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Abstract. In this paper, we utilize Isabelle/HOL to develop a formal framework for
the basic theory of double-pushout graph transformation. Our work includes deőning
essential concepts like graphs, morphisms, pushouts, and pullbacks, and demonstrating
their properties. We establish the uniqueness of derivations, drawing upon Rosen’s 1975
research, and verify the Church-Rosser theorem using Ehrig’s and Kreowski’s 1976 proof,
thereby demonstrating the effectiveness of our formalisation approach. The paper details
our methodology in employing Isabelle/HOL, including key design decisions that shaped the
current iteration. We explore the technical complexities involved in applying higher-order
logic, aiming to give readers an insightful perspective into the engaging aspects of working
with an Interactive Theorem Prover. This work emphasizes the increasing importance of
formal veriőcation tools in clarifying complex mathematical concepts.

Introduction

Formal methods are instrumental in minimizing software defects by rigorously verifying soft-
ware correctness against their specification. These methods employ mathematical techniques
to assure that software implementations align with predefined specifications and requirements,
and include model checking, theorem proving, and symbolic interpretation [HR04].

Interactive theorem provers (ITPs), have validated significant mathematical theorems
such as the Four Colour Theorem [Gon07], the Prime Number Theorem [ADGR07], and
the Kepler Conjecture [HAB+15]. They have also been instrumental in verifying specific
algorithms and software components, like in the cases of the seL4 Microkernel [KEH+09] and
the CompCert compiler [Ler09]. These instances showcase the efficacy of ITPs in handling
complex theories and systems.

Our research strives to rigorously prove fundamental results in the double-pushout
approach to graph transformations [EEPT06], contributing to our overarching goal of verifying
specific programs in the GP 2 graph programming language [Plu16, CCP22] using the Isabelle
proof assistant [NK14].

This paper not only synthesizes previously published material [SP23] but also introduces
new essential technical details, including:

Key words and phrases: Double-pushout graph transformation and Isabelle/HOL and Uniqueness of
derivations and Church-Rosser theorem.
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• The formalisation of graphs, morphisms, and rules, including a discussion of our design
decisions.
• Additional details on our gluing construction.
• We added additional proofs, such as the fact that pushouts preserve surjectivity.
• We adopted Theorem 4.3 to cover the commutativity of sequentially independent direct

derivations.

While earlier efforts like Strecker’s [Str18] have applied ITPs to graph transformation,
they have not fully explored the extensive theoretical results available for the double-pushout
approach. To the best of our knowledge, our work is the first to formalise the foundational
results in double-pushout graph transformation. Further details on related work can be found
in Section 5.

In the double-pushout approach, our aim is to abstract from specific node and edge
identifiers. To achieve this, we introduce independent type variables representing the types of
nodes and edges for each graph. This differentiation enables the use of Isabelle’s typechecker
during development to prevent unintended mix-ups of node or edge identifiers between
graphs. However, we encounter a challenge with Isabelle’s inability to quantify over new
type variables within locale definitions, which complicates the formalisation of the universal
properties of pushouts and pullbacks.

To mitigate this issue, we adopt a strategy in our locales where we define node and
edge identifiers as natural numbers. This decision, among others such as potentially using a
unified type for both node and edge identifiers, necessitates alternate constructions and the
consideration of constraints like ensuring a sufficiently large universe of identifiers to execute
the disjoint union. We will discuss these critical design choices in the technical Section 2.

To establish the uniqueness of direct derivations, our proof strategy is divided into
two distinct stages. Initially, we focus on demonstrating the uniqueness of the pushout
complement. Following this, we prove the uniqueness of the pushout object itself, assuming
an isomorphic pushout complement. In the first stage, our approach is inspired by Lack and
Sobocinski’s methodology [LS04]. However, we adapt their method by incorporating the
pushout characterisation and the reduced chain condition [EK79], along with utilising the
composition and decomposition lemmas for pushouts and pullbacks.

For the proof of the Church-Rosser theorem, we base our methodology on Ehrig and
Kreowski’s original work [EK76]. Here too, the pushout characterisation and the reduced
chain condition is crucial. We are further employing the composition and decomposition
lemmas for pushouts and pullbacks. Additionally, we introduce a lemma that facilitates
transitioning between pullbacks and pushouts.

While we recognize the potential to generalise our proofs from graph constructions
to adhesive categories, this is not our primary objective. Our decision stems from two
considerations: firstly, to avoid the complexity involved in handling an abstract class of
categories, such as van Kampen squares; and secondly, because our research involves both
abstract concepts like pushouts and pullbacks, as well as set-theoretic constructions for these
concepts. Providing the corresponding constructions for all adhesive categories would be
impractical.

Our long-term goal is to establish a foundation for verifying graph programs in GP 2, a
language fundamentally based on the double-pushout approach to graph transformation. We
aspire to provide both interactive and automatic tool support for formal reasoning in graph
transformation languages. An effective proof assistant for GP2 will necessitate concrete
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definitions of graphs, attributes, rules, derivations, and more, which guides our focus towards
graph transformation concepts.

The remainder of this paper is organized as follows:

• Section 1 offers a concise introduction to the Isabelle Proof Assistant, focusing on the
constructs employed in our research.
• In Section 2, we delve into the fundamentals of DPO graph transformation and our

corresponding formalisation in Isabelle. This section covers the formalisation of key
concepts such as graphs, morphisms, and rules.
• Section 3 discusses the uniqueness of direct derivations, including a detailed proof of the

uniqueness of pushout complements.
• The Church-Rosser theorem, which posits that parallel independent direct derivations can

be rearranged to conclude in a common graph, is explored in Section 4.
• Section 5 presents a brief review of related work in the field, providing context and

background to our study.
• Finally, Section 6 summarises our key findings and outlines potential avenues for future

research.

All formalisation artefacts, including the complete Isabelle theories, are available on GitHub
at https://github.com/UoYCS-plasma/DPO-Formalisation.

1. Isabelle/HOL

Isabelle is a versatile, interactive theorem prover that operates on the principles of the LCF
(Logic for Computable Functions) approach. Central to its design is a compact meta-logical
proof kernel responsible for proof checking, a feature that significantly bolsters confidence in
the prover’s soundness. When referring to Isabelle/HOL, we are discussing the higher-order
logic instantiation within Isabelle, widely recognized as the most mature calculus in its
suite [PNW19]. This instantiation is characterised by a strong typing system that supports
polymorphic, higher-order functions [BH18].

In Isabelle/HOL, type variables are distinctly marked by a preceding apostrophe. For
instance, a term f of type ’a is represented as f :: ’a. Our formalisation leverages locales,
a sophisticated mechanism designed for authoring and structuring parametric specifications.
A locale encapsulates a set of parameters (x1 . . . xn), assumptions (A1 . . . Am), and a resulting
theorem, expressed as

∧

x1 . . . xn.JA1; . . . ;AmK =⇒ C. This approach facilitates the effective
combination and enhancement of contexts, yielding a representation that is both clear and
maintainable. For further details, Ballarin [Bal21] provides an extensive introduction.

Additionally, we employ intelligible semi-automated reasoning (Isar), Isabelle’s framework
for writing structured proofs [Wen99]. Unlike ’apply-scripts’, which linearly execute deduction
rules, Isar adopts a structured, organized approach. This methodology significantly improves
the readability and maintainability of proofs [NK14]. A comprehensive introduction to
Isabelle/HOL is available in [NK14].

2. DPO Graph Transformation in Isabelle

Our formalisation of DPO based graph transformations within the Isabelle/HOL proof
assistant is centred around (finite) directed labelled graphs.
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Figure 1. locale hierarchy reflecting our formalisation

2.1. Graphs. These graphs are defined over an abstract label alphabet comprising distinct
sets of node and edge labels. We intentionally left labels abstract, as it ensures that the
properties we discuss are universally applicable across specific label alphabets. Our definition
is inclusive, we accommodate parallel edges and allow loops.

Definition 2.1 (Graph). A graph G = (V,E, s, t, l,m) over the alphabet L is a system
where V is the finite set of nodes, E is the finite set of edges, s, t : E → V are functions
assigning the source and target to each edge, l : V → LV and m : E → LE are functions
assigning a label to each node and edge.

The formalisation process within a Proof Assistant mandates adherence to a specific
formalism; in our context, this is classical high-order logic. The structure of this work
involves a range of design choices. Primarily, we adopt Noschinskis [Nos15] approach,
utilizing record types to achieve a concise representation of components, and employing
locales to systematically impose properties on these components. Fig. 1 depicts our developed
formalisation from the perspective of the locale hierarchy. In this figure, the arrow signifies
used by. For instance, the Graph locale serves as a foundation for the Morphism locale.
Similarly, Rule depends on Morphism, and DirectDerivation relies on Rule.

While portions of our work have been described in preceding work [SP22], this manuscript
will refine and update our methodology.

As initially mentioned in the introduction Section, Isabelle/HOL exclusively deals with
total functions. This means that these functions are defined across the entire universe of
the underlying type. The built-in option data type is a standard way to represent optional
values, i.e., the presence or absence of data. This sum type can hold two types of values,
represented by their constructor:

• None used to represent the absence of a value, and
• Some a captures the presence of a value, where a is the actual value held.

By using the option data type, we can simulate partial functions as a function ’a ⇒ ’b

option, which is commonly known as the built-in synonym map with the infix ⇀ notation.
Another extension found in the standard library are finite sets and finite maps, which are
called fset and fmap respectively. These data types are built on top of the standard (poten-
tially infinite) sets and maps by using the typedef keyword, which instructs Isabelle/HOL
to provide a new datatype with finitely many elements and the additional finite property.

We consider the following different design options for our formalisation:

(1) The usage of finite maps and sets (fmap and fset), and
(2) rely on total functions together with the finite predicate.

Although from an engineering perspective, the first option to encode properties in the type
system seems appealing, it is not without challenges. Here, we can represent graphs using a
pre_graph record by using the built-in fmap and fset as follows:
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record (’v,’e,’l,’m) pre_graph =

nodes :: "’v fset"

edges :: "’e fset"

source :: "(’e,’v) fmap"

target :: "(’e,’v) fmap"

node_label :: "(’v,’l) fmap"

edge_label :: "(’e,’m) fmap"

The implementation of the locale, which enforces the corresponding properties of the
underlying object, can be expressed using higher abstractions in the context of fmap and
fset. In this scenario, we utilise the built-in native fmdom and fmran functions to yield a
fset of the range and domain, mirroring the defined area. This is possible as the finite map
relies on the option datatype. The integrity of the source function is expressed using fmdom

sG = EG ∧ fmran sG |⊆| VG. Conversely, for the total function scenario (2), it becomes
necessary to explicitly quantify over the set of nodes and edges to convey an equivalent
statement. We write ∀ v ∈ EG. sG e ∈ VG to express the same property.

Drawing from our experience and evaluations, we chose to further pursue the (2) ap-
proach to enhance our automation endeavours. This decision primarily stems from the
underdevelopment of fset, map, and fmap theories. We found ourselves in the position of
having to establish numerous fundamental properties about fmap and fset that were not
previously proven. Although the Isabelle distributions lifting and transfer package [HK13]
offered an infrastructure for applying proven properties from underlying theories, such as
the set and map theory, the overall process represented a significant effort. This aspect is
further emphasized by Díaz’s submissions [Dí20] to the Archive of Formal Proofs (AFP),
which enhance the fmap theory with new constructs and proven properties.

The corresponding pre_graph record is defined by the subsequent Isabelle code.

record (’v,’e,’l,’m) pre_graph =

nodes :: "’v set"

edges :: "’e set"

source :: "’e ⇒ ’v"

target :: "’e ⇒ ’v"

node_label :: "’v ⇒ ’l"

edge_label :: "’e ⇒ ’m"

We present the final locale enforcing the graph properties in the following code block.
Notably, there is no need for explicit statements about the properties of node and edge labels,
since total functions are defined for the entire universe.

locale graph =

fixes G :: "(’v::countable,’e::countable,’l,’m) pre_graph"

assumes
finite_nodes: "finite VG" and
finite_edges: "finite EG" and
source_integrity: "e ∈ EG =⇒ sG e ∈ VG" and
target_integrity: "e ∈ EG =⇒ tG e ∈ VG"

The usage of the built-in countable typeclass for node and edge identifiers in our work
addresses the Isabelle/HOL constraint against introducing new type variables within a locales
definition. This is a result of the simple type theory used by the HOL family [HUW14]. This
method parallels the approach found in [SW09], where Isabelle’s statespace command was
used to create an environment with axioms for converting concrete types to natural numbers.
Our approach differs by utilizing the injective to_nat function provided by the countable
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typeclass, thus enabling efficient type conversion. This specific limitation is further detailed
in [SP22]. The injectivity also implies the existence of the inverse, from_nat. We use this
technique to translate arbitrary identifiers for nodes and edges into a generic representation
based on natural numbers.

Definition 2.2 (Graphs over naturals). A graph whose node and edge identifiers are natural
numbers is called a natural graph.

In Isabelle/HOL, we establish a type synonym ngraph, which specializes the existing
pre_graph structure to nat, Isabelle’s native type for natural numbers, for both identifiers.

type_synonym (’l,’m) ngraph = "(nat,nat,’l,’m) pre_graph"

The use of Isabelle/HOL’s built-in functions to_nat and from_nat allows us to convert
between both representations. We define the conversion function to_ngraph from ngraph to
the parameterised pre_graph structure as follows:

definition to_ngraph

:: "(’v::countable,’e :: countable,’l,’m) pre_graph

⇒ (’l,’m) ngraph" where
‹to_ngraph G ≡ (|nodes = to_nat ‘ VG

,edges = to_nat ‘ EG
,source = λe. to_nat (sG (from_nat e))

,target = λe. to_nat (tG (from_nat e))

,node_label = λv. lG (from_nat v)

,edge_label = λe. mG (from_nat e)|)›

We convert the set of node and edge identifiers by applying the to_nat function, which
the countable typeclass provides, to each element in these sets using the image function,
denoted by the ‘. The source and target functions initially map from nat to the original
identifier, then apply the source and target functions, and subsequently map back into the
nat space. For both labelling functions, we simply convert back the nat identifiers before
applying the corresponding labelling function.

The reverse process, converting a graph over naturals to a parameterized graph, functions
similarly. Its important to note that from_nat (to_nat x) = x holds true, but the converse
does not apply. The crucial fact to remember is that the definition of to_nat depends on
Hilbert’s choice operator SOME, which selects a fixed yet arbitrary value. This reliance is a key
aspect to consider, as it fundamentally influences the behaviour and limitations of the to_nat

function. By utilizing SOME, to_nat essentially encapsulates a degree of arbitrariness, making
its outcomes and their relation to the inverse process non-trivial and significant in our context.
Consequently, we often need to include type annotations to avoid the inference of different
types, which would result in the selection of a different value. This becomes particularly
crucial in scenarios involving nested function applications. In these cases, while the final
type aligns correctly, the intermediate type might not, leading to potential discrepancies.
By actively managing these type annotations, we ensure consistency and accuracy in our
function applications, especially when dealing with complex nested structures where type
alignment is critical for the intended outcomes.
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definition from_ngraph

:: " (’l,’m) ngraph

⇒ (’v::countable,’e :: countable,’l,’m) pre_graph" where
‹from_ngraph G ≡ (|nodes = from_nat ‘ VG

,edges = from_nat ‘ EG
,source = λe. from_nat (sG (to_nat e))

,target = λe. from_nat (tG (to_nat e))

,node_label = λe. lG (to_nat e)

,edge_label = λe. mG (to_nat e)|)›

2.2. Morphisms. Following this, we will define mappings between graphs that preserve
their structure, known as graph morphisms.

Definition 2.3 (Graph morphism). A graph morphism f : G → H is a pair of mappings
f = (fV : VG → VH , fE : EG → EH), such that for all e ∈ EG and v ∈ VG:

(1) fV (sG(e)) = sH(fE(e)) (sources are preserved)
(2) fV (tG(e)) = tH(fE(e)) (targets are preserved)
(3) lG(v) = lH(fV (v)) (node labels are preserved)
(4) mG(e) = mH(fE(e)) (edge labels are preserved)

We adopt the same design pattern for graph morphisms as we did for graphs: First, we
define a record type to bundle the relevant components, which here include the node and
edge mappings. Then, we establish a locale to enforce the properties of the morphism. The
morphism record is defined as follows.

record (’v1,’v2,’e1,’e2) pre_morph =

node_map :: "’v1 ⇒ ’v2"

edge_map :: "’e1 ⇒ ’e2"

It is important to emphasize that a morphism can map between two different types for
each node and edge identifier. This aspect is vital for our subsequent work on the pushout
and pullback construction, which we will discuss later in this section.

The morphism locale utilizes the hierarchical inheritance feature of locales, enabling
us to depend on the graph locale for defining the source and target graphs. We enhance
its functionality by fixating the pre_morph record, accomplished using the fixes keyword.
This is followed by stating the locale axioms, which assert that graphs represent a structure-
preserving mapping. This design choice not only streamlines the locale’s structure but also
ensures a logical integration of graph properties within the morphism context.

locale morphism =

G: graph G +

H: graph H for
G :: "(’v1::countable,’e1::countable,’l,’m) pre_graph" and
H :: "(’v2::countable,’e2::countable,’l,’m) pre_graph" +

fixes
f :: "(’v1,’v2,’e1,’e2) pre_morph"

assumes
morph_edge_range: "e ∈ EG =⇒ fE e ∈ EH" and
morph_node_range: "v ∈ VG =⇒ fV v ∈ VH" and
source_preserve : "e ∈ EG =⇒ fV (sG e) = sH (fE e)" and
target_preserve : "e ∈ EG =⇒ fV (tG e) = tH (fE e)" and
label_preserve : "v ∈ VG =⇒ lG v = lH (fV v)" and
mark_preserve : "e ∈ EG =⇒ mG e = mH (fE e)"
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In this context, the graph G serves as the source, while H represents the target graph.
The record encapsulating the node and edge mappings between G and H is assigned the
name f. The two assumptions, namely morph_edge_range and morph_node_range, ensure
that for every edge e in the source graph, fE maps to a corresponding edge in the target
graph, and similarly for nodes. The assumptions source_preserve and target_preserve

are critical for maintaining the structural integrity of the graph; they guarantee that the
source and target structures are consistently upheld in the mapping process. Lastly, the
assumptions label_preserve and mark_preserve are instrumental in ensuring that the
node and edge labels are retained during the mapping, thereby preserving the complete
informational content of the graphs.

Definition 2.4 (Special morphisms and isomorphic graphs). A morphism f is injective
(surjective, bijective) if fV and fE are injective (surjective, bijective). Morphism f is an
inclusion if for all v ∈ VG and e ∈ VE , fV (v) = v and fE(e) = e. A bijective morphism is an
isomorphism. In this case, G and H are isomorphic, which is denoted by G ∼= H.

Our characterization also takes advantage of the locale inheritance mechanism. An
injective morphism inherits all properties from the morphism locale and additionally asserts
that both node and edge mappings are injective over the respective sets of nodes and edges
of the source graph. We achieve this by employing the built-in inj_on predicate. This
predicate plays a crucial role in ensuring the uniqueness of each element’s mapping in the
source graph to the target graph, thereby preserving the distinctiveness of graph elements in
the transformation process.

locale injective_morphism = morphism +

assumes
inj_nodes: "inj_on fV VG" and
inj_edges: "inj_on fE EG"

It is important to note that the fV (fE) mappings and graph G, with its corresponding
components (VG and EG) which are utilized in the body of the injective_morphism locale,
are also supplied by the morphism locale.

A surjective morphism also adheres to this pattern. In this case, we declare that for
each node (or edge) in the target graph H, there exists a corresponding node (or edge) in the
source graph G that is mapped to it through the respective morphism function (fV and fE).
This condition ensures that every element in the target graph has a pre-image in the source
graph, signifying that the mapping covers the entire target graph.

locale surjective_morphism = morphism +

assumes
surj_nodes: ‹v ∈ VH =⇒ ∃ v’ ∈ VG. fV v’ = v› and
surj_edges: ‹e ∈ EH =⇒ ∃ e’ ∈ EG. fE e’ = e›

A bijective morphism combines the principles of both injective and surjective morphisms.
In this framework, we assert that for every node (or edge) in the source graph H, there is a
unique corresponding node (or edge) in the target graph H. We choose not to inherit from
both the injective_morphism and surjective_morphism locales. Instead, we utilize the
built-in predicate bij_betw. A key reason for this decision is to leverage automation: in
our experiments, the use of the existing set of proven lemmas significantly facilitated the
process of discharging theorems. While it was feasible to demonstrate all these properties if
we inherit these locales, we opted to capitalize on the existing infrastructure.
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locale bijective_morphism = morphism +

assumes
bij_nodes: "bij_betw fV VG VH" and
bij_edges: "bij_betw fE EG EH"

Moving forward, we introduce the concept of composing two morphisms to form a
singular, joint morphism.

Definition 2.5 (Morphism composition). Let f : F → G and g : G→ H be graph morphisms.
The morphism composition g ◦ f : F → H is defined by g ◦ f = (gV ◦ fV , gE ◦ fE).

In Isabelle/HOL, we define this composition with a definition that typically hides the
underlying details and often requires explicit unfolding or an established set of proven
properties. Choosing total functions enables us to use standard function composition
techniques for both the node and edge mappings.

definition morph_comp

:: "(’v2,’v3,’e2,’e3) pre_morph

⇒ (’v1,’v2,’e1,’e2) pre_morph

⇒(’v1,’v3,’e1,’e3) pre_morph" (infixl "◦→" 55) where
"g ◦→ f = (|node_map = gV ◦ fV , edge_map = gE ◦ fE |)"

Please note that each morphism can alter the typing of the node and edge identifiers.
Therefore, in our definition, we introduced three typing parameters. Additionally, we have
introduced the infix syntax ◦→ for graph morphism composition as a form of syntactic sugar.

Lemma 2.6 (Well-definedness of morphism composition). Given two morphisms f : G→ H

and g : H → K, the composition g ◦ f : G→ K is also a morphism.

If we have two valid morphisms, say f : G→ H and g : H → K, then their composition
g ◦ f : H → K is also a valid morphism. In Isabelle, we capture this property using the
lemma keyword along with a specific name (wf_morph_comp) for future reference.

lemma wf_morph_comp:

assumes
f: ‹morphism G H f› and
g: ‹morphism H K g›

shows ‹morphism G K (g ◦→ f)›

We start by assuming the existence of two valid morphisms, which we name f and g,
within the assumes blocks. Then, by using the shows keyword, we set our target for proof
in Isabelle. Following this setup, Isabelle requires the user to interactively work towards
achieving the stated goal, essentially proving the validity of the morphism composition.

We open the proof using the intro_locales tactic, which will apply the corresponding
introduction rule, resulting in the following proof state.

proof (state)

goal (3 subgoals):

1. graph G

2. graph K

3. morphism_axioms G K (g ◦→ f)

The output shows that we must discharge three subgoals. The first two, which states that
G and K are valid graphs, are trivial due to the morphism properties. Since the morphism
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locale inherits the graph properties for both the source and target graphs, these subgoals
follow directly.

Using Isabelle’s Isar language, we streamline our proof writing process by focusing
on the logical structure and progression of arguments. Isar, emphasizing the what over
the how, allows us to structure complex proofs into understandable segments. We initiate
each proof by specifying our goal with the show keyword, clearly setting our target. This
approach not only simplifies the proof of our statement, which in this case follows from the
morphism axioms of f and g, but also keeps the proof readable and aligned with traditional
mathematical reasoning, enhancing its clarity and verifiability.

To tackle the third subgoal, we focus on the morphism_axioms predicate, a product
of the locales infrastructure based on the properties we stated. To discharge this subgoal,
we initiate the proof using the standard tactic, which will execute a single elimination or
introduction rule according to the topmost logical connective involved [Wen].

Consequently, our task involves discharging the six morphism axioms stated earlier,
which we will briefly outline below. The initial two goals address the fact that for each edge
(and node) in G, the image created by the composition of the morphisms falls within the
subset of the edges (nodes) of K.

show ‹morphism_axioms G K (g ◦→ f)›

proof standard

show ‹g ◦→ fE e ∈ EK› if ‹e ∈ EG› for e

by (simp add: morph_comp_def

morphism.morph_edge_range[OF g]

morphism.morph_edge_range[OF f]

that)

Isabelle’s simplifier is able to successfully discharges all goals, provided it is equipped
with the necessary lemmas. Specifically, for our case, we need to unfold the morph_comp

definition and, to discharge the first goal, we need to employ the morph_edge_range fact for
each of the graphs G and K.

Similarly, the property asserting that the composed morphism preserves the structure
under the source function is discharged. This property is defined in the morphism lo-
cale (source_preserve). We address it using a method similar to the previous approach,
employing relevant tactics and lemmas (in a forward directed style using the OF keyword).

show ‹g ◦→ fV (sG e) = sK (g ◦→ fE e)› if ‹e ∈ EG› for e

by (simp add: morph_comp_def

morphism.morph_edge_range[OF f]

morphism.morph_edge_range[OF g]

morphism.source_preserve[OF f]

morphism.source_preserve[OF g] that)

Finally, the preservation of node and edge labels by the morphism follows a similar
pattern and is subsequently shown for completeness.

show ‹lG v = lK (g ◦→ fV v)› if ‹v ∈ VG› for v

by (simp add: morph_comp_def

morphism.label_preserve[OF f]

morphism.label_preserve[OF g]

morphism.morph_node_range[OF f] that)

The purpose of the earlier discussion was to offer readers an intuitive understanding of how
properties are articulated and to provide a glimpse into the overall setup in Isabelle. Moving
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forward, the focus will shift to describing the fundamental constructs of our formalisation,
highlighting selected content that is crucial to understanding the framework and methodology
employed.

Please note, if a morphism is uniquely identified by its source and target, we sometimes
omit the name and write F → G→ H to stand for the composition g◦f . In our formalisation,
we denote morphism composition using the ◦→ symbol to prevent a naming clash with
Isabelle’s built-in function composition.

2.3. Rules. In DPO-based graph transformation, graph morphisms are used to define rules
as the atomic units of computation.

Definition 2.7 (Rule). A rule (L← K → R) consists of graphs L,K and R over L together
with injective morphisms K → L and K → R.

Following the same pattern as before, we use a pre_rule record and establish a rule

locale to enforce the required properties.

record (’v1,’e1,’v2,’e2,’v3,’e3,’l,’m) pre_rule =

lhs :: "(’v1,’e1,’l,’m) pre_graph"

interf :: "(’v2,’e2,’l,’m) pre_graph"

rhs :: "(’v3,’e3,’l,’m) pre_graph"

The polymorphic pre_rule record already contains eight type parameters, allowing
different node and edge identifiers for each graph of the rule (left-hand side, right-hand side,
and the interface) while keeping the labelling types consistent. This setup offers significant
flexibility by enabling morphisms between different node and edge representations, which is
particularly useful in the gluing and deletion construction. However, this approach comes
with a technical drawback: the need to propagate type annotations throughout the codebase.
In some cases, this can result in code that is not immediately obvious and may be difficult
to read. To address this issue and strike a balance between flexibility and readability, we
have reduced the number of locale parameters in our current design by incorporating record
types for rules, graphs, morphisms, and other components. This has significantly decreased
the number of parameters passed directly into the locales compared to earlier versions of our
formalisation.

Despite the challenges, we believe that our current setup offers a sweet spot in terms
of conciseness while still maintaining the necessary formal precision. We will explore this
trade-off between flexibility and readability in more detail later in the paper, particularly in
the context of the gluing and deletion construction.

The locale itself inherits the properties of injective morphisms twice, from the interface
to both the left-hand side and the right-hand side.

locale rule =

k: injective_morphism "interf r" "lhs r" b +

r: injective_morphism "interf r" "rhs r" b’

for r :: "(’v1::countable,’e1::countable

,’v2::countable,’e2::countable

,’v3::countable,’e3::countable

,’l,’m) pre_rule" and b b’

We need to populate the countable typeclass restriction to allow conversion of graphs
to graphs over naturals. The main reason for this is a limitation of the locale mechanism,
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Figure 2. Gluing diagram

preventing the introduction of new type variables in its definition. Once we covered pushouts
(and pullbacks), we will briefly continue this discussion.

The addition of graph components along a common subgraph is called gluing.

2.4. Gluings. The gluing construction below employs the disjoint union of sets A and B,
typically defined as

A+B = (A× {1}) ∪ (B × {2}).

It incorporates injective functions iA : A → A + B and iB : B → A + B, ensuring that
iA(A) ∪ iB(B) = A+B and iA ∩ iB = ∅.

This does not directly translate into a higher-order logic based proof assistant, as the
formalism is not expressive enough to capture the change of representation. Here, we would
try to mix ′a set, where ′a is a type variable of the elements, to elements of the type
(′a, nat).

To simplify Lemma 2.8, we assume the sets of D and R − b(K) are disjoint. This
assumption prevents the contamination of iA and iB usage throughout the lemma while
maintaining respect to the more general statement which does not require the disjointness.

Lemma 2.8 (Gluing [Ehr79]). Let b : K → R and d : K → D be injective graph morphisms.
Then the following defines a graph H (see Fig. 2), the gluing of D and R according to d:

(1) VH = VD + (VR − bV (VK))
(2) EH = ED + (ER − bE(EK))

(3) sH(e) =











sD(e) if e ∈ ED

dV (b
−1
V (sR(e))) if e ∈ ER − bE(EK) and sR(e) ∈ bV (VK)

sR(e) otherwise

(4) tH analogous to sH

(5) lH =

{

lD(v) if v ∈ VD

lR(v) otherwise

(6) mH analogous to lH

Moreover, the morphism D → H is an inclusion and the injective morphism h is defined for
all items x in R by h(x) = if x ∈ R− b(K) then x else d(b−1(x)).

Our formalisation of the gluing concept begins with the definition of the corresponding
locale, which inherits the two injective morphisms b : K → R and d : K → D, as follows.

locale gluing =

d: injective_morphism K D d +

r: injective_morphism K R b

for K D R d b
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Note, the properties of the injective_locale for K → R and K → D are bound to d

and r, respectively. These names are chosen arbitrary and are used to refer to facts of the
corresponding morphism, while the arguments to the locale correspond to the morphism
objects.

Within the locales context, we present the construction described in Lemma 2.8. Initially,
we establish abbreviations, which unlike definitions, do not introduce new concepts that have
to be unrolled; instead, they simply allow us to refer to their content by an abbreviated
name. This construction relies on the sum type, featuring two constructors: Inl and Inr.
We utilize the built-in function Plus, denoted by the infix notation <+>, for calculating the
disjoint sum of sets. This definition relies on applying the Inl constructor to each element of
the first set and the Inr constructor to each element of the second. It is important to note
that this setup alters the type; we move from the universe, say ’a of the first set, and ’b of
the second, to the sum type ’a + ’b. This shift facilitates the straightforward construction
of the disjoint sum, but will result in some complications of our formalisation. We considered
imposing the constraint that the nodes (edges) must be disjoint as an alternative approach
to the locale. However, to align with our long-term goal of constructing concrete gluings, we
chose not to limit our formalisation and proceeded directly with the construction.

Following the gluing construction (cf. Lemma 2.8), we use V (and E) to represent the
elements of the gluing graph.

abbreviation V where ‹V ≡ VD <+> (VR - bV ‘ VK)›

abbreviation E where ‹E ≡ ED <+> (ER - bE ‘ EK)›

The ‘ notation refers to the built-in image definition, which applies the supplied function
to each element of the set. The source function now utilizes the two constructors to employ
standard pattern matching for identifying the origin graph of an edge. In the first scenario,
with s (Inl e), given the construction of V and E, it becomes evident that this edge remains
within graph D. Consequently, we use the source from D, repositioning it into the new type via
the application of Inl. This repositioning reflects the application of the previously mentioned
injective function iA, see above. In the second case, when the source of the edge originates
from R without the interface, it is necessary to determine whether the source of the edge
projects into the interface. If it does, we must apply the inverse of b, followed by traversal
through d. We obtain the element by using the inv_into built-in function, which uses the
Hilbert epsilon operator SOME. If not, the node remains on the right-hand side, requiring only
the application of the Inr constructor.

fun s where
"s (Inl e) = Inl (sD e)"

|"s (Inr e) = (if e ∈ (ER - bE ‘ EK) ∧ (sR e ∈ bV ‘ VK)

then Inl (dV ((inv_into VK bV ) (sR e))) else Inr (sR e))"

The target mapping follows analogous. However, both label mappings are straightforward
and only require pattern matching with the respective labelling functions.

fun l where
"l (Inl v) = lD v"

| "l (Inr v) = lR v"

Finally, we have completed defining all the necessary components for the pre_graph

structure of a graph H. We use the definition keyword to define the final pre_graph

structure H.
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definition H where
‹H ≡ (|nodes=V,edges=E

,source=s,target=t

,node_label=l,edge_label=m |)›

To establish that this record represents a valid graph, we use the sublocale command,
which necessitates us to discharge the required graph properties.

sublocale h: graph H

We proceed by defining the graph morphism h : R→ H, which is necessary if the node
(or edge) resides in R without K via b. In the first scenario, it is evident that the node (or
edge) is mapped through Plus, using the Inr constructor. In other instances, we utilize the
inverse of b and proceed along d. In all cases, the node (or edge) invariably exists in the left
part of Plus, indicated by the Inl constructor.

definition h where
‹h ≡ (|node_map = λv. if v ∈ VR - bV ‘ VK

then Inr v

else Inl (dV ((inv_into VK bV ) v)),

edge_map = λe. if e ∈ ER - bE ‘ EK
then Inr e

else Inl (dE ((inv_into EK bE) e))|)›

The morphism c : D → H is an injective morphism, which injects the graph D into H

using the Inl constructor.

definition c :: "(’e, ’e + ’g, ’f, ’f + ’h) pre_morph" where
‹c ≡ (|node_map = Inl, edge_map = Inl |)›

In some cases, it is required to add additional type annotations. If these are skipped,
Isabelle tries to infer the corresponding type, which might lead to a surprising outcome. The
formalization of the deletion construction is described in [SP22].

2.5. Pushouts. With these components in place, we demonstrate how they define the
abstract concept of pushouts.

Definition 2.9 (Pushout). Given graph morphisms b : A → B and c : A → C, a graph
D together with graph morphisms f : B → D and g : C → D is a pushout of A → B and
A→ C if the following holds (see Fig. 3):

(1) Commutativity: f ◦ b = g ◦ c, and
(2) Universal property: For all graph morphisms p : B → D′ and t : C → D′ such that

p ◦ b = t ◦ c, there is a unique morphism u : D → D′ such that u ◦ f = p and u ◦ g = t.

We call D the pushout object and C the pushout complement.

We are not able to express the unique existence, used in the universal property directly.
The built-in binder for expressing this property presents a challenge. Since total functions are
defined over the entire universe and our graphs may only cover a subset of the node (edge)
identifiers, the built-in binder would be too strong. Therefore, our quantification needs to
focus solely on the nodes (edges) pertinent to the required objects. As a result, we introduce
the abbreviation Ex1M, which will quantify only over the required subset of nodes and edges
used in the corresponding graphs.
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c g
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t

A

B
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D D′

Figure 3. Pushout A→ B → D ← C ← A

abbreviation Ex1M

:: "((’v1,’v2,’e1,’e2) pre_morph ⇒ bool)

⇒ (’v1,’e1,’l,’m) pre_graph

⇒ bool" where
"Ex1M P E ≡ ∃ x. P x ∧ (∀ y. P y

−→ ( (∀ e ∈ EE. yE e = xE e)

∧ (∀ v ∈ VE. yV v = xV v)))"

We are now prepared to formalize pushouts using a locale, addressing morphisms A→ B,
A→ C, B → D, and C → D that fulfil both commutativity and the universal property. The
formalisation is given below:

locale pushout_diagram =

b: morphism A B b +

c: morphism A C c +

f: morphism B D f +

g: morphism C D g for A B C D b c f g +

assumes
node_commutativity: ‹v ∈ VA =⇒ f ◦→ bV v = g ◦→ cV v› and
edge_commutativity: ‹e ∈ EA =⇒ f ◦→ bE e = g ◦→ cE e› and
universal_property: ‹[[

graph (D’ :: (’c,’d) ngraph);

morphism (to_ngraph B) D’ x;

morphism (to_ngraph C) D’ y;

∀ v ∈ Vto_ngraph A. x ◦→ (to_nmorph b)V v = y ◦→ (to_nmorph c)V v;

∀ e ∈ Eto_ngraph A. x ◦→ (to_nmorph b)E e = y ◦→ (to_nmorph c)E e ]]

=⇒ Ex1M (λu. morphism (to_ngraph D) D’ u ∧
(∀ v ∈ Vto_ngraph B. u ◦→ (to_nmorph f)V v = xV v) ∧
(∀ e ∈ Eto_ngraph B. u ◦→ (to_nmorph f)E e = xE e) ∧
(∀ v ∈ Vto_ngraph C. u ◦→ (to_nmorph g)V v = yV v) ∧
(∀ e ∈ Eto_ngraph C. u ◦→ (to_nmorph g)E e = yE e))

(to_ngraph D)›

The locale incorporates the four morphisms as depicted in Fig, 3. We express commutativ-
ity separately for nodes and edges through node_commutativity and edge_commutativity,
respectively. Implementing the universal property proves more complex compared to using
partial function. When using partial functions, we used equality between the two com-
positions while without, we explicitly have to quantify over the domain. We address the
limitation of Isabelle’s locale mechanism, which restricts quantification over fresh types used
for the graph D’.
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Our solution involves utilizing the to_ngraph and from_ngraph infrastructure to convert
our morphism into natural numbers, a setup previously discussed. The need for this
workaround arises from a limitation of simple type theories, which restricts higher-order logic
(HOL) systems from allowing explicit quantification over polymorphic type variables [HUW14].
Consequently, certain concepts cannot be expressed directly, leading to details that may be
hard to read and differ from the presentation in standard mathematical textbooks.

Furthermore, our reliance on total functions means we cannot verify the equality of
morphisms directly. Instead, we must quantify over the specific areas they are defined in.

To respond to the limitations of locales, we have introduced an additional lemma within
the locale’s context. This lemma generalizes the universal property by omitting the ngraph

topic. Consequently, we can depend on this lemma for most of our work, eliminating the
need to consider the conversion between identifiers in graph and ngraph.

lemma universal_property_exist_gen:

fixes D’

assumes ‹graph D’› ‹morphism B D’ x› ‹morphism C D’ y›

‹∀ v ∈ VA. x ◦→ bV v = y ◦→ cV v›

‹∀ e ∈ EA. x ◦→ bE e = y ◦→ cE e›

shows ‹Ex1M (λu. morphism D D’ u ∧
(∀ v ∈ VB. u ◦→ fV v = xV v) ∧
(∀ e ∈ EB. u ◦→ fE e = xE e) ∧
(∀ v ∈ VC. u ◦→ gV v = yV v) ∧
(∀ e ∈ EC. u ◦→ gE e = yE e)) D›

The proof relies on the correctness property of the conversion functions.

Lemma 2.10 (Correctness of to_ngraph). Let G be a graph, then to_ngraph G is a natural
graph.

The correctness property is expressed in Isabelle/HOL as an if and only if.

lemma graph_ngraph_corres_iff:

‹graph (to_ngraph G) ←→ graph G ›

We express a similar property for morphisms and the lifted morphisms over to natural
graphs.

Lemma 2.11 (Correctness of to_nmorph). Let m : G → H be a graph morphism, then
to_nmorph m is a morphism to_ngraph G to to_ngraph H.

The corresponding formalisation is given by:

lemma morph_eq_nmorph_iff:

‹morphism G H m ←→ morphism (to_ngraph G) (to_ngraph H) (to_nmorph m)›

We easily discharge both lemmas by unfolding the definitions of to_ngraph and to_nmorph,
leveraging the injectivity of the corresponding functions and Isabelle’s powerful automation
capabilities.

An important property is that pushouts are unique up to isomorphism, which we have
initially formalised in [SP22] and in this paper enhanced using the previously described
techniques.

Theorem 2.12 (Uniqueness of pushouts [EEPT06]). Let b : A→ B and c : A→ C together
with D induce a pushout as depicted in Fig. 3. A graph D′ together with morphisms p : B → D′

and t : C → H is a pushout of b and c if and only if there is an isomorphism u : D → D′

such that u ◦ f = p and u ◦ g = t.
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We formalise this property by entering the locale pushout_diagram context, which
incorporates all relevant locale assumptions for use with their specified names. As a result,
we are able to assume only the additional graph D′ together with B → D′ and C → D′.

theorem uniqueness_po:

fixes D’

assumes
D’: ‹graph D’› and
f’: ‹morphism B D’ f’› and
g’: ‹morphism C D’ g’›

shows ‹pushout_diagram A B C D’ b c f’ g’

←→ (∃ u. bijective_morphism D D’ u

∧ (∀ v ∈ VB. u ◦→ fV v = f’V v) ∧ (∀ e ∈ EB. u ◦→ fE e = f’E e)

∧ (∀ v ∈ VC. u ◦→ gV v = g’V v) ∧ (∀ e ∈ EC. u ◦→ gE e = g’E e))›

In our particular case, where we have injective pushouts (and rules), we can also state
the uniqueness of the pushout complement.

Theorem 2.13 (Uniqueness of the pushout complement). Let b : A → B and c : A → C

be injective morphisms, and the graph D induce a pushout as depicted in Fig. 3. Let
A → B → D ← C ′ ← A be another pushout with injective A → C ′. Then C and C ′ are
isomorphic.

We formalise this theorem inside the context of the pushout_diagram locale. Since the
local, in general, relies on morphisms, we need to assume, A→ B and A→ C are injective.
From our assumption, that C ′ → D is a valid morphism, we could conclude that C ′ is a valid
graph. Here, we explicitly added the assumption for clarity.

theorem uniqueness_pc:

fixes C’ c’ g’

assumes
b: ‹injective_morphism A B b› and
c: ‹injective_morphism A C c› and
C’: ‹graph C’› and
c’: ‹injective_morphism A C’ c’› and
g’: ‹morphism C’ D g’›

shows ‹pushout_diagram A B C’ D b c’ f g’

−→ (∃ u. bijective_morphism C C’ u)›

We discuss the proof in Section 3.

2.6. Direct Derivations. The transformation of graphs by rules gives rise to direct deriva-
tions. The so-called dangling condition is a crucial requirement that ensures the resulting
graph remains well-formed after applying a rule. It prevents the creation of dangling edges,
which are edges that would be left pointing to non-existent nodes after the deletion of nodes.
In essence, the dangling condition guarantees that when a node is deleted, all edges connected
to it must either be explicitly deleted by the rule or be preserved through the interface graph.
We describe the formalisation in [SP22].

Definition 2.14 (Direct derivation). Let G and H be graphs, r = ⟨L← K → R⟩ be a rule,
and g : L → G an injective morphism satisfying the dangling condition. Then G directly
derives H by r and g, denoted by G⇒r,g H, as depicted in the double pushout diagram in
Fig. 4.
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Figure 4. Double-pushout diagram
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Figure 5. Pullback D ← C ← A→ B → D

Note that the injectivity of the matching morphism g : L→ G leads to a DPO approach
that is more expressive than in the case of arbitrary matches [HMP01]. In our earlier work
[SP22], we used the direct_derivation locale to represent the operational view using gluing
and deletion. Instead, here we use the categorical definition relying on pushouts.

Our formalisation is close to the Def. 2.14. We inherit the rule locale, together with an
injective morphism g and the two pushouts (1) and (2). Since we introduced the pre_rule

record, we use the accessor functions lhs, rhs, and interf to extract the corresponding
objects.

locale direct_derivation =

r: rule r b b’ +

gi: injective_morphism "lhs r" G g +

po1: pushout_diagram "interf r" "lhs r" D G b d g c +

po2: pushout_diagram "interf r" "rhs r" D H b’ d f c’

for r b b’ G g D d c H f c’

The operational definition is available within the direct_derivation_construction

locale.
locale direct_derivation_construction =

r: rule r b b’ +

d: deletion "interf r" G "lhs r" g b +

g: gluing "interf r" d.D "rhs r" d.d b’ for G r b b’ g H +

assumes a: ‹H = g.H›

Here, we follow the same pattern but instead of the pushout_diagram locale, we rely
on deletion and gluing. Inside the for statement, we introduce a fresh pre_graph record,
named H, which represents the final graph, depicted in Fig. 4. By using the assumes

statement, we require that the pushout object from (2) is equal to H (H = g.H). This allows
to use the bound name H, instead of g.H, inside the proof.

2.7. Pullbacks. A pullback is dual to the concept of pushout and Pullbacks generally
represent the intersection of objects over a common object.
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Definition 2.15 (Pullback). Given graph morphism f : B → D and g : C → D, a graph A

together with graph morphisms b : A→ B and c : A→ C is a pullback of C → D ← B if the
following holds (see Fig. 5):

(1) Commutativity: f ◦ b = g ◦ c, and
(2) Universal property: For all graph morphisms p : A′ → B and t : A′ → C such that

f ◦ p = g ◦ t, there is a unique morphism u : H → A such that b ◦u = p and c ◦u = t.

The formalisation closely follows the pushout_diagram locale, and all design considera-
tions also apply here.

locale pullback_diagram =

b: morphism A B b +

c: morphism A C c +

f: morphism B D f +

g: morphism C D g for A B C D b c f g +

assumes
node_commutativity: ‹

∧

v. v ∈ VA =⇒ f ◦→ bV v = g ◦→ cV v› and
edge_commutativity: ‹

∧

e. e ∈ EA =⇒ f ◦→ bE e = g ◦→ cE e› and
universal_property: ‹[[

graph (A’ :: (’c,’d) ngraph);

morphism A’ C c’;

morphism A’ B b’;
∧

v. v ∈ VA’ =⇒ f ◦→ b’V v = g ◦→ c’V v;
∧

e. e ∈ EA’ =⇒ f ◦→ b’E e = g ◦→ c’E e ]]
=⇒ Ex1M (λu. morphism A’ A u ∧

(∀ v ∈ VA’. b ◦→ uV v = b’V v) ∧
(∀ e ∈ EA’. b ◦→ uE e = b’E e) ∧
(∀ v ∈ VA’. c ◦→ uV v = c’V v) ∧
(∀ e ∈ EA’. c ◦→ uE e = c’E e))

A’›

Many of our proofs use the set-based construction of pullbacks, which is given by the
following definition.

Definition 2.16 (Pullback construction [EEPT06]). Let f : B → D and g : C → D be graph
morphisms. Then the following defines a graph A (see Fig. 5), the pullback object of f

and g:

(1) A = {⟨x, y⟩ ∈ B × C | f(x) = g(y)} for nodes and edges, respectively
(2) sA(⟨x, y⟩) = ⟨sB(x), sc(y)⟩ for ⟨x, y⟩ ∈ EB × EC

(3) tA(⟨x, y⟩) = ⟨tB(x), tc(y)⟩ for ⟨x, y⟩ ∈ EB × EC

(4) lA(⟨x, y⟩) = lB(x) for ⟨x, y⟩ ∈ VB × VC

(5) mA(⟨x, y⟩) = mB(x) for ⟨x, y⟩ ∈ EB × EC

(6) b : A→ B and c : A→ C are defined by b(⟨x, y⟩) = x and c(⟨x, y⟩) = y

We formalise the pullback construction using the pullback_construction locale, as-
suming the graph morphisms f : B → D and g : C → D.

locale pullback_construction =

f: morphism B D f +

g: morphism C D g

for B D C f g

To construct the pullback object C, we define all the required pre_graph components
individually, starting with the node and edge sets as follows:
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abbreviation V where
‹V ≡ {(x,y). x ∈ VB ∧ y ∈ VC ∧ fV x = gV y}›

abbreviation E where
‹E ≡ {(x,y). x ∈ EB ∧ y ∈ EC ∧ fE x = gE y}›

The corresponding set contains the pairs (x, y) where x ∈ B and y ∈ C such that they
project via f and g to the same element in D. Both source and target functions (s and t),
use the corresponding function on each element individually. For the labelling functions, it
does not matter and we picked to use the one from B.

fun s where ‹s (x,y) = (sB x, sC y)›

fun t where ‹t (x,y) = (tB x, tC y)›

fun l where ‹l (x,_) = lB x›

fun m where ‹m (x,_) = mB x›

With all components available, we can now define the final pre_graph object:

definition A where
‹A ≡ (|nodes = V, edges = E, source = s, target = t

,node_label = l, edge_label = m |)›

In subsequent code, we used the sublocale keyword to show that our definition of the
pullback object A is a valid graph. We continue by defining the two missing morphisms we
need to show the pullback diagram locale. First, the morphism A→ B is defined by using
the first element of the tuple. We archive this by using the built-in function fst. Note, we
explicitly added type annotation to both pre_morph objects to prevent later problems if the
type is inferred to strict.

definition b :: "(’a × ’g, ’a, ’b × ’h, ’b) pre_morph" where
‹b ≡ (|node_map = fst, edge_map = fst |)›

For A→ C, we use the other projection, snd, to extract the second element of the tuple.

definition c :: "(’a × ’g, ’g, ’b × ’h, ’h) pre_morph"

where ‹c ≡ (|node_map = snd, edge_map = snd |)›

Finally, we prove that both, b and c definitions, are valid morphisms by using the
sublocale mechanism. The proof of b : A→ B follows by unfolding the definition of A and
b while c : A→ D also needs to account for the preservation of labels of f and g.

The next lemma shows that this construction leads to a valid pullback diagram.

Lemma 2.17 (Correctness of pullback construction). Let f : B → D and g : C → D be
graph morphisms and let graph A and graph morphisms b and c be defined as in Def. 2.16.
Then the square in Fig. 5 is a pullback diagram.

We use the sublocale command, instead of interpretation, to make these facts
persistent in the current context via the pb identifier.

sublocale pb: pullback_diagram A B C D b c f g

The proof basically follows from our construction. Similar to pushouts, pullbacks are unique
up to isomorphism.

Theorem 2.18 (Uniqueness of pullbacks). Let f : B → D and g : C → D together with A

induce a pullback as depicted in Fig. 5. A graph A′ together with morphisms p : A′ → B and
t : A′ → C is a pullback of f and g if and only if there is an isomorphism u : A′ → A such
that b ◦ u = p and c ◦ u = t.
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Figure 6. Composite commutative diagram

The theorem is stated as follows in Isabelle/HOL:

theorem uniqueness_pb:

fixes A’ b’ c’

assumes
A’: ‹graph A’› and
b’: ‹morphism A’ B b’› and
c’: ‹morphism A’ C c’›

shows ‹pullback_diagram A’ B C D b’ c’ f g

←→ (∃ u. bijective_morphism A’ A u

∧ (∀ v ∈ VA’. b ◦→ uV v = b’V v)

∧ (∀ e ∈ EA’. b ◦→ uE e = b’E e)

∧ (∀ v ∈ VA’. c ◦→ uV v = c’V v)

∧ (∀ e ∈ EA’. c ◦→ uE e = c’E e))›

The proof is dual to the uniqueness of the pushout (cf. Theorem 2.12) and can be found
in [EEPT06].

2.8. Composition and Decomposition of Pullbacks and Pushouts. Essential prop-
erties for the forthcoming proofs in Section 3 and Section 4 are the composition and
decomposition of pushouts and pullbacks.

Lemma 2.19 (Pushout/Pullback composition and decomposition). Given the commutative
diagram in Fig. 6, then the following statements are true:

(a) If (1) and (2) are pushouts, so is (1) + (2)
(b) If (1) and (1) + (2) are pushouts, so is (2)
(c) If (1) and (2) are pullbacks, so is (1) + (2)
(d) If (2) and (1) + (2) are pullbacks, so is (1)

Proof. The following proofs are based on [EEPT06]:

(a) Assume (1) and (2) are pushouts. By using Lemma 2.6, the compositions A→ B → E

and C → D → F are morphisms. Let us first show commutativity:

A→ B → E → F = A→ B → D → F (by commutativity of (2))

= A→ C → D → F (by commutativity of (1))

Finally, we show the universal property: Let X be a graph, and E → X and C → X

be morphisms, such that A → B → E → X = A → C → X. By the universal
property of (1) using B → E → X and C → X, we obtain the unique morphism
D → X. By the universal property of (2) using D → X and E → X, we obtain the
unique morphism F → X. Now we first show that E → F → X = E → X and
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C → D → F → X = C → X. The first equation is true by the construction of F → X.
The second equation follows by:

C → D → F → X = C → D → X (by construction of F → X)

= C → X (by construction of D → X)

By the universal property of (2), we know F → X is unique such that E → F → X =
E → X and D → F → X = D → X. We compose the second equation with the
morphism C → D on both sides, so we get C → D → F → X = C → D → X = C → X

by construction of D → X. Hence F → X is unique such that E → F → X = E → X

and C → D → F → X = C → X.
(b) Assume (1) and (1) + (2) are pushouts and let X be a graph together with morphisms

D → X and E → X such that B → E → X = B → D → X. Let F → X be
the unique morphism resulting from the universal property of (1) + (2) such that
E → F → X = E → X and

C → D → F → X = C → X.

But we also know that from the universal property of (1), that D → X is unique such
that

C → D → X = C → X.

Hence D → F → X = D → X because of the uniqueness of D → X.
(c) Proof is analogous via dualisation.
(d) Proof is analogous via dualisation.

Our Isabelle formalisation is an adaptation of a given proof, incorporating necessary
technical modifications while maintaining the essence of the original argument. The pushout
composition is a standalone lemma defined in the theory Pushout, cf. Fig. 1, following (a) of
Lemma 2.19.

lemma pushout_composition:

assumes
1: ‹pushout_diagram A B C D f g g’ f’› and
2: ‹pushout_diagram B E D F e g’ e’’ e’›

shows ‹pushout_diagram A E C F (e ◦→ f) g e’’ (e’ ◦→ f’)›

Here, f : A → B, g : A → C, g′ : B → D and f ′ : C → D together with e : B → E,
e′ : D → F , and e′′ : E → F forms the composed pushout diagram.

For the pushout decomposition, we additionally assume that (2) commutes, i.e., e′′ ◦ e =
e′ ◦ g′. In Isabelle, we express this independently for the nodes and edge of B.

lemma pushout_decomposition:

assumes
e : ‹morphism B E e› and
e’: ‹morphism D F e’› and
1 : ‹pushout_diagram A B C D f g g’ f’› and
"1+2": ‹pushout_diagram A E C F (e ◦→ f) g e’’ (e’ ◦→ f’)› and
"2cv": ‹

∧

v. v ∈ VB =⇒ e’’ ◦→ eV v = e’ ◦→ g’V v› and
"2ce": ‹

∧

ea. ea ∈ EB =⇒ e’’ ◦→ eE ea = e’ ◦→ g’E ea›

shows ‹pushout_diagram B E D F e g’ e’’ e’›

In our formalisation, the parts (c) and (d) of the pullback are developed analogously to
the pushout ones.
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Figure 7. Commutative cube based on direct derivation [LS04]

lemma pullback_composition:

assumes
1: ‹pullback_diagram A B C D f g g’ f’› and
2: ‹pullback_diagram B E D F e g’ e’’ e’›

shows ‹pullback_diagram A E C F (e ◦→ f) g e’’ (e’ ◦→ f’)›

lemma pullback_decomposition:

assumes
f: ‹morphism A B f› and
f’: ‹morphism C D f’› and
2: ‹pullback_diagram B E D F e g’ e’’ e’› and
"1+2": ‹pullback_diagram A E C F (e ◦→ f) g e’’ (e’ ◦→ f’)› and
"1cv": ‹

∧

v. v ∈ VA =⇒ g’ ◦→ fV v = f’ ◦→ gV v› and
"1ce": ‹

∧

ea. ea ∈ EA =⇒ g’ ◦→ fE ea = f’ ◦→ gE ea›

shows ‹pullback_diagram A B C D f g g’ f’›

The proof is analogous to [EEPT06, Fact 2.27]. In the next section, we show that direct
derivations have a unique (up to isomorphism) result by making use of the infrastructure we
have employed so far.

3. Uniqueness of Direct Derivations

The uniqueness of direct derivations is an important property when reasoning about rule
applications. This section does not rely on the adhesiveness of the category of graphs, instead
we base our proof on the characterisation of graph pushouts in [EK79]. Before stating the
theorem, we introduce additional facts, mainly about pushouts and pullbacks, which are
used within the proof of Theorem 3.9.

In general, pushouts along injective morphisms are also pullbacks.

Lemma 3.1 (Injective pushouts are pullbacks [EEPT06]). A pushout diagram as depicted
in Fig. 3 is also a pullback if A→ B and A→ C are injective.

The proof relies on the pullback construction (cf. Def. 2.16) and the fact that pullbacks
are unique (cf. Theorem 2.18). We show this property in our formalisation within the Gluing

theory (cf. Fig. 1).
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lemma pushout_pullback_inj_b:

assumes
b: ‹injective_morphism A B b› and
c: ‹injective_morphism A C c›

shows ‹pullback_diagram A B C D b c f g›

Furthermore, pushouts and pullbacks preserve injectivity (surjectivity) in the sense that
the opposite morphism of the corresponding diagram (see Fig. 3 and Fig. 5) is also injective
(surjective).

Lemma 3.2 (Preservation of injective and surjective morphisms [EEPT06]). Given a pushout
diagram in Fig. 3, if A→ B is injective (surjective), so is C → D. Given a pullback diagram
in Fig. 5, if C → D is injective (surjective), so is A→ B.

We formalise these properties independent of the pushout, pullback and injectivity or
surjectivity using our infrastructure. Inside the pushout locale context, if b : A → B is
injective, so is g : C → D as depicted in Fig. 3.

lemma b_inj_imp_g_inj:

assumes ‹injective_morphism A B b›

shows ‹injective_morphism C D g›

In case, b : A→ B is surjective, so is g : C → D.

lemma b_surj_imp_g_surj:

assumes ‹surjective_morphism A B b›

shows ‹surjective_morphism C D g›

Consequently, in case A→ B is bijective, so is C → D.

lemma b_bij_imp_g_bij:

assumes ‹bijective_morphism A B b›

shows ‹bijective_morphism C D g›

The pullback statements are done similar in the corresponding locale context.
Certain forms of commutative diagrams give rise to pullbacks. This property is used in

the proof of the uniqueness of the pushout complement (cf. Theorem 3.9).

Lemma 3.3 (Special pullbacks [EEPT06]). The commutative diagram in Fig. 9 is a pullback
if m is injective.

In Isabelle, we describe this lemma as follows.

lemma fun_algrtr_4_7_2:

fixes C A m

assumes ‹injective_morphism C A m›

shows ‹pullback_diagram C C C A idM idM m m›

Isabelle is able to discharge this goal using supplied facts automatically.

Definition 3.4 (Reduced chain-condition [EK79]). The commutative diagram in Fig. 8
satisfies the reduced chain-condition, if for all b′ ∈ B and c′ ∈ C with f(b′) = g(c′) there is
a ∈ A such that b(a) = b′ and c(a) = c′.

We show that pullbacks satisfy the reduced chain-condition.

Lemma 3.5 (Pullbacks satisfy the reduced chain-condition). Each pullback diagram as
depicted in Fig. 5 satisfies the reduced chain-condition.

We first prove this lemma, separately for nodes and edges, state this lemma in Isabelle
as follows:
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lemma reduced_chain_condition_nodes:

fixes x y

assumes ‹x ∈ VB› ‹y ∈ VC› ‹fV x = gV y›

shows ‹∃ a ∈ VA. (bV a = x ∧ cV a = y)›

Isabelle’s simplifier is able to discharge all goals if supplied with the corresponding facts.
Especially, that the construction is also a pullback (commutativity) and the definition of the
graph A, together with the two morphisms. Subsequently, we can state a more generalised
lemma inside the pullback_diagram locale:

lemma (in pullback_diagram) reduced_chain_condition_nodes:

fixes x y

assumes ‹x ∈ VB› ‹y ∈ VC› ‹fV x = gV y›

shows ‹∃ a ∈ VA. (bV a = x ∧ cV a = y)›

Our proof relies on the pullback construction (cf. Def. 2.16) and the fact that pullbacks
are unique (cf. Theorem 2.18).

Definition 3.6 (Jointly surjective). Given injective graph morphisms f : B → D and
g : C → D. f and g are jointly surjective, if each item in D has a preimage in B or C.

Lemma 3.7 (Pushouts are jointly surjective). Given the pushout diagram in Fig. 3. The
pair (f, g) is jointly surjective.

We express this property for edges in Isabelle as follows:

lemma joint_surjectivity_edges:

fixes x

assumes ‹x ∈ ED›

shows ‹(∃ e ∈ EC. gE e = x) ∨ (∃ e ∈ EB. fE e = x)›

The proof is by contradiction. We construct the graph D′ using the disjoint union with
an edge e ∈ D, such that it has no preimage in B or C via f and g. We can now construct
two different morphisms from D′ to D, which contradicts the uniqueness property of the
pushout.

Theorem 3.8 (Pushout characterization [EK79]). The commutative diagram in Fig. 8 is a
pushout, if the following conditions are true:

(1) The morphisms b, c, f, g are injective.
(2) The diagram satisfies the reduced chain-condition.
(3) The morphisms g, f are jointly surjective.
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Figure 9. Special pullback diagram

lemma po_characterization:

assumes
b: ‹injective_morphism A B b› and
c: ‹injective_morphism A C c› and
f: ‹injective_morphism B D f› and
g: ‹injective_morphism C D g› and
node_commutativity: ‹

∧

v. v ∈ VA =⇒ f ◦→ bV v = g ◦→ cV v› and
edge_commutativity: ‹

∧

e. e ∈ EA =⇒ f ◦→ bE e = g ◦→ cE e› and
reduced_chain_condition_nodes:

‹

∧

x y. x ∈ VB =⇒ y ∈ VC =⇒ fV x = gV y

=⇒ (∃ a ∈ VA. (bV a = x ∧ cV a = y))› and
reduced_chain_condition_edges:

‹

∧

x y. x ∈ EB =⇒ y ∈ EC =⇒ fE x = gE y

=⇒ (∃ a ∈ EA. (bE a = x ∧ cE a = y))› and
joint_surjectivity_nodes:

‹

∧

x. x ∈ VD =⇒ (∃ v ∈ VC. gV v = x) ∨ (∃ v ∈ VB. fV v = x)› and
joint_surjectivity_edges:

‹

∧

x. x ∈ ED =⇒ (∃ e ∈ EC. gE e = x) ∨ (∃ e ∈ EB. fE e = x)›

shows ‹pushout_diagram A B C D b c f g›

The following theorem implies the uniqueness of the pushout complement, which is
known to hold if the morphism K → L in the applied rule is injective, even if the matching
morphism L→ G is non-injective [Ros75]. In our case, both morphisms are injective.

Theorem 3.9 (Uniqueness of direct derivations). Let (1) + (2) and (3) + (4) be direct
derivations as depicted in Fig. 12. Then D ∼= D′ and H ∼= H ′.

This theorem is stated in Isabelle/HOL within the locale direct_derivation. Within
the assumes part, the second direct derivation, which we call dd2, is introduced.
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theorem uniqueness_direct_derivation:

assumes
dd2: ‹direct_derivation r b b’ G g D’ d’ m H’ f’ m’›

shows ‹(∃ u. bijective_morphism D D’ u)

∧ (∃ u. bijective_morphism H H’ u)›

The uniqueness proof of direct derivations (see Fig.12) is performed in two phases. Firstly,
we show the uniqueness of the pushout complement, which was first shown by Rosen [Ros75].
Subsequently, we show that given a bijection between D and D′, the pushout object is also
unique up to isomorphism.

Theorem 3.9. The first phase of our proof closely follows Lack and Sobocinski [LS04], except
for the final step, where the authors rely on adhesiveness. We finish the proof by relying
on the pushout characterization (cf. Theorem 3.8). Given the two pushout diagrams (1)
and (3) in Fig. 12 with injective K → D and K → D′. To show the existence of a bijection
between D and D′, we construct the commutative cube in Fig. 7 with (1) as the bottom face
and (3) as the front-left face, and show that l and k are bijections. For the latter, we show
that the back-right and top faces are pushouts. (In [LS04], this is shown by adhesiveness,
while we argue with the pushout characterization of Theorem 3.8.) The front-right face
is a pullback construction (cf. Def. 2.16) which we tell Isabelle by interpretation of the
pullback_construction locale.

interpret fr: pullback_construction D G D’ c m ..

We use Isabelle’s shorthand notation .. for the standard tactic, to discharge the proof
obligations which follow from the assumptions. Note that the pullback object together with
the two morphisms is specified within the locale. Subsequent code will reference the pullback
object by fr.A, the morphism l by fr.b and k by fr.c (see Fig. 7). (The identifiers within
locales are given by the definition. As a result, the pullback object of the front-right face
is referred to as A rather than the interpretation parameter K.) From Lemma 3.3, in our
formalisation referenced by fun_algrtr_4_7_2, we know that the back-left face is a pullback.

interpret bl: pullback_diagram "interf r" "interf r"

"interf r" "lhs r" idM idM b b

using fun_algrtr_4_7_2[OF r.k.injective_morphism_axioms]

by assumption

To show that the back-right face is a pullback, we start with the front-left face. As the
front left face is a pushout and m is injective, n′ is too (cf. Lemma 3.2). Since pushouts
along injective morphisms are also pullbacks (cf. Lemma 3.1), the front-left face is also a
pullback. Using the pullback composition (cf. Lemma 2.19), the back face is pullback.

interpret backside: pullback_diagram "interf r" D’ "interf r" G

‹d’ ◦→ idM› idM m ‹g ◦→ b›

using pullback_composition[OF bl.pullback_diagram_axioms

dd2.pb1.flip_diagram]

by assumption

We define h : K → U using both, the d and d′ morphisms as h x = (d x, d′ x) and
subsequently prove the morphism properties.

define h where
‹h ≡ (|node_map = λv. (dV v, d’V v)

,edge_map = λe. (dE e, d’E e)|)›
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We follow by showing that the top and bottom face commutes, i.e., d′ ◦ id = k ◦ h
and g ◦ b = c ◦ d, respectively. This establishes the fact, that the right-side of the cube is
a pullback. Using the pullback decomposition (cf. Lemma 2.19), the back-right face is a
pullback. To approach the top-face, we start by showing it is a pullback, and subsequently it
is also a pushout. Since m is injective, from Lemma 3.1 we know the bottom-face is also
a pullback. Using the pullback composition (cf. Lemma 2.19), the bottom and back-left
face is a pullback. By commutativity of the bottom face g ◦ b = c ◦ d and back-right face
l ◦ h = d ◦ id, the front-right and top face is a pullback. By the pullback decomposition (cf.
Lemma 2.19) we can show that the top face is a pullback. We show this pullback is also a
pushout by using the pushout characterization (cf. Theorem 3.8). Therefore, we need to
show that h is injective, which follows from the construction above of h.

interpret h: injective_morphism "interf r" fr.A h

proof
show ‹inj_on hV Vinterf r›

using d_inj.inj_nodes

by (simp add: h_def inj_on_def)

next
show ‹inj_on hE Einterf r›

using d_inj.inj_edges

by (simp add: h_def inj_on_def)

qed

Joint surjectivity of k and d′ follows from the pullback construction and the reduced-
chain condition (cf. Lemma 3.4) of the front-left and top face. Note, that the reduced-chain
condition holds for all pullbacks. Finally, we need to show that k and l are bijections. Since
the top face is a pushout and the C → C morphism is a bijection, by Lemma 3.2, so is k.

interpret k_bij: bijective_morphism fr.A D’ fr.c

using top.b_bij_imp_g_bij[OF r.k.G.idm.bijective_morphism_axioms]

by assumption

To show l is a bijection, we show that the back-right face is a pushout by using the pushout
characterization. The bijectivity of l follows from the fact pushouts preserve bijections. We
follow by defining the morphism u : D → D′ as the composition of the l−1 and k. The inverse
of l is obtained by using a lemma within our formalisation of bijective morphisms, stating
the existence of the inverse (ex_inv) using the obtain keyword:

obtain linv where linv:‹bijective_morphism D fr.A linv›

and ‹

∧

v. v ∈ VD=⇒ fr.b ◦→linvV v = v›

‹

∧

e. e ∈ ED=⇒ fr.b ◦→linvE e = e›

and ‹

∧

v. v ∈ Vfr.A=⇒ linv ◦→ fr.b V v = v›

‹

∧

e. e ∈ Efr.A=⇒ linv ◦→ fr.b E e= e›

by (metis l_bij.ex_inv)

We finish the first phase by defining the morphism u : D → D′ as k ◦ l−1 and subse-
quently prove that morphism composition preserves bijections (using the already proven
bij_comp_is_bij lemma).

define u where ‹u ≡ fr.c ◦→ linv›

interpret u: bijective_morphism D D’ u

using bij_comp_bij_is_bij[OF linv k_bij.bijective_morphism_axioms]

by (simp add: u_def)
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Figure 11. Construction of u′′

The second phase is to show the existence of an isomorphism H → H ′. We start by
obtaining u′ : H → H ′ and u′′ : H ′ → H and show they are inverses. We use the universal
property of the pushout depicted in Fig. 10, which requires us to show commutativity:
f ′ ◦ b′ = m′ ◦u◦d. So we substitute u◦d = d′ into the commutativity equation of pushout (4)

(f ′ ◦ b′ = m′ ◦d′) in Fig. 12. We get u◦d = d′ as follows: u◦d
(1)
= k ◦ l−1 ◦d

(2)
= k ◦ l−1 ◦ l ◦h

(3)
=

k ◦ h
(4)
= d′. Here, (1) is justified by the definition of u, (2) by the definition of l and h

(which makes the back-right face in Fig. 7 commute), (3) by inverse cancellation, and finally
(4) by the definitions of k and h (similarly to step (2)). We obtain u′′ : H ′ → H by using
the universal property of the pushout depicted in Fig. 11. We show the commutativity
f ◦ b = c′ ◦ u−1 ◦ d′ by substituting u−1 ◦ d′ = d into the commutativity equation of pushout

(2) (f ◦ b′ = c′ ◦ d) in Fig. 12: u−1 ◦ d′
(5)
= u−1 ◦ u ◦ d

(6)
= d. Here, (5) is justified by the above

proven equation u◦d = d′, and (6) follows from cancellation of inverses. The final steps are to
show u′ ◦ u′′ = id and u′′ ◦ u′ = id. To show the first equation, we start with f ′ = u′ ◦ u′′ ◦ f ′

and m′ = u′ ◦ u′′ ◦m′, which we get from the definitions of u′ and u′′. Using the universal
property of pushout (4) in Fig. 12 together with H ′, f ′,m′, we conclude that the identity
is the unique morphism H ′ → H ′ that makes the triangles commute. If u′ ◦ u′′ makes the
triangles commute as well, it is equal to the identity morphism. The first triangle commutes

because u′ ◦ u′′ ◦ f ′
(7)
= u′ ◦ f

(8)
= f ′. Here, (7) and (8) are justified by the corresponding

construction of u′ and u′′ (see the triangles in Fig. 10 and Fig. 11). For the second triangle,
we start by using the commutativity of the bottom triangle in Fig. 10 and composing to the
right with u−1: u′ ◦c′ ◦u−1 = m′ ◦u◦u−1. By cancellation of inverses we get u′ ◦c′ ◦u−1 = m′

and by substituting c′ ◦ u−1 using the commutativity of the bottom triangle in Fig. 11, we
prove that u′ ◦ u′′ ◦m′ = m′. Showing that u′′ ◦ u′ = id follows analogously and is omitted to
save space.
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Figure 12. Uniqueness of direct derivations
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Figure 13. Church-Rosser Theorem

With the uniqueness of direct derivations (cf. Theorem 3.9), we get the uniqueness of
the pushout complement.

Corollary 3.10 (Uniqueness of pushout complements). Given a pushout as depicted in
Fig. 3 where A→ B is injective. Then the graph D is unique up to isomorphism.

We omit the proof to conserve space. The upcoming section introduces the so-called
Church-Rosser Theorem, which states that parallell independent direct derivations have the
diamond property.

4. Church-Rosser Theorem

The Church-Rosser Theorem refers to the idea that two graph transformation rules can be
applied independently of each other, either sequentially or in parallel, without changing
the final result. We follow the independence characterization of direct derivations given
in [EEPT06].

Definition 4.1 (Parallel independence [EEPT06]). The two direct derivations G⇒p1,m1
H1

and G⇒p2,m2
H2 in Fig. 14 are parallel independent if there exists morphisms L1 → D2 and

L2 → D1 such that L1 → D2 → G = L1 → G and L2 → D1 → G = L2 → G.
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m1 m2

R1 K1 L1
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Figure 14. Parallel independence
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Figure 15. Sequential independence

locale parallel_independence =

p1: direct_derivation r1 b1 b1’ G g1 D1 m1 c1 H1 f1 h1 +

p2: direct_derivation r2 b2 b2’ G g2 D2 m2 c2 H2 f2 h2

for r1 b1 b1’ G g1 D1 m1 c1 H1 f1 h1

r2 b2 b2’ g2 D2 m2 c2 H2 f2 h2 +

assumes
i: ‹∃ i. morphism (lhs r1) D2 i

∧ (∀ v ∈ Vlhs r1
. c2 ◦→ iV v = g1V v)

∧ (∀ e ∈ Elhs r1
. c2 ◦→ iE e = g1E e)› and

j: ‹∃ j. morphism (lhs r2) D1 j

∧ (∀ v ∈ Vlhs r2
. c1 ◦→ jV v = g2V v)

∧ (∀ e ∈ Elhs r2
. c1 ◦→ jE e = g2E e)›

Definition 4.2 (Sequential independence [EEPT06]). The two direct derivations G⇒p1,m1

H1 and G⇒p2,m2
H2 in Fig. 15 are sequential independent if there exists morphisms R1 → D2

and L2 → D1 such that R1 → D2 → H = R1 → H and L2 → D1 → H = L2 → H.

locale sequential_independence =

p1: direct_derivation r1 b1 b1’ G g1 D1 m1 c1 H1 f1 h1 +

p2: direct_derivation r2 b2 b2’ H1 g2 D2 m2 c2 H2 f2 h2

for r1 b1 b1’ G g1 D1 m1 c1 H1 f1 h1

r2 b2 b2’ g2 D2 m2 c2 H2 f2 h2 +

assumes
i: ‹∃ i. morphism (rhs r1) D2 i

∧ (∀ v ∈ Vrhs r1
. c2 ◦→ iV v = f1V v)

∧ (∀ e ∈ Erhs r1
. c2 ◦→ iE e = f1E e)› and

j: ‹∃ j. morphism (lhs r2) D1 j

∧ (∀ v ∈ Vlhs r2
. h1 ◦→ jV v = g2V v)

∧ (∀ e ∈ Elhs r2
. h1 ◦→ jE e = g2E e)›

Theorem 4.3 (Church-Rosser Theorem [EK76]). Given two parallel independent direct
derivations G ⇒p1,m1

H1 and G ⇒p2,m2
H2, there is a graph G′ together with sequential

independent direct derivations H1 ⇒p2,m
′

2
G′ and H2 ⇒p1,m

′

1
G′.
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Actually, we have shown more, namely that G ⇒p1,m1
H1 ⇒p2,m

′

2
G′ and G ⇒p2,m2

H2 ⇒p1,m
′

1
G′ are sequentially independent. We express this theorem in Isabelle/HOL within

the parallel_independence locale as follows:

theorem (in parallel_independence) church_rosser:

shows ‹∃ g’ D’ m’c’ H f’ h’ g’’ D’’ m’’ c’’ H f’’ h’’.

sequential_independence r1 b1 b1’ G g1 D1 m1 c1 H1 f1 h1 r2

b2 b2’ g’ D’ m’ c’ H f’ h’

∧ sequential_independence r2 b2 b2’ G g2 D2 m2 c2 H2 f2 h2 r1

b1 b1’ g’’ D’’ m’’ c’’ H f’’ h’’›

Theorem 4.3. We closely follow the original proof by Ehrig and Kreowksi [EK76] where
in a first stage, the pushouts (1) - (4) of Fig. 14 are vertically decomposed into pushouts
(11) + (11), (21) + (22), (31) + (32), and (41) + (42), as depicted in Fig. 16. In a second
stage, these pushouts are rearranged as in Fig. 17 and the new pushout (5) is constructed.
Subsequently, we prove the two vertical pushouts (11) and (12). The pushouts (31) and (32)
follow analogously and are not shown to conserve space.

We start by constructing the pullback (12) which we bind to the symbol c12, allowing
later references, using our pullback_construction locale.

interpret "c12": pullback_construction D1 G D2 c1 c2 ..

The existence of K1 → D follows from the universal property, and D → D2 from the
construction of the pullback (12):

obtain j1 where ‹morphism (interf r1) c12.A j1›

and ‹

∧

v. v∈Vinterf r1
=⇒ c12.b ◦→ j1V v = m1V v›

‹

∧

e. e∈Einterf r1
=⇒ c12.b ◦→ j1E e = m1E e›

and ‹

∧

v. v∈Vinterf r1
=⇒ c12.c ◦→ j1V v = i1 ◦→ b1V v›

‹

∧

e. e∈Einterf r1
=⇒ c12.c ◦→ j1E e = i1 ◦→ b1E e›

using c12.pb.universal_property_exist_gen[OF p1.r.k.G.graph_axioms

wf_b1i1.morphism_axioms p1.po1.c.morphism_axioms a b]

by fast

From the fact that (1) = (11) + (12), we know (11) + (12) is a pushout and since
K1 → L1 is injective, it is also a pullback (cf. Lemma 3.1). By pullback decomposition (cf.
Lemma 2.19), (11) is a pullback. We use the pushout characterization (cf. Theorem 3.8) to
show it is also a pushout, which requires us to show injectivity of all morphisms, reduced-chain
condition, and joint surjectivity of D → D2 and L1 → D2. The injectivity of K1 → L1 is
given, D → D2 follows from pushout (1) and the injectivity of K1 → L1 (cf. Lemma 3.2).
To show the injectivity of L1 → D2, we use the parallel independence (cf. Def. 4.1)
L1 → D2 → G = L1 → G and the injectivity of L1 → G.To show injectivity of K1 → D, we
use the triangle L1 → D2 → G = L1 → G obtained by the universal property of pullback
(12) and the injectivity of both, L1 → G and D2 → G. The reduced-chain condition follows
by Lemma 3.5. To show the joint surjectivity of D → D2 and L1 → D2 (that is each x in
D2 has a preimage in either D or L1). Let y be the image of x in G. We apply the joint
surjectivity of pushout (11) + (12) to y, that is y has a preimage in either D1 or L1. In the
former case (y has a preimage z in D1): from the pullback construction (cf. Def. 2.16), we
get the common preimage of z and x in D which shows the former case. In the latter case,
y has a preimage in L1 via D2. Since D2 → G is injective, that preimage is mapped via x

which means, x has a preimage in L1. This shows the latter case.
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Figure 16. Vertical pushout decomposition of Fig. 14
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Figure 17. Rearranged pushouts of Fig. 16

The pushouts (21), (41) are constructed using the gluing locale (see [SP22] for a detailed
description).

interpret "c21": gluing "interf r1" c12.A "rhs r1" j1 b1’ ..
interpret "c41": gluing "interf r2" c12.A "rhs r2" j2 b2’ ..

The existence of D2 → H1 and D1 → H2 follows from the universal property of
pushout (21) and (41), respectively. Pushouts (22) and (42) are obtained using the pushout
decomposition (see Lemma 2.19). This finishes the first stage of the proof. The second stage
rearranges the pushouts, as depicted in Fig. 17, such that we obtain two direct derivations
H1 ⇒p2,m

′

2
G′ and H2 ⇒p1,m

′

1
G′. Here, we compose the pushouts from stage 1 (see

Lemma 2.19). Exemplary, the pushouts (31) and (22) are composed in Isabelle/HOL.

interpret "31+22": pushout_diagram "interf r2" c21.H "lhs r2" H1

"c21.c ◦→ j2" b2 s1 "h1 ◦→ i2"

using pushout_composition[OF

"31.flip_diagram" "22.flip_diagram" ] by assumption

The final pushout (5) is constructed and the pushouts are rearranged and vertically
composed as depicted in Fig. 17. Isabelle is able to discharge the goal at this point automati-
cally as we instantiated all required locales. The sequential independence follows from the
construction. This finishes the second stage of the proof.
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In developing the proofs, we manually laid out the proof structure by carefully instanti-
ating the locales with the correct parameters in the right order. This process was challenging
due to the large number of type parameters involved. However, Isabelle’s typechecker pro-
vided some support by catching errors when we attempted to instantiate the parameters in
the wrong order, helping to guide the proof development process.

Despite this assistance, the overall proof structure was developed manually, with tactics
being employed only for specific subgoals. The manual approach allowed us to maintain control
over the proof flow and ensured that the reasoning remained clear and understandable. While
the type parameters added complexity to the proof, they also provided a valuable safeguard
against potential inconsistencies that could arise from incorrectly ordered instantiations
which could lead to long debugging.

5. Related Work

Isabelle/HOL was used by Strecker for interactive reasoning about graph transformations
[Str18]. A major difference to our work is that he introduces a form of graph transformation
that does not fit with any of the established approaches, such as the double-pushout approach.
As a consequence, his framework cannot draw on existing theory. Another difference is that
[Str18] focuses on verifying first-order properties of some form of graph programs while the
current paper is concerned with formalising and proving fundamental results of the DPO
theory. Strecker’s formalisation fixes node and edge identifiers as natural numbers, while we
keep them abstract. Similar to our development, Isabelle’s locale mechanism is employed.

Our formalisation of graphs follows the work of Noschinski [Nos15], where records are
used to group components and locales to enforce properties such as the well-formedness of
graphs or morphisms. The main objective of [Nos15] is to formalise and prove fundamental
results of classical graph theory, such as Kuratowski’s theorem.

Stark [Sta16] developed an "object-free" definition of categories in Isabelle/HOL, which
simplifies the specification of a category and allows functors and natural transformations to
be defined as functions satisfying certain axioms. Here, the primary focus is on efficiently
representing abstract algebra in higher-order logic. A limitation of this approach is that a
special zero element had to be defined. As a result, the formalization prevents the construction
of a discrete category over the entire universe, and instead requires a large enough base type.
We followed a more traditional approach in formalizing the category theory-related concepts
but had to work around the single universe and explicit quantification limitations discussed
earlier.

da Costa Cavalheiro et al. [dCCFR17] use the Event-B specification method and
its associated theorem prover to reason about double-pushout and single-pushout graph
transformations, where rules can have attributes and negative application conditions. Event-B
is based on first-order logic and typed set theory. Different from our approach, [dCCFR17]
gives only a non-formalised proof for the equivalence between the abstract definition of
pushouts and the set-theoretic construction. In contrast, we formalise both the abstract
and the operational view and prove their correspondence using Isabelle/HOL. As Event-B is
based on first-order logic, the properties that can be expressed and verified are quite limited.
For it is known that non-local properties of finite graphs cannot be specified in first-order
logic [Lib04]. This restriction does not apply to our formalisation, as we can make full use of
higher-order logic.
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6. Conclusion

In this paper, we have significantly advanced our formalisation of basic DPO graph transfor-
mation theory using the Isabelle proof assistant, relying on its higher-order logic instantiation.
We have thoroughly elaborated on two pivotal results of the DPO theory: the uniqueness of
direct derivations and the Church-Rosser theorem. Our discussion includes a series of critical
lemmata that build towards the final proof.

We also delve into the technical aspects of our formalisation, including the application
of total and partial functions, finite sets, and maps (fset and fmap). Our approach strikes
a balance between expressiveness and automation support. While the finite sets (maps)
offer advantages in certain proofs, their lack of a comprehensive lemma set needs significant
additional implementation and proof work on our part. Moreover, the idea of using a unified
identifier for both nodes and edges, though initially appealing, led to increased complexity in
our construction, as detailed in Section 2. This complexity extended to the entire process of
gluing and deletion, affecting the properties we proved using this construction.

Looking forward, our aim is to broaden our methodology to include attributed DPO
graph transformation, as outlined in [HP16]. Our long-term goal is to develop a GP 2 proof
assistant, enabling the interactive verification of individual graph programs. This tool may
leverage the proof calculus presented in [WP21], offering a significant advancement in the
field of graph program verification.
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