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ABSTRACT

Integrated Pest Management (IPM) techniques have been widely used in agriculture to manage pest
damage in the most economical way and to minimise harm to people, property and the environment.
However, current research and products on the market cannot consolidate this process. Most existing
solutions either require experts to visually identify pests or cannot automatically assess pest levels
and make decisions based on detection results. To make the process from pest identification to pest
management decision making more automated and intelligent, we propose an end-to-end integrated
pest management solution that uses deep learning for semi-automated pest detection and an expert
system for pest management decision making. Specifically, a low computational cost sampling point
generation algorithm is proposed to enable mobile devices to generate uniformly distributed sampling
points in irregularly shaped fields. We build a pest detection model based on YoloX and use Pytorch
Mobile to deploy it on mobile phones, allowing users to detect pests offline. We develop a standardised
sampling specification and a mobile application to guide users to take photos that allow pest population
density to be calculated. A rule-based expert system is established to derive pest management
thresholds from prior agricultural knowledge and make decisions based on pest detection results.
We also propose a human-in-the-loop algorithm to continuously track and update the validity of the
thresholds in the expert system. The mean average precision of the pest detection model is 58.17% for
97 classes, 75.29% for 2 classes, and 57.33% for 11 classes on three pest datasets, respectively. The
usability of the pest management system is assessed by the User Experience Surveys and achieves
a System Usability Scale (SUS) score of 76. The usability of the proposed solution is validated by

qualitative field experiments.

1. Introduction

Wheat is an important food crop and is considered one
of the world’s four major food crops, along with rice, maize
and potatoes. Wheat is used as a staple food in more than 100
countries worldwide (Curtis, Rajaram, G6mez Macpherson
et al., 2002). About one third of the world’s population
depends on wheat as a staple food and it accounts for
27% of global cereal production (Shewry, 2009). In UK,
it is estimated that estimate that wheat comprises 25% of
the daily calorific intake (Mottaleb, Kruseman and Snapp,
2022).

The loss in potential yield from pest attack i.e., insect
and mollusc, can be substantial, to the point of total loss
of crop. Recently investigators have examined the effects
of pest attack on wheat yield. The Food and Agriculture
Organisation of the United Nations (FAO) estimates that
between 20% and 40% of global crop production is lost to
pests each year (Department for Environment, Food & Rural
Affairs, 2020). Plant diseases cost the global economy an
estimated $220 billion annually, while invasive insects cost
an estimated $70 billion (Sarkozi, 2019).

Studies by Nacarrow et al. and Dedryver et al. suggest
up to 80% yield loss due to virus transmission by aphids and
5-20% yield loss due to direct feeding damage (Nancarrow,
Aftab, Hollaway, Rodoni and Trebicki, 2021; Dedryver,
Ralec and Fabre, 2010). Orange wheat blossom midges are
native to Europe and have spread to major wheat-producing
countries around the world (Senevirathna, Guelly and Mori,
2023). Currently, both aphids and orange wheat blossom
midges are damaging pests of wheat in the UK (Ellis, White,

ORCID(S):

Holland, Smith, Collier and Jukes, 2014). Due to the low
cost of insecticides, the economic return from additional
producion is six times the cost of treating aphids (Redman,
2022).

Hence growers apply pesticides to mitigate potential
yield loss These applications are often done on an insurance
basis (i.e., an application is made as a contingency to mit-
igate potential yield loss) because pest abundance is high.
These applications are potentially wasteful (no economic
benefit) and damaging to the environment. With sustainable
crop protection becoming more important, there is increas-
ing demand for decision support systems that can help
farmers grow crops more sustainably with fewer chemical
interventions.

To help address these issues, a large and growing body of
literature has investigated the pest identification and the eco-
nomic threshold levels. In addition to the population density
of insects or the extent of crop damage, economic thresholds
used for integrated pest management often contain relevant
contexutal information, such as climatic, geographic, and
phenological information. For example, the resistance to
pests increases if the crop reaches a late growth stage; pesti-
cide applications are usually not recommended on rainy days
because the effect is weakened, etc. The Agriculture and
Horticulture Development Board (AHDB) have produced an
encyclopaedia of pests and natural enemies in field crops.
This provides all the information required to make an in-
formed decision on whether pest control is warranted or not
(Agriculture and Horticulture Development Board, 2022).
Although the reference manual is very comprehensive, it
is not specific to wheat and not very user friendly in a
field situation either as a hard document or on a mobile
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phone. A new tolerance-based decision support system to
minimise the risk of crop damage by wheat bulb fly (WBF)
has been devised under IPM principles by ADAS, a UK-
based independent agricultural and environmental consul-
tancy (Leybourne, Storer, Berry and Ellis, 2022). However,
the identification of the pest and a risk-based decision still
needs to be made by agronomists with specialist knowledge.
To automate the detection of pest species, artificial intelli-
gence scientists are using objective detection algorithms for
pest identification. Nevertheless, these deep learning-based
algorithms can only identify the type of pest, but cannot
quantify the severity of the current pest. There are two main
scientific problems that contribute to this issue. First, current
pest thresholds in the agricultural literature are difficult to
use in computer vision, for example, some pest thresholds
are measured in terms of the number of pests per plant, yet it
is difficult for deep learning models to distinguish between
different plants. Secondly, because the actual area of a pho-
tograph is not known, the density of the pest population in
the photograph cannot be calculated, so it is not possible
to measure the severity of the infestation directly from the
photograph. In addition, the economic thresholds for wheat
vary according to climate, water and heat conditions and pest
species, and sometimes pests develop resistance, making it
difficult to use a constant set of pest thresholds for decision
making in all environments.

This study has proposed a solution of integrated pest
management decision making for wheat pest aims to the
research problems mentioned above. The system combines
deep learning models for pest detection and counting with an
expert system for pest management decisions, with specific
contributions including:

e to design and train a light-weight deep learning model
for semi-automatic wheat pest detection on smart-
phones.

e to propose a sampling standard and a computational
graphics-based algorithm for sampling point gener-
ation that reflects the challenges of quantifying pest
severity from deep learning pest detection results.

e to convert the text-based thresholds for wheat pests
in the literature into a rule-based expert system to
overcome the difficulties of using textual prior knowl-
edge for computer vision-based integrated pest man-
agement.

e to implement a human-in-the-loop threshold optimi-
sation algorithm to semi-automatically adjust inaccu-
rate thresholds due to pesticide resistance or regional
differences.

The remainder of the paper is structured as follows.
Section 2 reviews the state of the art research on object de-
tection and integrated pest management. Section 3 presents
the datasets and the proposed solution of the semi-automatic
integrated pest management decision making system. Sec-
tion 4 evaluates the performance of the deep learning based

pest detection model and the usability of the proposed pest
management decision making system. Section 5 briefly con-
cludes the proposed approaches presented in section 3 along
with an outline of future work.

2. Literature Review

The scope of this research is deep learning based pest
identification and expert system based decision making for
pest management. Therefore, the literature review in this sec-
tion is divided into two parts, the first providing an overview
of relevant deep learning techniques in the literature for
target detection and the second outlining the application of
expert systems in agriculture.

2.1. Object Detection

Object detection is one of the important tasks in com-
puter vision to identify and localise all instances of object in
the image data. Early work on object detection was based
on hand-crafted feature extractors, such as the histogram
of oriented gradients (Dalal and Triggs, 2005) and Harris
corner detector (Harris, Stephens et al., 1988). However,
for complex multi-classification object detection tasks, these
traditional methods lose their effectiveness.

The convolutional neural networks (CNNs) were pro-
posed to solve the problem of low performance of hand-craft
features by automatically exploring effective features using
large amounts of image data, such as VGG (Simonyan and
Zisserman, 2014), ResNet (He, Zhang, Ren and Sun, 2016),
and CSPNet (Wang, Liao, Wu, Chen, Hsieh and Yeh, 2020a).
Based on the superiority of convolutional neural networks, a
series of deep learning-based object detection models have
been proposed, which is divided into two-stages detectors
and one-stages detectors. The two-stages detector divides the
detection process into two steps, the regional proposal stage,
and the detection stage. In contrast, the one-stages detector
proposed bounding box and classified object in one stage.
From the view of model structure, the difference between the
two-stage detector and one-stage detector lies in the presence
or absence of a separate module for generating bounding
box.

Faster Region-based Convolutional Neural Network (Fa-
ster RCNN) (Ren, He, Girshick and Sun, 2015) is the latest
work following the design of RCNN (Girshick, Donahue,
Darrell and Malik, 2014) detection model family, which
are all two-stage detection models. As the definition of the
two-stage detection model, the models structure of RCNN
family can be divided into two steps, the region of inter-
est proposal stage and detection stage. In the early RCNN
(Girshick et al., 2014), a traditional algorithm Selective
Search (Uijlings, Van De Sande, Gevers and Smeulders,
2013) was used to propose 2000 regions of interest. The
proposed regions were then warped and propagated through
a CNN backbone. The final detection results were subse-
quently obtained by Support Vector Machines (SVMs) and
Non-maximum suppression (NMS). In order to increase the
speed of detection, Faster RCNN use a CNN as a region
proposal network (RPN) to propose regions of interest with
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associated objectness score. The multi-scale bounding boxes
obtained by RPN were combined with the feature maps in
the backbone network and passed through a classifier and
bounding box regressor to obtain the detection results.

In contrast, the Yolo detection model (Ge, Liu, Wang,
Li and Sun, 2021) family is representative of the one-stage
detectors, which solve the detection problem by directly
predicting the likelihood of related pixels being a detection
object and the bounding box properties in one stage. This
approach used convolutional neural networks to separate the
original input images into grids and predict the bounding
boxes and object scores for each grid, allowing for a simpler
and smaller model to detection. Those models gained faster
detection at the cost of detection accuracy in the early works.
In recent work of YoloX (Ge et al.,, 2021), this cost is
offset by a large number training tricks and the adaptation
of the model structure. Specifically, various data augmenta-
tion methods, batch normalisation, and CLoU loss function
were used in the training phase of the detection model. In
terms of model structure, Cross-stage partial connections,
SPP-Block, PAN path aggregated block neck, Decoupling
detection head were used to optimise the model structure
to achieve fast and accurate detection. Overall, one-stage
detection model solves the problem of fast and accurate
object detection in a simpler way.

2.2. Expert Systems

Expert systems use computer models derived from hu-
man experts to deal with complex real-world problems that
require expert interpretation, and reach the same results as
experts (Liao, 2005). The Agricultural Expert System (AES)
applies expert system technology to the agricultural sector. It
summarises and brings together knowledge and techniques
from the field of agriculture and the knowledge of agricul-
tural experts, as well as data obtained through experiments
and mathematical models to simulate the decision-making
process of agricultural experts.

Since the 1980s, specialist systems technology has been
applied to agricultural problems, particularly in the area of
integrated pest management, which has been in development
for a relatively long time and is particularly well developed
(Gerevini, Perini, Ricci, Forti, Toriatti, Mattedi, Monetti
et al., 1992; El-Azhary, Hassan and Rafea, 2000; Harrison,
1991). S. Kaloudis et al. describe an expert system for the
identification of forest pests and the provision of related con-
trol measures. The system identifies more than 40 species of
forest pests based on their growth stage, the damage caused
by the pests and the results of their research in the forest.
Once a pest has been identified, the system will provide a
suitable treatment plan to minimise damage to the forest by
the pest (Kaloudis, Anastopoulos, Yialouris, Lorentzos and
Sideridis, 2005). CUPTEX is an expert system that has been
developed to manage cucumber pests and diseases. The main
purpose of the system is to identify the causes of anomalies
and to make appropriate treatment recommendations. In
this case, the system starts with the identification of the
cause before recommendations are given (Rafea, El-Azhari,

Ibrahim, Edres, Mahmoud and Street, 1995). The Tomato
Expert System developed by Yialouris and Siderdis was used
to deal with the problem of identifying tomato pests and
diseases. A framework knowledge representation table was
used to describe the knowledge base, and notably fuzzy logic
was used to deal with uncertainty in the diagnosis (Yialouris
and Sideridis, 1996).

3. Materials and methods

This work aims to automate the process of integrated
pest management for wheat. To automate pest detection, we
introduce deep learning, which relies on a large amount of
data. To address this research question, we perform data aug-
mentation of the collected data. Another research problem
that hinders the automation of integrated pest management
is the interaction between deep learning model detection
results and a decision-making expert system. To address this
challenge, we propose a sample point generation algorithm
to aid sampling and a density calculation algorithm to quan-
tify the pest detection results so that they can be used in an
expert system. This section also concludes with a description
of the human-in-the-loop algorithm for automatic correction
of pest thresholds in expert systems

3.1. Pest Datasets

Multiple pest datasets are used for the validation of
pest detection models, including both public and private
datasets. IP102 (Wu, Zhan, Lai, Cheng and Yang, 2019)
is a public dataset that includes 19 thousands pest images
with annotation belonging to 102 classes and 51 thousands
pest images without annotation. The images in the IP102 are
collected through a search engine, so the backgrounds are
more diverse. In addition, the images in the IP102 have a
larger percentage of pests than that images collected in real
environments. In comparison, the AgriPest dataset (Wang,
Liu, Xie, Yang, Li and Zhou, 2021b) includes 49.7k pest im-
ages of 14 species collected from a natural environment with
fixed equipment and mobile equipment. We select a subset
of the AgriPest dataset containing two types of aphids by
manual screening to verify the ability of the detection model
in a realistic sampling scenario. In addition, we collected
image data using mobile equipment on three different UK
farms according to the proposed sampling specifications.
These three datasets show the different challenges that the
pest detection task poses to object detection models. Firstly,
IP102 (Wang et al., 2021b) and our datasets contain a large
number of insect species, which challenges the classifica-
tion ability of object detection models. Secondly, datasets
collected in real environments, such as the AgriPest dataset
(Wang et al., 2021b) and our dataset, face the challenge of
tiny object detection. Last, all three datasets suffer from data
imbalance and limited dataset size.

For improving the accuracy of the detection model,
multiple data augmentation methods are used during the
model training phase. The data augmentation methods in-
clude basic image transformations, such as random flipping,
random scaling, and random HSV colour perturbation. In
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Table 1

Statistical information of datasets. The columns in the
table show the total number of samples, the total
number of classifications, the number of the largest
category, the number of the smallest category, and the
average percentage of one object pixels in the image.

IP102 AgriPest Our Dataset

Num. of samples 19,167 1,000 4,270
Num. of objects 22,284 6,325 8,303
Num. of classifications 97 2 11

Max. Num. of a category 2,975 4,755 5,575
Min. Num. of a category 2 1,570 3
Avg. object pixels pct. 37.27 0.08 0.13

(a) Flipping (b) Scaling

(c) HSV perturbation

(d) Mosaic

Figure 1: Data Augmentation. The flipping method randomly
flips the original image horizontally or vertically. The scaling
method randomly scales the original image and fills the border
with grey. The HSV perturbation randomly adjust saturation,
hue, and lightness. The mosaic randomly selects and slices four
transferred images.

the work of YoloX, Mosaic (Ge et al., 2021) is proposed
for improving the model accuracy, which splices four images
randomly after basic image transformations. The augmented
image data is shown in Figure 1. This artificially constructed
training data contains more invariance and enriches the
training sample to improve the accuracy of the model.

3.2. Integrated pest management decision making
system

Automatic in-field pest detection and recognition using
mobile vision technique is a hot topic in modern intelligent
agriculture but suffers from serious challenges including
complexity of wild environment, detection of tiny size pest
and classification of multiple classes of pests. To overcome
these obstacles, the popular methods are to design a Convo-
lutional Neural Network (CNN) model that extracts visual
features and identifies crop disease images based on these
features. These methods work well on laboratory environ-
ment under simple background but achieve low accuracy and

poor robustness in processing the raw images captured from
practical fields that contain inevitable noises. Motivated
by the above mentioned inadequacy of existing studies, a
light-weight deep learning model for automatic wheat pest
detection architecture is established to fuse the features of
pest images and the features of contextual information to
be deployed on mobile devices towards pest recognition and
detection in the wild and make decisions of pest treatments.

The proposed architecture consists of three parts: server,
interface and local library. The server refers to a kubernetes
cluster that manages a number of RESTful web services
for user management, farm management, pest encyclope-
dia, decision making, thresholds optimisation function. The
interface and local library are implemented by Kotlin for
Android device.

Fig. 2 also displays an overall process of users to use
the system. Prior to using the system, users login the logs
in on the mobile application and the server grants access
to the successfully logged-in user. After logging in, the
application requests the server to obtain the field information
associated with the current user. Then the user selects the
field for pest management and selects the growth stage of
the current crop. At the same time, the sampling point
generation algorithm in the local library generates sampling
points for the selected field. Then the application interface
jumps to the map interface of the selected field, which
shows the generated sampling points and the user’s location,
and the user goes to each sampling point in turn to take
pictures. Each sampled picture calls the pest detection model
in the local library for classification and counting, and calls
the density calculation model to calculate the population
density of the pests detected in the photo. When all sampling
points are sampled, the pest detection results and population
density calculation results will be demonstrated to the users.
Users are able to manually modify, add, delete the detection
and calculations results. The results are uploaded to the
decision making expert system on the server to request pest
management recommendations after user confirmation of
the results.

In the pest management suggestion interface, the appli-
cation also requests the description of detected pests from
the Pest encyclopedia server. Every time a pest management
decision is completed, the system will send a questionnaire
to the user to evaluate the effect of the last pest detection,
and the user’s feedback will be returned to the threshold
optimisation algorithm in the server to optimise decision-
making expert system.

3.2.1. Pest Detection Model

In this study, we address the technical challenge of auto-
matically estimating pest population densities through object
detection model. (Yuan, Li, Yang and Li, 2022) As described
in related work, object detection models provide the ability
to identify a bounding box with classification for each object
of interest in an input image. We are inspired by the Yolo
detection models, which are lightweight and effective object
detection models, to propose a pest detection model. The
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Figure 3: The detection model structure. The CSP and SPP are submodels consisting of convolutional layers (Conv.), concatenate
layers (Concat.), and max pooling layers (Maxpool) in CSPDarknet (Ge et al., 2021).

architecture of the proposed detection model is shown in
Figure 3, including a CNN backbone for features extraction,
a detection neck for fusion of multi-layer features, multiple
decoupled detection heads for obtaining the potential bound-
ing box and corresponding classification information in the
input image, and a Non-extreme suppression for obtaining
the final detection result.

In our detection model, we use CSPDarknet (Bochkovskiy,
Wang and Liao, 2020) as the backbone. In the CSPDarknet,
each CSP module has a residual block to learn more and
different features, which facilitates the accuracy of small
object detection. In addition, Spatial Pyramid Pooling is
used before the last CSP module to improve the percep-
tual field of the network by pooling with different size
of maximum pooling kernels. An improved version of
the ReLU activation function, SiLU (Elfwing, Uchibe and
Doya, 2018), is used throughout the detection model, which
has a smoother gradient change compared to the original
ReLU activation function. For detection neck, we use Path
Aggregate Network (Liu, Qi, Qin, Shi and Jia, 2018) which
is more accurate in tiny object detection. The decoupled
detection heads used separate convolutional neural networks
for classification, bounding box, and object score prediction,

improving detection accuracy at the cost of an acceptable
number of parameters.

3.2.2. Generating Evenly Distributed Sampling Points

Generating evenly distributed sampling points is the first
step in pest management. There are many mature sampling
point selection methods in the agricultural field. Such as
five-point sampling method, equidistant sampling method,
grid sampling method, etc. However, these methods need
to be used manually by a person. When we use computers
to generate sample points using these methods, it is not
guaranteed that all the points generated will be in the field
because the computer cannot tell if a point is inside or
outside the field (see figure 4(a)(b)(c)(d)(e)(f). This is not
usually a problem in areas with large plains. However, it
can limit the use of our software in areas with complex field
shapes.

To overcome the dependency of the agricultural experts
on sample point selection, computer science researchers
started to develop computer-aided sample point selection
methods. A representative method for selecting uniform
sampling points is developed by ArcGIS and is based on
computational graphics. The mathematical basis of the
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Figure 4: Comparison of conventional sampling point generation
Sampling (ERCS)

method is triangulation. This method can generate very uni-
form sampling points, but its computational cost is extremely
high, and it needs to generate a large number of sampling
points to make sure these points are uniformly distributed
which will significantly increase the workload at our user
end.

In response to the disadvantages of both traditional meth-
ods, modern methods, and computer-aid methods, we pro-
posed our own methods which can generate relatively uni-
form sampling points with exceptionally low computational
cost and the number of sampling points is significantly
reduce to relief our users from heavy workload. In prin-
ciple, our approach is based on two theories: equidistant
sampling method and ray casting algorithm. Equidistant
sampling is also known as equal-distance sampling which is
been widely used by the agronomists. Equidistant sampling
first divides the sampled field into several equal parts, the
distance or interval is determined by the sampling ratio, and
then the sample squares are drawn according to this equal
distance or interval in order to get uniformly distributed
sampling points. To addressing the challenge of determin-
ing whether the generated sampling points are within the
polygonal fields, we introduced ray casting algorithm. This

(e) Equidistant method with a
complex field shape

—_

(f) Gird Method with a
complex field shape
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(h) ERCS method for complex field
shapes after increased ray density

methods with the proposed method: Equidistant Ray Casting

algorithm is sometimes also known as the crossing number
algorithm or the even—odd rule algorithm, and was known
as early as 1962 (Shimrat, 1962). The algorithm is based on
a simple observation that if a point moves along a ray from
infinity to the probe point and if it crosses the boundary of a
polygon, possibly several times, then it alternately goes from
the outside to inside, then from the inside to the outside, etc.
As a result, after every two "border crossings" the moving
point goes outside. This observation may be mathematically
proved using the Jordan curve theorem.

By fusing these two method and algorithm, we proposed
our sampling methods: Equidistant Ray Casting Sampling
(ERCS). ERCS firstly first place the field in a rectangle, the
size of which depends on the coordinates of the point at
the very edge of the field. Rays then vertically and equally
divide the rectangle. According to the ray casting algorithm,
the computer will be able to know which part of the ray
is inside the polygons by counting the number of intersec-
tions between the ray and the field’s boundaries. Hence, the
midpoints of the line segment inside the polygon will be
selected as the sampling points. In addition, as shown in
figure 4(g)(h) by adjusting the distances between the rays,
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our users can adjust the number of sampling points, making
it easy to optimise their workloads.

3.2.3. Calculating population densities of pests using
single photographs

At present, most of the products on the market only
do the previous step, that is, pest detection. However, in
order to realise semi-automatic IPM in the whole process,
we not only need to realise pest detection, but also need
to conduct quantitative analysis on the detection results. In
order to achieve this goal, we need to relate the number and
species of pests detected by the deep learning model with
our prior knowledge of agriculture (Economic thresholds for
integrated pest management). However, the current existing
thresholds are usually the population density per unit area or
the number of pests per crop, whereas deep learning models
can only detect the species and quantity of pests in a photo
and cannot calculate the population density of each type
of pest, as the actual area of the photo is unknown. It is
also difficult for deep learning models to detect the type
and number of pests on a single plant, because when taking
pictures of most densely planted crops, one photo usually
contains multiple plants.

To achieve a link between thresholds in a prior agricul-
tural knowledge and pest detection results from deep learn-
ing models, we have designed a set of sampling methods and
population density calculation algorithms to solve the above-
mentioned problems. First of all, we standardised the user’s
photo-taking process, that is, taking pictures at a distance
of 30 cm from the target vertically. In order to achieve this,
in the camera interface of our software, we use gyroscope to
help users judge whether their shooting angle is vertical, and
minimise the artificial error of the shooting distance through
multi-point sampling. Then, we calculate the actual area of
the photo by extracting the Exchangeable Image File (EXIF)
information of the photo through the following equation:
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where S, is the actual area of the single photos, D, ., is
the distance between the camera and the target. By balancing
the clarity of the photo with the need to prevent insects
from being disturbed by the close proximity, D;,,..,, Was
recommended as 30cm. However, D, ,,.,,, is not strict and can
be adjusted by the user according to his/her own preferences,
because benefiting from the threshold optimisation algo-
rithm of Human-in-the-loop in chapter 3.2.5, the economic
threshold of each user will be automatically fitted to his/her
photographic habits. The larger the difference between the
user’s habits and the recommended D, the longer the
fitting takes. 24 X 36(mm?) is the actual sensor area of a full
frame camera. F3s,,, is the "35mm equivalent focal length",
which is the actual focal length of the current camera when
converted to a full-frame camera. Because the sensor size of
a full frame camera is fixed, and our sampling criteria fixes
the distance between the object and the lens at 30cm, we
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Figure 5: The proposed Integrated Pest Management decision
making expert system

only need the equivalent focal length of the current camera
to calculate the actual area of the photo. Hence, we can
calculate the population density of each species of pest in
a single photo and in the entire field through the following
equations:

pest
p= @)
Sactual
i=1
Prield = Z Pis 3
‘photo Mot

where p is the population density of a certain pest in a single
photo, n,,, is the quantity of the pest, S, is the actual
area of the photo, p ;.4 is the population density of a certain
pest in the entire field, and n is the total number of
samples taken in that field.

With the photos taken by the above photography stan-
dards, supplemented by the population density calculation
algorithm we proposed, the system can link the data obtained
from the sampling of mobile phone photography with the
threshold value in agricultural prior knowledge for subse-
quent pest management decision making.

photo

3.2.4. Rule-based reasoning expert system for pest
management decision making

The calculation of the pest population density in the
sampled photos provides a data basis for semi-automated
IPM decision making. However, we still need to use relevant
prior agricultural knowledge to conduct qualitative analysis
on these data to make pest management decisions. There
have been many studies (Dewar, Ferguson, Pell, Nicholls
and Watts, 2016; Ellis, Berry, Walters et al., 2009; Wang,
Bai, Zhao, Su, Liu, Han and Chen, 2020b; Wang, Zhao,
Bai, Shang, Zhang, Hou, Chen and Han, 2021a; Gong, Li,
Gao, Wang, Li, Zhang, Li, Liu and Zhu, 2021; Honek, Mar-
tinkova, Saska and Dixon, 2018) on the main invertebrate
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pests affecting wheat crops. However, the representation of
such prior knowledge from the literature is usually text,
which cannot be understood by computers. To address this
problem, we developed an expert system that allows a prior
knowledge of pests from the literature to be used to quantify
the pest detection results obtained from the deep learning
model.

Expert Systems are programme systems with exper-
tise and experience that use the knowledge and experience
provided by one or more experts in a particular field to
reason and make judgements, simulate the decision making
process of human experts, and use computers to automate
the solution of complex problems that need to be handled by
human experts. The rule-based expert system is currently the
most commonly used method, mainly due to a large number
of successful examples, as well as simple and flexible devel-
opment tools. It directly imitates the human mental process
and utilises a set of rules to represent expert knowledge.

In response to the above problems, we propose a rule-
based expert system whose structure is shown in the fig-
ure 5. It consists of five parts: Global Database, Knowl-
edge Database, Reasoning Machine, expositor and Human-
Computer Interface. The Global Database is used to store
initial data and intermediate data obtained during the deci-
sion making process. Specifically, it contains the species of
insects in the pest detection results and their corresponding
population densities. It also contains background informa-
tion relevant to pest decision-making, such as time infor-
mation extracted from the exif of insect photos, geographic
coordinates, and weather information as well as crop type
and growth stage information obtained through user input.
The Knowledge Database stores the knowledge of domain
experts in a certain storage structure, including facts and
feasible operations and rules. Knowledge databases are con-
structed by computer experts in collaboration with domain
experts. The computer experts represent the domain knowl-
edge of the domain experts into a computer-understandable
representation and store it in the knowledge database as
rules. In this study, We summarised the thresholds about
wheat pest management decision making in the previous
literature (Dewar et al., 2016; Ellis et al., 2009; Wang et al.,
2020b, 2021a; Gong et al., 2021; Honek et al., 2018) and
normalised them into a computer-understandable Knowl-
edge Database. It has an IF (condition) THEN (behaviour)
structure. When the condition of the rule is met, the rule is
triggered, and then make a decision. The Reasoning Machine
selects matching rules from the Knowledge Database ac-
cording to the input, and makes pest management decisions
by executing the rules. The Expositor is used to explain the
behaviour of the expert system to the user. The Human-
Computer interface is used to display the decision results and
their explanations.

Concretely, assuming that after sampling, detection, and
population density calculation, the detection result indicates
a population density of 100/m? for grain aphids and 1/m? for
ladybirds. The software first extracts the time and geographic
coordinates from the exif to determine the current weather,

and then stores this information, along with user-entered
information about crop type and growth stage, in the global
database as the initial data for this decision. Then, the
reasoning machine matches the initial data of this decision
in the global database according to the rules in the knowl-
edge database. The reasoning machine first determines the
economic threshold of the pest by its species, crop species
and crop growth cycle. Assuming that the growth cycle of
the current crop wheat is in GS69: Flowering complete,
the corresponding economic threshold of grain aphid in the
knowledge base is 50/m?, and since the population density
of grain aphid in the detection result meets the condition, the
behaviour of the expert system is to recommend pesticide
spraying at this time. Then, other contextual information is
used to further adjust the decision. The first condition is
the pest-beneficial insect ratio, the ratio of grain aphid to
its natural enemy ladybird beetle is 10:1, which meets the
corresponding condition in the knowledge database, so the
recommendation of pesticide spraying is kept unchanged:
and then it is the weather condition, assuming that it is a rainy
day, the operation will change the recommendation to delay
pesticide spraying. At the same time, Expositor summarises
the decision-making process and presents it to the user via
HCT output.

3.2.5. Human-in-the-loop threshold optimisation
algorithm

Although we have obtained some thresholds from the
literature, the above work is still not sufficient for a pest
management decision making system. There are a number
of reasons for this: First of all, not all crops have known
thresholds for each pest in each growth stage. For example,
there is no known threshold for gout fly in spring cereals,
despite the high risk of yield reduction (Ellis et al., 2009;
Dewar et al., 2016). Second, because some studies were
conducted a long time ago (more than ten years ago), their
pest thresholds may not still be applicable today. last but
not least, pests will lead to increased resistance to pesticides
after natural selection, so we cannot use a constant threshold
for pest management in the future.

To keep the thresholds up-to-date in our pest man-
agement expert system, we designed a human-in-the-loop
threshold optimisation algorithm. Human-in-the-loop (HITL)
is a branch of artificial intelligence in which people partic-
ipate in a virtuous circle in which they train, adapt and test
specific algorithms to improve the accuracy of the model.

As shown in figure 6, each time a user makes a pest man-
agement decision using the software, the server, in addition
to recording the decision, sends the user a questionnaire after
a certain interval (the length of this interval varies from a few
hours to a few days, depending on how quickly the operation
used takes effect) asking the user to observe the farm to
determine the effectiveness of the last decision. The system
then automatically adjusts certain thresholds in the database
based on the effectiveness of the last decision.

For instance, continuing with the example from chapter
3.2.4, assuming that the expert system gives a decision
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Figure 6: The pipeline of the proposed HITL thresholds optimisation algorithm

suggestion to use cypermethrin for control, the server will
push a questionnaire to the user. The questionnaire will ask
the user to take another sampling in the field to calculate
the ratio of natural enemies to grain aphids as a criterion, if
the ratio decreases, it means that the decision has a negative
effect, this is because the existing economic threshold in
the expert system is set too low, so the threshold will be
automatically optimised to the existing threshold by increas-
ing it by 10%, on the contrary, it means that the decision
does not have a negative effect and the threshold will remain
unchanged. If the advice given by the expert system is not
to apply pesticides, the server will send a questionnaire to
the user after one week to go to the field and observe if
the phenomenon of yellow dwarf disease occurs in wheat.
If there is a negative impact such as yellow dwarf disease,
the threshold in the expert system is too low, resulting in the
threshold not being triggered in time, and the system will
automatically lower the existing threshold by 10%. On the
contrary, if there is no negative effect, the existing threshold
will be lowered by 10%.

4. Results and discussions

4.1. Evaluation Metrics

Multiple metrics are used to evaluate the object detection
model, including mean average precision (mAP), the number
of frames dealt within a second (FPS), and the number of
parameters (Parameters) in the detection model. The mean
average precision is a general evaluation metric for object

detection model, which is defined as the mean value of the
area under the Precision-Recall (PR) curve ,

Prin) = 7o @)
Re(n) = 7t ®)
mAP= < ¥,y [y PrindRe(n) .  (6)

where N is the number of object categories, T P,, FP,,
and F N, refer to the number of true positive samples, false
positive samples, and false negative samples for class n,
respectively. The true positive samples in object detection
tasks are defined by intersection over union (IoU), which
is a ratio of the overlap area in the union area between the
predicted bounding box and the annotated bounding box.
Parameters metrics measure the size of the object detection
model. The larger object detection model requires more
computational resources.

4.2. Performance Evaluation of the Detection
Model

We evaluate the performance of the detection model
using three pest datasets, including IP102, AgriPest, and
Our Dataset. Each dataset is divided into a training dataset,
validation dataset, and test dataset in a ratio of 8:1:1. The
mAP for each trained model on the test dataset is calculated
and is presented in Table 2. The compared models are pre-
trained on the COCO dataset (Lin, Maire, Belongie, Hays,
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Figure 7: Qualitative results of the pest detection model on our dataset.The detection results demonstrate the ability of our
model to accurately identify multiple tiny pests in one image.

Perona, Ramanan, Dollar and Zitnick, 2014). As mentioned
before, multiple data augmentation methods are used in
the training dataset. The dropout method are used to avoid
overfitting.

Table 2
The performance for different detection models

Faster RCNN YoloX Our Model
FPS 11.45 12.97 13.21
Parameters 28,275k 8,976k 6,759k
mAP (IP102) 55.25% 56.87%  58.17%
mAP (AgriPest) 7.18% 66.24% 75.29%
mAP (Our dataset) 24.21% 54.26% 57.33%

As Table 2 shown, we compare our model with Faster
RCNN and YoloX on the multiple pest dataset. The mAP of
different models is mainly limited by the challenge of the
pest detection task. Although the object detection models
do not present surprising performance in terms of mAP,
our model outperforms Faster RCNN and YoloX due to it
adopting the Path Aggregation Network to fuse multi-scale
features. In particular, our model obtains mAP of 75.29%
and 57.33% on the AgriPest and our datasets, respectively.
The failure of Faster RCNN is due to the challenge of tiny
objects in AgriPest and our datasets. Meanwhile, YoloX and
our model achieve faster detection speed with fewer training
parameters than Faster RCNN. The main difference between
our model and YoloX is a more efficient neck and data
augmentation methods for pest detection. Figure 7 presents
the detection results of our model. In summary, our model
achieves state-of-the-art results in pest detection tasks.

4.3. Qualitative In-Field Validation of the System
Usability

In order to validate the usability of the proposed method,
an in-field testing was conducted. Figure 8 illustrates the
flow of our in-field experiments. Following the selection of
the field to be tested, the tester took images at the sampling
points generated by the ERCS algorithm. Upon completion
of each picture collection, the mobile application output the
detection results of the pest detection model to the user. Once
all sampling points had been evaluated, the expert system

determined the pest severity and provided pest management
advice. The application was deployed on a range of mobile
phones, equipped with mid-end (Qualcomm Snapdragon
855, 875, 8Genl, etc.) or low-end (Qualcomm Snapdragon
695, 720G, etc.) system-on-a-chips (SoCs), in order to assess
its usability across a spectrum of computing power plat-
forms. A series of experiments was conducted at multiple
sites in England. The experimental sites were located in
West Yorkshire (Leeds and Knottingley), North Yorkshire
(Malton), Warwickshire (Nuneaton), and Nottinghamshire
(Mansfield). A total of 12 testers participated in the ex-
periments. The qualitative validation of the usability of the
proposed methods with the developed mobile application on
mobile phones with different performances and in various
regions of England was achieved.

4.4. Quantitative Evaluation of the User Usability
The usability of the proposed solution rely on the friend-
liness of user interface and function design, in addition to the
stability of the system. The mobile application provides end
users with the ability to browse farm information, add farm
records, respond to tasks, detect pests, view weather fore-
cast, modify app settings and more. Meanwhile, a manually
collected encyclopaedia of knowledge about pests and crops
is integrated as a knowledge base for providing the basic
knowledge and advice for model decisions in the integrated
pest management function. The above functional design is
based on a user requirements analysis of the system in early
stage. The usability evaluation process invites end users
to make subjective evaluations of the functionality of the
mobile application, the efficiency and accuracy of the func-
tions, and the user-friendliness of the interface. Specifically,
evaluation participants were asked to follow an instructional
document after logging into the app to complete their experi-
ence of the functions in the mobile application and to rate the
usability of key functions. The results are shown in Table 3.
In addition to the evaluation of functional usability, an
open access experiment which invite participants to use the
application without restrictions was processed. The results
of this experiment was collected by the System Usability
Scale (SUS) questionnaire, which consists of ten questions
with a scale from strongly agree (5 points) to strongly
disagree (1 point) for each question (Lewis, 2018). The
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Figure 9: SUS Score of the our mobile application

questions in the SUS questionnaire focus on the system
usability, such as, I think that T would like to use this system
frequently, and I needed to learn a lot of things before I
could get going with this system. The final evaluation results
are calculated according to Equation 7, where S'1 to S10
indicate the scoring of each of the 10 questions.

SUS =2.5 % (20 + SUM(S1, S3, 55,57, .59)—

7
SUM(S2, 54, 56,58, 510)) @

Figure 9 presents the results for the open access experi-
ment. According to the grading based on SUS scores (Lewis,
2018), the mobile application with an average score of 76 is
considered as a good product.

Table 3

Questionnaire results for User Experience Tasks (In-
cluding login, fields information, record, task, detection,
maps, weather, the encyclopaedia and IPM)

Task 1 (Hard) 2 3 4 5 (Easy)
Task 1 0% 0% 9% 16% 75%
Task 2 0% 0% 14% 18% 68%
Task 3 0% 0% 10% 7% 83%
Task 4 9% 0% 9% 9% 73%
Task 5 8% 3% 16% 9% 64%
Task 6 7% 8% 6% 12% 67%
Task 7 9% 5% 4% 9% 73%
Task 8 0% 0% 0% 18% 82%
Task 9 0% 0% 18% 0% 82%

5. Conclusion and Future Work

In this work, we develop a practical application of an
end-to-end decision making system for integrated pest man-
agement that allows users to take just a few photos to get pest
management advice, enabling growers with no agricultural
knowledge to apply sustainable crop protection. The present
study has offered a framework which integrated deep learn-
ing objective detection and expert system for the exploration
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of environmentally friendly pest management thresholds for
wheat. In this study, we proposed a low computational cost
sampling point generation algorithm that enables mobile
devices to generate evenly distributed sampling points in
arbitrary-shaped farmlands. We used PyTorch Mobile to
generate a lightweight pest detection model that can be
deployed on mobile devices, so that our application can
get rid of the constraints of communication infrastructure.
We have developed a standardised sampling protocol and
used our software to assist users with sampling, enabling the
calculation of pest population densities from a single photo-
graph. A rule-based expert system has been established for
deriving pest management thresholds from prior agriculture
knowledge and making decisions based on pest detection
results. We proposed a human-in-the-loop algorithm to con-
tinuously track the validity of thresholds in the expert system
and keep them up-to-date.

The experimental results show that our detection model
outperformed Faster RCNN and YoloX in term of FPS and
mAP. In the user evaluation of system usability, the proposed
system received 76 in SUS score. An in-field qualitative
evaluation of system usability has also been conducted.

A number of limitations need to be noted regarding the
present study:

Firstly, our current population density calculation is
achieved by hard-coding the distance from the lens to the
target, which is the result of the compromise of many factors,
although the computational cost is lower and the generality
is better, but it also leads to a greater error in the calculation
of population density. Therefore, we intend to develop a
low-computational cost Al distance measurement algorithm
to replace the existing hard-coding method to improve the
accuracy of population density calculation in our subsequent
research.

Secondly, the decision-making expert system has only
been validated for usability, while the validation of its deter-
mination of the severity of pest infestation and the feasibil-
ity of the generated pest management advice still requires
further research. In future work, it would be beneficial to
conduct interdisciplinary research with agronomists con-
ducting pest threshold studies and entomologists conducting
pesticide resistance studies.

Thirdly, our human-in-the-loop threshold optimisation
algorithm have not been validated for the time being as this
would take many years of experimentation over multiple
crop cycles to complete. In terms of this direction for future
research, the validation of the threshold optimisation algo-
rithm in practice is required to confirm the effectiveness of
our proposed solution.
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