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Abstract
This paper provides a theoretical overview of how the concept of driver readiness can be objectively measured, using 
controlled experimental data. First, a literature review regarding the concept of driver readiness is provided. Then, it 
highlights challenges for a standardized readiness estimation model. A conceptual readiness estimation model is presented, 
and a methodology is proposed for defining readiness thresholds for use by Driver State Monitoring (DSM) systems. 
The paper then explores how this model can be used to estimate readiness thresholds. A proof of concept for the model 
application is presented, using previously collected experimental involving SAE Level 2 automation. This paper contributes 
to the state of the art in DSM-development, by providing a methodology for estimating driver readiness, while considering 
variabilities across individual drivers. The model also allows readiness thresholds to be defined with data from driving 
simulator experiments, without relying on subjective assessment of readiness as its ground truth.

Keywords  Vehicle automation · Driver readiness · Computational modelling · Evidence accumulation · Driver state 
monitoring

1  Introduction

One of the current concerns of the Human Factors and 
Safety community is that SAE Level 2 (SAE 2021) vehicle 
automation can remove the driver from the decision-action 
loop of the driving task (Merat et al. 2019), which some-
times impairs their performance during critical scenarios, 
when compared to manual driving. To mitigate safety–criti-
cal situations, and ensure drivers are not “out of the loop” 

when automated driving is in operation, vehicle manufac-
turers are increasingly implementing systems in the vehicle 
which monitor driver state and activity. These driver state 
monitoring (DSM) systems offer a range of capabilities, 
starting from simple steering-based features (e.g., confirm-
ing hands-on wheel), to more advanced (camera-based) 
models which use drivers’ eye movements, facial features, 
and head position, and in some cases physiological indica-
tors to assess the driver’s state, determining level of engage-
ment with the driving task. If drivers’ engagement levels fall 
below a certain threshold, warnings or nudges are used to 
re-direct their attention, for example to the forward roadway, 
ensuring they are prepared to respond to a potential takeo-
ver request (TOR). This assessment of “driver readiness” 
by the DSM (also known as driver availability, Marberger 
et al. 2018) ensures the driver can respond well and in time 
to the demands imposed by the driving environment. Work 
conducted by ISO/TR 20195-1 (2020a) and Georg et al. 
(2017) defines readiness as the likelihood of a successful 
intervention during a potential takeover situation, based on 
drivers’ capabilities to manage the driving task after resum-
ing control from vehicle automation. Studies from Mioch 
et al. (2017) and Kim et al. (2022) propose a model that 
treats readiness as a variable which changes over time, with 
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driver state, in relation to the minimum amount of resources 
required by drivers to recover their ability for driving, fol-
lowing resumption of control from automation.

There have been numerous attempts to establish 
standardised metrics for estimating readiness  (e.g., Kim 
et al. 2022; Mioch et al. 2017; Mariajoseph et al. 2020; 
Baek et al. 2018; Deo and Trivedi 2020; Du et al. 2020). 
However, there is currently no consensus about how to 
measure readiness, nor how to use the measure to define 
the thresholds required by DSM systems. Mioch et  al. 
(2017) conceptual model of readiness specifies a theoretical 
relationship between a number of core factors, but is not 
validated with user data. Mariajoseph et al. (2020) work 
used physiological metrics to predict alterations in drivers’ 
psychological state, but this work was not related to 
transitions of control in vehicle automation. Conversely, 
Kim et al. (2022) used drivers’ subjective assessment of 
their own readiness, and were able to correlate these scores 
to drivers’ takeover performance. However, this approach 
cannot be used to provide an objective relationship between 
driver performance and objective driver metrics (e.g., gaze 
behaviour or posture), which limits its applicability on an 
actual DSM system.

An alternative approach is data-driven machine learning 
methods for estimating readiness, which uses gaze position 
and head pose to establish if a driver’s state is appropriate 
for a transition of control (Baek et al. 2018; Deo and Trivedi 
2020; Du et al. 2020). However, the parameter used as the 
ground truth on the training dataset of this study was a 
manual annotation of video data, where experts described 
drivers’ state as “good” or “bad”, based on their subjective 
interpretation (Deo and Trivedi 2020; Du et  al. 2020). 
Although machine learning models can provide accurate 
predictors for the drivers’ annotated state, according to 
Hassija et al. (2024), as the artificial intelligence-based (AI) 
models become more complex, the relationship between 
the model’s predictors and the predicted variable becomes 
too complex to be explained. Therefore, machine learning 
approaches provide limited value as a tool to theoretically 
define readiness, and the safety thresholds required by 
DSM systems. Although explainable AI techniques may 
provide a promising solution for this problem, the state of 
the art in the field of explainable AI still faces challenges 
such as balancing transparency and privacy, addressing the 
diversity of user needs, and creating effective explanations 
for complex models (Hassija et al. 2024).

The recent regulations set by Euro NCAP for DSM 
(2022) provide recommendations for the development 
of advanced driver distraction warnings (ADDW) based 
on the time drivers spend looking away from the road 
environment. EURO NCAP (2023) also suggest the use 
of ocular metrics for the assessment of drivers’ fatigue (as 
in Matthews et al. 2019). However, the guidelines for the 

assessment of drivers’ cognitive state and an integration of 
those variables with the driving context are still presented 
as a future milestone in their research roadmap. Factors 
such as driver cognitive workload (Louw and Merat 2017), 
or different types of cognitive distraction which do not 
necessarily take into account drivers’ eyes off road—
such as mind wandering (Walker and Trick 2018) may be 
crucial for the build-up of driver readiness, as previous 
studies provided evidence of its’ effects on drivers’ 
takeover performance.

One of the challenges for defining the readiness threshold 
is that it is scenario dependent  (Marberger et al. 2018; Kim 
et al. 2018). As different driving scenarios place different 
demands on drivers’ available resources, it is hard to 
quantify how different elements of a scenario affect the level 
of driver readiness needed for a safe resumption of control 
from automation. In addition, readiness is determined by 
drivers’ mental (Kim et al. 2022; Mioch et al. 2017) and 
physical state (Baek et al. 2018; Deo and Trivedi 2020), 
which cannot be systematically manipulated and controlled 
in experimental settings  (Spanfelner 2012). This creates 
a challenge for providing the empirical evidence that is 
required for defining thresholds. Therefore, there is currently 
a lack of understanding about how to correlate specific 
indicators of driver state with the probability of crash 
avoidance, for a given scenario.

Based on the research gap presented above, this 
paper proposes a conceptual model that uses evidence 
accumulation for decision-making (see Ratcliff et al. 2016) 
and the concept of scenario controllability, as proposed by 
the ISO 26262 International Standarization Organization 
(2020b). These concepts are used to develop a method 
for assessing driver readiness from experimental data, 
defining safety thresholds for a specific automated driving 
scenario. Section 2 of this paper summarises the current 
theoretical definitions of driver readiness and its related 
factors. In Sect. 3, the theoretical relationship between 
driver readiness and evidence accumulation (Ratcliff 
et al. 2016) is outlined, discussing their association with 
readiness thresholds and scenario controllability as defined 
by ISO 26262 (International Standardization Organization 
2020b). Section  4 introduces the conceptual model for 
estimating readiness, using evidence accumulation and 
discusses a methodology for defining safety thresholds of 
DSM systems, using an experimental setup. To conclude, 
a model application is presented as a proof of concept, 
fitting it to experimental data collected from a series of 
driving simulator experiments assessing driver resumption 
of control after SAE Level 2 automated drive (Louw et al. 
2016, 2017, 2018). It must be noted that the model presented 
in this work does not aim to provide real-time estimation 
of driver readiness, but rather provide a way for system 
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designers to define DSM readiness thresholds, based on 
empirical evidence from simulator experiments.

2 � Definition of readiness and related 
constructs

The term driver readiness (or availability) was first used 
in the context of assisted driving to define the drivers’ 
capabilities in recovering motor control (or motoric 
readiness) of the driving task (Zeeb et al. 2015). Readiness 
is based on the assumption that, once automation is 
engaged (for SAE levels 2 or higher) the driver is likely 
to be removed from the cognitive and motor control loops 
of the driving task (Merat et al. 2019). This removal from 
the loop may be exacerbated by drivers’ engagement in 
secondary (non-driving related) tasks (Carsten et  al. 
2012), or simply because drivers are bored when they are 
not responsible for the moment-to-moment control of the 
vehicle. Studies report a dispersion of visual attention 
away from the forward roadway (Louw and Merat 2017; 
Gershon et al. 2023), and/or a miscalibration of driver 
visuomotor coordination (Mole et al. 2019) due to a lack 
of manual engagement. Consequently, drivers may not 
always be capable of recovering suitable control of the 
driving task following a TOR. Considering the process 
described above, ISO/TR 20195-1 defined readiness as 
a metric associated with drivers’ state during the TOR, 
and the likelihood of them successfully recovering 

control from the automated driving task (International 
Standardization Organization 2020a, b). This definition 
implies that drivers might need to accumulate resources 
during the transition process in order to reach the desired 
state. This definition is similar to that of Georg et  al. 
(2017), who define readiness as: “(…) the fastest ability 
of the driver to get engaged in the driving task from the 
Non-Driving Related Task (NDRT) (…)”.

Marberger et al. (2018) introduced a temporal aspect to 
the definition of readiness, by assuming that every TOR 
has a stipulated time budget for the resumption of control. 
They propose that a ready driver gathers enough resources 
to match the demands of the scenario, within the stipulated 
time budget for the takeover response. Kim et al. (2018) 
and Marberger et al. (2018) also state that the definition of 
a ready driver is scenario dependent. Complex scenarios 
might require drivers to gather more information about 
the situation in order to achieve a desirable driving state 
to takeover within the same time budget.

In their theoretical framework, Mioch et al. (2017), 
later supported by Kim et al. (2022), readiness is defined 
as an abstract concept that represents the cognitive and 
motoric resources available to drivers for resuming control 
of the driving task. According to these authors, this vari-
able varies over time, as the driver becomes more or less 
engaged with the driving task. Furthermore, the scenario 
demands for this concept are represented by a threshold 
of minimum resources needed by drivers to safely resume 
control. In this sense, the resource (readiness) needs to be 
accumulated within a given period of time after the TOR is 
issued, and a ready driver is one that is capable of reaching 
appropriate levels of readiness within the stipulated time 

Fig. 1   Schematic representation 
redrawn from Kim et al. (2022) 
conceptual model of readiness. 
In this theoretical model, by 
the time a TOR is issued, the 
readiness values of the driver 
can be directly correlated with 
the likelihood of the driver to 
recover control of the driving 
task in time for a given scenario
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budget, to match with the demands of the scenario (see 
schematic in Fig. 1).

2.1 � Correlation of readiness with other theoretical 
constructs

As readiness is not a metric that can be directly measured, 
it is generally operationalised as a combination of other 
constructs that are associated with drivers’ capabilities to 
resume control from vehicle automation  (Hecht et al. 2019). 
Mioch et al. (2017) suggests that the constructs associated 
with readiness fall into two main categories: motoric/physi-
cal, and cognitive/mental readiness. Marberger et al. (2018) 
introduced the role of individual differences, such as the 
influence of driver trust, intention, and risk-taking behav-
iour, into their framework. Although these metrics may not 
be objectively measurable, they may influence the timing 
and quality of drivers’ takeover from an automated vehi-
cle. Table 1 shows an amalgamation of a number of stud-
ies on the subject of readiness and resumptions of control 
from vehicle automation, including examples of empirical 
metrics used as proxies for assessing these constructs, in 
experimental scenarios. It should be noted that this exercise 
did not involve a systematic literature review of the metrics 
used for estimating readiness, but includes examples of typi-
cal metrics used in this context. Figure 2 summarises these 
constructs, suggesting the relationships between them. In the 
next section, more details are provided about the high-level 
concepts of physical and cognitive resources, and the effect 
of individual differences on shaping driver readiness.

2.1.1 � Cognitive readiness

Michon (1985) have described the driving task as an 
amalgamation of several (parallel or consecutive) small 
cognitive tasks, requiring the driver to process information 
(mostly visual), and act accordingly. In that sense, it is to 
be expected that, in order to be ready to recover control 
of the driving task, the driver must have enough cognitive 
resources available to attend to relevant information sources 
on the environment, and process the information in a 
timely manner, to make adequate decisions (being in the 
loop, according to Merat et al. (2019)). This availability of 
resources has been broadly described as cognitive readiness. 
Based on the previous description, constructs such as 
Situation Awareness (Endsley 1995) and visual attention 
have been commonly associated with drivers’ cognitive 
readiness. Those constructs are associated with one’s 
capabilities to make decisions (Gonçalves et al. 2019a, b), 
and have been widely considered as a vital part of drivers’ 
capabilities to resume control from vehicle automation  
(Zeeb et al. 2015; Clark and Feng 2017; Louw et al. 2016, 
2017; Louw and Merat 2017; Merat et al. 2019; Gonçalves 

et al. 2022). Exposure to automated drive is also known to 
influence driver state in a range of ways including workload,  
(Perello-March et al. 2022; Zhou et al. 2021). Drivers are 
likely to get bored due to the lack of engagement  (Körber 
et al. 2015), or cognitively loaded, as they engage with 
secondary tasks  (de Winter et al. 2014; Merat et al. 2019; 
Yoon and Ji 2019; Radhakrishnan et al. 2022), therefore, 
affecting their readiness levels (Hecht et al. 2019).

2.1.2 � Physical readiness

Physical readiness comes from the idea that even if vigilant, 
drivers’ ability to drive may be impaired by their lack of 
engagement with the physical controls of the vehicle. 
Previous studies on safety–critical transitions of control have 
reported a delay between when drivers place their hands 
on the steering wheel, and the time taken for a collision-
avoidance manoeuvre (see Gold et al. 2013; Louw et al. 
2016, 2018). Furthermore, drivers in L2 and L3 automation 
are likely to be engaged in visual-manual non-driving related 
tasks (NDRTs). Drivers' hand placement away of the steering 
wheel will not only be detrimental to their cognitive state 
(by removing their mind off the driving task) but will also 
compromise their motoric availability (i.e., their capability 
to promptly respond to a physical demand from the driving 
task, such as move the steering wheel or press a button) to 
intervene.

Drivers’ physical readiness can be also correlated 
with drivers’ arousal/fatigue state. As said above, drivers 
in L2/3 automation are likely to engage NDRTs. This 
engagement with NDRTs may ultimately increase their 
demand for cognitive resources, since they need to not only 
pay attention to the environment, but also to the secondary 
task. Therefore, drivers’ engagement with NDRTs may lead 
to fatigue, compromising their ability to resume control. 
On the other hand, the lack of interaction if the physical 
control of the driving task may lead to boredom. This lack 
of stimuli may also lead to increased levels of sleepiness and 
subsequent fatigue, also affecting drivers’ ability to resume 
control of the vehicle (Guo et al. 2021).

2.1.3 � Individual differences

There is evidence that individual differences between driv-
ers may be associated with the likelihood to safely resume 
control of the driving task from automation. For exam-
ple, the adequacy of a drivers’ mental model to the actual 
behaviour of the automated system may be paramount to 
avoid potential mode errors (Pradhan et al. 2021; Reason 
2004). Victor (2009) reported in a Wizard of Oz experiment 
that drivers were unable to avoid a crash due to a system 
malfunction even though they had their eyes on the road. 
The authors argue that even though attentive, they were not 
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Table 1   List of theoretical constructs associated with the concept of readiness, and the empirical metrics used as an operational proxy to assess 
those constructs

Category of readiness Theoretical construct 
associated with the 
readiness category

Literature evidence 
of effects on takeover 
performance, or inclusion 
on a readiness conceptual 
model

Operational metrics used as 
a proxy for the construct

Literature evidence of the 
metric being used as a proxy 
for the said construct

Cognitive readiness Situation awareness Endsley (1995) Markov chain of gaze 
transitions

Gonçalves et al. (2019a, b)
Gonçalves et al. (2019a, b) Schnebelen et al. (2020)
Zeeb et al. (2015) Gaze dispersion from the 

road centre
Zeeb et al. (2015, 2016)

Clark et al. (2017) Victor (2009)
Louw et al. (2016, 2017) EURO NCAP (2023)
Louw and Merat (2017) Zhou et al. (2021)
Merat et al. (2019)

Visual attention Kim et al. (2022) Gaze dispersion from the 
road centre

Victor (2009)
Deo and Trivedi (2020) EURO NCAP (2023)
Georg et al. (2017) Time-based attention 

algorithm
Kircher and Ahlström (2017)

Yoon and Ji (2019) Computer vision algorithm 
detection of visual 
distraction

Baek et al. (2018)
Zeeb et al. (2016) Deo and Trivedi (2020)
Eriksson and Stanton (2017) Du et al. (2020)
Louw et al. (2019) Standard deviation of gaze 

position
Louw and Merat (2017)
Gonçalves et al. (2019a, b)

Cognitive workload de Winter et al. (2014) Standard deviation of gaze 
position

Louw and Merat (2017)

Merat et al. (2019) Gaze entropy Shiferaw et al. (2019)
Yoon and Ji (2019) Fixation duration Shojaeizadeh et al. (2016)
Louw and Merat (2017) Driver's physiological state Radhakrishnan et al. (2022)
Choi et al. (2020) Pupil dilation Wilbanks et al. (2021)
Hecht et al. (2019) Shojaeizadeh et al. (2016)

Physical readiness Drowsiness and arrousal 
state

Perello-March et al. (2022) Driver's physiological state Radhakrishnan et al. (2022)
Körber et al. (2015) Perello-Marc et al. (2022)
Zhou et al. (2021) Zhou et al. (2021
Feldhütter et al. (2018) Pupil dilation Radhakrishnan et al. (2022)
Mariajoseph et al. (2020) Tseng et al. (2018)
Guo et al. (2021) PERCLOS Kang (2013)

Sun et al. (2020)
Amplitude-velocity ratio of 

eye blinks
Evingerm Manning and 

Sibony (1991)
Johns (2003)

Motoric availability Gold et al. (2013) Camera detection of drivers' 
body and hand position

Moslemi et al. (2021)
Li et al. (2020)

Louw et al. (2016) Baek et al. (2018)
SAE (2021) Du et al. (2020)
Bowden et al. (2019) Deo and Trivedi (2020)

Individual differences Mental models Pradhan et al. (2021) NA
Reason (2004)
Victor (2009)

Trust in automation Payre et al. (2014)
Experience with automated 

vehicles
Hergeth et al. (2016)

Driving style Ma and Zhang (2021)
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expecting the system to fail, due to a mismatch between 
their mental model and the actual system limitations. Other 
individual-specific factors have been reported by past studies 
as potential detrimental factors on drivers’ performance dur-
ing transitions of control. Amongst the factors listed there 
are: trust in automation  (Payre et al. 2014), experience with 
automated vehicles  (Hergeth et al. 2016) and driving style 
(Ma and Zhang 2021).

2.2 � Measuring readiness

Despite the large body of theoretical definitions of readiness, 
some issues remain about the objective and practical 
assessment of readiness, when attempting to create a 
standardised model for this concept. As stated above, 
readiness is generally operationalised as a combination of 
observable metrics of drivers’ behaviour as a proxy of the 
myriad of physical and cognitive aspects that constitute 
driver readiness. For instance, Euro Ncap recommendations 
for ADDW (2022) rely on off-road glances to assess the level 
of drivers’ distraction/engagement. The same can be said 
for the use of eyelid closure and blink-related metrics for 
the assessment of drivers’ drowsiness levels (see Baek et al. 
2018). As suggested by the regression analyses from the 
models presented by Du et al. (2020) and Deo and Trivedi 
(2020), it is likely that different measures used in readiness 
estimation models will provide different weight values on 
drivers’ overall readiness build-up. Some measures can also 
present unexpected correlations between each other, and the 
overall correlation with a readiness value may be complex/
not linear. For this reason, readiness estimation models need 

to rely on an objective ground truth of driver readiness, so 
appropriate regression techniques can be used to account for 
the complex relationship between metrics.

With respect to objective ground truth, readiness is not 
directly observable since it is simply a representation of 
an individual’s mental and physical states. Although off-
road glances can be used as clear indicators of reduced 
readiness, there are other instances (e.g., driver not 
paying attention to the environment, due to high levels 
of fatigue or cognitive load) where the driver may not 
be ready to take over, despite their gaze being directed 
to the road centre. Without directly observable metrics, 
the development of readiness estimation models becomes 
a challenge, as it lacks a ground truth for the predicted 
metric. Most studies in this context have either relied on 
driver self-assessment of readiness (Kim et al. 2022), or 
evaluation by expert “safety drivers” (Deo and Trivedi 
2020). It can be argued that subjective assessment of a 
mental state is prone to misinterpretation and cannot be 
used directly by a DSM system. With no objective ground 
truth, the validation and parametrization of readiness 
models is unreliable.

In addition to the issues presented above, the 
development of a solid ground truth of readiness through 
experimental research is challenging, since readiness, 
as a concept, cannot be experimentally controlled. 
Since readiness is a complex combination of factors, 
unaccounted intervening variables on experimental 
manipulations (e.g., the drowsiness state of drivers on an 
experiment controlling for drivers’ cognitive load) may 
lead to different readiness levels of individuals under the 
same experimental manipulation. Not to mention that 
common experimental manipulations of driver state (e.g., 

Fig. 2   Overview of constructs associated with driver readiness, as cited in the current literature (adapted from Mioch et  al. 2017 to include 
results from a more recent literature review)
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workload manipulations through secondary task) may 
present heterogeneous effects between individuals (see 
Kelley et al. 2023).

3 � Potential solutions for a standardized 
readiness estimation and threshold 
definition

The previous section of the paper presented a literature 
review on the concept of driver readiness, and the theoretical 
constructs associated with it, demonstrating two major 
issues which can impair the development of a standardized 
readiness estimation model: (1) the lack of an objective 
ground truth of driver readiness; (2) the challenges to 
experimentally control readiness, due to inter-participant 
variability. This section provides some potential theoretical 
solutions for tackling these issues. After a short introduction, 
a conceptual model is presented, applying the proposed 
solutions to a driving simulator experimental scenario.

3.1 � Assessing driver readiness through scenario 
controllability

One of the current challenges for readiness assessment is 
the lack of a ground truth parameter, that can be used to 
validate a model’s prediction. Mariajoseph et al. (2020) 
suggested that thresholds of driver readiness can be defined 
through categorisation of hazards within the operational 
design domain (ODD), for a given automation system, and 
the corresponding risk assessment procedures (ASIL—
Automation System Integrity Level), as defined by ISO 
26262 (2018).

ISO 26262 (2018) used three criteria to create a 
methodology for assessing the level of risk—and therefore 
the degree of safety countermeasures needed—for a given 
scenario. This resulted in a final safety score (ASIL) 
corresponding to the level of intervention needed for a 
system to be considered safe (See Fig. 3). The three criteria 
are defined as:

(1)	 Exposure: Measured as the number of events for every 
1000 km driven by a driver. A high exposure event 
would have an average of 2 occurrences for every 
1000 km driven.

(2)	 Severity: Measures the level of injury caused by 
the event, in case the accident is not avoided by the 

Fig. 3   ASIL categorisation table  (source: ISO 26262)
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driver. Here, low severity = light bruises, medium 
severity = traumas, but with high chances of survival, 
high severity = life threatening injuries.

(3)	 Controllability: This which accounts for the probability 
that average driver avoids the accident, once they face 
the given event (e.g., low controllability =  < 90%chance 
of crash avoidance, medium controllability = 90–99% 
of crash avoidance, high controllability =  > 99% chance 
of crash avoidance).

Given the relationship between readiness and the like-
lihood of accidents following a TOR, Mariajoseph et al. 
(2020) suggested that the controllability measurement in the 
ASIL table could be used as an estimate of driver readiness. 
For this concept, a satisfactory level of driver readiness to 
a given scenario is related to a high level of controllabil-
ity (e.g., an over 99% chance of crash avoidance). There-
fore, mechanistic models that can predict crash probability/
drivers' response time by using driver behavioural metrics 
(see McDonald et al. 2019; Markkula et al. 2020) can be 
employed as ground truth for readiness estimation.

Following the ISO 26262 methodology, and Mariajoseph 
et al.’s (2020) theoretical consideration, our methodology 
for assessing readiness thresholds for a given scenario is 
proposed as follows:

•	 Given the automated driving system’s limitations and 
ODD, define the characteristics of the safety–critical 
scenario which the DSM system needs to prepare the 
driver for (according to ISO 26262 methodology for 
scenario definition).

•	 Reconstruct the safety–critical scenario in a controlled 
experimental environment.

•	 Using the reconstructed scenario, collect responses from 
drivers, assessing performance (crash/not crash and 
response time), as well as collecting behavioural data, to 
be used as readiness indicators (based on the constructs 
described previously in this paper) at the time of the 
TOR.

•	 Using the experimental data, identify the minimum 
values of readiness indicators that predicted the 
probability of avoiding a crash, above the recommended 
threshold for a high controllability scenario (according 
to ISO 26262).

3.2 � Using evidence accumulation models to account 
for individual variability

Evidence accumulation models (EAMs) have been used 
successfully to predict human response time and behaviour 
in a variety of perceptual decision-making tasks  (Gold and 
Shadlen 2007; Ratcliff 1978; Ratcliff and Review 2004; 
Ratcliff et al. 2016). EAMs consider that every individual 

has an internal threshold of the amount of evidence they need 
to make a decision. Evidence is then accumulated over time 
as the individual gathers information regarding the scenario 
in a noisy process until they reach a certain threshold, 
triggering a response. This method has been successfully 
used in the past to explain human responses when initiating 
braking (Durani et al. 2021; Markkula 2014; Markkula et al. 
2019), steering (Goodridge et al 2022a; Goodridge et al, 
2022b; Markkula et al 2018), as well as takeover responses 
(see McDonald et al. 2019 for a complete literature review 
on the topic). Previous research has also shown that evidence 
accumulation have theoretical correlations with situation 
awareness acquisition (see Gonçalves et al. 2019b). Situation 
awareness has often been related to readiness (Mariajoseph 
et  al. 2020), and previous work has considered driver 
readiness as a construct that fluctuates over time (Kim 
et al. 2022). Therefore, in the next section, a discussion is 
provided about the theoretical correlations between evidence 
accumulation and the concept of readiness, and how EAMs 
can be used to estimate readiness.

As discussed previously, readiness has been commonly 
related with the construct of situation awareness (e.g., 
Mariajoseph et  al. 2020), since low levels of situation 
awareness have been associated with increased crash 
probability in takeover scenarios (see Louw and Merat 
2017) and delayed response to a TOR (see Zeeb et al. 2016). 
Similarly, Gonçalves et al. (2019b) have demonstrated that 
the third level of situation awareness—projection of future 
scenarios of action—is similar to the concept of evidence 
for choice selection, in a decision-making task. Using 
this argument, Gonçalves et al. (2019b) proposed that the 
situation awareness recovery process (as described by 
Gartenberg et al. 2014) can be directly modelled, using a 
noisy evidence accumulation process.

Conceptual models have defined readiness as a continu-
ous variable that defines the amount of motoric and cogni-
tive resources at the disposal of the driver to resume control 
of the driving task (Mioch et al. 2017; Kim et al. 2022). 
This definition is similar to the description of evidence 
made by Ratcliff et al. (2004, 2016). Ratcliff et al. (2004, 
2016) defined evidence as an amalgamation of perceptual 
and cognitive resources that is accumulated in the form of 
neural activity by the human brain. This activity is then 
used to trigger a behavioural response from an individual. 
Moreover, a systematic literature review by McDonald et al. 
(2019) suggests that evidence accumulation models may be 
a promising tool for predicting drivers’ takeover behaviour, 
suggesting a correlation between evidence accumulation and 
the decision to takeover. Since readiness is also associated 
with drivers’ decision to takeover, it is believed that evidence 
accumulation can be used to model drivers’ acquisition of 
motoric and cognitive resources for resuming manual control 
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of the driving task, as suggested by Kim et al. (2022) con-
ceptual model.

The advantage of this approach is its ability to explain 
certain internal aspects of human cognition, such as 
information processing and the noise inherent to neural 
activity. This allows the creation of mechanistic models, 
capable of simulating human response output, based on 
parameters extracted from a real-world dataset, accounting 
for inter-participant variability. Moreover, EAMs can 
provide Montecarlo simulations of drivers’ response on 
an individual level, based on a given set of parameters. 
Considering their capabilities, EAMs may be used to predict 
response time (and therefore crash probability) of a given 
individual, based on a series of readiness indicators.

4 � Conceptual model

4.1 � Conceptual model description

Considering that readiness is the amount of predisposition of 
an individual to perform a successful take-over, this metric 
can be added into a drift–diffusion (see Ratcliff and Review 
2004 for a comprehensive description of the model) evidence 
accumulation model as the initial pre-stored evidence value 
before the accumulation process (termed “bias”, see Ratcliff 
and Review 2004). As suggested by previous studies (e.g., 
Mariajoseph et al. 2020; Baek et al. 2018; Mioch et al. 2017; 
Deo and Trivedi 2020; Kim et al. 2018, 2021), the estimated 
values for driver readiness would be a product of drivers’ 
cognitive and motoric state. Taking into account the factors 
mentioned above, we propose the following equation (Eq. 1) 
for the evidence accumulation process:

Equation 1 Proposed equation for the conceptual model.
Where E is the amount of evidence in timeT  , given the 
controllability c for the scenario. The model assumes that 
the evidence accumulation process in each time step fol-
lows a gaussian distribution of mean �c , and variance of �2

c 
for each individual scenario. This approach is in line with 
previous EAMs reported in the literature (see Ratcliff et al. 
2016), and assumes that different takeover scenarios will 
yield faster or slower evidence accumulation rates, given 
their complexity (controllability). The evidence threshold 

E(T ,c) =

t=T−1∑

t=0

E(t,c) + X ∼ N
(
�c, �

2
c

)

E(T=ToT ,c) = 1

E(T=0,c) = f (CR,MR)

f (CR,MR) =

n=N∑

n=1

CRn ∗ iCRn
+

n=N∑

n=1

MRn ∗ iMRn

for the takeover scenario was set to 1, implying that the evi-
dence accumulated by the individual during the observed 
takeover time ( T = ToT  ) will always be 1. The readiness of 
a driver whenever a TOR is issued ( T = 0 ) is represented as 
a function f (CR,MR) , where CR is the combined score for 
drivers’ cognitive readiness, and MR the combined score 
for drivers’ motoric readiness. Figure 4 shows a graphical 
representation of the conceptual model, and the evidence 
accumulation process.

The combined scores for CR and MR are calculated 
as a sum of N  distinct metrics, which operationalize the 
theoretical constructs associated with readiness (e.g., 
situation awareness, arousal state and motoric availability). 
For each metric ( n ) is multiplied by a constant in , which 
represents the weight for the metric in the equation. This 
approach assumes that not all theoretical constructs are 
necessarily of equal importance for the driver state, and 
therefore assume no a priori value for the metrics. This 
method proposes that the constants in should be selected 
after a parametrization of the model, fitting the model 
parameters to real experimental data.

4.2 � Model assumptions

As said above, the model assumes that “evidence” values, in 
evidence accumulation models (Ratcliff and Review 2004) 
can be used as a proxy of drivers’ readiness state. This 
assumption is made based on the definition of readiness by 
Mioch et al. (2017) and Kim et al. (2022), of a conceptual 
floating variable that represents the sum of the drivers’ 
motoric and cognitive resources to takeover the vehicle 
(akin to the definition of evidence for decision-making for 
evidence accumulation models).

Being a safety–critical decision-making with time 
pressure as a constraint for the decision, the model assumes 
that drivers would try to react as soon as they are ready to 
do so (i.e., whenever their E(T ,c) values reach the threshold 
of 1), maximizing their reaction time. This model also 

Fig. 4   Graphical representation of the conceptual model
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assumes that the drift rate for evidence accumulation (how 
fast someone can accumulate evidence) is dependant of the 
scenario’s complexity/controllability ( c ). This assumption 
implies that more complex scenarios would lead to slower 
evidence accumulation rates, which translates to distinct 
values for the gaussian distributions that controls for the 
drift rate ( X ∼ N

(
�c, �

2
c

)
) , for every observed scenario.

For a matter of simplicity, the model assumes that the only 
predictor of drivers’ reaction time is their readiness values 
and accumulation of evidence, disregarding other factors 
like looming of the incoming obstacle, or an automatized 
response to the TOR, which may provide potential biases 
for the model’s outcome. The last assumption is that the 
weight values, measuring the relevance of a readiness 
predictor in the model (dly provide the publisher name 
foriCRn

 ) are constant across individuals, regardless of 
personal characteristics. For example, the importance of 
the amplitude of the drivers’ eyelid openings as a proxy of 
fatigue would have the same weight value for two distinct 
subjects, even though the baseline amplitude may vary 
slightly across individuals (Johns 2003).

4.3 � Definition of readiness thresholds

Considering the approach in Sect. 3.1, used to estimate 
readiness thresholds based on scenario controllability, it 
is possible to use the conceptual model presented above 
to estimate readiness thresholds for experimental data. 
According to ISO 26262 International Standarization 
Organization (2020b), and also supported by Marberger 
et al. (2018), every scenario c (representing its complexity) 
should have a maximum time budget for drivers’ response 
(notated in this work as tmax ). According to the standards 
for controllability defined by ISO 26262 (2018), a highly 
controllable scenario (therefore considered within safety 
boundaries), would be the one with a probability for the 
driver to avoid harm (i.e., crash), to be equal or higher than 
99%. In that sense, a driver monitoring system can use 
predictive models of drivers’ performance to estimate the 
likelihood of avoiding crash, given drivers’ readiness levels. 
Following this logic, a readiness threshold can be defined as 
the minimum amount of accumulated readiness to ensure 
that the predicted probability for the driver to avoid risk 
(crash) is within the desired controllability standards (99% 
or more). Translating this concept to the model’s equation, 
high controllability level for c (therefore, appropriate 
readiness levels) is classified in a way that the probability 
for drivers resuming control before tmax is higher than 99%. 
Applying this definition to the model presented in Sect. 4.1, 
we can assume the formula:

Considering the equation for the model presented in 
Eq. 1, we can assume that the probability distribution for 
someone to react within the time budget tmax is equal to the 
probability for the readiness function values, plus the sum 
of the accumulation of evidence in T = tmax , to be equal or 
higher than 1, as in:

To solve the equation above, we can isolate the readiness 
values (notated as f (CR,MR) ) from the expression, since 
they are represented by a constant. Also, the expression 
for evidence accumulation over time in the model is 
represented by a sum of tmax random variables, drawn from 
a normal distribution ( N

(
�c, �

2
c

)
) . The result of this sum 

can be represented as a new normal distribution, with �, �2 
equals the sum of, �2 of the functions that originated the 
random variables. Following these steps, we have:

If the objective is to find the minimum readiness 
value to yield the desired controllability (set to 99% 
for the purpose of this paper) values for c (notated as 
Min(f (CR,MR)c ), we can modify the equation as stated 
below:

To solve the problem, it is necessary to find the value 
for the 99th percentile for the random variable X (which 
represents the accumulation of evidence over time) that 
follows a normal distribution N

(
tmax ∗ �c, tmax ∗ �2

c

)
 . 

The resultant of this operation would be the minimum 

P
(
E(tmax,c) ≥ 1

)
≥ .99

P
(
E(tmax ,c) ≥ 1

)
= P

(
f (CR,MR) +

∑t=tmax

t=1
X ∼ N

(
�c, �

2
c

)
≥ 1

)

∑t=tmax

t=1
X ∼ N

(
�c, �

2
c

)
= X ∼ N

(
tmax ∗ �c, tmax ∗ �

2
c

)

Then

P
(
E(tmax ,c) ≥ 1

)
= P

(
f (CR,MR) + X ∼ N

(
tmax ∗ �c, tmax ∗ �

2
c

)
≥ 1

)

Then

P
(
E(tmax ,c) ≥ 1

)
= P

(
X ∼ N

(
tmax ∗ �c, tmax ∗ �

2
c

)
≥ 1 − f (CR,MR)

)

Then

P
(

E(tmax,c) ≥ 1
)

≥ .99 = P
(

X ∼ N
(

tmax ∗ �c, tmax ∗ �2
c
)

≥ 1 − f (CR,MR)) ≥ .99

P
(
E(tmax ,c) ≥ 1|Min(f (CR,MR)c)

)
≥ .99
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value of accumulated evidence on the 99th percentile of 
the distribution generated by the model (noted as AE  for 
accumulated evidence):

Assuming that the evidence in tmax can be notated as 
X ∼ N

(
tmax ∗ �c, tmax ∗ �2

c

)
+ f (CR,MR) ,  we can find  

Min(f (CR,MR)c) by solving:

G i v e n  t h a t  P(X ≥ AE) = .99   , 
P
(
E(tmax ,c)|Min(f (CR,MR)c ≥ 1

)
= .99  a n d 

E(tmax,c) = X + f (CR,MR)  w e  c a n  s a y  t h a t 
AE +Min(f (CR,MR)c = 1 . Based on the Bayes theorem for 
conditional probability, we can solve the equation and find 
the threshold for the minimum readiness values to 
guarantee an acceptable level of controllability for the 
scenario c as: Min(f (CR,MR)c) = 1 − AE

Following this proposed methodology, it is possible to 
estimate readiness thresholds on replicable and controlled 
experimental scenarios c for DSM systems, based on the 
parameters estimated from the fitting of the experimental 
data to the model.

5 � Proof of concept of the model fitting

To test the applicability of the model in a real scenario, 
a proof of concept was conducted. This involved fitting 
data post-hoc from a driving simulator experiment which 
measured drivers’ gaze behaviour and response to a critical 
takeover, from vehicle automation. It must be noted that 
this was a preliminary fitting to a simulator experiment 
that was not designed to validate the proposed model. This 
is a proof of concept to illustrate how this model can be 
used as a tool in a real experimental scenario and does not 
intend to provide evidence for validating the model.

5.1 � Dataset description

The dataset used to fit the model was collected by the 
University of Leeds Driving Simulator, as part of the 
AdaptiVe project (grant agreement number 610428, 
see Louw et al. 2016, 2017, 2018). These studies were 
designed to measure the impact the level of engagement 
with the driving loop (Merat et al. 2019), on drivers’ gaze, 
and their capability to avoid a crash during safety–critical 
transitions of control.

P
(
X ∼ N

(
tmax ∗ �c, tmax ∗ �

2
c

)
≥ AE

)
≥ .99

P
(
X +Min(f (CR,MR)c) ≥ 1||X ≥ AE) = 1

The dataset consists of 28 participants, with each 
experiencing two safety–critical trials, resulting in 56 
datapoints. Participants were asked to drive a handsfree 
Level 2 automated vehicle (SAE 2021), resuming manual 
control whenever requested by the system. For each 
trial, drivers experienced 100  s of automated driving, 
before they received the TOR. While the automation was 
engaged, participants were requested to perform a 2-back 
task (Mehler et al. 2012), intended to increase workload.

The critical scenarios were preceded by an “uncertainty 
alert”, which was a f lashing yellow steering wheel, 
presented in the instrument cluster. Drivers were required 
to decide if a takeover was required, in response to a 
hard braking lead vehicle. The deceleration rate of the 
lead vehicle was 5 m/s2 , resulting in a time budget of 3 s 
time to collision. Drivers could only avoid a crash by 
either braking or changing lane. For more details about 
the methodology of the experiment, please refer to Louw 
et al. (2016).

5.2 � Experimental variables

The variables extracted from the dataset to fit the model, 
included take-over response data and gaze-related data. The 
response data included crash outcome (crash/no crash), and 
the reaction time measured from the time the TOR, which 
was time drivers initiated their first relevant reaction to the 
scenario (braking/steering/or both, as defined by Louw et al. 
2018).

The gaze-related data was extracted during the automated 
period, before the TOR and was used to generate the 
variables imputed in the model to estimate drivers’ readiness 
levels. Given the low sample size of the dataset, this study 
opted to base the readiness levels using only drivers’ 
gaze entropy (as described by Shiferaw et al. 2019), the 
amplitude-velocity ratio (AVR) of the drivers’ eye blinks 
(as in Johns 2003), and the attention buffer levels of the 
driver, extracted from the AttenD algorithm (Kircher and 
Ahlström, 2017).

5.3 � Model fitting and parameter estimation

The parameter selection for the model variables (
�c, �

2
c
, ientropy, iAVR, iAttenD

)
 were selected with a random 

search technique (as described by Andradóttir 2006), testing 
a total combination of 100,000 combinations, and selecting 
the one which yielded the best fit of the model to the dataset. 
The log-likelihood ratio was used to access the goodness 
of fit of Monte Carlo simulations, generated by the model 
to the real experimental data. The fitting process was made 
individually for each trial, using the same model parameters, 
in a process described below:
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•	 Every trial n (in the of N trials) presented an estimated 
readiness level rn , and a response time ToTn.

•	 For every trial, a total of 10,000 Monte Carlo simulations 
were generated, using rn , and a set of parameters ℙ , 
generating a distribution of simulated reaction times ToT

ℙ

.
•	 The log-likelihood ratio for the individual 

t r i a l  w a s  c a l c u l a t e d  a s  logLn = log(p

(logLn = log
(
p
(
ToTn ∈ ToT

))
).

•	 The final log-likelihood ratio for the whole distribution 
for the set of parameters x was calculated as 

logL
ℙ
=

n=N∑
n=1

logLn.

Finally, the model accuracy was calculated as the 
percentage of cases where the model was able to predict 
whether a trial resulted in a crash, given drivers’ readiness 
levels. For the prediction of the crash outcomes, the model 
predicted that a trial n would crash, given their readiness 
levels ( rn ), if a simulation srn presented a response time 
( ToTs ) bigger the maximum TTC of the experimental 
scenario (3  s). Therefore, the simulation would correct 
predict the crash scenario if its outcome matched the 
observation of the real experimental trial ( ToTn

⋀
ToTs > 3 ). 

The model error was calculated as the average mismatch 
between the actual reaction time for each individual trial, 
and the respective model simulations.

5.4 � Model output

The final logL
ℙ
 score for the model, after the fitting process 

was − 682.4. Figure 7 shows a histogram comparing the 
experimental reaction time data (orange) and the simulated 
reaction times derived from the model.

The fitted model was able to correct predict crash out-
comes of all simulations for 45 of the 56 trials. Observing 
the predictions of each simulation individually, the model 
yielded a prediction accuracy of 88.5%, however, a relatively 
low F1 score of 0.452. By observing the confusion matrix 
(see Table 2), most of the failed predictions were found for 
the crash cases where the model interpreted that drivers were 
within a desirable readiness threshold, but crashed regardless 
(4512 out of 6605). In terms of reaction time prediction, the 
average prediction error margin for the model simulations 

was 0.534 s., with the RMSE for the average residuals from 
the simulations of each experimental trial = 0.560 s. Figure 5 
shows that the model was able to replicate the behaviour of 
the original sample with good fidelity, excluding the extreme 
cases, where a crash occurred. As shown in Fig. 8, the pre-
dicted error for each individual trial (i.e., the distribution of 
simulated response times generated by the model), is evenly 
balanced between over and under estimations of drivers’ real 
response time (Fig. 6).

Table 2   Confusion matrix for the model output

Experimental trial outcome

Model prediction
Crash No crash

 Crash 3721 2093
 No crash 4512 45,874

Fig. 5   Histogram comparing the model output with the real experi-
mental data. The Y axis is described in percentage, since the number 
of simulations (560,000) is higher than the number of actual data-
points (56)

Fig. 6   Example of the Monte Carlo simulations of one trial. The dark 
vertical line represents the real response time of the trial that was 
used to generate the simulation. The histogram on the top axis shows 
the distribution of simulated response time. The bottom axis shows 
the simulations of the evidence accumulation process over time, as 
described on Sect. 4.1
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6 � Discussion

The objective of this paper was to present a theoretical 
discussion about how the concept of driver readiness can 
be objectively estimated using controlled experimental 
data. A conceptual readiness estimation model is presented, 
and a methodology for defining readiness thresholds for 
DSM systems is proposed. The proposed model assumes 
a theoretical relationship between the process of evidence 
accumulation for decision-making (Ratcliff and Review 
2004), and the concept of driver readiness. The paper further 
explores how the model can be used to estimate readiness 
thresholds based on the concept of controllability of a 
critical situation (International Standardization Organization 
2020a, b). A proof of concept for the model application was 
then presented, using previously collected experimental data 
(Louw et al. 2016, 2017, 2018).

The results observed from the proof-of-concept fitting 
suggest that the abstract concept of driver readiness can be 
understood as an accumulation of cognitive and motoric 
resources over the course of the automated drive, and is 
directly correlated with the likelihood of crashes, and 
takeover time. The observed low F1 scores for the model 
crash prediction may be explained by the low sample size, 
and the fact that crashes (true positives) were a rare event, 
inflating the significance of missed predicted crashes (false 
negatives). It also must be noted that the binary prediction 
of crash/no crash does not consider near crashes, or how 
close a driver was to get involved in a collision. In that sense, 
the prediction of response time shows that the model was 
able to explain drivers’ behaviour with a relative accuracy. 
This result provides evidence that reinforce the theories 
proposed by Mioch et al. (2017), Kim et al. (2022) and 
Marberger et al. (2018), as it was able to explain the reaction 
time variability in the observed distribution through an 
evidence accumulation model, based on ocular metrics. The 
preliminary fitting also suggests that ocular metrics seem to 
be a promising tool to assess drivers’ state in future DSM 
systems, in line with current standards and recommendations 
for driver monitoring development (see EURO NCAP 2023).

This work contributes to the state of the art on readiness 
assessment models (e.g., Kim et al. 2022; Mioch et al. 2017; 
Mariajoseph et al. 2020; Baek et al. 2018; Deo and Trivedi 
2020; Du et al. 2020), by proposing an applicable tool to 
estimate driver readiness, without relying on subjective 
assessment of readiness, as a ground truth. Another 
advantage of the proposed solution is the mechanistic 
nature of the model, since it allows researchers to directly 
observe the relationship between driver readiness estimation 
variables and the behaviour prediction, without relying 
on black box techniques (Hassija et  al. 2024). The last 
contribution of this work is that the proposed methodology 

accounts for scenario variability, assuming that different 
safety–critical scenarios might require different readiness 
threshold values. This allows the use of experimental data 
to estimate how driver state is related to crashes during 
transitions of control from automation.

7 � Conclusion and future work

The proposed methodology is a promising step forward on 
the understanding of the factors underlying driver state and 
readiness estimation in automated vehicles. However, it 
must be noted that the proposed model is constrained by its 
assumptions and conceptual limitations, that prevent it to 
be used as a real-time assessment tool for driver monitoring 
systems.

The limitations of the proposed model are linked to 
estimations of readiness using repeated, experimentally 
controlled data, which cannot be used for applied/real-time 
predictions. Also, as mentioned in the model assumptions, 
the estimation of readiness thresholds and drift rate of 
the evidence accumulation is depended to the scenario 
complexity. In other words, the model operates under the 
assumption that more complex scenarios would lead to 
slower evidence accumulation rate. These limitations imply 
that the parameters fitted to the model are not generalizable, 
and a new parameter fitting is needed for every distinct 
scenario the model is used for. At last, being a mechanistic 
model, it can provide explicability, but its rigidness lacks 
the abstraction of machine learn models to find nuanced 
relationships between variables. For this reason, the 
proposed model limits itself as a conceptual model, which 
provides theoretical insights, however, it is not designed as 
a tool for real-time readiness estimation.

It must be noted that despite having an overall good 
fitting, the prediction error for crash outcome was 
unbalanced, favouring false negatives. This paper has 
provided a list of metrics required for assessing driver 
readiness, which serve as an input for the model. However, 
it is acknowledged that this is a constrained list of possible 
variables, based on previous research. Further studies 
are required to produce a more comprehensive list of the 
operational metrics related to driver readiness. It should also 
be noted that the practical application of this model to the 
experimental data has some limitations. The accuracy of the 
model fitting presented in this manuscript is limited by a low 
sample size, and the lack of a controlled design to account 
for driver state variability. Moreover, since the dataset used 
for the model fitting was not designed with the intention 
to validate the model’s applicability, the current output is 
unable to diagnose whether this solution is precise enough 
to be used in its current iteration. Despite these limitations, 
the model provides an improvement on previously presented 



	 Cognition, Technology & Work

concepts in this area, by considering the mechanistic process 
of driver readiness during critical takeover situations. The 
next step in this research is to build upon what has been 
presented here by creating specific experimental scenarios 
that allow the validation of the proposed model.
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