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An Effective Farmer-Centred Mobile Intelligence Solution Using

Lightweight Deep Learning for Integrated Wheat Pest Management

A R T I C L E I N F O

Keywords:

Integrated Pest Management

Deep Learning

Expert System

Smart Agriculture

Tiny Object Detection

A B S T R A C T

Integrated Pest Management (IPM) techniques have been widely used in agriculture to manage pest

damage in the most economical way and to minimise harm to people, property and the environment.

However, current research and products on the market cannot consolidate this process. Most existing

solutions either require experts to visually identify pests or cannot automatically assess pest levels

and make decisions based on detection results. To make the process from pest identification to pest

management decision making more automated and intelligent, we propose an end-to-end integrated

pest management solution that uses deep learning for semi-automated pest detection and an expert

system for pest management decision making. Specifically, a low computational cost sampling point

generation algorithm is proposed to enable mobile devices to generate uniformly distributed sampling

points in irregularly shaped fields. We build a pest detection model based on YoloX and use Pytorch

Mobile to deploy it on mobile phones, allowing users to detect pests offline. We develop a standardised

sampling specification and a mobile application to guide users to take photos that allow pest population

density to be calculated. A rule-based expert system is established to derive pest management

thresholds from prior agricultural knowledge and make decisions based on pest detection results.

We also propose a human-in-the-loop algorithm to continuously track and update the validity of the

thresholds in the expert system. The mean average precision of the pest detection model is 58.17% for

97 classes, 75.29% for 2 classes, and 57.33% for 11 classes on three pest datasets, respectively. The

usability of the pest management system is assessed by the User Experience Surveys and achieves

a System Usability Scale (SUS) score of 76. The usability of the proposed solution is validated by

qualitative field experiments.

1. Introduction1

Wheat is an important food crop and is considered one2

of the world’s four major food crops, along with rice, maize3

and potatoes. Wheat is used as a staple food in more than 1004

countries worldwide (Curtis, Rajaram, Gómez Macpherson5

et al., 2002). About one third of the world’s population6

depends on wheat as a staple food and it accounts for7

27% of global cereal production (Shewry, 2009). In UK,8

it is estimated that estimate that wheat comprises 25% of9

the daily calorific intake (Mottaleb, Kruseman and Snapp,10

2022).11

The loss in potential yield from pest attack i.e., insect12

and mollusc, can be substantial, to the point of total loss13

of crop. Recently investigators have examined the effects14

of pest attack on wheat yield. The Food and Agriculture15

Organisation of the United Nations (FAO) estimates that16

between 20% and 40% of global crop production is lost to17

pests each year (Department for Environment, Food & Rural18

Affairs, 2020). Plant diseases cost the global economy an19

estimated $220 billion annually, while invasive insects cost20

an estimated $70 billion (Sarkozi, 2019).21

Studies by Nacarrow et al. and Dedryver et al. suggest22

up to 80% yield loss due to virus transmission by aphids and23

5-20% yield loss due to direct feeding damage (Nancarrow,24

Aftab, Hollaway, Rodoni and Trębicki, 2021; Dedryver,25

Ralec and Fabre, 2010). Orange wheat blossom midges are26

native to Europe and have spread to major wheat-producing27

countries around the world (Senevirathna, Guelly and Mori,28

2023). Currently, both aphids and orange wheat blossom29

midges are damaging pests of wheat in the UK (Ellis, White,30

ORCID(s):

Holland, Smith, Collier and Jukes, 2014). Due to the low 31

cost of insecticides, the economic return from additional 32

producion is six times the cost of treating aphids (Redman, 33

2022). 34

Hence growers apply pesticides to mitigate potential 35

yield loss These applications are often done on an insurance 36

basis (i.e., an application is made as a contingency to mit- 37

igate potential yield loss) because pest abundance is high. 38

These applications are potentially wasteful (no economic 39

benefit) and damaging to the environment. With sustainable 40

crop protection becoming more important, there is increas- 41

ing demand for decision support systems that can help 42

farmers grow crops more sustainably with fewer chemical 43

interventions. 44

To help address these issues, a large and growing body of 45

literature has investigated the pest identification and the eco- 46

nomic threshold levels. In addition to the population density 47

of insects or the extent of crop damage, economic thresholds 48

used for integrated pest management often contain relevant 49

contexutal information, such as climatic, geographic, and 50

phenological information. For example, the resistance to 51

pests increases if the crop reaches a late growth stage; pesti- 52

cide applications are usually not recommended on rainy days 53

because the effect is weakened, etc. The Agriculture and 54

Horticulture Development Board (AHDB) have produced an 55

encyclopaedia of pests and natural enemies in field crops. 56

This provides all the information required to make an in- 57

formed decision on whether pest control is warranted or not 58

(Agriculture and Horticulture Development Board, 2022). 59

Although the reference manual is very comprehensive, it 60

is not specific to wheat and not very user friendly in a 61

field situation either as a hard document or on a mobile 62
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phone. A new tolerance-based decision support system to63

minimise the risk of crop damage by wheat bulb fly (WBF)64

has been devised under IPM principles by ADAS, a UK-65

based independent agricultural and environmental consul-66

tancy (Leybourne, Storer, Berry and Ellis, 2022). However,67

the identification of the pest and a risk-based decision still68

needs to be made by agronomists with specialist knowledge.69

To automate the detection of pest species, artificial intelli-70

gence scientists are using objective detection algorithms for71

pest identification. Nevertheless, these deep learning-based72

algorithms can only identify the type of pest, but cannot73

quantify the severity of the current pest. There are two main74

scientific problems that contribute to this issue. First, current75

pest thresholds in the agricultural literature are difficult to76

use in computer vision, for example, some pest thresholds77

are measured in terms of the number of pests per plant, yet it78

is difficult for deep learning models to distinguish between79

different plants. Secondly, because the actual area of a pho-80

tograph is not known, the density of the pest population in81

the photograph cannot be calculated, so it is not possible82

to measure the severity of the infestation directly from the83

photograph. In addition, the economic thresholds for wheat84

vary according to climate, water and heat conditions and pest85

species, and sometimes pests develop resistance, making it86

difficult to use a constant set of pest thresholds for decision87

making in all environments.88

This study has proposed a solution of integrated pest89

management decision making for wheat pest aims to the90

research problems mentioned above. The system combines91

deep learning models for pest detection and counting with an92

expert system for pest management decisions, with specific93

contributions including:94

• to design and train a light-weight deep learning model95

for semi-automatic wheat pest detection on smart-96

phones.97

• to propose a sampling standard and a computational98

graphics-based algorithm for sampling point gener-99

ation that reflects the challenges of quantifying pest100

severity from deep learning pest detection results.101

• to convert the text-based thresholds for wheat pests102

in the literature into a rule-based expert system to103

overcome the difficulties of using textual prior knowl-104

edge for computer vision-based integrated pest man-105

agement.106

• to implement a human-in-the-loop threshold optimi-107

sation algorithm to semi-automatically adjust inaccu-108

rate thresholds due to pesticide resistance or regional109

differences.110

The remainder of the paper is structured as follows.111

Section 2 reviews the state of the art research on object de-112

tection and integrated pest management. Section 3 presents113

the datasets and the proposed solution of the semi-automatic114

integrated pest management decision making system. Sec-115

tion 4 evaluates the performance of the deep learning based116

pest detection model and the usability of the proposed pest 117

management decision making system. Section 5 briefly con- 118

cludes the proposed approaches presented in section 3 along 119

with an outline of future work. 120

2. Literature Review 121

The scope of this research is deep learning based pest 122

identification and expert system based decision making for 123

pest management. Therefore, the literature review in this sec- 124

tion is divided into two parts, the first providing an overview 125

of relevant deep learning techniques in the literature for 126

target detection and the second outlining the application of 127

expert systems in agriculture. 128

2.1. Object Detection 129

Object detection is one of the important tasks in com- 130

puter vision to identify and localise all instances of object in 131

the image data. Early work on object detection was based 132

on hand-crafted feature extractors, such as the histogram 133

of oriented gradients (Dalal and Triggs, 2005) and Harris 134

corner detector (Harris, Stephens et al., 1988). However, 135

for complex multi-classification object detection tasks, these 136

traditional methods lose their effectiveness. 137

The convolutional neural networks (CNNs) were pro- 138

posed to solve the problem of low performance of hand-craft 139

features by automatically exploring effective features using 140

large amounts of image data, such as VGG (Simonyan and 141

Zisserman, 2014), ResNet (He, Zhang, Ren and Sun, 2016), 142

and CSPNet (Wang, Liao, Wu, Chen, Hsieh and Yeh, 2020a). 143

Based on the superiority of convolutional neural networks, a 144

series of deep learning-based object detection models have 145

been proposed, which is divided into two-stages detectors 146

and one-stages detectors. The two-stages detector divides the 147

detection process into two steps, the regional proposal stage, 148

and the detection stage. In contrast, the one-stages detector 149

proposed bounding box and classified object in one stage. 150

From the view of model structure, the difference between the 151

two-stage detector and one-stage detector lies in the presence 152

or absence of a separate module for generating bounding 153

box. 154

Faster Region-based Convolutional Neural Network (Fa- 155

ster RCNN) (Ren, He, Girshick and Sun, 2015) is the latest 156

work following the design of RCNN (Girshick, Donahue, 157

Darrell and Malik, 2014) detection model family, which 158

are all two-stage detection models. As the definition of the 159

two-stage detection model, the models structure of RCNN 160

family can be divided into two steps, the region of inter- 161

est proposal stage and detection stage. In the early RCNN 162

(Girshick et al., 2014), a traditional algorithm Selective 163

Search (Uijlings, Van De Sande, Gevers and Smeulders, 164

2013) was used to propose 2000 regions of interest. The 165

proposed regions were then warped and propagated through 166

a CNN backbone. The final detection results were subse- 167

quently obtained by Support Vector Machines (SVMs) and 168

Non-maximum suppression (NMS). In order to increase the 169

speed of detection, Faster RCNN use a CNN as a region 170

proposal network (RPN) to propose regions of interest with 171
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associated objectness score. The multi-scale bounding boxes172

obtained by RPN were combined with the feature maps in173

the backbone network and passed through a classifier and174

bounding box regressor to obtain the detection results.175

In contrast, the Yolo detection model (Ge, Liu, Wang,176

Li and Sun, 2021) family is representative of the one-stage177

detectors, which solve the detection problem by directly178

predicting the likelihood of related pixels being a detection179

object and the bounding box properties in one stage. This180

approach used convolutional neural networks to separate the181

original input images into grids and predict the bounding182

boxes and object scores for each grid, allowing for a simpler183

and smaller model to detection. Those models gained faster184

detection at the cost of detection accuracy in the early works.185

In recent work of YoloX (Ge et al., 2021), this cost is186

offset by a large number training tricks and the adaptation187

of the model structure. Specifically, various data augmenta-188

tion methods, batch normalisation, and CLoU loss function189

were used in the training phase of the detection model. In190

terms of model structure, Cross-stage partial connections,191

SPP-Block, PAN path aggregated block neck, Decoupling192

detection head were used to optimise the model structure193

to achieve fast and accurate detection. Overall, one-stage194

detection model solves the problem of fast and accurate195

object detection in a simpler way.196

2.2. Expert Systems197

Expert systems use computer models derived from hu-198

man experts to deal with complex real-world problems that199

require expert interpretation, and reach the same results as200

experts (Liao, 2005). The Agricultural Expert System (AES)201

applies expert system technology to the agricultural sector. It202

summarises and brings together knowledge and techniques203

from the field of agriculture and the knowledge of agricul-204

tural experts, as well as data obtained through experiments205

and mathematical models to simulate the decision-making206

process of agricultural experts.207

Since the 1980s, specialist systems technology has been208

applied to agricultural problems, particularly in the area of209

integrated pest management, which has been in development210

for a relatively long time and is particularly well developed211

(Gerevini, Perini, Ricci, Forti, Ioriatti, Mattedi, Monetti212

et al., 1992; El-Azhary, Hassan and Rafea, 2000; Harrison,213

1991). S. Kaloudis et al. describe an expert system for the214

identification of forest pests and the provision of related con-215

trol measures. The system identifies more than 40 species of216

forest pests based on their growth stage, the damage caused217

by the pests and the results of their research in the forest.218

Once a pest has been identified, the system will provide a219

suitable treatment plan to minimise damage to the forest by220

the pest (Kaloudis, Anastopoulos, Yialouris, Lorentzos and221

Sideridis, 2005). CUPTEX is an expert system that has been222

developed to manage cucumber pests and diseases. The main223

purpose of the system is to identify the causes of anomalies224

and to make appropriate treatment recommendations. In225

this case, the system starts with the identification of the226

cause before recommendations are given (Rafea, El-Azhari,227

Ibrahim, Edres, Mahmoud and Street, 1995). The Tomato 228

Expert System developed by Yialouris and Siderdis was used 229

to deal with the problem of identifying tomato pests and 230

diseases. A framework knowledge representation table was 231

used to describe the knowledge base, and notably fuzzy logic 232

was used to deal with uncertainty in the diagnosis (Yialouris 233

and Sideridis, 1996). 234

3. Materials and methods 235

This work aims to automate the process of integrated 236

pest management for wheat. To automate pest detection, we 237

introduce deep learning, which relies on a large amount of 238

data. To address this research question, we perform data aug- 239

mentation of the collected data. Another research problem 240

that hinders the automation of integrated pest management 241

is the interaction between deep learning model detection 242

results and a decision-making expert system. To address this 243

challenge, we propose a sample point generation algorithm 244

to aid sampling and a density calculation algorithm to quan- 245

tify the pest detection results so that they can be used in an 246

expert system. This section also concludes with a description 247

of the human-in-the-loop algorithm for automatic correction 248

of pest thresholds in expert systems 249

3.1. Pest Datasets 250

Multiple pest datasets are used for the validation of 251

pest detection models, including both public and private 252

datasets. IP102 (Wu, Zhan, Lai, Cheng and Yang, 2019) 253

is a public dataset that includes 19 thousands pest images 254

with annotation belonging to 102 classes and 51 thousands 255

pest images without annotation. The images in the IP102 are 256

collected through a search engine, so the backgrounds are 257

more diverse. In addition, the images in the IP102 have a 258

larger percentage of pests than that images collected in real 259

environments. In comparison, the AgriPest dataset (Wang, 260

Liu, Xie, Yang, Li and Zhou, 2021b) includes 49.7k pest im- 261

ages of 14 species collected from a natural environment with 262

fixed equipment and mobile equipment. We select a subset 263

of the AgriPest dataset containing two types of aphids by 264

manual screening to verify the ability of the detection model 265

in a realistic sampling scenario. In addition, we collected 266

image data using mobile equipment on three different UK 267

farms according to the proposed sampling specifications. 268

These three datasets show the different challenges that the 269

pest detection task poses to object detection models. Firstly, 270

IP102 (Wang et al., 2021b) and our datasets contain a large 271

number of insect species, which challenges the classifica- 272

tion ability of object detection models. Secondly, datasets 273

collected in real environments, such as the AgriPest dataset 274

(Wang et al., 2021b) and our dataset, face the challenge of 275

tiny object detection. Last, all three datasets suffer from data 276

imbalance and limited dataset size. 277

For improving the accuracy of the detection model, 278

multiple data augmentation methods are used during the 279

model training phase. The data augmentation methods in- 280

clude basic image transformations, such as random flipping, 281

random scaling, and random HSV colour perturbation. In 282
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Table 1

Statistical information of datasets. The columns in the
table show the total number of samples, the total
number of classifications, the number of the largest
category, the number of the smallest category, and the
average percentage of one object pixels in the image.

IP102 AgriPest Our Dataset

Num. of samples 19,167 1,000 4,270
Num. of objects 22,284 6,325 8,303
Num. of classifications 97 2 11
Max. Num. of a category 2,975 4,755 5,575
Min. Num. of a category 2 1,570 3
Avg. object pixels pct. 37.27 0.08 0.13

(a) Flipping (b) Scaling

(c) HSV perturbation (d) Mosaic

Figure 1: Data Augmentation. The flipping method randomly
flips the original image horizontally or vertically. The scaling
method randomly scales the original image and fills the border
with grey. The HSV perturbation randomly adjust saturation,
hue, and lightness. The mosaic randomly selects and slices four
transferred images.

the work of YoloX, Mosaic (Ge et al., 2021) is proposed283

for improving the model accuracy, which splices four images284

randomly after basic image transformations. The augmented285

image data is shown in Figure 1. This artificially constructed286

training data contains more invariance and enriches the287

training sample to improve the accuracy of the model.288

3.2. Integrated pest management decision making289

system290

Automatic in-field pest detection and recognition using291

mobile vision technique is a hot topic in modern intelligent292

agriculture but suffers from serious challenges including293

complexity of wild environment, detection of tiny size pest294

and classification of multiple classes of pests. To overcome295

these obstacles, the popular methods are to design a Convo-296

lutional Neural Network (CNN) model that extracts visual297

features and identifies crop disease images based on these298

features. These methods work well on laboratory environ-299

ment under simple background but achieve low accuracy and300

poor robustness in processing the raw images captured from 301

practical fields that contain inevitable noises. Motivated 302

by the above mentioned inadequacy of existing studies, a 303

light-weight deep learning model for automatic wheat pest 304

detection architecture is established to fuse the features of 305

pest images and the features of contextual information to 306

be deployed on mobile devices towards pest recognition and 307

detection in the wild and make decisions of pest treatments. 308

The proposed architecture consists of three parts: server, 309

interface and local library. The server refers to a kubernetes 310

cluster that manages a number of RESTful web services 311

for user management, farm management, pest encyclope- 312

dia, decision making, thresholds optimisation function. The 313

interface and local library are implemented by Kotlin for 314

Android device. 315

Fig. 2 also displays an overall process of users to use 316

the system. Prior to using the system, users login the logs 317

in on the mobile application and the server grants access 318

to the successfully logged-in user. After logging in, the 319

application requests the server to obtain the field information 320

associated with the current user. Then the user selects the 321

field for pest management and selects the growth stage of 322

the current crop. At the same time, the sampling point 323

generation algorithm in the local library generates sampling 324

points for the selected field. Then the application interface 325

jumps to the map interface of the selected field, which 326

shows the generated sampling points and the user’s location, 327

and the user goes to each sampling point in turn to take 328

pictures. Each sampled picture calls the pest detection model 329

in the local library for classification and counting, and calls 330

the density calculation model to calculate the population 331

density of the pests detected in the photo. When all sampling 332

points are sampled, the pest detection results and population 333

density calculation results will be demonstrated to the users. 334

Users are able to manually modify, add, delete the detection 335

and calculations results. The results are uploaded to the 336

decision making expert system on the server to request pest 337

management recommendations after user confirmation of 338

the results. 339

In the pest management suggestion interface, the appli- 340

cation also requests the description of detected pests from 341

the Pest encyclopedia server. Every time a pest management 342

decision is completed, the system will send a questionnaire 343

to the user to evaluate the effect of the last pest detection, 344

and the user’s feedback will be returned to the threshold 345

optimisation algorithm in the server to optimise decision- 346

making expert system. 347

3.2.1. Pest Detection Model 348

In this study, we address the technical challenge of auto- 349

matically estimating pest population densities through object 350

detection model. (Yuan, Li, Yang and Li, 2022) As described 351

in related work, object detection models provide the ability 352

to identify a bounding box with classification for each object 353

of interest in an input image. We are inspired by the Yolo 354

detection models, which are lightweight and effective object 355

detection models, to propose a pest detection model. The 356
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User login

Crop stage information input

Sampling points display

Images information input Pest detection model

Density calculation algorithm

Pest detection results

Suggestion of pest management

Interface Local Library

User management server 

Server

User Login

Fields information server 
Request fields information

Thresholds optimisation algorithm

Decision-making expert system

Sampling points generation  

algorithm

Pest encyclopaedia server 
Request pest information

Request suggestion

Return feedback

Return density

Return detection results

Return sampling points 

Input fields information

Input image information

Figure 2: Interaction between server, interface and local library

Focus

CSP

CSP

CSP

SPP

CSP
SPP

20*20*512

40*40*256

80*80*128

Conv.
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Res UnitRes UnitRes UnitRes Unit Concat. Conv.
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Maxpool

Maxpool

Maxpool
Concat. Conv.

Input

Image

CSP

CSP

CSPDarknet

Conv.

Conv. Concat. CSP

Conv.

Concat. CSPConv.

PAN

Decoupled Head

Decoupled Head

Decoupled Head NMS

Detection Head

Output

Detection

Figure 3: The detection model structure. The CSP and SPP are submodels consisting of convolutional layers (Conv.), concatenate
layers (Concat.), and max pooling layers (Maxpool) in CSPDarknet (Ge et al., 2021).

architecture of the proposed detection model is shown in357

Figure 3, including a CNN backbone for features extraction,358

a detection neck for fusion of multi-layer features, multiple359

decoupled detection heads for obtaining the potential bound-360

ing box and corresponding classification information in the361

input image, and a Non-extreme suppression for obtaining362

the final detection result.363

In our detection model, we use CSPDarknet (Bochkovskiy,364

Wang and Liao, 2020) as the backbone. In the CSPDarknet,365

each CSP module has a residual block to learn more and366

different features, which facilitates the accuracy of small367

object detection. In addition, Spatial Pyramid Pooling is368

used before the last CSP module to improve the percep-369

tual field of the network by pooling with different size370

of maximum pooling kernels. An improved version of371

the ReLU activation function, SiLU (Elfwing, Uchibe and372

Doya, 2018), is used throughout the detection model, which373

has a smoother gradient change compared to the original374

ReLU activation function. For detection neck, we use Path375

Aggregate Network (Liu, Qi, Qin, Shi and Jia, 2018) which376

is more accurate in tiny object detection. The decoupled377

detection heads used separate convolutional neural networks378

for classification, bounding box, and object score prediction,379

improving detection accuracy at the cost of an acceptable 380

number of parameters. 381

3.2.2. Generating Evenly Distributed Sampling Points 382

Generating evenly distributed sampling points is the first 383

step in pest management. There are many mature sampling 384

point selection methods in the agricultural field. Such as 385

five-point sampling method, equidistant sampling method, 386

grid sampling method, etc. However, these methods need 387

to be used manually by a person. When we use computers 388

to generate sample points using these methods, it is not 389

guaranteed that all the points generated will be in the field 390

because the computer cannot tell if a point is inside or 391

outside the field (see figure 4(a)(b)(c)(d)(e)(f). This is not 392

usually a problem in areas with large plains. However, it 393

can limit the use of our software in areas with complex field 394

shapes. 395

To overcome the dependency of the agricultural experts 396

on sample point selection, computer science researchers 397

started to develop computer-aided sample point selection 398

methods. A representative method for selecting uniform 399

sampling points is developed by ArcGIS and is based on 400

computational graphics. The mathematical basis of the 401

First Author et al.: Preprint submitted to Elsevier Page 5 of 13



Farmer-Centred Mobile Pest Management Solution

(a) Five-point method (b) Equidistant method (c) Grid method

(d) Five-point method with a 

complex field shape

(e) Equidistant method with a 

complex field shape

(f) Gird Method with a 

complex field shape

(g) ERCS method with a complex 

field shape

(h) ERCS method for complex field 

shapes after increased ray density

Sampling points inside the field

Sampling points outside the field

Field

Auxiliary line

Figure 4: Comparison of conventional sampling point generation methods with the proposed method: Equidistant Ray Casting
Sampling (ERCS)

method is triangulation. This method can generate very uni-402

form sampling points, but its computational cost is extremely403

high, and it needs to generate a large number of sampling404

points to make sure these points are uniformly distributed405

which will significantly increase the workload at our user406

end.407

In response to the disadvantages of both traditional meth-408

ods, modern methods, and computer-aid methods, we pro-409

posed our own methods which can generate relatively uni-410

form sampling points with exceptionally low computational411

cost and the number of sampling points is significantly412

reduce to relief our users from heavy workload. In prin-413

ciple, our approach is based on two theories: equidistant414

sampling method and ray casting algorithm. Equidistant415

sampling is also known as equal-distance sampling which is416

been widely used by the agronomists. Equidistant sampling417

first divides the sampled field into several equal parts, the418

distance or interval is determined by the sampling ratio, and419

then the sample squares are drawn according to this equal420

distance or interval in order to get uniformly distributed421

sampling points. To addressing the challenge of determin-422

ing whether the generated sampling points are within the423

polygonal fields, we introduced ray casting algorithm. This424

algorithm is sometimes also known as the crossing number 425

algorithm or the even–odd rule algorithm, and was known 426

as early as 1962 (Shimrat, 1962). The algorithm is based on 427

a simple observation that if a point moves along a ray from 428

infinity to the probe point and if it crosses the boundary of a 429

polygon, possibly several times, then it alternately goes from 430

the outside to inside, then from the inside to the outside, etc. 431

As a result, after every two "border crossings" the moving 432

point goes outside. This observation may be mathematically 433

proved using the Jordan curve theorem. 434

By fusing these two method and algorithm, we proposed 435

our sampling methods: Equidistant Ray Casting Sampling 436

(ERCS). ERCS firstly first place the field in a rectangle, the 437

size of which depends on the coordinates of the point at 438

the very edge of the field. Rays then vertically and equally 439

divide the rectangle. According to the ray casting algorithm, 440

the computer will be able to know which part of the ray 441

is inside the polygons by counting the number of intersec- 442

tions between the ray and the field’s boundaries. Hence, the 443

midpoints of the line segment inside the polygon will be 444

selected as the sampling points. In addition, as shown in 445

figure 4(g)(h) by adjusting the distances between the rays, 446
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our users can adjust the number of sampling points, making447

it easy to optimise their workloads.448

3.2.3. Calculating population densities of pests using449

single photographs450

At present, most of the products on the market only451

do the previous step, that is, pest detection. However, in452

order to realise semi-automatic IPM in the whole process,453

we not only need to realise pest detection, but also need454

to conduct quantitative analysis on the detection results. In455

order to achieve this goal, we need to relate the number and456

species of pests detected by the deep learning model with457

our prior knowledge of agriculture (Economic thresholds for458

integrated pest management). However, the current existing459

thresholds are usually the population density per unit area or460

the number of pests per crop, whereas deep learning models461

can only detect the species and quantity of pests in a photo462

and cannot calculate the population density of each type463

of pest, as the actual area of the photo is unknown. It is464

also difficult for deep learning models to detect the type465

and number of pests on a single plant, because when taking466

pictures of most densely planted crops, one photo usually467

contains multiple plants.468

To achieve a link between thresholds in a prior agricul-469

tural knowledge and pest detection results from deep learn-470

ing models, we have designed a set of sampling methods and471

population density calculation algorithms to solve the above-472

mentioned problems. First of all, we standardised the user’s473

photo-taking process, that is, taking pictures at a distance474

of 30 cm from the target vertically. In order to achieve this,475

in the camera interface of our software, we use gyroscope to476

help users judge whether their shooting angle is vertical, and477

minimise the artificial error of the shooting distance through478

multi-point sampling. Then, we calculate the actual area of479

the photo by extracting the Exchangeable Image File (EXIF)480

information of the photo through the following equation:481

𝑆𝑎𝑐𝑡𝑢𝑎𝑙 =
𝐷𝑡𝑎𝑟𝑔𝑒𝑡

𝐹35𝑚𝑚

⋅ 24 × 36(𝑚𝑚2) , (1)

where𝑆𝑎𝑐𝑡𝑢𝑎𝑙 is the actual area of the single photos,𝐷𝑡𝑎𝑟𝑔𝑒𝑡 is482

the distance between the camera and the target. By balancing483

the clarity of the photo with the need to prevent insects484

from being disturbed by the close proximity, 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 was485

recommended as 30cm. However,𝐷𝑡𝑎𝑟𝑔𝑒𝑡 is not strict and can486

be adjusted by the user according to his/her own preferences,487

because benefiting from the threshold optimisation algo-488

rithm of Human-in-the-loop in chapter 3.2.5, the economic489

threshold of each user will be automatically fitted to his/her490

photographic habits. The larger the difference between the491

user’s habits and the recommended 𝐷𝑡𝑎𝑟𝑔𝑒𝑡, the longer the492

fitting takes. 24 × 36(𝑚𝑚2) is the actual sensor area of a full493

frame camera. 𝐹35𝑚𝑚 is the "35mm equivalent focal length",494

which is the actual focal length of the current camera when495

converted to a full-frame camera. Because the sensor size of496

a full frame camera is fixed, and our sampling criteria fixes497

the distance between the object and the lens at 30cm, we498
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Figure 5: The proposed Integrated Pest Management decision
making expert system

only need the equivalent focal length of the current camera 499

to calculate the actual area of the photo. Hence, we can 500

calculate the population density of each species of pest in 501

a single photo and in the entire field through the following 502

equations: 503

𝜌 =
𝑛𝑝𝑒𝑠𝑡

𝑆𝑎𝑐𝑡𝑢𝑎𝑙

(2)

𝜌𝑓𝑖𝑒𝑙𝑑 =
1

𝑛𝑝ℎ𝑜𝑡𝑜

𝑖=1
∑

𝑛𝑝ℎ𝑜𝑡𝑜

𝜌𝑖 , (3)

where 𝜌 is the population density of a certain pest in a single 504

photo, 𝑛𝑝𝑒𝑠𝑡 is the quantity of the pest, 𝑆𝑎𝑐𝑡𝑢𝑎𝑙 is the actual 505

area of the photo, 𝜌𝑓𝑖𝑒𝑙𝑑 is the population density of a certain 506

pest in the entire field, and 𝑛𝑝ℎ𝑜𝑡𝑜 is the total number of 507

samples taken in that field. 508

With the photos taken by the above photography stan- 509

dards, supplemented by the population density calculation 510

algorithm we proposed, the system can link the data obtained 511

from the sampling of mobile phone photography with the 512

threshold value in agricultural prior knowledge for subse- 513

quent pest management decision making. 514

3.2.4. Rule-based reasoning expert system for pest 515

management decision making 516

The calculation of the pest population density in the 517

sampled photos provides a data basis for semi-automated 518

IPM decision making. However, we still need to use relevant 519

prior agricultural knowledge to conduct qualitative analysis 520

on these data to make pest management decisions. There 521

have been many studies (Dewar, Ferguson, Pell, Nicholls 522

and Watts, 2016; Ellis, Berry, Walters et al., 2009; Wang, 523

Bai, Zhao, Su, Liu, Han and Chen, 2020b; Wang, Zhao, 524

Bai, Shang, Zhang, Hou, Chen and Han, 2021a; Gong, Li, 525

Gao, Wang, Li, Zhang, Li, Liu and Zhu, 2021; Honek, Mar- 526

tinkova, Saska and Dixon, 2018) on the main invertebrate 527
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pests affecting wheat crops. However, the representation of528

such prior knowledge from the literature is usually text,529

which cannot be understood by computers. To address this530

problem, we developed an expert system that allows a prior531

knowledge of pests from the literature to be used to quantify532

the pest detection results obtained from the deep learning533

model.534

Expert Systems are programme systems with exper-535

tise and experience that use the knowledge and experience536

provided by one or more experts in a particular field to537

reason and make judgements, simulate the decision making538

process of human experts, and use computers to automate539

the solution of complex problems that need to be handled by540

human experts. The rule-based expert system is currently the541

most commonly used method, mainly due to a large number542

of successful examples, as well as simple and flexible devel-543

opment tools. It directly imitates the human mental process544

and utilises a set of rules to represent expert knowledge.545

In response to the above problems, we propose a rule-546

based expert system whose structure is shown in the fig-547

ure 5. It consists of five parts: Global Database, Knowl-548

edge Database, Reasoning Machine, expositor and Human-549

Computer Interface. The Global Database is used to store550

initial data and intermediate data obtained during the deci-551

sion making process. Specifically, it contains the species of552

insects in the pest detection results and their corresponding553

population densities. It also contains background informa-554

tion relevant to pest decision-making, such as time infor-555

mation extracted from the exif of insect photos, geographic556

coordinates, and weather information as well as crop type557

and growth stage information obtained through user input.558

The Knowledge Database stores the knowledge of domain559

experts in a certain storage structure, including facts and560

feasible operations and rules. Knowledge databases are con-561

structed by computer experts in collaboration with domain562

experts. The computer experts represent the domain knowl-563

edge of the domain experts into a computer-understandable564

representation and store it in the knowledge database as565

rules. In this study, We summarised the thresholds about566

wheat pest management decision making in the previous567

literature (Dewar et al., 2016; Ellis et al., 2009; Wang et al.,568

2020b, 2021a; Gong et al., 2021; Honek et al., 2018) and569

normalised them into a computer-understandable Knowl-570

edge Database. It has an IF (condition) THEN (behaviour)571

structure. When the condition of the rule is met, the rule is572

triggered, and then make a decision. The Reasoning Machine573

selects matching rules from the Knowledge Database ac-574

cording to the input, and makes pest management decisions575

by executing the rules. The Expositor is used to explain the576

behaviour of the expert system to the user. The Human-577

Computer interface is used to display the decision results and578

their explanations.579

Concretely, assuming that after sampling, detection, and580

population density calculation, the detection result indicates581

a population density of 100∕𝑚2 for grain aphids and 1∕𝑚2 for582

ladybirds. The software first extracts the time and geographic583

coordinates from the exif to determine the current weather,584

and then stores this information, along with user-entered 585

information about crop type and growth stage, in the global 586

database as the initial data for this decision. Then, the 587

reasoning machine matches the initial data of this decision 588

in the global database according to the rules in the knowl- 589

edge database. The reasoning machine first determines the 590

economic threshold of the pest by its species, crop species 591

and crop growth cycle. Assuming that the growth cycle of 592

the current crop wheat is in GS69: Flowering complete, 593

the corresponding economic threshold of grain aphid in the 594

knowledge base is 50∕𝑚2, and since the population density 595

of grain aphid in the detection result meets the condition, the 596

behaviour of the expert system is to recommend pesticide 597

spraying at this time. Then, other contextual information is 598

used to further adjust the decision. The first condition is 599

the pest-beneficial insect ratio, the ratio of grain aphid to 600

its natural enemy ladybird beetle is 10:1, which meets the 601

corresponding condition in the knowledge database, so the 602

recommendation of pesticide spraying is kept unchanged: 603

and then it is the weather condition, assuming that it is a rainy 604

day, the operation will change the recommendation to delay 605

pesticide spraying. At the same time, Expositor summarises 606

the decision-making process and presents it to the user via 607

HCI output. 608

3.2.5. Human-in-the-loop threshold optimisation 609

algorithm 610

Although we have obtained some thresholds from the 611

literature, the above work is still not sufficient for a pest 612

management decision making system. There are a number 613

of reasons for this: First of all, not all crops have known 614

thresholds for each pest in each growth stage. For example, 615

there is no known threshold for gout fly in spring cereals, 616

despite the high risk of yield reduction (Ellis et al., 2009; 617

Dewar et al., 2016). Second, because some studies were 618

conducted a long time ago (more than ten years ago), their 619

pest thresholds may not still be applicable today. last but 620

not least, pests will lead to increased resistance to pesticides 621

after natural selection, so we cannot use a constant threshold 622

for pest management in the future. 623

To keep the thresholds up-to-date in our pest man- 624

agement expert system, we designed a human-in-the-loop 625

threshold optimisation algorithm. Human-in-the-loop (HITL) 626

is a branch of artificial intelligence in which people partic- 627

ipate in a virtuous circle in which they train, adapt and test 628

specific algorithms to improve the accuracy of the model. 629

As shown in figure 6, each time a user makes a pest man- 630

agement decision using the software, the server, in addition 631

to recording the decision, sends the user a questionnaire after 632

a certain interval (the length of this interval varies from a few 633

hours to a few days, depending on how quickly the operation 634

used takes effect) asking the user to observe the farm to 635

determine the effectiveness of the last decision. The system 636

then automatically adjusts certain thresholds in the database 637

based on the effectiveness of the last decision. 638

For instance, continuing with the example from chapter 639

3.2.4, assuming that the expert system gives a decision 640
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Figure 6: The pipeline of the proposed HITL thresholds optimisation algorithm

suggestion to use cypermethrin for control, the server will641

push a questionnaire to the user. The questionnaire will ask642

the user to take another sampling in the field to calculate643

the ratio of natural enemies to grain aphids as a criterion, if644

the ratio decreases, it means that the decision has a negative645

effect, this is because the existing economic threshold in646

the expert system is set too low, so the threshold will be647

automatically optimised to the existing threshold by increas-648

ing it by 10%, on the contrary, it means that the decision649

does not have a negative effect and the threshold will remain650

unchanged. If the advice given by the expert system is not651

to apply pesticides, the server will send a questionnaire to652

the user after one week to go to the field and observe if653

the phenomenon of yellow dwarf disease occurs in wheat.654

If there is a negative impact such as yellow dwarf disease,655

the threshold in the expert system is too low, resulting in the656

threshold not being triggered in time, and the system will657

automatically lower the existing threshold by 10%. On the658

contrary, if there is no negative effect, the existing threshold659

will be lowered by 10%.660

4. Results and discussions661

4.1. Evaluation Metrics662

Multiple metrics are used to evaluate the object detection663

model, including mean average precision (mAP), the number664

of frames dealt within a second (FPS), and the number of665

parameters (Parameters) in the detection model. The mean666

average precision is a general evaluation metric for object667

detection model, which is defined as the mean value of the 668

area under the Precision-Recall (PR) curve , 669

𝑃𝑟(𝑛) =
𝑇𝑃𝑛

𝑇𝑃𝑛+𝐹𝑃𝑛
(4)

𝑅𝑒(𝑛) =
𝑇𝑃𝑛

𝑇𝑃𝑛+𝐹𝑁𝑛

(5)

𝑚𝐴𝑃 =
1

𝑁

∑

𝑛∈𝑁 ∫ 1

0
𝑃𝑟(𝑛)𝑑𝑅𝑒(𝑛) , (6)

where 𝑁 is the number of object categories, 𝑇𝑃𝑛, 𝐹𝑃𝑛, 670

and 𝐹𝑁𝑛 refer to the number of true positive samples, false 671

positive samples, and false negative samples for class 𝑛, 672

respectively. The true positive samples in object detection 673

tasks are defined by intersection over union (IoU), which 674

is a ratio of the overlap area in the union area between the 675

predicted bounding box and the annotated bounding box. 676

Parameters metrics measure the size of the object detection 677

model. The larger object detection model requires more 678

computational resources. 679

4.2. Performance Evaluation of the Detection 680

Model 681

We evaluate the performance of the detection model 682

using three pest datasets, including IP102, AgriPest, and 683

Our Dataset. Each dataset is divided into a training dataset, 684

validation dataset, and test dataset in a ratio of 8:1:1. The 685

mAP for each trained model on the test dataset is calculated 686

and is presented in Table 2. The compared models are pre- 687

trained on the COCO dataset (Lin, Maire, Belongie, Hays, 688
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Figure 7: Qualitative results of the pest detection model on our dataset.The detection results demonstrate the ability of our
model to accurately identify multiple tiny pests in one image.

Perona, Ramanan, Dollár and Zitnick, 2014). As mentioned689

before, multiple data augmentation methods are used in690

the training dataset. The dropout method are used to avoid691

overfitting.692

Table 2

The performance for different detection models

Faster RCNN YoloX Our Model

FPS 11.45 12.97 13.21
Parameters 28,275k 8,976k 6,759k
mAP (IP102) 55.25% 56.87% 58.17%
mAP (AgriPest) 7.18% 66.24% 75.29%
mAP (Our dataset) 24.21% 54.26% 57.33%

As Table 2 shown, we compare our model with Faster693

RCNN and YoloX on the multiple pest dataset. The mAP of694

different models is mainly limited by the challenge of the695

pest detection task. Although the object detection models696

do not present surprising performance in terms of mAP,697

our model outperforms Faster RCNN and YoloX due to it698

adopting the Path Aggregation Network to fuse multi-scale699

features. In particular, our model obtains mAP of 75.29%700

and 57.33% on the AgriPest and our datasets, respectively.701

The failure of Faster RCNN is due to the challenge of tiny702

objects in AgriPest and our datasets. Meanwhile, YoloX and703

our model achieve faster detection speed with fewer training704

parameters than Faster RCNN. The main difference between705

our model and YoloX is a more efficient neck and data706

augmentation methods for pest detection. Figure 7 presents707

the detection results of our model. In summary, our model708

achieves state-of-the-art results in pest detection tasks.709

4.3. Qualitative In-Field Validation of the System710

Usability711

In order to validate the usability of the proposed method,712

an in-field testing was conducted. Figure 8 illustrates the713

flow of our in-field experiments. Following the selection of714

the field to be tested, the tester took images at the sampling715

points generated by the ERCS algorithm. Upon completion716

of each picture collection, the mobile application output the717

detection results of the pest detection model to the user. Once718

all sampling points had been evaluated, the expert system719

determined the pest severity and provided pest management 720

advice. The application was deployed on a range of mobile 721

phones, equipped with mid-end (Qualcomm Snapdragon 722

855, 875, 8Gen1, etc.) or low-end (Qualcomm Snapdragon 723

695, 720G, etc.) system-on-a-chips (SoCs), in order to assess 724

its usability across a spectrum of computing power plat- 725

forms. A series of experiments was conducted at multiple 726

sites in England. The experimental sites were located in 727

West Yorkshire (Leeds and Knottingley), North Yorkshire 728

(Malton), Warwickshire (Nuneaton), and Nottinghamshire 729

(Mansfield). A total of 12 testers participated in the ex- 730

periments. The qualitative validation of the usability of the 731

proposed methods with the developed mobile application on 732

mobile phones with different performances and in various 733

regions of England was achieved. 734

4.4. Quantitative Evaluation of the User Usability 735

The usability of the proposed solution rely on the friend- 736

liness of user interface and function design, in addition to the 737

stability of the system. The mobile application provides end 738

users with the ability to browse farm information, add farm 739

records, respond to tasks, detect pests, view weather fore- 740

cast, modify app settings and more. Meanwhile, a manually 741

collected encyclopaedia of knowledge about pests and crops 742

is integrated as a knowledge base for providing the basic 743

knowledge and advice for model decisions in the integrated 744

pest management function. The above functional design is 745

based on a user requirements analysis of the system in early 746

stage. The usability evaluation process invites end users 747

to make subjective evaluations of the functionality of the 748

mobile application, the efficiency and accuracy of the func- 749

tions, and the user-friendliness of the interface. Specifically, 750

evaluation participants were asked to follow an instructional 751

document after logging into the app to complete their experi- 752

ence of the functions in the mobile application and to rate the 753

usability of key functions. The results are shown in Table 3. 754

In addition to the evaluation of functional usability, an 755

open access experiment which invite participants to use the 756

application without restrictions was processed. The results 757

of this experiment was collected by the System Usability 758

Scale (SUS) questionnaire, which consists of ten questions 759

with a scale from strongly agree (5 points) to strongly 760

disagree (1 point) for each question (Lewis, 2018). The 761
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Figure 8: Flowchart of the in-field experiment to test the mobile application.
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Figure 9: SUS Score of the our mobile application

questions in the SUS questionnaire focus on the system762

usability, such as, I think that I would like to use this system763

frequently, and I needed to learn a lot of things before I764

could get going with this system. The final evaluation results765

are calculated according to Equation 7, where 𝑆1 to 𝑆10766

indicate the scoring of each of the 10 questions.767

SUS = 2.5 × (20 + SUM(𝑆1, 𝑆3, 𝑆5, 𝑆7, 𝑆9)−

SUM(𝑆2, 𝑆4, 𝑆6, 𝑆8, 𝑆10))
(7)

Figure 9 presents the results for the open access experi-768

ment. According to the grading based on SUS scores (Lewis,769

2018), the mobile application with an average score of 76 is770

considered as a good product.771

Table 3

Questionnaire results for User Experience Tasks (In-
cluding login, fields information, record, task, detection,
maps, weather, the encyclopaedia and IPM)

Task 1 (Hard) 2 3 4 5 (Easy)

Task 1 0% 0% 9% 16% 75%
Task 2 0% 0% 14% 18% 68%
Task 3 0% 0% 10% 7% 83%
Task 4 9% 0% 9% 9% 73%
Task 5 8% 3% 16% 9% 64%
Task 6 7% 8% 6% 12% 67%
Task 7 9% 5% 4% 9% 73%
Task 8 0% 0% 0% 18% 82%
Task 9 0% 0% 18% 0% 82%

5. Conclusion and Future Work 772

In this work, we develop a practical application of an 773

end-to-end decision making system for integrated pest man- 774

agement that allows users to take just a few photos to get pest 775

management advice, enabling growers with no agricultural 776

knowledge to apply sustainable crop protection. The present 777

study has offered a framework which integrated deep learn- 778

ing objective detection and expert system for the exploration 779
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of environmentally friendly pest management thresholds for780

wheat. In this study, we proposed a low computational cost781

sampling point generation algorithm that enables mobile782

devices to generate evenly distributed sampling points in783

arbitrary-shaped farmlands. We used PyTorch Mobile to784

generate a lightweight pest detection model that can be785

deployed on mobile devices, so that our application can786

get rid of the constraints of communication infrastructure.787

We have developed a standardised sampling protocol and788

used our software to assist users with sampling, enabling the789

calculation of pest population densities from a single photo-790

graph. A rule-based expert system has been established for791

deriving pest management thresholds from prior agriculture792

knowledge and making decisions based on pest detection793

results. We proposed a human-in-the-loop algorithm to con-794

tinuously track the validity of thresholds in the expert system795

and keep them up-to-date.796

The experimental results show that our detection model797

outperformed Faster RCNN and YoloX in term of FPS and798

mAP. In the user evaluation of system usability, the proposed799

system received 76 in SUS score. An in-field qualitative800

evaluation of system usability has also been conducted.801

A number of limitations need to be noted regarding the802

present study:803

Firstly, our current population density calculation is804

achieved by hard-coding the distance from the lens to the805

target, which is the result of the compromise of many factors,806

although the computational cost is lower and the generality807

is better, but it also leads to a greater error in the calculation808

of population density. Therefore, we intend to develop a809

low-computational cost AI distance measurement algorithm810

to replace the existing hard-coding method to improve the811

accuracy of population density calculation in our subsequent812

research.813

Secondly, the decision-making expert system has only814

been validated for usability, while the validation of its deter-815

mination of the severity of pest infestation and the feasibil-816

ity of the generated pest management advice still requires817

further research. In future work, it would be beneficial to818

conduct interdisciplinary research with agronomists con-819

ducting pest threshold studies and entomologists conducting820

pesticide resistance studies.821

Thirdly, our human-in-the-loop threshold optimisation822

algorithm have not been validated for the time being as this823

would take many years of experimentation over multiple824

crop cycles to complete. In terms of this direction for future825

research, the validation of the threshold optimisation algo-826

rithm in practice is required to confirm the effectiveness of827

our proposed solution.828
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