. �

With the notation of this theorem we now have an identification c 7→ cβ̃

CĜ(φ)
◦ ∼
−→ TĜ(

Frφ, φ)β

and the Fr-twisted conjugation action of CĜ(φ)
◦ on TĜ(

Frφ, φ)β corresponds to the
Adβ̃-twisted conjugation action of CĜ(φ)

◦ on itself. We thus get

TĜ(
Frφ, φ)β � CĜ(φ)

◦ = (CĜ(φ)
◦ ⋊Adβ̃) � CĜ(φ)

◦

where the notation on the right hand side is meant to emphasize that CĜ(φ)
◦ acts

via Adβ̃-twisted conjugation.

Now, denote by Ω◦
φ the Weyl group of the maximal torus Tφ of CĜ(φ)

◦, and

denote by Ωφ := NC
Ĝ
(φ)(Tφ)/Tφ its “Weyl group” in CĜ(φ). The natural map
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NC
Ĝ
(φ)(Tφ, Bφ) −→ π0(φ) induces an isomorphism NC

Ĝ
(φ)(Tφ, Bφ)/Tφ ≃ π0(φ),

hence Ωφ = Ω◦
φ⋊π0(φ) is a split extension of π0(φ) by Ω◦

φ. Since the automorphism

Adβ̃ of CĜ(φ) stabilizes Tφ and Bφ, it acts on Ωφ and preserves the semi-direct
product decomposition. Note that the actions of Adβ̃ on Tφ and Ωφ only depend

on β and not on the choice of β̃ as in the theorem. We will thus denote these actions
simply by Adβ . Observe that the invariant subgroup (Ωφ)

Adβ of Ωφ decomposes as

(Ωφ)
Adβ = (Ω◦

φ)
Adβ ⋊ π0(φ)β

and acts naturally on the coinvariant torus (Tφ)Adβ
.

Proposition 6.6. The inclusion Tφ →֒ CĜ(φ)
◦ induces an isomorphism

(Tφ)Adβ
� (Ω◦

φ)
Adβ

∼
−→

(

CĜ(φ)
◦ ⋊Adβ̃

)

�CĜ(φ)
◦

Proof. Consider the inclusion Tφ ⋊ Adβ̃ →֒ CĜ(φ)
◦ ⋊ Adβ̃ . Under the conjuga-

tion action of CĜ(φ)
◦ on the RHS, the LHS is stable by the subgroup scheme

NC
Ĝ
(φ)◦(Tφ)β of NC

Ĝ
(φ)◦(Tφ) given as the inverse image of (Ω◦

φ)
Adβ . Whence a

morphism
(

Tφ ⋊Adβ̃

)

�NC
Ĝ
(φ)◦(Tφ)β −→

(

CĜ(φ)
◦ ⋊Adβ̃

)

�CĜ(φ)
◦.

Now observe that (Tφ)Adβ
=
(

Tφ ⋊Adβ̃

)

�Tφ, so that the above morphism induces

in turn a morphism

(Tφ)Adβ
� (Ω◦

φ)
Adβ −→ (CĜ(φ)

◦ ⋊Adβ̃)�CĜ(φ)
◦.

Now, for any algebraically closed field L over OK̃e
[ 1
pN

Ĝ
], Lemma 6.5 of [Bor79]

tells us that this morphism induces a bijection on L-points. In particular the
corresponding map on rings of functions is injective since the source is reduced.
Its surjectivity can be proved as in [Bor79, Prop. 6.7], which deals with complex
coefficients. Namely, put R := OK̃e

[ 1
pN

Ĝ
] and let X denote the character group of

Tφ. Then the ring of functions of (Tφ)Adβ
� (Ω◦

φ)
Adβ is R[XAdβ ](Ω

◦

φ)
Adβ

, hence has

a natural R-basis given by (Ω◦
φ)

Adβ -orbits in XAdβ . Any such orbit has a unique

representative in the antidominant cone of X with respect to Bφ. So let λ ∈ XAdβ

be antidominant in X and let Lλ be the corresponding invertible sheaf on the
flag variety CĜ(φ)

◦/Bφ. Then Mλ := H0(CĜ(φ)
◦/Bφ,Lλ) is a free R-module of

finite rank with an algebraic action of CĜ(φ)
◦. Actually, since λ is Adβ-invariant,

it defines a character of the group scheme Tφ ⋊ 〈Adβ〉, and since CĜ(φ)
◦/Bφ =

(CĜ(φ)
◦ ⋊ 〈Adβ〉)/(Bφ ⋊ 〈Adβ〉), we see that Mλ is actually a CĜ(φ)

◦ ⋊ 〈Adβ〉-
module. In particular, the map g 7→ tr(g ⋊ Adβ |Mλ) is in the ring of functions of
(CĜ(φ)

◦ ⋊ Adβ̃)�CĜ(φ)
◦. Its restriction to Tφ factors over (Tφ)Adβ

and is of the
form

c






∑

λ′∈(Ω◦

φ
)Adβ .λ

λ′




+

∑

µ>λ

aµµ, aµ ∈ N,

where c denotes the eigenvalue of Adβ on the λ-eigenspace of Tφ in Mλ (which is a
free direct factor of rank 1). So we deduce inductively the desired surjectivity. �
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Eventually, after choosing a pinning εφ for each φ ∈ Φ̃e and inserting the result
of the above proposition inside decompositions (6.1) and (6.2), we get our desired
description of the affine quotient over OK̃e

[ 1
pN

Ĝ
].

Theorem 6.7. The collection of embeddings Tφ →֒ CĜ(φ) induce an isomorphism

of OK̃e
[ 1
pN

Ĝ
]-schemes

∐

φ∈Φ̃adm
e

∐

β∈π0(Frφ,φ)0

(Tφ)Adβ
� (Ωφ)

Adβ
∼
−→ (Z1(WF /I

e
F , Ĝ) � Ĝ)OK̃e

[ 1
pN

Ĝ
].

We note that the LHS does not depend on the choices of elements β̃ as in Theorem
6.5. But the maps from the LHS to the RHS a priori depend on these choices.

6.2. The GIT quotient over a banal algebraically closed field. With The-
orem 6.7 and Proposition 6.2, we now have a description of the affine quotient
Z1(W 0

F /P
e
F , Ĝ) � Ĝ after inverting NĜ and the non GL -banal primes. Let us now

consider affine quotients over algebraically closed fields.

Theorem 6.8. Let L be an algebraically closed field over OK̃e
[ 1
pN

Ĝ
] and of GL -

banal characteristic. Then the natural maps induce isomorphisms
∐

φ∈Φ̃adm
e

∐

β∈π0(Frφ,φ)0

(Tφ,L)Adβ
� (Ωφ)

Adβ
∼
−→ Z1(WF /I

e
F , ĜL) � ĜL

Z1(WF /I
e
F , ĜL) � ĜL

∼
−→ Z1(W 0

F /P
e
F , ĜL) � ĜL

Z1(W 0
F /P

e
F , ĜL) � ĜL

∼
−→ (Z1(W 0

F /P
e
F , Ĝ) � Ĝ)L.

Proof. The first isomorphism holds without the GL -banal hypothesis, and is proved
exactly as the isomorphism of Theorem 6.7. We then have a commutative diagram

∐

(φ,β)(Tφ,L)Adβ
� (Ωφ)

Adβ

��

∼ // Z1(WF /I
e
F , ĜL) � ĜL

��
∐

(φ,β)

(
(Tφ)Adβ

� (Ωφ)
Adβ
)

L

∼ //
(

Z1(WF /I
e
F , Ĝ) � Ĝ

)

L

If, in addition, the order of each (Ωφ)
Adβ is invertible in L, which is certainly the

case if char(L) is GL -banal, then the left vertical map is an isomorphism, and
it follows that the right vertical map is also an isomorphism. So we now have a
commutative square involving the analogous map for W 0

F /P
e
F , which, in terms of

rings, reads

(Re
GL )Ĝ ⊗ L //

∼

��

(Re
GL ⊗ L)Ĝ

��

(Se
GL )Ĝ ⊗ L

∼ // (Se
GL ⊗ L)Ĝ

The right vertical map is surjective since the bottom map is surjective, and it is

also injective since it induces a bijection on L-points and (Re
GL ⊗ L)Ĝ is reduced.

Therefore it is an isomorphism, and so is the upper map. �
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Remark 6.9. Let L be an algebraically closed field as in the theorem.
i) The index set in the first isomorphism can be replaced by any set Ψe(L)

of representatives of Ĝ(L)-conjugacy classes of pairs (φ, β) consisting of a cocycle
φ : IF /I

e
F −→ GL (L) and an element β ∈ π0(

Frφ, φ). Since any φ as above is
automatically semisimple, this is the same set as in Corollary 4.22.

ii) As usual, the set of L-points of Z1(WF /I
e
F , ĜL) � ĜL is the set of closed

ĜL-orbits in Z1(WF /I
e
F , Ĝ(L)). For a cocycle ϕ : WF /I

e
F −→ Ĝ(L) in some

Z1(WF /I
e
F , ĜL)φ, we claim that the following statements are equivalent, provided

L has characteristic 0 :

(1) its ĜL-orbit is closed in Z1(WF /I
e
F , ĜL),

(2) its CĜ(φ)L-orbit is closed in Z1(WF /I
e
F , ĜL)φ,

(3) ϕL (Fr) is a semisimple element of GL (L).
(4) ϕL (WF ) consists of semisimple elements.

Indeed, (1) ⇒ (2) since the small orbit is the intersection of the big one with the

closed subset Z1(WF /I
e
F , ĜL)φ. Moreover, (2) is equivalent to the orbit of ϕL (Fr)

being closed in C GL (φ)(L), which in turn is equivalent to ϕL (Fr) being a semisimple

element of C GL (φ)(L), hence also of GL (L). Further, (3), being equivalent to (2),
applies to any lift of Frobenius, so implies (4). Eventually, (4) implies that the

Ĝ(L)-orbits of a finite set of generators of ϕL (WF ) are closed, which implies (1).
The cocycles that satisfy property (3) are often called “Frobenius semi-simple”

in the literature. When L has positive characteristic, a cocycle with closed orbit
may not be Frobenius semi-simple. For example suppose q = qF has prime order
ℓ 6= p in some (Z/nZ)× with n prime to both p and ℓ, and consider the character

θ : IF ։ µn →֒ F
×
ℓ . Extend this character to IF · Fr

ℓZ by setting θ(Frℓ) = 1 and
induce to WF . We obtain an irreducible representation ϕ : WF −→ GLℓ(Fℓ) such
that ϕ(Fr) has order ℓ.

6.3. Comparison with the Haines variety. In this subsection, we assume that
the action of WF stabilizes a pinning of Ĝ, so that GL is an L-group associated to
some reductive group G over F . As noted in point ii) of the last remark, the set of
C-points of the affine categorical quotient

Z1(WF /I
e
F , Ĝ)C � ĜC

is the set of Ĝ(C)-conjugacy classes of Frobenius semisimple L-homomorphisms
WF /I

e
F −→ GL (C). In [Hai14], Haines endows this set with the structure of a

complex affine variety that mimics Bernstein’s description of the center of the cat-
egory of complex representations of G(F ). We will denote by Ωe(Ĝ) the Haines
variety and we wish to compare his construction to ours. Note that, in the nota-
tion of [Hai14], Ωe(Ĝ) is a summand of Y and is the union of all components Yt

corresponding to inertial classes of parameters that are trivial on P e
F . In a rather

abstract form, the main result of this section is the following.

Theorem 6.10. The set-theoretic identification between (Z1(WF /I
e
F , Ĝ) � Ĝ)(C)

and Ωe(Ĝ) is induced by an isomorphism of varieties

Ωe(Ĝ) ≃ Z
1(WF /I

e
F , Ĝ)C � ĜC.

We need to recall some features of Haines’ construction in Section 5 of [Hai14].
Let ϕL : WF /I

e
F → GL (C) be a Frobenius-semisimple L-morphism (called an



72 JEAN-FRANÇOIS DAT, DAVID HELM, ROBERT KURINCZUK, AND GILBERT MOSS

“infinitesimal character” by Haines and Vogan), and choose a Levi subgroupM of
GL that contains ϕL (WF ) and is minimal for this property. Here we consider Levi

subgroups in the sense of Borel [Bor79, ➜3]. In particular,M◦ =M∩ Ĝ is a Levi

subgroup of Ĝ and π0(M)
∼
−→ π0( GL ) is a quotient of WF . As a consequence, the

action ofM by conjugation on the center Z(M◦) ofM◦ factors through an action
of π0( GL ), and provides thus a canonical action of WF on Z(M◦). We may then
consider the torus (Z(M◦)IF )◦ given by the neutral component of the IF -invariants,
and which still carries an action of WF /IF = 〈Fr〉. To any z ∈ (Z(M◦)IF )◦, Haines
associates a new parameter z · ϕL defined by

(z · ϕL )(w) := zν(w) ϕL (w), with ν :WF ։ Z defined by wFr−ν(w) ∈ IF .

The conjugacy class (z· ϕL )Ĝ only depends on the image of z in the Fr-coinvariants

(Z(M◦)IF )◦Fr, hence we get a map

(6.4) (Z(M◦)IF )◦Fr −→ Ωe(Ĝ) = (Z1(WF /I
e
F , GL ) � Ĝ)(C)

By Haines’ definition of the variety structure on Ωe(Ĝ), this map is a morphism

of algebraic varieties (Z(M◦)IF )◦Fr −→ Ωe(Ĝ). Even better, there is a finite
group WM,ϕ of algebraic automorphisms of (Z(M◦)IF )◦Fr, whose precise defini-
tion is not needed here, such that the map (6.4) factors over an injective map

(Z(M◦)IF )◦Fr/WM,ϕ →֒ Ωe(Ĝ). Then, the corresponding morphism of varieties

(Z(M◦)IF )◦Fr � WM,ϕ −→ Ωe(Ĝ) is an isomorphism onto a connected component

of Ωe(Ĝ), by Haines’ construction. Moreover, all connected components are ob-
tained in this way.

At this point, we have recalled enough to prove one direction.

Lemma 6.11. The set-theoretic identification between Ωe(Ĝ) and (Z1(WF /I
e
F , Ĝ)�

Ĝ)(C) is induced by a morphism of varieties

Ωe(Ĝ) −→ Z1(WF /I
e
F , Ĝ)C � ĜC.

Proof. By the foregoing discussion, it now suffices to prove that each map (6.4) is
induced by a morphism of schemes

(Z(M◦)IF )◦Fr −→ Z1(WF /I
e
F , Ĝ)C � ĜC.

By construction, the map (6.4) is part of a commutative diagram

(Z(M◦)IF )◦

��

// Z1(WF /I
e
F , Ĝ)(C)

��

(Z(M◦)IF )◦Fr
// (Z1(WF /I

e
F , Ĝ) � Ĝ)(C)

where the top map is given by z 7→ z · ϕL . Denote by ζ ∈ GL (C[(Z(M◦)IF )◦])
the element corresponding to the closed immersion (Z(M◦)IF )◦ →֒ GL . Then

ζ · ϕL is an element of Z1(WF /I
e
F , Ĝ(C[(Z(M

◦)IF )◦])), hence corresponds to a

morphism (Z(M◦)IF )◦ −→ Z1(WF /I
e
F , Ĝ). By definition, this morphism induces

the top map of the above diagram on the respective sets of C-points. Moreover,
the composition of this morphism with the morphism underlying the right vertical
map of the diagram is Fr-equivariant for the trivial action of Fr on the target, so it
has to factor over a morphism which induces the bottom map of the diagram, as
desired. �



MODULI OF LANGLANDS PARAMETERS 73

We now go in the other direction.

Lemma 6.12. The set-theoretic identification between (Z1(WF /I
e
F , Ĝ)�Ĝ)(C) and

Ωe(Ĝ) is induced by a morphism of varieties

Z1(WF /I
e
F , Ĝ)C � ĜC −→ Ωe(Ĝ).

Proof. The description of Theorem 6.7 shows that it suffices to prove that for any
pair (φ, β) as in Theorem 6.7 and any choice of β̃ ∈ TĜ(

Frφ, φ)β as in Theorem 6.5,
the map

(6.5) (Tφ)Adβ
(C) −→ (Z1(WF /I

e
F , Ĝ) � Ĝ)(C) = Ωe(Ĝ)

is induced by a morphism of algebraic varieties (Tφ)Adβ
−→ Ωe(Ĝ).

To prove this, we will identify the maps (6.5) to instances of maps (6.4). Let us

thus fix a pair (φ, β) and β̃ as in the statement, so that Adβ̃ fixes a pinning εφ of

CĜ(φ)
◦ with maximal torus Tφ. We denote by ϕβ̃ the unique extension of φ such

that ϕβ̃(Fr) = β̃. Consider the torus (Tφ)
Adβ̃ ,◦. Its centralizer M in GL contains

ϕL β̃(WF ), hence maps onto π0( GL ) and is thus a Levi subgroup in the sense of

Borel. Moreover, the canonical action of WF on Z(M◦) is induced by Adϕβ̃
. We

claim that M is minimal among Levi subgroups of GL that contain ϕL β̃(WF ).

Indeed, if ϕL β̃(WF ) ⊂ M
′ ⊂ M, then (Tφ)

Adβ̃ ,◦ ⊂ Z(M)◦ ⊂ Z(M′)◦ ⊂ CĜ(ϕβ̃)
◦.

But (Tφ)
Adβ̃ ,◦ is a maximal torus of CĜ(ϕβ̃)

◦ = CĜ(φ)
Adβ̃ ,◦ by [DM94, Thm 1.8

iii)], so all inclusions above have to be equalities and in particularM′ =M since
a Levi subgroup of GL is the centralizer in GL of its connected center by [Bor79,
Lem. 3.5]. Now, observe that

(Z(M◦)IF )◦ = Z(M◦)Adφ(IF ),◦ ⊂M◦ ∩ CĜ(φ)
◦ = Tφ.

Indeed, the last equality comes from [DM94, Thm 1.8 iv)] which implies that the

centralizer of (Tφ)
Adβ̃ ,◦ in CĜ(φ)

◦ is Tφ. Taking
Lϕβ̃(Fr)-invariants, we get

Z(M)◦ = (Z(M◦)IF )Adβ̃ ,◦ ⊂ (Tφ)
Adβ̃ ,◦,

from which we deduce that (Z(M◦)IF )Adβ̃ ,◦ = (Tφ)
Adβ̃ ,◦ since (Tφ)

Adβ̃ ,◦ ⊂ Z(M).
Since the order of Adβ̃ on Tφ is finite, it follows that the inclusion of tori (Z(M◦)IF )◦ ⊂
Tφ induces an isogeny

(6.6) (Z(M◦)IF )◦Fr ։ (Tφ)Adβ̃
.

Here, note that the action of ϕβ̃(Fr) on Z(M
◦) is just the action of Fr since β̃ ∈M◦.

Now, by construction, the map (6.5) is part of a commutative diagram

Tφ(C)

��

// Z1(WF /I
e
F , Ĝ)(C)

��

(Tφ)Adβ̃
(C) // (Z1(WF /I

e
F , Ĝ) � Ĝ)(C)

where the top map is given by

t 7→
(

w 7→ tν(w)ϕβ̃(w)
)

,
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where ν is the projection WF −→WF /IF = FrZ. This shows that the composition
of the bottom map of the diagram (i.e. the map of the lemma) with (6.6) is an

instance of (6.4), which is a morphism of algebraic varieties (Z(M◦)IF )◦Fr −→ Ωe(Ĝ)
according to Haines’ construction. This morphism is constant along the fibers of
(6.6), so it has to factor over (6.6) since the latter is a quotient morphism. Hence

the bottom map of the diagram is a morphism of varieties (Tφ)Adβ̃
−→ Ωe(Ĝ). �

Proof of Theorem 6.10. It follows from the two above lemmas. �

Remark 6.13. The isomorphism of Theorem 6.10 induces of course a bijection
between the sets of connected components on both sides. This bijection is easily
described as follows :

• π0(Ωe(Ĝ)) is the set of “inertial classes” of Frobenius-semisimple cocycles
ϕ, as defined in [Hai14, ➜5.3, Def. 4.15], that are trivial on IeF .

• π0(Z
1(WF /I

e
F , Ĝ)C � ĜC) is the set of conjugacy classes of pairs (φ, β) as

in ii) of Remark 6.9.
• The bijection takes ϕ to (ϕ|IF , p(ϕ(Fr))) with p the projection TĜ(

Frφ, φ) −→

π0(
Frφ, φ).

Now, we wish to compare more explicitly Haines’ construction with our descrip-
tion. This can be done component-wise, so let us fix data (φ, β, εφ, β̃) and put

ϕ = ϕβ̃ as in the last proof. Recall also the Levi subgroup M = C GL ((Tφ)
Adβ̃ ,◦)

of GL that appeared in the last proof. So we have an inclusion Z(M◦)IF ,◦ ⊂ Tφ
that induces an isogeny π : (Z(M◦)IF ,◦)Fr ։ (Tφ)Adβ̃

as in (6.6). The associated

connected component in Theorem 6.7 is (Tφ)Adβ̃
� (Ωφ)

Adβ̃ , which we may also
write as a two-steps quotient :

(
(Z(M◦)IF ,◦)Fr/ ker(π)

)
/(Ωφ)

Adβ̃ ,

while the same component is described as a two-steps quotient
(
(Z(M◦)IF ,◦)Fr/Stab(ϕ)

)
/Wϕ,M◦

in Lemmas 4.19 and 4.20 of Section 5.3 in Haines’ paper [Hai14]. The relation
between these two presentations can be summarized as follows :

Lemma 6.14. Using the notation right above,

(1) we have ker(π) ⊂ Stab(ϕ) as subgroups of (Z(M◦)IF ,◦)Fr.
(2) there is a normal subgroup K ⊂ (Ωφ)

Adβ whose action on (Tφ)Adβ
factors

over that of Stab(ϕ)/ ker(π) through a surjective map K ։ Stab(ϕ)/ ker(π).

(3) there is a natural isomorphism (Ωφ)
Adβ/K

∼
−→Wϕ,M◦ compatible with the

respective actions on (Z(M◦)IF ,◦)Fr/Stab(ϕ).

Moreover, when CĜ(φ) is connected, we have ker(π) = Stab(ϕ), while (Ωφ)
Adβ̃ iden-

tifies with Wϕ,M◦ compatibly with the action on (Tφ)Adβ
= (Z(M◦)IF ,◦)Fr/Stab(ϕ)

(i.e., the group K above is trivial).

Proof. Let us simplify the notation by putting Z := (Z(M◦)IF ,◦)Fr (denoted Y (M◦)

in Haines’ paper) and Z̃ := Z(M◦)IF ,◦. Then Haines’ definition of Stab(ϕ) (de-
noted stabλ there) is

Stab(ϕ) = {z ∈ Z, ∃z̃ 7→ z, ∃m ∈M◦, z̃ · ϕ = Adm(ϕ)} .
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Here, we use our notation c · ϕ for the unique 1-cocycle that restricts to φ on
inertia and takes value cβ̃ on Fr (this makes sense for any c ∈ CĜ(φ)). Note that
if z̃ · ϕ = Adm(ϕ), then in particular φ = Adm(φ), i.e. m ∈ CĜ(φ), hence we also

have Adm(ϕ) = (mAdβ̃(m)−1) · ϕ. Moreover, since m centralizes (Tφ)
Adβ̃ ,◦, it also

normalizes the centralizer of this torus in CĜ(φ)
◦, which is Tφ. So we see that

Stab(ϕ) =
{

z ∈ Z, ∃z̃ 7→ z, ∃m ∈M◦ ∩NC
Ĝ
(φ)(Tφ), z̃ = mAdβ̃(m)−1

}

.

This certainly contains

ker(π) =
{

z ∈ Z, ∃z̃ 7→ z, ∃t ∈ Tφ, z̃ = tAdβ̃(t)
−1
}

.

We have seen in the last proof thatM◦ ∩ CĜ(φ)
◦ = Tφ, therefore, when CĜ(φ) is

connected, we have ker(π) = Stab(ϕ). In general, we have

Stab(ϕ)/ ker(π) ≃

{
t ∈ (Tφ)Adβ

, ∃z̃ ∈ Z̃ 7→ t, ∃m ∈M◦ ∩NC
Ĝ
(φ)(Tφ)

z̃ = mAdβ̃(m)−1

}

=

{
t ∈ (Tφ)Adβ

, ∃t̃ ∈ Tφ 7→ t, ∃m ∈M◦ ∩NC
Ĝ
(φ)(Tφ)

t̃ = mAdβ̃(m)−1

}

.

To see the last equality, start with t in the last set and pick (t̃, m) with t̃ 7→ t and
t̃ = mAdβ̃(m)−1. By surjectivity of (6.6), there is s ∈ Tφ such that st̃Adβ(s)

−1 =:

z̃ ∈ Z̃. Then we have z̃ 7→ t and z̃ = (sm)Adβ(sm)−1 with sm ∈M◦∩NC
Ĝ
(φ)(Tφ).

Now recall that Ω
Adβ

φ = Nβ/Tφ where

Nβ =
{

n ∈ NC
Ĝ
(φ)(Tφ), nAdβ̃(n)

−1 ∈ Tφ
}

.

From the description above, we see that Stab(ϕ)/ ker(π) is the image of the map
Nβ∩M

◦ −→ (Tφ)Adβ
given by n 7→ nAdβ̃(n)

−1, and that this map factors over the

subgroup K := (Nβ ∩M
◦)/Tφ of (Ωφ)

Adβ . Moreover, the action of n ∈ Nβ ∩M
◦

on (Tφ)Adβ
is given by t 7→ ntAdβ(n)

−1 = ntn−1(nAdβ(n)
−1) = t(nAdβ(n)

−1)

because n centralizes (Tφ)
Adβ ,◦. So this action factors through the above morphism.

On the other hand, Haines’ definition ofWϕ,M◦ (denotedW Ĝ
[λ]M◦

there) is of the

form Wϕ,M◦ = N/M◦ with

N =
{

n ∈ NĜ(M), ∃m ∈M◦, ∃z̃ ∈ Z̃,Adn(ϕ) = Adm(z̃ · ϕ)
}

.

We claim that Nβ ⊂ N . Indeed, note first that the conjugation action of an element

n ∈ Nβ on Tφ commutes with Adβ , so n normalizes T
Adβ ,◦
φ hence it normalizes also

M. Moreover, writing t̃ := nAdβ̃(n)
−1 ∈ Tφ, we have Adn(ϕ) = t̃ ·ϕ. Finally, since

Z̃ surjects onto (Tφ)Adβ
, there are z̃ ∈ Z̃ and m ∈ Tφ such that t̃ = mAdβ(m)−1z̃,

hence also t̃ · ϕ = Adm(z̃ · ϕ). So we have Nβ ⊂ N , and since Tφ ⊂ M
◦, we get a

map

(6.7) (Ωφ)
Adβ −→Wϕ,M◦ .

We now claim that this map is surjective. Indeed, let n ∈ N and pick z̃ and m
such that Adn(ϕ) = Adm(z̃ ·ϕ). The element n′ := m−1n has the same image as n
in Wϕ,M◦ , and we have Adn′(ϕ) = z̃ · ϕ, hence also Adn′(φ) = φ, i.e. n′ ∈ CĜ(φ).

Moreover, n′ normalizes Z(M)◦ = (Tφ)
Adβ ,◦ (see the proof of the last lemma

above), hence it normalizes the connected centralizer of (Tφ)
Adβ ,◦ in CĜ(φ), which
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is Tφ. Hence we see that n′ ∈ Nβ and we get the surjectivity of (6.7). We also see
that

ker((Ωφ)
Adβ −→Wϕ,M◦) = im(Nβ ∩M

◦ −→ (Ωφ)
Adβ ) = K.

In particular, when CĜ(φ) is connected, we have Nβ ∩M
◦ ⊂ CĜ(φ)

◦ ∩M◦ = Tφ,
so the map (6.7) is bijective in this case. �

Appendix A. Moduli of cocycles

A.1. Schemes of cocycles. Let H be an affine group scheme over a noetherian
ring R and let Γ be a finite group. Consider the functor Hom(Γ, H), which to any
R-algebra R′ associates the set of homomorphisms Hom(Γ, H(R′)). It is represented
by a closed and finitely presented R-subscheme of the affine R-scheme H(Γ), since
it is the inverse image of the closed subscheme {1H}

(Γ×Γ) of H(Γ×Γ) by the R-
morphism H(Γ) −→ H(Γ×Γ) defined by (hγ)γ∈Γ 7→ (hγhγ′h−1

γγ′)(γ,γ′)∈Γ×Γ.

The group scheme H acts by conjugation on Hom(Γ, H). Given an R-algebra
R′ and an homomorphism φ ∈ Hom(Γ, H(R′)), the orbit maps g 7→ Adg ◦ φ,
H(R′′) −→ Hom(Γ, H(R′′)) define an R′-morphism HR′ −→ Hom(Γ, H)R′ of finite
presentation, that we call an orbit morphism (here R′′ runs over R′-algebras). The
fiber over any other homomorphism φ′ ∈ Hom(Γ, H(R′)) of this morphism is the
transporter TH(φ, φ′) of φ, which to any R′′ over R′ associates the set-theoretic
transporter from φ to φ′ in H(R′′).

Lemma A.1. Assume that H is smooth and that Γ has order invertible in R.
Then Hom(Γ, H) is smooth over R, all the orbit morphisms are smooth and all
transporters are smooth.

Proof. By finite presentation, to prove smoothness it suffices to prove formal smooth-
ness. Let R′ be an R-algebra and let I be an ideal of R′ of square 0. We need
to show that the map Hom(Γ, H(R′)) −→ Hom(Γ, H(R′/I)) is surjective. So let
φ0 : Γ −→ H(R′/I) be a group homomorphism. By smoothness of H we may lift φ0
to a map h : Γ −→ H(R′). Consider the map Γ × Γ −→ ker(H(R′) −→ H(R′/I))
that takes (γ, γ′) ∈ Γ × Γ to h(γ)h(γ′)h(γγ′)−1. Note that conjugation by h(γ)
endows the abelian group ker(H(R′) −→ H(R′/I)) with an action of Γ that ac-
tually only depends on φ0. In fact, if we identify ker(H(R′) −→ H(R′/I)) with
the R′/I-module Lie(H)⊗R I then this action is induced by the R′/I-linear action
of Γ on Lie(H) ⊗R R′/I given by the adjoint representation composed with the
homomorphism φ0. Now the map defined above is a 2-cocycle, hence since |Γ| is
invertible in R, it has to be cohomologically trivial, so there is a map k : Γ −→
ker(H(R′) −→ H(R′/I)) such that h(γ)h(γ′)h(γγ′)−1 = k(γ)(h(γ)k(γ′))k(γγ′)−1.
Then the map γ 7→ φ(γ) := k(γ)−1h(γ) is a group homomorphism φ : Γ −→ H(R′)
that lifts φ0, and the smoothness of Hom(Γ, H) follows.

Now fix a homomorphism φ : Γ −→ H(R) and let us show that the corresponding
orbit morphism is smooth, by using the infinitesimal criterion. Let again R′ be an
R-algebra together with an ideal I of square 0, and let φ′ be another homomorphism
Γ −→ H(R′) whose image φ′0 in Hom(Γ, H(R′/I)) is conjugate to φ0 by an element
h0 in H(R′/I). We must find an element h ∈ H(R′) that conjugates φ′ to φ. By
smoothness of H we can pick an element h′ ∈ H(R) that maps to h0. Then the

map γ 7→ φ(γ)(h′φ′(γ)−1h′
−1

) defines a 1-cocycle of Γ in ker(H(R′) −→ H(R′/I))
endowed with the action associated with φ0 as above. By the same argument as
above, this cocycle is a coboundary, so there is some k ∈ ker(H(R′) −→ H(R′/I))
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such that φ(γ)h′φ′(γ)−1h′
−1

= (φ(γ)kφ(γ)−1)k−1, from which we get an element
h = k−1h′ as desired. Hence the orbit morphism is smooth. By base change, the
centralizers and the transporters are therefore smooth too. �

Suppose now that we are given an action of Γ on H by automorphisms of group
schemes over R. Identifying 1-cocycles Γ −→ H(R′) with cross-section homomor-
phisms Γ −→ H ⋊ Γ (i.e. homomorphisms whose composition with the projection
to Γ is the identity), we see that the functor R′ 7→ Z1(Γ, H(R′)) is represented by
an R-scheme that is a direct summand of Hom(Γ, H ⋊ Γ). We denote this scheme
by Z1(Γ, H). It is stable under the conjugation action of H ⋊ Γ restricted to H.

When H is smooth, so is H ⋊ Γ, hence the above lemma implies :

Corollary A.2. Assume that H is smooth and that Γ has order invertible in R.
Then Z1(Γ, H) is smooth over R, all the H-orbit morphisms are smooth and all
transporters are smooth.

A.2. The sheafy quotient. We henceforth assume that H is smooth and Γ has
order invertible in R, and we are now interested in the quotient object H1(Γ, H) of
Z1(Γ, H) by the conjugation action of H. As for now, we define it as the quotient
sheaf, say for the étale topology, that is, the sheaf associated to R 7→ H1(Γ, H(R)).

Corollary A.3. Assume that R is a local Henselian ring, and denote by k its
residue field. Then the map H1(Γ, H(R)) −→ H1(Γ, H(k)) is a bijection.

Proof. By smoothness of Z1(Γ, H) and [Gro67, Thm 18.5.17], any k-point of Z1(Γ, H)
extends to a section over R, that is, the map Z1(Γ, H(R)) −→ Z1(Γ, H(k)) is sur-
jective. Hence the map of the lemma is surjective too. To prove injectivity, let
φ, φ′ : Γ −→ H(R) be two 1-cocycles whose images φ0, φ

′
0 are H-conjugate in

Hom(Γ, H(k) ⋊ Γ) by some h0 ∈ H(k). By the previous lemma, the transporter
scheme TH(φ, φ′) is smooth over R. Hence, by [Gro67, Thm 18.5.17] again, its
k-point h0 extends to an R-section h that conjugates φ to φ′. �

Lemma A.4. Assume that H is reductive, that R is a strictly Henselian local ring,
and denote by R′ any non-zero R-algebra.

(i) the map H1(Γ, H(R)) −→ H1(Γ, H(R′)) is injective.
(ii) it is surjective if R is a d.v.r. or a field and R′ is local strictly Henselian.

Proof. We adapt the proof of Thm 4.8 of [BHKT19].
(i) We need to prove that if two cocycles φ, φ′ in Z1(Γ, H(R)) get H(R′)-

conjugate in Hom(Γ, H(R′)⋊Γ), then they are H(R)-conjugate. By the last corol-
lary, it suffices to prove that their images φ0, φ

′
0 ∈ Z

1(Γ, H(k)) are H(k)-conjugate.
We will need V. Lafforgue’s theory of pseudocharacters for the group H ⋊ Γ. This
notion is introduced without name nor formal definition in the preamble of Propo-
sition 11.7 of [Laf18]. A formal definition is given in [BHKT19, Def 4.1] where
the name “pseudocharacter” is also introduced. Unfortunately, unlike Lafforgue,
these authors restrict attention to connected (split reductive) groups. However, one

has merely to replace Z[Ĝn]Ĝ by Z[(H ⋊ Γ)n]H in [BHKT19, Def 4.1] to get the
correct definition for the non-connected group H ⋊Γ (note that H is a split reduc-
tive group over R, since R is strictly Henselian). Then, as in [BHKT19, Lemma
4.3], it follows from the definition that any homomorphism φ : Γ −→ H(R) ⋊ Γ
defines a “H⋊Γ-pseudocharacter of Γ over R” denoted by Θφ. Moreover, if φ, φ′ in
Z1(Γ, H(R)) become H(R′)-conjugate in Hom(Γ, H(R′)⋊Γ), then Θφ ≡ Θφ′ [modI]
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where I = ker(R −→ R′) (as in lemmas 4.3 and 4.4.i of [BHKT19]). Therefore
we get Θφ0 = Θφ′

0
. Then, the main result on pseudocharacters asserts that the

semi-simplifications of φ0 and φ′0 are conjugate under H(k). Here, the notion of
semi-simplicity is the notion of H ⋊ Γ-complete reducibility of [BMR05, ➜6]. We
note actually that this result is proven in [Laf18, Prop. 11.7] when k has charac-
teristic 0 and in [BHKT19, Thm 4.5] in any characteristic, but in the connected
case. We leave it to the reader to convince themselves that their argument can be
adapted to the non-connected case in any characteristic.

It suffices now to show that φ0 and φ′0 are actually H ⋊ Γ-completely reducible.
Choose an R-parabolic subgroup P of H⋊Γ containing φ0(Γ) and minimal for this

property. Let P
π
−→ LP be its Levi quotient and let LP

ι
−→ P be a Levi section of

P . Then φss0 := ι ◦ π ◦ φ0 is by definition a semisimplification of φ0. If we denote
by UP the unipotent radical of P , the map Γ −→ UP , γ 7→ φss0 (γ)φ0(γ)

−1 is a
1-cocycle for the action of Γ by conjugation on UP through φ0. The descending
central series of UP is a Γ-stable descending filtration of UP by smooth unipotent
subgroup schemes whose successive quotients are k-vector space schemes. Since |Γ|
is invertible in k, we know that H1(Γ, V ) is trivial for any kΓ-module V . There-
fore the above 1-cocycle is a coboundary, and we can find some u ∈ UP such
that φss0 (γ)φ0(γ)

−1 = u−1φ0(γ)uφ0(γ)
−1. So u−1 conjugates φ0 to φss0 and φ0 is

semisimple (ie H ⋊ Γ-completely reducible) as claimed.
(ii) Denote by k′ the residue field of R′ and by K̄ an algebraic closure of the

fraction field of R. In the case where R is a d.v.r, either the composition R −→ k′

factors as R −→ k −→ k′ or as R −→ K̄ −→ k′. Applying the last corollary to
both R and R′, we are thus reduced to showing the special case (a) of statement (ii)
where R′ = K̄, and its variant (b) where R and R′ are algebraically closed fields.

(a) The case where R′ = K̄ is an algebraic closure of the fraction field K of R.
This case will follow from the following facts of Bruhat-Tits theory :

BT1. any vertex of the semi-simple building B(H,K) and, more generally, the
barycenter of any facet ofB(H,K) becomes a hyperspecial point inB(H,K ′)
for a suitable finite extension K ′ of K

BT2. two hyperspecial points in B(H,K ′) becomeH(K ′′)-conjugate in B(H,K ′′)
for some further finite extension K ′′.

Note that, here, H is split over K (since R is strictly henselian), so these facts are
quite elementary, even in our setting where the discretely valued fieldK is Henselian
but not necessarily complete. For example, BT2 follows from Corollary 7.11.5 of the
forthcoming book [KP22]. As for BT1, here is a sketch of the argument. Choose
a splitting (B, T,X) of H over R and denote by A the appartment of B(H,K)
associated to T . It contains the hyperspecial point o corresponding to the integral
model H over R. The pinning defines a “Chevalley valuation” of the root system of
T in H, and then an affine root system on A. By [KP22, Prop 6.4.1], we know that,
taking o as an origin of the R-affine space A, the affine roots on A are translates of
ordinary roots by integers. It then follows that a point y ∈ A is (hyper)special if
α(y) ∈ v(K×) for all roots α, and where v is the valuation of K. Now, let x be the
barycenter of some facet of B(H,K). After translating x by an element of G(K)
we may assume that x lies in A. Being the barycenter of a facet, there is an integer
N such that α(x) ∈ 1

N v(K
×) for all roots α. So, if K ′ is any extension whose

ramification index is a multiple of N , then x becomes (hyper)special in B(H,K ′).
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Observe also that Γ acts on the building B(H,K) and fixes the hyperspecial
point o. Now let φ ∈ Z1(Γ, H(K̄)). Then φ belongs to Z1(Γ, H(K1)) for some
finite extension K1 of K. Pick a point x of B(H,K1) fixed by Lφ(Γ) ⊂ H(K1)⋊Γ.
Up to replacing x by the barycenter of the facet that contains x, we may assume x is
the barycenter of this facet. So it becomes hyperspecial over some finite extension
K2 of K1 and we may even assume that there is some h ∈ H(K2) such that
hx = o. Then h(Lφ)(Γ) fixes o so, writing h(Lφ)(γ) = (hφ(γ), γ) ∈ H(K2) ⋊ Γ,
we see that hφ(γ) fixes o hence belongs to H(K2)o = H(R2)ZH(K2) for all γ ∈
Γ, i.e. hφ ∈ Z1(Γ, H(R2)ZH(K2)), where R2 is the normalization of R in K2.
Now, note that H1(Γ, ZH(K2)/ZH(R2)) may not be trivial, but maps trivially in
H1(Γ, ZH(K3)/ZH(R3)) for any further finite extension K3 such that |Γ| divides
the exponent of ZH(K3)/ZH(R3)ZH(K2). This means that there is z ∈ ZH(K3)
such that zhφ ∈ Z1(Γ, H(R3)). But R3 is an Henselian local R-algebra with the
same residue field as R, so by the previous corollary there is h′ ∈ H(R3) such that
h′zhφ ∈ Z1(Γ, H(R)). So the class [φ] in H1(Γ, H(K̄)) is the image of [h

′zhφ] ∈
H1(Γ, H(R)), as desired.

(b) The case where R and R′ are algebraically closed fields. This case can cer-
tainly be handled via pseudocharacters. Namely, using [BHKT19, Thm 4.5] and the
fact that all morphisms Γ −→ H(R)⋊Γ are H⋊Γ-semisimple (as proved above), we
see that it suffices to prove that any H⋊Γ-pseudocharacter of Γ over R′ is actually
R-valued. However, the result is true under the much more general assumption that
H is smooth over R. Indeed, since the orbit morphisms are smooth, theH(R)-orbits
in Z1(Γ, H(R)) are open for the Zariski topology. Since two orbits are either equal
or disjoint, there are only finitely many of them. Let φ1, · · · , φn be representatives.
The orbit morphisms yield a smooth surjective morphism (⊔ni=1H) −→ Z1(Γ, H)
which induces in turn a surjection on R′-points (⊔ni=1H(R′)) −→ Z1(Γ, H)(R′)
since R′ is algebraically closed. So we see that each H(R′)-orbit in Z1(Γ, H(R′))
comes from an H(R)-orbit in Z1(Γ, H(R)). �

Recall now the étale sheafification H1(Γ, H) of the functor R′ 7→ H1(Γ, H(R′))
on R-algebras. Here we consider the “big” site of affine schemes of finite presen-
tation over R with the étale topology. The maps H1(Γ, H(R)) −→ H1(Γ, H(R′))
define a morphism from the constant presheaf associated to the set H1(Γ, H(R))
to the presheaf R′ 7→ H1(Γ, H(R′)). It induces in turn a morphism of sheaves

H1(Γ, H(R)) −→ H1(Γ, H)

where the left hand side is a “constant” sheaf.

Proposition A.5. Suppose that H is reductive over a strictly Henselian discrete
valuation ring R in which the order of Γ is invertible. Then the above morphism of
sheaves is an isomorphism. In particular, H1(Γ, H) is representable by a product
of finitely many copies of R.

Proof. We first note that the functor R′ 7→ H1(Γ, H(R′)) defined over all R-algebras
commutes with filtered colimits. Indeed, this property is certainly true for the func-
tors R′ 7→ Z1(Γ, H(R′)) and R′ 7→ H(R′) since both these functors are represented
by finitely presented R-algebras. Elementary formal nonsense shows that this prop-
erty holds in turn for the quotient functor R′ 7→ H1(Γ, H(R′)).

Therefore, if A is any R-algebra and x is a geometric point of Spec(A) then,
writing Ash

x for the strict henselization of A at x, the set H1(Γ, H(Ash
x )) is the
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stalk of the sheaf H1(Γ, H) at x. So by the last lemma, the map H1(Γ, H(R)) −→
H1(Γ, H(Ash

x )) is bijective. This means that the morphism of sheaves under con-
sideration is an isomorphism on stalks. Thus it is an isomorphism.

It remains to justify the finiteness of the set H1(Γ, H(R)). But it follows from
Corollary A.3 and the last paragraph of the proof of Lemma A.4. �

Remark A.6. Here is a concrete paraphrase of the proposition. First note that
the map Z1(Γ, H(R)) −→ H1(Γ, H)(R) is surjective since R is strictly Henselian,
so that we can pick a finite subset Φ0 ⊂ Z1(Γ, H(R)) mapping bijectively to
H1(Γ, H)(R). Now, suppose that A is an integral finitely presented R-algebra
and let φ be a 1-cocycle Γ −→ H(A). Then there is a unique cocycle φ0 ∈ Φ0 and
a faithfully étale map A −→ A′ such that φ is H(A′)-conjugate to the “constant”
cocycle φ0.

We now globalize a bit the previous proposition.

Theorem A.7. Suppose that H is reductive over a Dedekind G-ring R in which the
order of Γ is invertible. Then H1(Γ, H) is representable by a finite étale R-algebra.

Proof. Let K̄ be an algebraic closure of the fraction field K of R. For a closed
point s of Spec(R), denote by Rsh

s a strict henselization of R at s (depending on
a choice of geometric point over s) and by K̄s an algebraic closure of its fraction
field. Let us choose a set of representatives Φs ⊂ Z

1(Γ, H(Rsh
s )) of H1(Γ, H(Rsh

s )).
Since Z1(Γ, H) is finitely presented, these representatives are defined over some
étale R-domain R′, so that Φs comes from a subset ΦR′ ⊂ Z1(Γ, H(R′)). Now if s′

is another closed point of Spec(R) in the image of Spec(R′) and if we choose an R-
morphism R′ −→ Rsh

s′ , then we claim that the natural map ΦR′ → H1(Γ, H(Rsh
s′ ))

is also a bijection. Indeed, this follows from the following commutative diagram

H1(Γ, H(Rsh
s ))

∼ // H1(Γ, H(K̄s))

ΦR′

88qqqqqqqqqqq

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

// H1(Γ, H(K̄))

∼

hh◗◗◗◗◗◗◗◗◗◗◗◗

∼

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

H1(Γ, H(Rsh
s′ ))

∼ // H1(Γ, H(K̄s′))

where we have chosen an R-embedding R′ →֒ K̄ and two R′-embeddings K̄ →֒ K̄s

and K̄ →֒ K̄s′ , and where the ∼ denote bijections granted by Lemma A.4. As
a consequence, denoting by ΦR′ the constant sheaf on R′-algebras associated to
the set ΦR′ , we see as in the last proof that the natural morphism of sheaves
ΦR′ −→ H1(Γ, H)R′ is an isomorphism.

Now, varying the point s and using the quasicompacity of Spec(R) we get a
faithfully étale morphism R →֒ R′′ = R′

1 × · · · × R′
n and a set ΦR′′ = ΦR′

1
×

· · · × ΦR′
n

such that the natural morphism of sheaves on R′′-algebras ΦR′′ −→

H1(Γ, H)R′′ is an isomorphism. In particular, the sheaf H1(Γ, H) is representable
after base change to R′′ by a sum of copies of R′′. Since the map of (SpecR)ét-
sheaves H1(Γ, H)×SpecR SpecR′′ −→ H1(Γ, H) is visibly representable, étale and

surjective, it follows that H1(Γ, H) is an algebraic space over (SpecR)ét. This
algebraic space has to be finite étale (and in particular separated) over R since it
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is so after base change to R′′. Hence by Corollary II.6.17 of [Knu71], this algebraic
space is actually a scheme, and it is finite étale over R. �

A.3. Relation with the affine GIT quotient. Let us investigate the relationship
between H1(Γ, H) and another natural quotient of Z1(Γ, H) by H. Namely, denote
by O the R-algebra such that Z1(Γ, H) = Spec(O). The action of H on Z1(Γ, H)

translates into a comodule structure O
ρ
−→ O ⊗R R[H] on O under the Hopf R-

algebra R[H] corresponding to H. As usual, put

OH := ker(ρ− id⊗ε)

where ε is the unit of R[H]. Then the morphism Spec(O) −→ Spec(OH) is a
categorical quotient of Z1(Γ, H) by H in the category of affine R-schemes.

Note that H1(Γ, H) is a categorical quotient in the much larger category of
sheaves on the big étale site of Spec(R). However, under suitable assumptions,
Theorem A.7 shows that it is actually represented by an affine R-scheme. So, by
uniqueness of categorical quotients, we conclude that up to a unique isomorphism,
we have

H1(Γ, H) = Spec(OH),

which we summarize in the following corollary.

Corollary A.8. Suppose that H is reductive over a Dedekind G-ring R in which
the order of Γ is invertible. Then OH is a finite étale R-algebra and represents the
sheaf H1(Γ, H). In particular, its formation commutes with any change of rings
R −→ R′.

A.4. Representatives. Suppose that H is reductive over a Dedekind G-ring R
in which the order of Γ is invertible. Theorem A.7 ensures that after replacing
R by a finite étale extension, H1(Γ, H) is a constant sheaf (associated to the set
H1(Γ, H)(R)). The map Z1(Γ, H(R)) −→ H1(Γ, H)(R) need not be surjective,
but if R0 is any R-algebra such that H1(Γ, H)(R) is in the image of the map
Z1(Γ, H(R0)) −→ H1(Γ, H)(R0), then for any finite set Φ0 ⊂ Z1(Γ, H(R0)) map-
ping bijectively to H1(Γ, H)(R), the constant sheaf property ensures that : for any
connected R0-algebra A and any φ ∈ Z1(Γ, H(A)), there is a unique φ0 ∈ Φ0 such
that φ and φ0 become H(A′)-conjugate in Z1(Γ, H(A′)) for some faithfully étale
A-algebra A′.

By definition of H1(Γ, H), we certainly can find a R0 as above that is faithfully
étale over R. However in general, it is not clear whether we can find R0 finite étale
over R. The following result uses the strong approximation property to prove that,
if R is a localization of a ring of integers in a number field, then we can at least
find R0 finite (not necessarily étale) over R.

Theorem A.9. Assume that H is reductive over a normal subring R of some
number field K, and that Γ has invertible order in R. Then there is a finite extension
K0 of K and a finite set Φ0 ⊂ Z1(Γ, H(R0)) (with R0 the normalization of R in
K0) such that for any connected R0-algebra A and any φ ∈ Z1(Γ, H(A)), there is a
unique φ0 ∈ Φ0 such that φ and φ0 becomes H(A′)-conjugate in Z1(Γ, H(A′)) for
some faithfully étale A-algebra A′.

Proof. As we have just argued, we may assume that H1(Γ, H) is a constant sheaf,
and the problem boils down to finding K0 such that the map

Z1(Γ, H(R0)) −→ H1(Γ, H)(R0) = H1(Γ, H)(R)
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is surjective. We certainly can find a faithfully étale R′ over R such that any
[φ] ∈ H1(Γ, H)(R) has a representative φ ∈ Z1(Γ, H(R′)). Let us choose such data,
and assume further that H is split over R′. Let R′ =

∏n
i=1R

′
i be the decomposi-

tion of R′ in connected components and let φ = (φi)i=1,··· ,n be the corresponding
decomposition of φ. Replacing R and all R′

i by their respective normalizations in
the residue field at some generic point of R′

1 ⊗R · · · ⊗R R′
n, we may assume that

each R′
i is a localization of R (i.e. Spec(R′) −→ Spec(R) is a Zariski cover). Then

we simplify the notation and write Ri := R′
i. Since all φi map to the same element

[φ] ∈ H1(Γ, H(K)), they become pairwise H-conjugate over some finite extension
of K. Replacing R by its normalization in this finite extension, we may thus assume
that they are H(K)-conjugate in Z1(Γ, H(K)). Actually we may, and we will, even
assume that they are pairwise Z(H)◦(K)×Hsc(K)-conjugate through the canoni-
cal isogeny Z(H)◦ ×Hsc −→ H, where Hsc denotes the simply connected covering
group of the adjoint group Had. We now try to construct a φ ∈ Z1(Γ, H(K)) that
is H(K)-conjugate to each φi, and such that φ(Γ) ⊂ H(R).

If n = 1, we are obviously done. Otherwise, start with φ1 and pick elements
(zi, hi) ∈ Z(H)◦(K) × Hsc(K) such that zihiφ1 = φi in Z1(Γ, H(K)), for all i =
2, · · · , n. For any prime p ∈ S := Spec(R) \ Spec(R1) there is some i ≥ 2 such that
p ∈ Spec(Ri). Pick such an i and put (zp, hp) := (zi, hi). Since Hsc is a split simply
connected semisimple group overK, the strong approximation theorem with respect
to the finite set of archimedean places ensures the existence of an element h ∈
Hsc(R1) such that h ∈ Hsc(Rp)hp for all p ∈ S. Then we have (hφ1)(Γ) ⊂ H(R1)
and (zphφ1)(Γ) ⊂ H(Rp) for all p ∈ S. Now, since Z(H)◦ is a split torus, say of
dimension d, the obstruction to finding z ∈ Z(H)◦(R1)∩

⋂

p
Z(H)◦(Rp)zp lies in the

dth self-product of the ideal class group Cℓ(K)d. Hence it vanishes over the Hilbert
class field Kh of K and we can at least find z ∈ Z(H)◦(Rh

1 ) ∩
⋂

p
Z(H)◦(Rh

p)zp,

where the superscript h denotes normalization in Kh. Then we see that zhφ1(Γ) ⊂
H(Rh

1 ) and zhφ1(Γ) ⊂ H(Rh
p) for all p. Therefore we have (zhφ1)(Γ) ⊂ H(Rh) as

desired. �

Remark A.10 (Orbits). With the notation of the theorem, the morphism

Z1(Γ, H)R0

π
−→ H1(Γ, H)R0

= {π(φ), φ ∈ Φ0}

provides a decomposition as a disjoint union of affine R0-schemes

Z1(Γ, H)R0 =
⊔

φ∈Φ0

π−1(π(φ))

Moreover, the action h 7→ h·φ of HR0 provides a surjective morphism of R0-schemes
HR0 −→ π−1(π(φ)), which at the level of étale sheaves identifies π−1(π(φ)) with
the quotient HR0

/CH(φ) with CH(φ) denoting the centralizer of φ. In particular,
we see that this quotient sheaf is representable by an affine scheme which identifies
with the orbit H · φ := π−1(π(φ)) of φ. To put it in different words, the natural
map H −→ H · φ, h 7→ h · φ is a CH(φ)-torsor for the étale topology.

A.5. Centralizers. Our next task is to study the centralizer CH(φ) of a cocycle
φ ∈ Z1(Γ, H(R)). We have seen in Lemma A.1 that this is a smooth group scheme
over R. Moreover, by [PY02, Thm 2.1], its geometric fibers have reductive neutral
components. In other words, the “neutral” component CH(φ)◦ is a reductive group
scheme over R. Thus it follows from Prop 3.1.3 of [Con14] that the quotient sheaf
π0(CH(φ)) := CH(φ)/CH(φ)◦ is representable by a separated étale group scheme
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over R. Our aim here is to prove that π0(CH(φ)) is actually finite over R, at least
when R is a Dedekind G-ring and Γ is a solvable group.

Note that CH(φ) is also the subgroup of Γ-fixed points in H for the Adφ-twisted
action of Γ on H. So, up to changing the action of Γ on H, it suffices to study the
finiteness of π0(H

Γ) as an R-scheme.

Lemma A.11. As above, assume Γ has invertible order in R.
i) Let H ′ −→ H be a Γ-equivariant central isogeny of reductive group schemes

over R. If π0(H
′Γ) is finite over R, then so is π0(H

Γ).

ii) Let Γ′ be a normal subgroup of Γ. If π0(H
Γ′

) and π0((H
Γ′,◦)Γ/Γ

′

) are finite,
then so is π0(H

Γ).

Proof. i) Let Z be the kernel of the isogeny, which is a finite central subgroup
scheme of H ′ of multiplicative type over R. We claim that the sheaf H1(Γ, Z) is
representable by a finite étale group scheme over R. Indeed, since the category of
finite group schemes of multiplicative type over R is abelian ([MR070a, IX.2.8]), the
sheaves Z1(Γ, Z), B1(Γ, Z) and, consequently, H1(Γ, Z) are finite group schemes
of multiplicative type over R. Let us decompose Z =

∏

p Zp into a finite product

of its p-primary components. Then H1(Γ, Z) decomposes accordingly as a product
of H1(Γ, Zp). But H1(Γ, Zp) is trivial unless p divides the order of Γ. Since this

order is invertible in R, so is the rank of H1(Γ, Z), which is therefore étale over R.
Let us now look at the following exact sequence of sheaves of groups on the big

étale site of Spec(R).

1 −→ ZΓ −→ H ′Γ −→ HΓ −→ H1(Γ, Z) −→ H1(Γ, H ′).

In this sequence, we now know that all terms are R-schemes. Since H1(Γ, Z) is
finite étale, the morphism HΓ −→ H1(Γ, Z) has to be trivial on the reductive
subgroups (HΓ)◦, so that we deduce the following exact sequence :

ZΓ −→ π0(H
′Γ) −→ π0(H

Γ) −→ H1(Γ, Z) −→ H1(Γ, H ′).

Now assume that π0(H
′Γ) is finite over R, and therefore finite étale. Since ZΓ is

finite, its image in π0(H
′Γ) is closed, hence is finite étale. Therefore π0(H

Γ) appears
as the middle term of a five terms exact sequence in which all the four remaining
terms are finite étale group schemes (the last one is only a pointed scheme and is
étale by theorem A.7). Going to a finite étale covering R′ of R over which all these
étale groups become constant, we see that π0(H

Γ) also becomes constant and finite
over R′, hence is already finite over R.

ii) Put H ′ := (HΓ′

)◦. Applying the Γ/Γ′-invariants functors to the exact se-

quence H ′ →֒ HΓ′

։ π0(H
Γ′

), we get an exact sequence

1 −→ (H ′)Γ/Γ
′

−→ HΓ −→ π0(H
Γ′

)Γ/Γ
′

−→ H1(Γ/Γ′, H ′).

By assumption, π0(H
Γ′

) is finite étale, so the invariant subgroup π0(H
Γ′

)Γ/Γ
′

is
also étale and finite since it is closed. Therefore the map from HΓ factors over
π0(H

Γ). Since ((H ′)Γ)◦ = (HΓ)◦, we thus get an exact sequence

1 −→ π0((H
′)Γ/Γ

′

) −→ π0(H
Γ) −→ π0(H

Γ′

)Γ/Γ
′

−→ H1(Γ/Γ′, H ′).

All terms but possibly the middle one are finite étale (by Theorem A.7 for the last
one). Therefore, the middle one is also finite étale, as desired. �
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Theorem A.12. Assume that H is reductive over a Dedekind G-ring R and is
acted upon by a solvable finite group Γ with invertible order in R. Then π0(H

Γ) is
a finite étale group scheme over R.

Proof. As already mentioned in the beginning of this subsection, the problem is
to prove finiteness. Thanks to item ii) of the last lemma, we can use induction to
reduce the case of a solvable Γ to the case of an abelian Γ, and then further reduce
to the case of a cyclic Γ. So let us assume that Γ is cyclic.

By Theorem 5.3.1 of [Con14], there is a unique closed semi-simple subgroup
scheme Hder of H over R that represents the sheafification of the set-theoretical
derived subgroup and such that the quotient H/Hder is a torus. Then the natural
morphism Z(H)◦ × Hder −→ H is a central isogeny by the fibrewise criterion,
and moreover is Γ-equivariant (here Z(H)◦ denotes the maximal central torus of
H). Further, by Exercise 6.5.2 of [Con14], there is a canonical central isogeny
Hsc −→ Hder over R, such that all the geometric fibers of Hsc are simply connected
semi-simple groups. Being canonical, the action of Γ on Hder lifts uniquely to Hsc.
Let us now consider the Γ-equivariant central isogeny Z(H)◦×Hsc −→ H. By item
i) of the previous lemma, it suffices to prove the finiteness of π0((Z(H)◦)Γ) and that
of π0((Hsc)

Γ). The first one is clear since (Z(H)◦)Γ is smooth and of multiplicative
type. For the second one, we use Steinberg’s theorem [Ste68, Thm 8.2], which can
be applied here since a generator of Γ induces a semisimple automorphism of each
geometric fiber of Hsc, and which ensures that (Hsc)

Γ has connected fibers, so that
π0((Hsc)

Γ) is even the trivial group. �

A.6. Splitting a reductive group scheme over a finite flat extension. A
reductive group scheme over any ring R is known to split over a faithfully étale
extension of R. However, in general it won’t split over a finite étale extension.
Already over R = Z, there are examples where a non-trivial Zariski localization is
needed. Here we use a similar argument as in the proof of Theorem A.9 in order to
prove that if R is a localization of a ring of integers, then a reductive group scheme
over R splits over a suitable finite flat extension of R.

Proposition A.13. Assume that H is reductive over a normal subring R of a
number field K. Then there is a finite extension K0 of K such that H splits over
the normalization R0 of R in K0.

Proof. Pick a faithfully étaleR′ overR such thatH splits overR′. LetR′ =
∏n

i=1R
′
i

be the decomposition of R′ in connected components. Of course, if n = 1 we are
done, so we assume n > 1. Replacing R and all R′

i by their normalization in
the residue field at some generic point of R′

1 ⊗R · · · ⊗R R′
n, we may assume that

each R′
i is a localization of R (i.e. Spec(R′) −→ Spec(R) is a Zariski cover). Let

Ti ⊂ HR′
i
be a split maximal torus defined over R′

i. The generic fibers Ti,K are

split maximal tori in HK , hence are conjugate under H(K). After replacing K by a
finite extension, we may assume that they are conjugate underHsc(K). So there are
elements hi ∈ Hsc(K), i > 1, such that hiT1,K = Ti,K . Put S := Spec(R)\Spec(R′

1)
(a finite set) and for p ∈ S, pick a i ≥ 2 such that p ∈ Spec(R′

i) and put hp = hi.
Then by the strong approximation theorem, there is some h ∈ Hsc(R

′
1) such that

h ∈ Hsc(Rp)hp for all p ∈ S. We claim that the K-torus TK := hT 1,K of HK

extends (canonically) to a an R-subtorus of H. Indeed, recall that the functor
TorH/R which to any R-algebra R′ associates the set of maximal subtori of HR′ is
known to be representable by a smooth quasi-affine, hence in particular separated,
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scheme over R, see e.g. [Con14, Thm 3.2.6]. By construction, TK comes from a
R′

1-torus T
′
1 of HR′

1
, which is unique by separateness of TorH/R. Similarly for each

p ∈ S, there is a unique extension of TK to a Rp-torus Tp of HRp
and the latter

is actually defined over a Zariski open neighbourhood of p. This means that the
K-section of TorH/R given by TK extends uniquely to a Zariski covering of SpecR,
hence extends to SpecR itself, whence a maximal torus TR of H extending TK .
Since TK is split and since tori are known to split over finite étale coverings of the
base, TR is split too.

Now, the root subspaces of TR in Lie(H) are rank 1 locally free R-modules.
Replacing K by its Hilbert class field, we may assume that they are actually free.
Since R is connected, this is enough for H to split over R, cf the paragraph below
Definition 5.1.1 of [Con14]. �

Remark A.14. Exercise 7.3.9 of [Con14] provides another proof that does not
use strong approximation. Namely, start by enlarging R so that HK splits. So
HK contains a Borel subgroup BK , which extends uniquely to a Borel subgroup
scheme B of H by the properness of the scheme of Borel subgroups. Let (H ′, B′)
be the constant split pair over R that extends (HK , BK). Then the functor I
of isomorphisms between (H ′, B′) and (H,B) is a torsor over the automorphism
group A = B′

ad ⋊ Out(H) of the pair (H ′, B′). Its class in H1
ét(SpecR,A) has

trivial image in H1
ét(SpecR,Out(H)) since H is split over K. On the other hand

H1
ét(SpecR,B

′
ad) is isomorphic to a sum of copies of Pic(R) = H1

ét(SpecR,Gm). So
let K0 be the Hilbert class field of K. Since Pic(R) −→ Pic(R0) has trivial image,
I becomes a trivial A-torsor over R0, hence H splits over R0.

Appendix B. Twisted Poincaré polynomials

B.1. Some characteristic polynomials attached to root data. Let Σ =
(X,X∨,∆,∆∨) be a based root datum with Weyl group Ω and group of auto-
morphisms Aut(Σ). Both Ω and Aut(Σ) embed as groups of linear automorphisms
of X and X∨, and Aut(Σ) normalizes Ω. In particular Aut(Σ) acts on the ring
of Ω-invariant polynomials Sym•(X)Ω on X∨ and on the conormal module M• of
X∨/Ω along the zero section

M• := Sym•>0(X)Ω/(Sym•>0(X)Ω)2.

For any α ∈ Aut(Σ) we consider its weighted characteristic polynomial on M•
Q

(B.1) χα|M•(T ) :=
∏

d>0

det
(
T d − α |Md

Q

)
∈ Z[T ].

A priori M• may have torsion, but a result of Demazure [Dem73, Thm 3] shows
that M• ⊗ Z[ 1

|Ω| ] is torsion free, so we deduce the following

Remark B.1. If ℓ does not divide the order of Ω, the image of χα|M• in Fℓ[T ] is
the weighted characteristic polynomial of α on M•

Fℓ
.

Since Ω is a reflection subgroup of Aut(X∨), the Q̄-algebra Sym•(X)Ω
Q̄
is known

to be a weighted polynomial algebra. More precisely, any graded section M•
Q̄
→֒

Sym•>0(X)Ω
Q̄
induces a graded isomorphism Sym(M•

Q̄
)

∼
−→ Sym•(X)Ω

Q̄
for the unique

ring grading on Sym(M•
Q̄
) such that Md is in degree d for all d. In particular, for

α = 1, we have χ1|M•(T ) =
∏r

i=1(T
di − 1) where r = rkZ(X) and d1 ≤ · · · ≤ dr
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are the so-called fundamental degrees of Ω acting on X∨. Here dr is known as the
Coxeter number of Σ and is the maximal n ∈ N such that Φn(T ) divides χ1|M•(T ).

More generally, using an Aut(Σ)-equivariant section M•
Q̄
→֒ Sym•>0(X)Ω

Q̄
, we see

that, at least when α has finite order, χα|M•(T ) = (T d1−ε1,α) · · · (T
dr−εr,α) where

the εi,α are as in Lemma 6.1 of [Spr74]. Note that in this case, χα|M• is a product
of cyclotomic polynomials and we have χα|M• = χα−1|M• . The maximal n ∈ N

such that Φn(T ) divides χα|M•(T ) has been known in the literature as the twisted
Coxeter number associated to α. Now, a fundamental consequence of Springer’s
work in this setup is the following result.

Proposition B.2. χα|M•(T ) is the lowest common multiple in Q̄[T ] of the charac-
teristic polynomials χωα|X(T ) of ωα on XQ̄, where ω runs over Ω.

Proof. When α has finite order, this is a reformulation of Theorem 6.2 (i) of [Spr74].
In general, this follows from the decompositions XQ = XΩ

Q ⊕ Q〈∆〉 and M•
Q =

XΩ
Q⊕Sym

•>0(Q〈∆〉)Ω/(Sym•>0(Q〈∆〉)Ω)2 and the fact that α|Q〈∆〉 has finite order,
while ωα|XΩ

Q
= α|XΩ

Q
for all ω ∈ Ω. �

B.2. Application to reductive groups. Let Ĝ be a connected reductive group
over an algebraically closed field L of characteristic ℓ. Attached to Ĝ is a root
datum Σ = (XĜ,X

∨
Ĝ
,∆Ĝ,∆

∨
Ĝ
) as above, that comes with an identification Aut(Σ) =

Out(Ĝ). Here Σ denotes the limit over all Borel pairs (B̂, T̂ ) of Ĝ of the root data

(X∗(T̂ ), X∗(T̂ ),∆(B̂),∆(B̂)∨). Now, let β be an automorphism of Ĝ with image α

in Out(Ĝ). Using the notation of the last subsection, we put

(B.2) χĜ,β(T ) := χα|M•(T ) ∈ Z[T ].

Further, we denote by hĜ,β the twisted Coxeter number of Σ associated to α and
we put

(B.3) χ∗
Ĝ,β

(T ) :=
∏

n≤h
Ĝ,β

Φn(T ) ∈ Z[T ].

The following result is crucial to track the “banal” primes in this paper.

Proposition B.3. Let β be an automorphism of Ĝ.
(1) If Ĥ is a reductive subgroup of Ĝ stable under β, then χĤ,β divides χĜ,β,

hĤ,β ≤ hĜ,β and χ∗
Ĥ,β

divides χ∗
Ĝ,β

.

(2) Let t be a semi-simple element of Ĝ(L) such that β(t) = tq. Then t has finite
order, and this order divides χĜ,β(q).

Proof. (1) As above, we denote by α the image of β in Out(Ĝ) = Aut(ΣĜ), which
acts on the “abstract root lattice” XĜ. Similarly, we denote by αĤ the image of β

in Aut(ΣĤ), which acts on XĤ . Let (BĤ , TĤ) be a Borel pair of Ĥ, so that we have
an identification ΣĤ = Σ(BĤ , TĤ), and in particular XĤ = X∗(TĤ). Through
this identification, the action of αĤ on XĤ corresponds to the action of Adh ◦β

on X∗(TĤ) for any h ∈ Ĥ such that Adh ◦β stabilizes the pair (BĤ , TĤ). More

generally, for ωĤ ∈ ΩĤ (the “abstract” Weyl group of Ĥ), the action of ωĤαĤ

on XĤ corresponds to the action of Adnh ◦β on X∗(TĤ), where h is as above, and
n ∈ NĤ(TĤ) is a lift of ωĤ .
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Now, let (B̂, T̂ ) be a Borel pair in Ĝ that induces (BĤ , TĤ) on Ĥ. As above,

we have an identification ΣĜ = Σ(B̂, T̂ ), and in particular XĜ = X∗(T̂ ), from
which we deduce a surjective morphism XĜ ։ XĤ . With h and n as above, pick

also m ∈ CĜ(TĤ) such that Admnh ◦β stabilizes T̂ . Observe that the action of

this automorphism on X∗(T̂ ) induces the action of Adnh ◦β on X∗(TĤ). On the

other hand, there is a unique ω ∈ ΩĜ such that, for any n′ ∈ NĜ(T̂ ) above ω
−1, the

automorphism Adn′mnh ◦β stabilizes also B̂. Then the action of this automorphism
on XĜ is α. Hence it follows that the action of ωα on XĜ induces the action of
ωĤαĤ on XĤ . Therefore the characteristic polynomial χω

Ĥ
α

Ĥ
|X

Ĥ
(T ) divides the

characteristic polynomial χωα|X
Ĝ
(T ). By Proposition B.2, we deduce that χα

Ĥ
|M•

Ĥ

divides χα|M•

Ĝ
, as desired.

(2) The connected centralizer Ĥ := CĜ(t)
◦ contains t and is stable under β, since

β(Ĥ) = CĜ(t
q)◦ contains Ĥ and has same dimension as Ĥ. Hence by (1) it suffices

to prove the statement when t is central in Ĝ. Then we may compose β with some
Adg so that it fixes a pinning of Ĝ, with maximal torus T̂ . Now, consider t as a

homomorphism X∗(T̂ ) −→ L×. Since β(t) = tq, we see that this homomorphism

factors over the cokernel of the endomorphism β − q of X∗(T̂ ). But this cokernel
is finite of order χT̂ ,β(q) = det(q − β). So t has order dividing χT̂ ,β(q), hence also

dividing χĜ,β(q). �

B.3. The Chevalley-Steinberg formula. Let now G be a reductive group over
Fq. Let G∗ be a split form of GF̄q

over Fq and pick an isomorphim ψ : GF̄q

∼
−→

G∗
F̄q
. Then Fr := Frobψ−1 ◦ ψ is an automorphism of GF̄q

(where Frob denotes

the Frobenius automorphism of F̄q), and we have the following Chevalley-Steinberg
formula for the number of Fq-rational points of G.

Theorem B.4 (Chevalley-Steinberg). |G(Fq)| = qN .χG,Fr(q), where N is the di-
mension of a maximal unipotent subgroup of GF̄q

.

Proof. This formula is stated for absolutely simple adjoint groups in Theorems
25 and 35 of [Ste16]. It is also true for a torus S, since we have an isomor-

phism X∗(S)/(q Fr−1)X∗(S)
∼
−→ S(Fq) [DL76, (5.2.3)], from which it follows that

|S(Fq)| = | det(q Fr−1)| = |χS,Fr−1(q)| = χS,Fr(q).

To prove the formula in general, we first observe that if G
π
−→ G′ is an isogeny,

then |G(Fq)| = |G
′(Fq)|. Indeed, the kernel H := ker(π)(F̄q) is a finite group with

an action of the arithmetic Frobenius Frob and we have an exact sequence

1 −→ HFrob −→ G(Fq) −→ G′(Fq) −→ H1(Fq, H) = HFrob −→ 1

where the last map is surjective because H1(Fq, G) = 1. But we also have an exact

sequence HFrob →֒ H
Frob − id
−→ H ։ HFrob which shows that |HFrob| = |HFrob|, so

we get |G(Fq)| = |G
′(Fq)|.

Now we deduce the formula for general G by applying this observation to the
isogeny G −→ Gab×Gad and decomposing Gad as a product of restriction of scalars
of absolutely simple groups. �

B.4. Kostant’s section theorem. We return to the setting of a reductive group
Ĝ over an algebraically closed field L and, for simplicity, we assume that Ĝ is simple
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adjoint. We also assume that the characteristic ℓ of L does not divide the order of
the Weyl group ΩĜ.

Let us fix a pinning ε = (T̂ , B̂, (Xα)α∈∆) of Ĝ. The sum E =
∑

α∈∆Xα is then

a regular nilpotent element of Lie(Ĝ). The sum H =
∑

β∈Φ+ β∨⊗1 ∈ X∗(T̂ )⊗L =

Lie(T̂ ) is a regular semisimple element of Lie(Ĝ) and the pair (H,E) is part of a

unique “principal” sl2-triple (F,H,E). Denote by Lie(Ĝ)E the centralizer of E in

Lie(Ĝ). Under our assumption on ℓ, Veldkamp has proved that Kostant’ section
theorem still holds, [Vel72, Prop 6.3]. This states that the map

Lie(Ĝ)E −→ Lie(Ĝ) � Ĝ, X 7→ (F +X) mod Ĝ

is an isomorphism of varieties. Moreover, seeing λ :=
∑

β∈Φ+ β∨ as a cocharacter of

Ĝ, this map is Gm-equivariant for the action (t, y) 7→ t·y := t2 Adλ(t)(y) on the LHS

and the action (t, x) 7→ t2x on the RHS. Composing with the Chevalley isomorphism
(which also holds in this context) yields an isomorphism of Gm-varieties

π : Lie(Ĝ)E
∼
−→ X∨

L/ΩĜ.

Now let Aut(Ĝ)ε be the group of automorphisms of Ĝ that preserve the pinning

ε. This group fixes E, so it acts on Lie(Ĝ)E . It also acts on Lie(Ĝ)�Ĝ and X∨
L/ΩĜ,

and both the Chevalley map and the Kostant map are equivariant for these actions.
Identifying Out(Ĝ) with Aut(Ĝ)ε, we thus get on conormal modules at the origin
an isomorphism

M•
L

∼
−→ (Lie(Ĝ)E)

∗

which is Out(Ĝ)-equivariant, as well as Gm-equivariant for the (dual) action de-
scribed above on the RHS and the action associated with “twice the •-grading” on
the LHS. So we deduce the following result.

Proposition B.5. For t ∈ L× and β ∈ Aut(Ĝ)ε of finite order, we have

det
(

t2 Adλ(t) Adβ − id |Lie(Ĝ)E
)

= ±χĜ,β(t
2).

Proof. Indeed, by the foregoing discussion, the LHS equals
∏

d

det
(
t2dβ−1 − id |Md

L

)
= det(β)−1

∏

d

det
(
t2d − β|Md

L

)
.

But det(β) = ±1 since it is a root of unity in Q, while Remark B.1 ensures that
det
(
t2d − β|Md

L

)
= χĜ,β(t

2) in L. �
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