
Biomed. Phys. Eng. Express 10 (2024) 032001 https://doi.org/10.1088/2057-1976/ad28cc
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Abstract
The paper aims to explore the current state of understanding surrounding in silico oralmodelling.
This involves exploringmethodologies, technologies and approaches pertaining to themodelling of
thewhole oral cavity; both internally and externally visible structures thatmay be relevant or
appropriate to oral actions. Such amodel could be referred to as a ‘completemodel’which includes
consideration of a full set of facial features (i.e. not onlymouth) as well as synergistic stimuli such as
audio and facial thermal data. 3Dmodelling technologies capable of accurately and efficiently
capturing a complete representation of themouth for an individual have broad applications in the
study of oral actions, due to their cost-effectiveness and time efficiency. This review delves into the
field of clinical phonetics to classify oral actions pertaining to both speech and non-speech
movements, identifying how the various vocal organs play a role in the articulatory andmasticatory
process. Vitaly, it provides a summation of 12 articulatory recordingmethods, forming a tool to be
used by researchers in identifyingwhichmethod of recording is appropriate for their work. After
addressing the cost and resource-intensive limitations of existingmethods, a new systemofmodelling
is proposed that leverages external to internal correlationmodelling techniques to create amore
efficientmodels of the oral cavity. The vision is that the outcomeswill be applicable to a broad
spectrumof oral functions related to physiology, health andwellbeing, including speech, oral
processing of foods as well as dental health. The applicationsmay span from speech correction,
designing foods for the aging population, whilst in the dentalfieldwewould be able to gain
information about patient’s oral actions that would become part of creating a personalised dental
treatment plan.

1. Introduction

Technologies capable of creating 3-Dimensional facial
models (based on some form of inputted data, videos,
pictures etc.) are often limited to only the external view,
seldom providing manipulable cross-sections with
observable internal structures. Existing technologies that
can help in producing real time models of the mouth,
such as Electromagnetic Articulography and Electropa-
latography, are limited in their use (Kochetov 2020a;
Rebernik et al 2021); a consequence of their resource and
cost intensive running cost and inability to encapsulate
themovements of all articulators.

Although the problem statement centres around
oral actions, the review is limited not only to themouth.
It explores elements of medical and computer science

fields that have demonstrated the use of ideas, approa-
ches, andmethodologies capable of addressing the pro-
blem statement. A survey of literature surrounding
mouth specific movements and structures is a vital
addition to forming an understanding of what a com-
plete 3D oral model would consist of. Logically, the
next step would be knowing how these structures relate
to the actions the mouth performs i.e. speaking, chew-
ing/swallowing, breathing etc. The paper also takes an
in-depth look at existing methods used to capture oral
movements during action. These are a variety of 2D and
3D approaches that, to varying degrees, are currently
used inhelping to visualise oralmovements.

Mapping the movements of the mouth is made
difficult by the mouth’s complex and deformable
3-dimensional structure, and featuring as it does
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external and internal elements. The complex move-
ments of the mouth are the result of the interaction
betweenmultiple elements, including both soft tissues
(such as the tongue and velum) and hard structures
(such as the jaw and teeth). One such approach to
addressing this problem is by forming predictivemod-
els that can accept observations of (easily accessible)
external movements and create a predicted internal
structure. Such techniques have been spearheaded
within the medical field of radiology and will be
explored in regards to their potential for application in
oralmodelling.

To fully comprehend the intricacies of oral
actions, it is essential to closely examine the move-
ments that occur within the vocal tract and their rela-
tionship to oral physiology.

2. Articulatory phonetics

Before we can explore the Computer Science and
Clinical Phonetics fields that address the problem of
oral modelling and speech analysis, it is important to
understand the articulatory phonetics that govern the
production of speech. This section defines relevant
terminologies pertaining to this field, and identifies
the ‘external’ and ‘internal’ articulators.

The first pertinent definition is that of articulatory
phonetics itself; Articulatory Phonetics, a subfield of
phonetics, can be defined as a field of phonetics that
focuses on the study of how speech sounds are pro-
duced in different languages by examining the move-
ments and positions of the vocal organs, also known as
articulators (Keating 2001).

The definition touches upon another closely
linked process worth defining: Articulation. Articula-
tion is the means by which speech is formed, through
the movements of vocal organs called articulators. In
phonetics, articulation has been defined as the move-
ment and/or positioning of the vocal organs (such as
the tongue, lips, and jaw) during speech production.
These movements and positions influence the shape
and configuration of the vocal tract, which in turn
affects the quality and characteristics of the resulting
speech sounds (Ladefoged and Johnson 2015).

Speech recruits the use of various vocal organs,
known as articulators. During this articulatory process
some of these vocal organs may be externally visible.
These include the upper and lower lips, as well as the
teeth and at certain times the tongue when it is pro-
truding through the lips and teeth; these are the ‘exter-
nal articulators’. However, most of the oral cavity
inside the mouth cannot be seen externally and thus
formwhat are referred to as ‘internal articulators’.

Throughout this paper, we will also refer to the
vocal tract. The following is a definition of the term:

‘vocal tract is the term used to refer to the entire
speech apparatus, with the larynx as the central

element which subdivides the apparatus into lower
and upper regions’ (Ball 2021).

2.1. The articulators
Before we dive into the complexities of speech produc-
tion and oral movements, it’s important to familiarise
ourselves with the various articulators involved in the
process. These include the lips, jaw, tongue, teeth, hard
palate, velum, and larynx. The external articulators
primarily consist of the jaws and lips, while the internal
ones include the hard palate, velum, and larynx. It’s
worth noting that the role of the teeth and lips in
articulation can vary depending on the specific sen-
tence being spoken.

3. Speech production

Speech production (SP) is the process by which words
are spoken. This may seem to be the same as the
previously described ‘Articulation’, but there is a
difference. Speech production involves the physical
creation of speech sounds, as well as hearing, percep-
tion, and information processing in the nervous system
and brain. The process is complex and involves a
feedback loop to ensure the speech produced is mean-
ingful (Docio-Fernandez andGarcíaMateo 2015).

In other words, SP is the complete process by
which initial thoughts are translated to speech; articu-
lation is just one part of SP. There are threemain stages
to the process: initiation, phonation, and articulation
(there is also an additional fourth, coordination).
(Ball 2021) provides a detailed overview of the SP pro-
cess, exploring in detail these three stages. Below is
provided a short summation of each stage, paying clo-
ser attention to systems that engage the vocal tract
(rather than other systems i.e. lungs).

3.1. Initiation
As the name suggests, this initial state illustrates the
beginning of the speech process. The previously
mentioned definition of articulation was defined as a
process that modifies an air stream to produce the
sounds of speech; the initiation of speech is the
method by which humans generate the air pushed
upwards through the vocal tract. This method of air
generation is known as the airstream mechanism and
can initiate from three points of the body: the lungs,
the velum, and the glottis.

Airstream mechanisms beginning from the lungs
are controlled by the pulmonic system and are thus
called Pulmonic airstreams. Contractions of the ribc-
age, controlled by the diaphragm, work to fill the lungs
with air to then be released through to the vocal tract.
Velaric airstreams are the redirected flow of air pro-
duced by the lungs into the oral or nasal cavity, this is a
task completed by the velum. The raising and lowering
of the velum dictates normal breathing or production
of nasal sounds. Glottalic airstream mechanisms
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control the movement of air by action of the glottis.
The opening and closing of the glottis form an upward
or downward movement of air, to then reach the sec-
ond point of articulation (further down the vocal
tract). Most sounds produced on a glottic air stream
are ejectives, such that sounds are formed by air being
pushed out through themouth and nose (also referred
to as an egressive airstream).

3.2. Phonation
Phonation is the secondary stage of vocal sound and
speech production, a process by which the previously
mentioned pulmonic egressive airstreams undergo
pressure changes induced by the motion of two vocal
folds situated in the larynx.Movements of the cartilage
structure surrounding the larynx open and close a
triangular-like space between the vocal folds that allow
the passage (or restriction) of air; this space is called
the glottis, an opening crucial in forming vowels and
other consonants.

Consonant sounds produced within common
speech are a result of two main vocal fold configura-
tions. The first are ‘voiced’ consonants. These are cre-
ated when the vocal folds are held together and
vibrating, thus creating a narrower glottal aperture; an
example of such a word would be ‘broom’. The sec-
ond, ‘voiceless’ consonants, are a result of a larger glot-
tal openingwith an example of such aword being ‘hat’.

3.3. Articulation
This is our final state of interest. Expanding upon the
previous definition provided, articulation refers to the
shaping of the resultant airstream, generated and
altered during the initiation and phonation stages; at
this point the articulators are configured to form the
desired labialisations.

Table 1 classifies the passive (rigid) or active
(mobile)motion of articulators, and the IPA symbol of
which voiced or voiceless consonants they create.

Additionally, are provided examples of consonant
types, and sample voiced/voiceless fricatives.

It is worth noting that in some speech, two simul-
taneous primary places of articulation can occur. This
is called double articulation. For example, labial-velar
consonants are doubly articulated and engage the use
of both the velumand lips.

Now that the articulatory process has been dis-
cussed, speech itself can be defined. Simply put, this
can be explained as the use of vocal organs to generate
speech. However, a more formal definition can put
it as:

‘Kmovements or movement plans that
produce as their end result acoustic pat-
terns that accord with the phonetic struc-
ture of a language.’ (Kent 2015).

Speech taxonomies, that is defining the various
speech behaviours, are generally a well-researched
sphere. To provide an idea of what these constitute,
some have been listed below (Kent 2015):

• Emotional speech: Speech that expresses an emo-
tion such as anger, sadness, happiness, or fear;
sometimes contrastedwith neutral speech

• Empty speech: Speech that is semantically void (e.g.,
comprising automatisms, vague circumlocutions,
or single words)

• Exaggerated (overarticulated) speech: Speech pro-
duced with unusually large ranges of articulatory
movement and/or force; similar to hyperspeech but
withmore deliberate and extensivemovements

• Nonsensical speech (nonsense): Speech that does
not convey meaning, usually because it involves
phonetic sequences that do not conform to the
words in a given language

Table 1.A table providing information regarding the articulatory structure, including sample consonants and voiced/voiceless fricatives.

Articulator

Passive (rigid)
orActive

(mobile) Example of consonant type Voiced Fricative Voiceless Fricative

Lips Active Bilabial—soundsmadewhen both

lips are engaged

The consonant [p]—inPalm. The consonant [m]—in palM

Teeth Passive Labiodental—soundsmadewhen

lower lip contacts upper teeth.

The consonant [f]—inFar The consonant [v]—inNever

Hard Palate Passive Palatal—soundsmadewhen body

of tongue contacts hard palate.

The consonant [j]—in

University orYoung

N/A

Velum Active Velar—soundsmadewhen the back

of the tongue touches the velum.

The consonant [d]—inDog The consonant [k]—inKing

Glottis /Larynx Active Glottal—soundsmade using the

glottis as primary articulation.

The consonant {ɦ}—in

beHind

The consonant [h]—inHigh

Tongue Mobile Retroflex—soundmadewhen the

tongue has aflat, concave or curled

shape; articulated between alveolar

ridge and hard palate.

The consonant [ɺ]—in Rest The consonant [ʂ]—in

Swedishword foRS

(meaning ‘rapids’)
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4.Nonspeech oralmovements

Both verbal and nonverbal actions, are governed by
the craniofacial and masticatory musculatures of the
face; more specifically these include movements
pertaining to speech, facial expressions, biting, chew-
ing, ventilation, and swallowing (Kent 2015). This
sectionwill now review the nonspeech elements of oral
action.

4.1. Nonspeech oralmovements
Kent (2015) reviews a vast array of literature to collate
definitions and propose taxonomies for both speech,
and non-speech oral movements (NSOMs). Although
definitions and taxonomies for the oral process can
vary, the paper provides clear descriptions of the
movements themselves; thus, this evaluation of
NSOMs refers back toKent (2015) often. The narrative
review definesNSOMs as:

‘Motor acts performed by various parts of the speech
musculature to accomplish specified movement or pos-
tural goals that are not sufficient in themselves to have
phonetic identity’

In essence, NSOM’s cover a vast range of orofacial
movements that are performed alone or with other
movements for varying purposes; governing these
movements are the articulators and facial muscles.
Alongside speech, facial muscles serve two main non-
speech functions, chewing and facial expressions
(Westbrook et al 2022). The following sections will
explore thesemovements.

4.1.1.Mastication
The chewing process, also referred to asmastication, is
a motor activity intended for processing food in
preparation for swallowing. The complex process
involves the action of the suprahyoidal muscles,
craniofacialmusculature, vocal organs, and even saliva
(van der Bilt et al 2006). The process is complex in the
sense that the movements for mastication are formed
by multiple interacting parts. Although the chewing
process can be explored in much detail, this review is
primarily interested in how processes engage the
articulators and will thus primarily focus on such
literature and taxonomy pertaining to the vocal
organs.

As mentioned, mastication aims to break down
and crush food to be mixed with saliva and moved to
the back of the throat for deglutition (swallowing).
The ‘muscles of mastication’ consist of the muscle
groups: temporalis, masseter, medial pterygoid, and
lateral pterygoid.

However, it is key to note that the chewing process
involves more than just the ‘muscles of mastication’.
Neurological control of the jaw and other muscles,
individual anatomy and even the types of food being
processed govern the cycle of mastication adopted;

with certain foods having a longer/shorter cycle
(Soboļeva et al 2005).

4.1.2. Facial expressions and otherNSOMs
Alongside mastication, the process of facial expression
generation is one of themainNSOMs surrounding ‘all
things oral action’ that we are trying to unfold. Certain
facial expressions generated adopt the use of identified
articulators or oral motor systems: this includes facial
expression such as smiling and surprise, as well as lip
pursing, jaw opening, and tongue protrusion
(Kent 2015). However, others draw on the use of non-
identified systems: these include actions such as
coughing, laughing, and blowing.

At times facial expressionmay be a consequence of
another movement. Coughing, for example engages
muscle systems including the respiratory system
(among others); during which process the distinct
‘coughing facial expression’ is produced.

Kent (2015) provides a table of proposed speech-
like and non-speech movements, categorised into the
muscle systems they employ and their general func-
tion. Below are identified some of these movements,
the full classification of which can viewed within their
paper:

Oral only: Licking, Sucking, Smiling,
Respiratory: Subglottal air pressure control, Pro-

longed expiration
Respiratory and laryngeal: Grunting, Moaning,

Crying
Oral and respiratory: Panting, Blowing, Sighing,

Whistling
Oral, Laryngeal and Respiratory: Coughing,

Laughing
Additionally, certain NSOMs produce an audible

output as a result of the action i.e. coughing, panting,
moaning, laughing.

5. Capturing of articulatory actions

Having now identified the various articulators that
form the speech process, it is just as important to
realise how these structures and motions can be
recorded. Recording and quantifying the movements
of the articulators is a difficult task. Depending on the
needs of the experiment/research, any specificmetho-
dology can be desirable. There are currently in use
various technologies capable of capturing the move-
ments of the vocal tract, each one addressing the five
vocal organs to a varying degree.

Table 2 provides a modified extract from Koche-
tov (2020a). It lists the 12 methods considered here
and then indicates the individual capabilities of each of
these systems. The final column of the table, titled
‘MRI scan highlighting the articulators recorded’
shows the relevant articulators highlighted in different
colours. Note, that the method may not necessarily

4

Biomed. Phys. Eng. Express 10 (2024) 032001 MS Shahid et al



Table 2.A chart illustrating the capabilities of each articulatory recording system,withMRI images highlighting the articulators eachmethod captures. Images sourced from (Lim et al 2021).

Methods
OralGestures Nasal

Gestures

Laryngeal

Gestures

MRI scan high-

lighting the

articulators

recorded.

Lips Tongue Jaw Velum Larynx

Electro-palato-

graphy (EPG)
X

Ultrasound X X

Electro-magnetic

Articulography

(EMA)

X X X X

Static Plataography X
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Table 2. (Continued.)

Methods
Oral Gestures Nasal

Gestures

Laryngeal

Gestures

MRI scan high-

lighting the

articulators

recorded.

Lips Tongue Jaw Velum Larynx

Video andOptical

Tracking

X X

X-raymicrobeam X X X

Electro-glottography

(EGG)
X X

Endoscopy and

Photo-glottography

X X X
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Table 2. (Continued.)

Methods
OralGestures Nasal

Gestures

Laryngeal

Gestures

MRI scan high-

lighting the

articulators

recorded.

Lips Tongue Jaw Velum Larynx

Oral Airflow/pressure X X X X

Nasal Airflow X

Real TimeMagnetic

Resonance Imaging

(rtMRI)

X X X X X

X-rays X X X X X
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engage the use of MRI, rather the image aims to only
display the relevant organs to the reader.

The methodologies chosen are often subject to
financial constraints, as well as access to machinery
and trained staff. Furthermore, certain researchmeth-
odologies require the collection of both auditory and
articulatory data. In the case of Electromagnetic
Articulography (EMA), this becomes problematic
since the acoustics are changed when sensors are
attached to the tongue and around the mouth
(Meenakshi et al 2014).

Kochetov (2020a) reviewed 379 full research arti-
cles published between 2000–2019, to find out which
methods of articulatory recording have been used
most during this 20-year period. The survey included
papers published in the field of Language and Speech,
Phonetics, Phonology and more. The results showed
that around 60% of these experiments used Electro-
palatography (EPG), Ultrasound, and EMA techni-
ques for articulatory recording. The other 40% was
occupied by the remaining techniques, with MRI
notably only taking up 6% of used methods, despite
being a technique that can quantify the movements of
all the articulators, thewhole vocal tract.

Electromagnetic Articulography is the most used,
however it is also important to consider that often
techniques are used in conjunctionwith one another.

This paper provides a summation of the various
techniques mentioned. For each of the recording
methods, below can be found a brief overview of the
approach, along with examples of use, overall safety of
the technique, sampling rate, audio compatibility,
cost, availability of data sets and also a recent review
that has been completed; a review that took place after
Kochetov’s review (2021 or later). The section aims to

offer the reader an oversight to the current use of var-
ious techniques and also provide a base from which a
researcher can select amethod suited to their needs.

In some instances, including cases where the tech-
nique has not been in use for quite some time, a recent
review, cost, or example of a dataset have not been
found. It is worth noting that factors such as cost and
safety overview are presented for a casual comparison,
but a more in-depth, up-to-date investigation would
be required by the researcher before adopting a
technique.

5.1. Electropalatography (EPG)
Electropalatography is a technique introduced in
1970, used to identify the tongue and hard palate
location during articulation; the technique's ability to
record dynamic speech features further allows for the
detection of sound production (Mat Zin et al 2021).
During the process, a custom-built artificial plate is
placed within the speaker’s mouth, and subsequently
clipped on to the individual’s upper palate. The palate
is lined with a grid of electrodes, capable of registering
the contact taking place between the tongue and the
roof of the mouth (Verhoeven et al 2019). Detailed in
table 3, the technique allows for quantifyingwhere and
how the tongue touches the roof of the mouth during
speech. The EPG is can also be used to analyse
contact patterns during real-time speech generation.
(Hardcastle et al 1989). With every consonant uttered,
a unique contact pattern is produced on the hard
palate. This can be used to identify the sound produced
during speech, with the location of the tongue and
hard palate being detected by electrode sensors present
on the artificial palate.

Table 3.A table covering nine different factors surrounding the use of electropalatography in capturing oralmovements.

Advantages This technique is suitable for children and individuals with disabilities whofind it difficult to remain still.

Disadvantages The retainer-like contraption placed against the hard palatemeans the technology is unsuitable for indivi-

duals who already use dental prosthetics. Data is limited to the oral gestures of the tongue. Provides no

information about the location of the tonguewhen not in contact with the hard palate.Method is also

invasive, as plate has to be placed in themouth.

Examples of use Wood (2010) - used EPGon individuals withDown Syndrome and found that they can continue to

improve their speech production and intelligibility as they progress from adolescence to adulthood.

Overall safety Material used in developing EPG is nontoxic (MatZin et al 2021). The artificial palates aremade from

acrylic resin, silver electrodes and copperwire;material that is FDA approved andwidely used in dental

applications (such as dentures and retainers and EMG).
Sampling Rate The linguopalatal contact is tracked dynamically, typically taking samples every 10milliseconds

(Kochetov 2020a).
AudioCompatibility Yes.

Cost per session Custom-made EPGplate costing around £495 (Kochetov 2020a).
Recent Review Mat Zin et al (2021), ‘The technology of tongue and hard palate contact detection: a review’.
Examples of Available datasets EPGdata from two female speakers of Central Arrernte. Both subjects recorded uttering the samewords

using two different sorts of palates (Tabain 2011).
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5.2. Ultrasound
Ultrasound is an imaging technique introduced in the
1960s (Kelsey et al 1969). It has since become the
second most popular method of articulator recording
over the past 20 years, as shown in table 4
(Kochetov 2020a). The technique uses a transducer
probe, capable of omitting a high frequency sound
wave. When held against the neck, the thin beam
projected from the probe travels through the tongue
tissue and is reflected back to the transducer, forming
a 2D image of the tongue. Ultrasounds inability
to image bone or air means it does not allow for
the visualisation of the palate, jaw, or rear pharyngeal
wall; making it suitable only for imaging the tongue
in speech research applications (Bliss et al 2018,

Kochetov 2020a). Although most ultrasound
machines are stationary devices situated in hospitals,
mobile USB probes are now being used more often,
that make the recording process more convenient and
accessible.

5.3. Electromagnetic articulography (EMA)
Electromagnetic Articulography is a point tracking
technique (Mennen et al 2010), during which a series
of sensors placed on target articulators record real-
time movements in 3D (table 5). Later developments
in the approach have led to its capability of taking five
dimensional recordings, collecting three cartesian
coordinates and two angular coordinates (Hoole and
Zierdt 2010), therefore capturing information in

Table 4.A table covering nine different factors surrounding the use of ultrasound in capturing oralmovements.

Advantages With availability of smaller portable ultrasound systems, this technique is affordable and accessible to

researchers. In the past, a small sample rate hasmeant that short articulationswere not captured, or in

poor quality. This problemhas since been reducedwith the introduction of higher frame rate devices.

Disadvantages The observation of themotion at the tip of the tongue ismissedwhen the tongue is raised or extended

forward (Cleland et al 2011). The results of the technique can experience double edges, reflections, and
general poor quality images generated (Stone 2005).

Examples of use Bennett et al (2017) presents an ultrasound analysis of the secondary palatalisation constant in Irish, ana-
lysing data from 5different Irish speakers.

Overall safety ‘Ultrasound, however, is becoming cheaper, is safe, is easy to set up and use, and is able to provide real-

time images of thewhole tongue during speech.’ (Wilson 2014).
Sampling Rate Ultrasoundswith frequencies up to 10 MHz are usually used inmedical practice (Reda et al 2021).
AudioCompatibility Yes

Cost per session £500

Recent Review Al-hammuri et al (2022), titled, ‘TongueContour Tracking and Segmentation in LingualUltrasound for

SpeechRecognition: AReview’

Examples of Available datasets UltraSuite: ARepository ofUltrasound andAcousticData fromChild Speech Therapy Sessions (Eshky
et al 2018). Comparing articulatory images: AnMRI /UltrasoundTongue Image database (Cleland et al
2011).

Table 5.A table covering nine different factors surrounding the use of electromagnetic articulography in capturing oralmovements.

Advantages Data collectedwithin the oral cavity has high spatial accuracy and temporal resolution, thus producing

fairly accurate information on articulatory gestures. EMA allows for themeasuring ofmultiple articu-

lators at once (Rebernik et al 2021).
Disadvantages Sensor positioning is limited to the anterior oral tract, with velum tracking not possible without causing

significant discomfort to subjects (Rebernik et al 2021). Sensors cannot be placed too close to each other
without disturbingmeasurement accuracy.Method does not allow for high-quality simultaneous

recording of auditory data since sensors attached to the tongue change acoustics (Meenakshi et al 2014);
however, it does afford some speech productionwith ‘moderate interference (Hasegawa-Johnson

1998)’ (Dromey et al 2018)
Examples of use Hoke et al (2019)used EMA to investigate the effects denture adhesives have inminimising denture dis-

placement while chewing. They successfully used EMA to demonstrate that the use of denture adhesives

statistically reduces the likelihood of denturemicromovements.

Overall safety Articulographs are generally considered safe to use (Hasegawa-Johnson 1998).
Sampling Rate TheNDIWave andNDIVox articulographs have amaximum sampling rate of 400 samples/s and can

track 16 channels simultaneously (upto 16 sensors can be used). The AG500 can record 200 samples/s

in 12 channels, while the AG501 can record 1250 samples/s of up to 24 channels (Ji et al 2014, Sigona
et al 2018, Rebernik et al 2021)

AudioCompatibility Yes.

Cost per session Unkown

Recent Review Rebernik et al (2021), titled ‘A review of data collection practices using electromagnetic articulography’.

Examples of Available datasets The Electromagnetic ArticulographyMandarin Accented English (EMA-MAE) corpus of acoustic and 3D
articulatory kinematic data (Ji et al 2014). Real-timemagnetic resonance imaging and electromagnetic

articulography database for speech production research (TC) (Narayanan et al 2014).
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greater detail. EMA is one of the few methods that
illustrate oral gestures continuously, as opposed to
technologies such as EPG that only illustrate the
motion of the tongue when in contact with the palate.
This makes it possible to record multiple articulators
simultaneously and thus observe inter-articulatory
behaviour (Rebernik et al 2021). The sensor pads
placed in the mouth are small, taking only around 10-
minutes for an adult to become adapted (Dromey
et al 2018).

5.4. Static palatography
Static palatography is technique developed in the
19th century, used to study constant articulation
(Kochetov 2020a). During this process, the tongue is
painted black using an edible paint-like material to
record the contact it makes makes the roof of the
mouth during articulation (Anderson 2008). A mirror
is inserted into the subjects mouth and a photo or
video is taken, to show the location of paint traces on
the hard palate (post articulation). As indicated in
table 6, the simplicity of the technique makes it
perhaps one of the most accessible methods of
articulation visualisation.

5.5. Video and optical tracking
Video and optical tracking is a simple, non-invasive
method to record the movements of a patient’s lips,
jaw, and to some extent the tongue. When coupled
with the uses of a mirror, the method also allows us to
see a side view profile of the individuals mouth during
speech. Displacement of the visible articulators are
used to understand lip configurations. Additionally,
the technique can be used in conjunction with other
articulatory recording systems, such as ultrasound and
EMA. Further details are highlighted in table 7.

5.6. X-raymicrobeam
X-ray microbeam (XRMB) is a computer-controlled
point tracking system that uses a narrow (0.4 mm in
diameter) x-ray beam to locate and track the move-
ments of gold pellets attached to the target organ (in
this case, target articulator); these include the lips, jaw,
and tongue (Barlow and Stumm 2009). Serving as a
reference point, two additional gold pellets are
attached to the bridge of the nose. As presented in
table 8, the scanned images produce a shadow,
detected on a sodium iodide crystal detector, which is
then transmitted to a computer that allows us to study
themovements of the articulators.

Table 6.A table covering nine different factors surrounding the use
of static palatography in capturing oralmovements.

Advantages The technique is cheap and portable and

allows users to gather information about

the tongue and the hard palate

(Kochetov 2020a).
Disadvantages The technique is very primitive, it cannot

record constant tonguemotion, and is

rather invasive. The data collection is also

very time consuming, and researchers are

limited in the utterances they can record.

Examples of use Butcher et al (2004) used static palatography
to examine the articulations and acoustics

of AustralianAboriginal languages, when

compared to English.

Overall safety The use of an edible black paintmakes it safe

to use, however the insertion of amirror

into one’smouth poses certain risks.

Sampling Rate N/A

Audio

Compatibility

No

Cost per session Minimal cost, only of camera,mirror and

cheap paint.

Recent Review No recent review found

Examples of Avail-

able datasets

Not Available

Table 7.A table covering nine different factors surrounding the use
of video and optical tracking in capturing oralmovements.

Advantages The technique, due to its simplicity, is not

field limited. Video recording (with audio)
can be performed anywhere and yield good

results, given the experiment is performed

well with appropriate equipment.

Disadvantages It is only able to show themovements of

external articulators and provide no direct

information as towhat is going on inside

themouth.

Examples of use (Wrench andBalch-Tomes, 2022) investi-
gates the use of pose estimation to perform

markerless estimation of speech articu-

lators; using hand-labelled camera images.

Overall safety The technique only uses a video camera to

record themouth, and is therefore con-

sidered safe.

Sampling Rate ‘The frame rate of a typical camcorder/video

camera is 24–30 fps’ (Kochetov 2020a);
however high speed cameras can record

around 125fps

Audio

Compatibility

Yes, audio can be recording alongside video

when using a camera.

Cost per session Cost is only that on a standard camera or

camera phone. Around £150–200

Recent Review No recent review found

Examples of Avail-

able datasets

Not Available
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5.7. Electroglottography (EGG)
Electroglottography is a low-cost and non-invasive
method to indirectly observe vocal fold vibratory
activity during laryngeal voice production (Herbst
2020). The techniqueworks by attaching two electrodes
to a participant’s thyroid cartilage (Adam’s apple area),

and passing through each side a high-frequency, low
amperage current. Moments when the folds are closed
allows the free passage of this current, where as
moments when the folds are open prevents the flow
(Kochetov 2020b); thus producing a graph of open and
closed instances (a cycle). The technique shows the
movements of the velum and larynx. Further details are
highlighted in table 9.

5.8. Endoscopy and photoglottography
This section defines two techniques that both pertain
to study of glottal activity; the techniques can quantify
the movements of the tongue, velum and larynx. As
detailed in table 10, endoscopy works by inserting a
laryngoscope down a patient’s throat, to observe
glottal activity. The laryngoscope is a thin tube, with
attached to it a video camera and light. Since the
presence of the endoscope hinders one’s ability to
speak, the technique is limited to only allowing the
study of certain sounds, such as prolonged vowels.
Photoglottography (PGG) is a system developed by
Sonesson (Chi et al 2021), also used in studying glottal
behaviours. This method is rather non-invasive

Table 8.A table covering nine different factors surrounding the use
of x- raymicrobeam in capturing oralmovements.

Advantages The technique can be combinedwith cine-

flurography to examine the displacement

of the tongue during articulation of deaf

subject (Barlow and Stumm2009).
Disadvantages The technique has a complex configuration

whichmakes it difficult to use, and addi-

tionally produces some x-ray radiation

exposure to subjects.

Examples of use (Whalen et al 2018) compares the variability

in articulation and acoustics for 32 speak-

ers, from theWestburyXRMBdatabase

(Westbury et al 1990).
Overall safety X-raymicrobeam, although safer than x-ray,

exposes patients to some radiation. Thus,

would not be considered safe (especially
with alternative options present).

Sampling Rate 145 Hz

Audio

Compatibility

Unclear

Cost per session Unknown

Recent Review No recent review found

Examples of Avail-

able datasets

X-raymicrobeam speech Production data-

base, consisting of 57 English speakers

(Westbury et al 1990)

Table 9.A table covering nine different factors surrounding the use
of electroglottography in capturing oralmovements.

Advantages EGG is a non-invasive process that has little

influence on the process of articulation.

Theweak high frequency signal generated

during the process does not have any

damaging effect on tissue, nor does it cause

any significant uncomfortable sensation.

Disadvantages EGGdoes not provide any information per-

taining to the degree of glottal opening,

only that it is open or closed. Additionally,

there is the difficulty in determining the

difference between laryngeal and laryngo-

pharyngeal constrictions. Brunelle et al

(2010) further documented problemswith

reliable detection of signals for individuals

with smaller larynges (Kochetov 2020b).
Examples of use Study uses 3Dultrasound and electro-

glottography to analyse the speech pro-

duced by 6 voice actors, intended to help in

understandingwhichmuscles are under

volitional control.

Overall safety Considered safe: ‘An electroglottograph such

as the laryngograph is a safe and non-

threatening instrument that waswell

accepted bymost children.’ (Cheyne et al
1999).

Sampling Rate Sampled at 22.05–44.1 kHz, as with audio

recordings (Kochetov 2020b).

Table 9. (Continued.)

Audio

Compatibility

Yes,

Cost per session ∼$850
Recent Review Herbst (2020), titled ‘Electroglottography—

AnUpdate’ review recent developments in

the field of EGG. The paper covers a span of

25 years, where it summarises some earlier

contributions and developments since the

last review as completed.

Examples of Avail-

able datasets

TheCMUArctic speech databases—consists

of 3 speakers of English, phonetically

balanced sentences with EGG recordings.

(Kominek andBlack 2004).

Table 10.A table covering nine different factors surrounding the use
of endoscopy and photoglottography in capturing oralmovements.

Advantages PGG is a relatively non-invasivemethod to

capture glottal activity, and can be com-

binedwith othermethods, such as airflow

and air pressure (Kim et al 2018,

Kochetov 2020b).
Disadvantages Endoscopy is an invasive technique that can at

timeswarrant the need for anaesthesia, and

thus experiments involving thismethod

often have very few participants

(Kochetov 2020b). Additionally, the
method requires the use of qualifiedmedi-

cal personnel to run the experimentwhich

means its availability is low and cost is high.

Examples of use (Moisik et al 2014)—used laryngoscopy and

laryngeal ultrasound to examineMandarin

tone production.

Overall safety The technique is generally considered safe,

with plenty of surrounding literature and

commonuse in health care.
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(compared to the former). It works by shining an
external light down the oesophagus, and using external
sensors placed on the skin surface below the glottis.
These sensors detect changes in light intensity, and
therefore provide an indirect image of glottal width.

5.9.Oral airflow/pressure
Techniques in this section observe the study of oral
airflow and air pressure, called pneumotachography.

The technique can record the movements of the lips,
tongue, velum and the larynx. Data regarding oral air
flow is collected using a mask that is placed around
the patient’s mouth, the individual speaks into the
mask while holding it against their mouth; this
process can be uncomfortable (Hirshkowitz and
Kryger 2017). Alongside audio, the system records
speech air flow measured by the volume of air that
leaves the mouth within a certain period. Intraoral
air pressure can be monitored by using a small tube
attached to themask that is inserted into the patient’s
mouth (Kochetov 2020b). Further details are high-
lighted in table 11.

5.10.Nasal airflow
Nasalance is a subsequent method following on from
the previous that allows us to measure nasal air flow.
The technique uses two microphones positioned
between the nose and the upper lip to measure the
amplitude related to the air released by the nasal tract
and air emitted by oral tract. The nasal air flow
provides a rough measure of velum height. The device
used for the recordings (such as the Nasometer II
6450) is held up to the mouth by the patient
(Kochetov 2020b). Further details are highlighted in
table 12.

Table 11.A table covering nine different factors surrounding the use
of oral airflow/pressure in capturing oralmovements.

Advantages The technique allows for simultaneous audio

recording and is generally not too invasive;

for a technique that can record themove-

ment of four articulators.

Disadvantages Hirshkowitz andKryger (2017) reported that
themaskfitting around themouth can be

an uncomfortable experience for the

patient. Additionally, it was unclearwhat

the cost of such a systemwould be, this is

also suggestive of the rarity of such a

machine and thus, high cost.

Examples of use (Kim et al 2018) - the paper uses PGGand

intra-oral air pressure to understand the

speechmechanisms and laryngeal features

involved in theKorean Language.

Overall safety There is little literature surrounding the safety

of the technique.However, suchmask-

based systems are in commonusewithin

themedicalfield.

Sampling Rate ‘Signals are digitized at a very high sampling

rate (e.g., 1.375 kHz)K’(Kochetov 2020b).
Audio

Compatibility

Yes

Cost per session Unknown

Recent Review No recent review found

Examples of Avail-

able datasets

None available

Table 10. (Continued.)

Sampling Rate Cameras usedwith endoscopes typically

record videos at a standard frame rate

(about 30 frames per second [fps])
(Kochetov 2020b). For PGG, the sampling

rate is higher, over 8 kHz.

Audio

Compatibility

Only in PGG, evident fromChi et al (2021)
with the creation of a portable PGG capable

of recording audio.

Cost per session ∼£1000
Recent Review Through not a review, Chi et al (2021) titled

‘Portable Photoglottography forMonitor-

ingVocal FoldVibrations in Speech Pro-

duction’ explored a portable PGGunit that

thatmade it possible to record PGGand

audio sampleswith relative ease.

Examples of Avail-

able datasets

NoneAvailable

Table 12.A table covering nine different factors surrounding the use
of nasal airflow in capturing oralmovements.

Advantages Compared to other laryngeal recording tech-

niques, such as Endoscopy and pneumo-

tachography,Nasalance is the least

invasive, that only uses external

instruments.

Disadvantages Interpretation ofNasalance data is not as

simple as the other twomethods, and

requires normalisation: taking into

account background air and noise.

Examples of use (Echternach et al 2021)—the paper uses

Nasalance to study its effects on vocal fold

oscillation patterns during classical

singing.

Overall safety With its commonusewith both younger and

elderly population it can be thought that it

is relatively safe.

Sampling Rate ‘The sampling rate for such recordings is

high, as is usually the case for audio record-

ings (e.g., 44.1 kHz).’(Kochetov 2020b).
Audio

Compatibility

Yes

Cost per session Unknown

Recent Review No recent review found

Examples of Avail-

able datasets

None available
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5.11. Real timemagnetic resource imaging (rtMRI)
Real time Magnetic Resonance Imaging enables the
examination of the entire vocal tract during speech
production, illustrating and quantifying articulator
choreography in space and time (Ramanarayanan
et al 2018). Explored in table 13, the unique technique
can provide dynamic information of an individuals
mid sagittal (or other) planes of interest, capturing not
only labial and jaw motion but also velum, pharynx,
and larynx. (Narayanan et al 2014). MRImachines can
produce scans in any orientation of interest, though
most commonly they are done in the sagittal plane
(Kochetov 2020b). This side-on view allows us to view
both internal and external articulators in motion,

making it possible to deduce a potential correlation
within their movements. RtMRI scans can also be
coupled with EMA readings (Kim et al 2014). This
creates a system that simultaneously illustrates the
movement of the articulators in EMA and rtMRI
scans.

5.12. X-rays
X-ray imaging is one of the two techniques capable of
capturing themovements of the whole vocal tract. The
research of articulatory movements is concerned with
a form of medical imaging called ‘Projectional Radio-
graphy’, which produces 2D x-ray images; during
which process, X-ray beams are passed though tissue
and recorded on a special detector plate. The method
is a resource intensive technique that must generally
be performed by a radiographer, in a setting adapt with
shielding for medical personnel (table 14). Due to the
health hazards of intensive x-ray use, the technique is
no longer in use and new data sets are not being
created. Most work done is based on data collected
from the 1970s, digitalised byMunhall et al (1995).

Table 13.A table covering nine different factors surrounding the use
of real timemagnetic resource imaging in capturing oral
movements.

Advantages The technique can provide a complete view of

the oral cavity. Technique has a relatively

non-invasivemeans of imaging, with the

ability to image in 3Dor several arbitrary

2Dplanes. Despite a low sampling rate,

advances in parallel imaging and sparse

reconstruction have aidedwith increasing

image resolution (Ramanarayanan et al

2018).
Disadvantages The cost andmaintenance of themachines

are considerable.WithmostMRImachines

being in hospitals, researchers require a

close collaborationwith these institutes to

takeMRI recording for articulatory studies.

An additional consideration is the effects

the spine position adopted by subjects has

on one’s ability to articulate. However, a

x-raymicrobeam study conducted con-

cluded that the spine position hasminimal

effect on speech production (Tiede et al
2000, Ramanarayanan et al 2018).

Examples of use Iribar et al (2019) presented an experimental

articulatory characterisation of vocaliza-

tions in Basque, usingMRImidsagittal

images.

Overall safety ‘clear advantage over othermethodswith

respect to patient safety, relative non-inva-

siveness of imagingK’ (Ramanarayanan

et al 2018).
Sampling Rate 5 to less than 100 Hz (Narayanan et al 2014).
Audio

Compatibility

Yes.

Cost per session Unclear.

Recent Review Kennerley et al (2021), titled ‘Real-time

magnetic resonance imaging:mechanics of

oral and facial function’ is an extract from

the ‘British Journal ofOral andMax-

illofacial Surgery’.

Examples of Avail-

able datasets

RT-MRIwith synchronized audio 3Dvolu-

metricMRI Static T2wMRI—American

English—75 speakers (Lim et al 2021). RT-
MRIwith synchronized audio 3Dvolu-

metricMRI—French—2 speakers (Douros
et al 2019).

Table 14.A table covering nine different factors surrounding the use
of x-rays in capturing oralmovements.

Advantages The technique can provide a complete view of

the oral cavity. The technique is non-inva-

sive (although not particularly safe) and has
a very high frame rate.

Disadvantages The denser structure of bones, compared to

the tissue of vocal organs, can obstruct the

view of parts of the tongue in the images

produced. Additionally, the greatest dis-

advantage, is the hazard to heath the pro-

cess poses (Kochetov 2020b); something

that cannot be justifiedwhen othermeth-

ods are available.

Examples of use (Sock et al 2011)—Used an x-ray database to

develop and present processing tools that

used for projects on speech production.

Overall safety X-ray imaging can be said to be the dangerous

technique out of all listed. X-rays can cause

DNAmutations in living organisms, as it is

known to induceDNA strand breaks

(Immel et al 2016). This can lead to later
development of cancer and it is thus con-

sidered a carcinogen.

Sampling Rate 30× 10^15 Hz to 30× 10^18 Hz

Audio

Compatibility

Yes, evident form creation of dataset synchro-

nisedwith audio (Sock et al 2011).
Cost per session ∼£101
Recent Review No recent review found

Examples of Avail-

able datasets

(Munhall et al 1995): Consists of 25films

(totalling 55 min) of x-ray footage con-
verted from film collected in the 1970s. The

data set contains a total of 14Canadian

English and French speakers.
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6.Discussion

6.1. Growing interest in vocal tractMRI and
overarching problems of existingmethods
So far, we have discussed the existing techniques that
allow us to quantify, to varying degrees of detail, the
movements of the mouth’s external and internal
structure (as well as other activities happening in the
vocal tract) during the articulatory and masticatory
processes. These methodologies each have their own
limitations (and likewise, advantages) that they pre-
sent, something researchers take into consideration
during the selection process.

The 2020 s decade saw a growing interest in real-
time vocal tract MRI owing to the distinctive multi-
articulator capabilities it offers. Currently, four pub-
licly accessible datasets have been released (Douros
et al 2019, Scholes and Skipper 2020, Lim et al 2021,
Ruthven et al 2021). Each dataset is accompanied by
transparent protocols detailing the procedures during
data collection, specifying the MRI machine utilised,
and the specific coil configurations employed.

Moreover, datasets are available upon request
(Birkholz et al 2020, Dediu et al 2022, Isaieva
et al 2023), and the associated protocols, even when
the dataset is not immediately available, serve as valu-
able guidelines for others to gather high-quality data
(Lim et al 2023, Wu et al 2023). Notably, there is a
uptick in the utilisation of machine learning techni-
ques in tasks related to vocal tract MRI (Ribeiro
et al 2022, Laprie et al 2023, Ruthven et al 2023). Addi-
tionally, a toolkit for assessing vocal tract shape has
been developed (Belyk et al 2023).

As the interest in Real-time Magnetic Resonance
Imaging (rtMRI) continues to surge, researchers are
continually driven to seek novel and innovative solu-
tions for advancing speech analysis research.

Although recent evidence highlights the promising
potential of rtMRI, it is not immune to significant lim-
itations that are shared by the majority of techniques
used to study the vocal tract. They are usually too
expensive or invasive, and quite often both; those that
bypass these constraints are limited to only one or two
articulators. They are not practical for consumer pur-
poses, and companies often cannot spend the amount
of money that is required in performing data collec-
tion for systems such as MRI and EMA. Furthermore,
individuals are not interested in partaking in a time
consuming, and at times invasive process. As a result,
collection of primary data is limited. This is a problem
previously identified by a University of Southern Cali-
fornia study group specialising in speech production
and articulation (SPAN). They are working on brid-
ging this gap by creating open source MRI datasets
aimed at fuelling the development of applications and
ideas inspired by AI and machine learning methods
(Lim et al 2021).

In order to aid a wider research community, low
cost, non-invasive and time efficient systems and

methodologies are required. One such approach can be
inspired by the use of internal-external correlation
modelling. There is very little research in applying this
technique in creating solutions for the oral cavity, but
wehave seen similar and relevant approaches applied to
other parts of the body. Below we will address and
review these works that link the external and internal.
They are relatively non-invasive techniques that predict
internal structures, based on external observations.

6.2. Internal-external correlationmodelling
Internal-external correlation models are a method to
estimate the motion and presence/location of an
internal object, based on its external view. Although
the use of such an approach has not yet been fully
explored in oral modelling, it can be found being used
in other organmodelling systems.

Chen et al (2018) explore the development of a
local topology preserved non-rigid point matching
algorithm, used in creating an internal-external corre-
lationmodel for internal actionmappingwith applica-
tions in lung cancer radiotherapy treatment. Organs
and tumours in the thoracic region go through sig-
nificant respiration-induced motion - translation,
rotation and deformation. This motion can be utilised
to accurately track both tumours and surrounding
organs at risk. This is done by registering the vector
fields, which describe themotion between internal and
external components. They are acquired by individu-
ally aligning themeshes of internal organs and external
surfaces from the images via the developed algorithm.

Several other studies have also demonstrated the
feasibility of finding correlations between internal and
external motions, detected by respiratory surrogates.
Fayad et al (2011) aimed at assessing motion correla-
tion between a patient’s external surface and internal
anatomical land marks. They concluded that it is pos-
sible to reduce variability and associated errors in
respiratory motion synchronisation andmotionmod-
elling process by capturing in real-time the motion of
the complete external patient surface as well as choos-
ing the area of the surface that correlates best with the
internalmotion.

Martin et al (2013) presented a novel method to
build a surrogate driven motion model of a tumour
using a Dental Cone Beam scan, without the need of
markers. The method was shown to extract tumour
motion from a variety of lung cancer patients, with
tumours present in different location within the cav-
ity. By tracking the movement of an external reference
point in real time, doctors can use this model to guide
treatments that are synchronized with the tumour’s
motion. The model is created just before each treat-
ment session to account for any changes in the
tumour’s position. This method also helps doctors
better understand the shape and movement of the
tumour before delivering precise radiotherapy treat-
ments. The method involves two steps. First, the
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tumour area is highlighted in the CT scan images.
Then, the model is created based on the movement of
an external reference point. In tests using simulated
data, the average difference between the estimated and
actual tumour positions was reduced to just 1 milli-
metre. When applied to real patient data, the average
difference between the estimated and clinically-identi-
fied tumour positions was less than 2.5 millimetres in
both up-down and sideways directions.

6.3.Modelling the Interrelationship between the
face and vocal tract
Applying this approach to our problem requires us to
first define the internal and external components. The
external component is that of the face, and the internal
is the vocal tract. The face during articulation (or
indeed mastication) can be captured using a RGB
recording camera. These videos or pictures can be
captured from several views, including the forward
and side on views. Figure 1 shows a still frame from a
video where the participant shown utters the phrase
‘Miss black thought about the lap’. It includes the
simultaneous capturing of the coronal (frontal) and
sagittal (longitudinal) planes.

The internal view can be represented with either of
the articulatory recording techniques mentioned in
section 4. Depending on a researcher’s specific require-
ments they could choose any of the 12 methods. Ideally
the chosen technique would be one that involves the use
of as many articulators as possible, to maximise the
learned traits from the two modalities. Out of all the cur-
rently viable techniques, real timeMRI is the single option
that can record all the articulators aswell as provide a view
of the entire vocal tract. Due to this very reason, rtMRI
stands out as one of themost suitable techniques to repre-
sent the internal view. Figure 2 below shows theMRI view
for the external view frameoffigure1.

Continuing with the two modalities mentioned, the
task here would then be to find the correlation between
the representation depicted in a RGB external camera
view, and the MRI internal vocal tract view. To simplify
the explanation, theproblemcanbe expressed as follows:

Variables:
M= Input from internal view (rtMRI)
I= Input form external view (Camera)
Y=Oral actions
D= Interrelationship betweenMand I
D′= Interrelationship betweenMand I over time.
For any given frame pair, we can state D to be the

relationship betweenMand I, represented as:

D M, I{ }=

We can additionally observe the relationship
between M and I in the context of a whole oral action,
represented through multiple consecutive frames (a
video). A whole sentence in the form of a video would
include temporal information present over multiple
frames. With Y as oral actions and D‘ as the

relationship between M and I over time. D‘ can be
represented as:

D M, I, Y .{ }¢ =

When determining D or D′ in various combinations
of internal or external modes of representation, certain
factors should be taken into account. For each specific
articulation, there exists an absolute ground truth for
both the internal and external views, which corresponds
to the real-time movement of the articulators. However,
the choice ofmodality used to represent either of the two
views is limited by the constraints of the specific techni-
que employed. For instance, in the case of MRI, factors
such as pixel resolution, frame rate, or thefidelity ofMRI
signal deconvolution can impact the representation and
potentially alter the ground truth view, depending on the
MRI machine being used. Therefore, any interrelation-
ship between the two views must consider the fact that
the capturedmodality represents an interpretation of the
absolute ground truth. It is therefore crucial to acknowl-
edge that the modality employed to capture the views is
subject to specific constraints, potentially leading to var-
iations in the ground truth. Any connections drawn
between the two views should consider the interpretive
nature of the capturedmodality.

As far as our findings indicate, (Scholes and Skip-
per 2020) is the only work aimed at investigating the
link between facial and vocal tract movements during
speech production. They formed a unique dataset that
consists of paired, temporarily aligned videos of both
the face (captured in the front on, side and 45-degree
angles) and sagittal MRI view during 10 different
utterances. Using this aligned cross modal dataset they
applied principal component analysis (PCA) to
demonstrate that the MR images sequences can be
reconstructed with high fidelity using videos of only
the external face. The PCA worked by capturing
dynamic regions of the vocal tract, such as the tongue
and lips, while ignoring static areas with little move-
ment though an utterance (such as brain/spinal cord).
MR sequences could then be reconstructed by project-
ing the video input data into the MR PCA space

Figure 1. Image illustrating the coronal (left) and sagittal
(right) view of the face (Scholes and Skipper 2020), (Repro-
duced fromScholes and Skipper (2020) underCCBY license).
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generated; the opposite was done for the generation of
the external view from the internal view. Resultant
reconstructed MR sequences (from video input) were
very similar to the original sequences. Their work
revealed that there is sufficient information in the face to
recover vocal tract shape during speech, for set utter-
ances, and likewise reconstruct sequences from either of
the two imaging domains. However, it does not bypass
the need for acquiring theMRI sequence itself. To recon-
struct either of the sequences, the PCA space of the
opposing modality is still required; so, to create a recon-
structed MRI sequence, the original MRI is still needed.
A solution apt at addressing our problem statementmust
be able to produce theMRI sequence of an external video
without having its specific corresponding PCA space. In
other words, be able to produce an internal representa-
tion of the vocal tract without needing a specific match-
ing external view. This generative approach would be a
result of the learned correlation between the face and
vocal tract during articulation.

A solution to address this problem could poten-
tially be found in computer vision/deep learning
approaches, a field centred around learning the char-
acteristics of a dataset to then predict and interpret
visual information. By leveraging the power of neural
networks and advanced algorithms, computer vision
and deep learning can analyse images or videos, extract
meaningful features, and make novel predictions
based on the learned patterns.

6.4.Deep learning approaches for image synthesis
In the previous section we briefly discussed the main
drawback of traditional statistical correlationmodelling
approaches when it comes to image synthesis, the need
of both imaging domains for an inference. Deep
learning, a subset of machine learning, is well posed to
provide a solution to this computer visionproblem.

Computer vision is a field of AI aimed at enabling
computers to derive meaningful information from
visual stimuli. These tasks can range from low-level
edge detection to a high-level task such as complete
scene understanding. Over the last decade, impressive
developments in computer vision have come because
of advancements in deep learning.

Deep learning is a machine learning method used
in training artificial neural networks. With the grow-
ing availability of large scale datasets and ever increas-
ing processing power of computers, researchers are
apt in developing pattern recognition models, for use
in many fields including medical imaging (Esteva
et al 2021).

Deep learning involves training artificial neural
networks to learn patterns and make predictions. As
the availability of extensive datasets and the processing
power of computers continue to expand, researchers
have been able to develop highly effective pattern
recognitionmodels. These models find applications in
various domains, including medical imaging, as
demonstrated by Esteva et al (2021).

The backbone of deep learning in computer vision
is the Convolutional Neural Network (CNN). These
are specifically designed to analyse visual data by
mimicking the human visual system. CNNs consist of
multiple layers, including convolutional layers, pool-
ing layers, and fully connected layers. Convolutional
layers perform feature extraction by applying a set of
filters or kernels to the input image. Each filter cap-
tures different visual patterns, such as edges, textures,
or shapes, and convolving this with the input image
produces a featuremap. The use of shared weights and
local receptive fields in convolutional layers enables
the network to learn hierarchical representations of
the input data. Pooling layers reduce the spatial
dimensions of the feature maps by down sampling
them. This helps in creating more robust features by
discarding irrelevant spatial information and retaining
important features. Common pooling techniques
include max pooling and average pooling. Fully con-
nected layers are responsible for making predictions
based on the features extracted by the previous layers.
These layers connect every neuron from the previous
layer to every neuron in the current layer, enabling the
network to learn complex relationships between fea-
tures andmake accurate predictions.

The problemwewish to address is how a dataset of
paired MRI and external view images can be used to
synthesis MRI views of the face, from patterns recog-
nised between the two modalities. This falls into the
field of Image-to-image translation. Image-to-image
translation is the process by which an image from one
mortality is transformed into another, with the aim of
learning the relationship between the input and out-
put image. This is a deep learning task (often addressed
using generative adversarial networks). Such models
are best trained with datasets of paired and aligned
images. The concept of image-to-image translation

Figure 2. Image illustrating aMRI sagittal view, showing all
the articulators forming the vocal tract. (Scholes and Skip-
per 2020), (Reproduced from Scholes and Skipper (2020)
under CCBY license).
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allows for various applications, such as converting
images from one style to another (e.g., grayscale to
color), transforming images across different mod-
alities (e.g., day to night), or synthesizing realistic ima-
ges from rough sketches. It’s important to note that
successful image-to-image translation relies on having
a well-prepared and representative dataset for train-
ing, as well as careful selection and design of the deep
learning architecture and loss functions. Additionally,
understanding the limitations of the approach, such as
potential artifacts or biases in the synthesized images,
is crucial for ensuring the reliability and accuracy of
the generated data.

A recent survey of Cross-Modality Synthesis was
done by Xie et al (2022), that comprehensibly approa-
ches this complex task from different perspectives,
including the level of supervision, loss function, range
of modality and downstream tasks. The downstream
task in this case would be the use of theMRI generated
image.

6.5. Semantic segmentation of the articulators
Exploring how to extract meaningful information
regarding articulatory movements from both original
and generated MR sequences is a vital step towards
further realising how rtMRI can be used in articulatory
research. Knowing the relative positions of each of the
vocal organs in a given frame will allow for clearer
image understanding; thus improving the fidelity of
any generated outcomes. For this process, researchers
employ segmentation techniques to analyse vocal tract
MRIs, enabling a comprehensive evaluation of the
vocal tract’s structure and function during speech.

Image segmentation (or more specifically Medical
Image Segmentation) is a process used in identifying
meaningful regions and structures within a medical
image, a process through which a desired object (vocal
organ) is extracted from a medical image (2D or 3D)
(Li et al 2021). The modality of acquiring the medical
image can be through systems such as CT, MRI, X-ray
andmore.

The process in our use case involves precisely deli-
neating the various anatomical components, includ-
ing the tongue, lips, jaw, and velum, within the vocal
tract. Accurate segmentation facilitates the extraction
of quantitative measurements and geometric data
about the vocal tract’s regions. These measurements
offer insights into speech production biomechanics,
aiding in the understanding of speech disorders, lan-
guage development, and treatment efficacy.

Segmentation approaches include manual deli-
neation, semi-automated algorithms, and deep learn-
ing-based methods. Manual delineation involves
experts manually tracing boundaries, ensuring precise
results but requiring significant time and effort. Semi-
automated algorithms assist by providing initial seg-
mentations that can be refined manually. Deep learn-
ing techniques, employing convolutional neural

networks, automatically recognise and segment vocal
tract structures, reducing time and effort.

In the case of the medical field, this is often for
planning and guiding operations as well as measuring
the outcome of therapeutic procedures (Kapur
et al 2014).

During image segmentation, the various sections
of the target image are delineated and are given labels.
To put this into perspective, we can observe an exam-
ple of an annotated (delineated) still image by Ruthven
et al (2021). Figure 3 shows an MRI view of the vocal
tract to the left, alongside the same image annotated
with each colour representing a different articulator.

Several segmentation technologies are available
that can perform image segmentation utilising
machine learning and deep neural networks. These
approaches require ground truth data to train models
to accurately segmenting new, unseen images. How-
ever, the delineation process is widely acknowledged
as highly complex, and as a result, a significant portion
of the annotation process continues to be performed
manually (Wallner et al 2019).

Segmentation techniques used (also to create
ground truth data), can be broadly divided into two
categories: intensity-based segmentation and shape-
based segmentation. Each of these two methods have
various semi- and fully-automatic segmentation algo-
rithms. The following section will present examples of
these and discuss some of the algorithms in use, in
relation to the techniques adopted in the segmentation
of rtMRI images of the face (as infigure 3).

6.5.1. Intensity-based segmentation
Intensity-based segmentation (IBS) relies on the
principle that voxels within the target object, such as
an organ, possess a distinct grey value (intensity)
different from their surrounding structures. Even if
this disparity is subtle and imperceptible to the human
eye, models can effectively discern these differences.
However, medical images often exhibit a wide range of
grey scale distribution within the target object itself,
which poses challenges in accurately distinguishing
voxel intensities. IBS models encompass various
techniques, including thresholding, clustering, deep
learning, watershed, and graph-cut, each with its own
advantages and applications.

Thresholding-based segmentation is particularly
effective when applied to images with high voxel con-
trast compared to their surroundings. This technique
is well-suited for imaging bony structures and their
surrounding tissues in CT scans, where there is a sig-
nificant contrast in voxel intensities. Clustering is an
unsupervised learning method that groups voxels
within an image based on their similarities, without
the need for ground truth data. It can identify clusters
of voxels with similar characteristics (e.g. intensity),
aiding in the segmentation process. Region-growing-
based segmentation is an iterative process initiated by
selecting a single seed point within the target object
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manually. From this seed, the region grows and
expands until it encompasses the entire target object.
The underlying assumption is that voxels within the
same object are similar, allowing the algorithm to
determinewhen to stop the region’s expansion.

In summary, intensity-based segmentation tech-
niques offer various approaches for segmenting medi-
cal images. By leveraging concepts like thresholding,
clustering, deep learning, and region-growing, these
techniques enable the identification and differentia-
tion of voxels belonging to the target object, despite
the challenges posed by the wide range of voxel inten-
sities within the image.

6.5.2. Shape-based segmentation
In shaped-based segmentation (SBS), the outline of
the target object is roughly known in advance, such
that segmentation can be completed by identifying a
particular shape. In the case of themouth this could be
likened to, for example, identifying the positioning of
the upper lip. Such methods explicitly use prior
knowledge of a target shape, such that the target shape
is learned from a group of pre-annotated shape
templates. These techniques include statistical shape
models, statistical appearance models, and atlas based
segmentation. These pre-annotated images, also
known as template images, may limit shape variations
and differences, as they may not necessarily be present
in the target images; poorly annotated images can
reduce segmentation quality.

Statistical shape models (SSM)work by mathema-
tically describing the geometric shape of the target
object. The variations in the target object are learned
through shape templates (annotated images). This
three-stage process involves: the construction of shape
templates, SSM creation from shape templates, and
adapting SSM to new image.

A good SMMwill use a large set of shape templates
to allow the model to learn shape variations and vari-
abilities that occur. These shape templates are formed
by manually annotating medical images. Once the
model has been trained it should ideally be able to
identify the target shape when segmenting, thus allow-
ing it to be applied to new images.

Statistical appearance modelling (SAM) works on
a similar principle to SSM, but additionally incorpor-
ating the appearance of a shape. This includes the col-
our and ‘texture’ (e.g. represented by voxel intensity)
of the target object.

Atlas-based segmentation is an SBS technique that
that can segment images without the need of well-
defined delineations between regions and pixel inten-
sities. The approach utilises reference images and
corresponding segmentation templates (atlases) to
form transformation matrixes, enabling reference
images to beregistered with the new image itself. The
atlas is able to provide an approximate location of the
object position in an image and this information
therefore allows themodel to localise the object within
the new image, and further distinguishes between the
object of interest and its surrounding.

Active contour modelling, another SBS, differs
from the previously mentioned models. It does not
necessarily require such training templates. In this case
the algorithm utilises the contour present within the
image to form a delineation. This form of modelling
can be seen in use within photo editing software, for
examplethe Lasso tool in Photoshop. Through an
iterative process, a user places several marks around a
target object present in an image, which the model
then connects based on the contour around the shape.
This does however mean that the initial contour must
be provided by a user manually, most of the time, for
the contour to be then found automatically.

6.5.3. Deep learning semantic segmentation approaches
The previous two subsections primarily went over
earlier segmentation algorithms, approaches that are
still currently in use. As section earlier touched upon,
for the past several years deep learning-based
approaches have paved a way for a new generation of
image segmentation models with outstanding perfor-
mance improvements (Minaee et al 2020).

A deep learning segmentation pipeline typically
consists of dataset preparation, network architecture
selection, training, validation, and inference. First, a
labelled dataset is created, comprising input images
and corresponding ground truth annotations that
define the desired segmentation. A suitable deep
neural network architecture, such as U-Net (Ronne-
berger et al 2015) or Mask R-CNN (Kaiming et al
2017), is then chosen or designed specifically for the
segmentation task. The network is trained using the
labelled dataset, with its parameters optimized itera-
tively to minimise a chosen loss function, such as
pixel-wise cross-entropy or Dice coefficient, which
quantifies the dissimilarity between predicted segmen-
tations and the ground truth.

Validation is performed using a separate dataset to
assess the network’s performance and guide any
necessary fine-tuning. Once trained, the network is
ready for inference, where it takes unseen input images

Figure 3.A still frame of a 2D rtMRI recording (left) alongside
amanually annotated segmented formof the image, illustrat-
ing each articulator as an instance (right). (Reproduced from
Ruthven et al (2021) underCCBY 4.0 Licence).
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and produces segmentation predictions by applying
the learned patterns and features.

Deep learning-based segmentation has demon-
strated remarkable capabilities in various fields,
including medical imaging, object detection, and
semantic segmentation. Its ability to automatically
learn relevant features from large datasets has sig-
nificantly advanced the accuracy and efficiency of seg-
mentation tasks, leading to important applications in
computer vision research and real-world applications.

Here, we focus on a few different type of network
architectures used specifically for medical image seg-
mentation. Not focusing too much on other factors
such as type of learning or loss functions, the following
section provides a low level overview of a few of these
networks, listing both 2D and 3D architectures.

Originally proposed in 2015, U-net is a convolu-
tional neural network (CNN) developed for 2D bio-
medical image segmentation (Ronneberger et al 2015).
The CNN has a modified architecture, adopting a
symmetrical structure and skip connections aimed at
allowing for optimal model training onmedical image
datasets. The networks popularity can be deduced
from its ability to learn segmentation in an end-to-end
setting, ability to precisely localise and distinguish bor-
ders and work well with very few annotated images.
Currently, U-net has become the standard for most
medical image segmentation tasks and the backbone
from which several other popular architectures are
structured (Wang et al 2022).

Most recently, a complete segmentation of the
vocal tract was done to delineate 4 different articu-
lators and the vocal tract (Ruthven et al 2021). A data-
set of five participants was used, each subject counting
from numbers one through to ten in British English
whilst in a RtMRI machine. Between the five partici-
pants, there were a total of 392MR images (or frames)
which were segmented by a radiologist. The paper suc-
cessfully presented an automatic method to fully seg-
ment multiple groups of articulators and the vocal
tract using a U-net like framework and additionally
provide a novel clinically relevant metric for assessing
the accuracy of vocal tract and articulator segmenta-
tions. Although generalisability was noted to be good,
the work stated that the model performed less favour-
ably in preserving airway gaps between articulators,
especially in the case of soft palate closures in instances
where the ground truth data suggested the space was
open. Larger classes provided better dice coefficient
and general Hausdorff distances than those that were
smaller, as could be expected. Future work requires
addressing these factors and potentially using a larger
range of vocal tract configurations. It is additionally
worth noting that the model’s applicability to record-
ings taken from other MRI machines is unclear, and it
is likely it will not performwell for images not taken in
the sameMRImachine as the paper used.

Medical image data produced, being either CT or
MRI are often taken in 3D. To take advantage of these

high-dimensional data sets, Çiçek et al (2016) furth-
ered the u-net architecture to be applied to 3D data,
proposing an architecture apt at performing segmen-
tation directly, named 3D U-net. However, due to
computational limitations posed when using such a
dataset, the number of down-sampling steps had to be
reduced, resulting in a model with a reduced segmen-
tation accuracy.

V-Net worked around this problem by employing
residual connections to create a deeper network with
more down-sampling steps. Although the network
performance did improve, the 3D segmentation net-
work, and others developed after, face an underlying
issue surrounding the need to high computational
power and GPU memory, often not available during
the training process.

7. Conclusion

To conclude, we have thoroughly explored the various
oral actions the vocal tract goes through and how this
pertains to the articulatory function. A detailed
summation of the methods of articulatory recording
has been provided, addressing their advantages and
limitations, as well as other metrics relevant to their
use. Cross domain image-to-image translation seems
viable, constraints surrounding datasets can beworked
around, whilst the use of image segmentation shows
promising applications for processing downstream
tasks. The overarching problems associated with these
systems have been talked about in the discussion
section, with the subsequent sub-sections providing
the foundations for spear heading solutions viable in
addressing problems related to speech analysis and
speech correction,mastication and,more broadly, oral
processing. Throughout the paper, particularly in
reference to the 12modelling techniques, we have seen
the potential clinical significance of a technique
capable of modelling the complete mouth. In its
simplest form, a viable way to model the complete
mouth will see down steam applications in speech
correction and designing foods for the aging popula-
tion. In the dental field we would be able to gain
information about patient’s oral actions that would
become part of creating a personalised dental treat-
ment plan. In its initial state, image-to-image transla-
tion holds the potential to facilitate seamless
transitions between diverseMRIweightings. Given the
variability of MRI machines in hospitals, leveraging
this technology could prove instrumental in enhan-
cing thefidelity of vocal tractMRI frames.
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