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Abstract

In population-based structural health monitoring, the aim is to make inferences about the health of structures using

information from a population of other structures. It is possible to use transfer learning here, as long as the structures
that are used for transfer behave similarly to each other. As a result, assessing the similarity of structures and the data

collected from those structures is necessary for successful transfer. In this paper, ideas from kernel and graph theories

are used to assess whether the constructional makeup of two engineering structures – a bridge and a wind turbine, for
example – are similar or not. To the human brain, this notion may seem trivial because the intended use, construction

and behaviours of these structures are vastly different. However, for a computer, automatically measuring these dissimi-

larities requires a whole host of information. In this paper, the aim is to use irreducible-element models and attributed
graphs to represent engineering structures, and to use graph kernels to measure the similarity of these models. The pro-

posed methods are able to compare discrete and continuous attributes of structures in polynomial time. Similarity

assessments are provided for a group of toy structures as well as a case study of seven real operational bridges. The lat-
ter population is important in dealing with a class of highly complex real-world examples of civil infrastructure; the analy-

sis also allows a discussion on which aspects of bridge construction might be responsible for structural similarity or

dissimilarity.
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Introduction

Structural health monitoring (SHM) aims to continu-

ously monitor structures throughout their lifetime in

order to detect, localize, quantify and predict damage.1

In particular, data-based SHM methods focus on col-

lecting data from sensor networks installed on struc-

tures and utilizing them within machine learning

models in order to make inferences about their health.

One of the biggest challenges of SHM, however, is the

availability of informative data. Specifically, labelled

data pertaining to damage are difficult and expensive

to obtain. As a result, developing SHM methods that

capture all possible damage scenarios that a typical

structure may undergo is extremely challenging. A pro-

posed solution to this major drawback of SHM is pop-

ulation-based SHM (PBSHM).2–8 The main motivation

for the framework is to allow data from one structure

to strengthen health-state inferences on a different one,

that is, to make inferences about the health of struc-

tures for which there may be little to no damage-state

data, by studying structures that exhibit damage infor-

mation. The populations of structures in question can

be homogeneous – where the structures are nominally

identical – or heterogeneous, where the structures can

be different to each other. The PBSHM methodology

can, therefore, increase the pool of information avail-

able to make diagnostic and prognostic decisions.
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The main means of allowing such cross-structure

diagnostics is via the machine learning discipline of

transfer learning,9,10 which transfers knowledge from

source domains to target domains. In PBSHM, the

source domain contains labelled data from structures,

whereas the target domain contains data from struc-

tures for which there is a lack of labelled data. The aim

of transfer learning is to develop models in the source

domain that generalize well to the target domain.

Transfer learning has been applied successfully in

PBSHM in numerous studies to make inferences about

health of structures. For example, transfer component

analysis was undertaken to identify damage on a tail-

plane by studying a population of tail-planes.11

Domain adaptation (a form of transfer learning), com-

bined with Gaussian mixture models, was used to

transfer damage-state information across two bridges

that made up a heterogeneous population.12 Transfer

learning has also helped address the problem of

repair13; structural repairs can cause the underlying

distribution of the data to shift, causing significant dis-

crepancies between training and testing data. Domain

adaptation can minimize these shifts and improve the

performance of machine learning models. A significant

issue in transfer learning is that attempted transfer

between wildly disparate structures will make matters

worse. Therefore, one main takeaway from these stud-

ies is that the similarity of the data in the source and

target domains is an important consideration, because

dissimilarity can increase the threat of negative trans-

fer. Negative transfer takes place when the perfor-

mance in the target domain is adversely affected by

transferring information from the source domain.

Interestingly, structural similarity (as well as similarity

between features extracted from the collected data)

also plays a significant role in reducing the threat of

negative transfer in PBSHM.14 The hypothesis in

PBSHM is that feature data collected from structures

are best suited for transfer learning if the structures

(from which the data were collected) are also similar.

As mentioned, a hypothesis of PBSHM is that simi-

larity of structures is a necessary condition for transfer

of inferences. These inferences could be of multiple

forms; in the first place, one might wish to transfer a

classification task – like damage localization – as illu-

strated in Gardner et al.14 Another possibility for

transfer is a decision process, where one is considering

a risk-based approach to SHM, as in Hughes et al.15,16

Regarding the strength of the hypothesis itself, recent

work has shown a strong predictive relationship

between structural similarity measures and the likeli-

hood of positive transfer.17

To assess the similarity of feature data, distance

metrics can be utilized; distance metrics are non-

negative D(x, y).0ð Þ, give a value of zero if and only if

the two features are the same D(x, y) = 0ð Þ if and only if

x= y), symmetric D(x, y) =D(y, x)ð Þ, and obey the trian-

gle inequality D(x, z)<D(x, y) +D(y, z)ð Þ. Here, D is the

distance and x, y and z are quantities.18 A study dedi-

cated to assessing feature similarity in PBSHM via the

use of distance metrics is presented in a related paper

by Wickramarachchi et al.19 The focus of the current

paper is, therefore, on methods for assessing similarity

of structures themselves, in order to aid positive trans-

fer in PBSHM.

In order to deal with this issue, PBSHM is based on

an abstract representation of structures, in which struc-

tures become points in a metric space. The ‘metric’

aspect of the space is crucial; it allows a measure of dis-

tance, or similarity, between structures such that trans-

fer should only be attempted between those which are

‘sufficiently close’. The abstract representations of the

structures are in the form of irreducible element (IE)

models or attributed graphs (AGs)3 in this paper. An

IE model can be used to represent a structure by separ-

ating it into meaningful components that have well-

established dynamic behaviours. It is then possible to

include information such as the geometry, topology

and material properties of these components, by form-

ing an AG. Both of these representations can also

incorporate information about the joints that connect

the elements together.

At this point, it may be helpful to formulate this

problem as a fibre-bundle (Figure 1), as introduced by

Tsialiamanis et al.20 The aim of the fibre-bundle in

PBSHM is to bring together information about the

composition of the structures – in terms of AGs3– and

their associated sensor data as features. The concept

can be broken down into three spaces; the space of

AGs S (the base space) and the associated feature space

F within which the normal section N lies. Here, each

structure has an AG (that contains information about

the topology, geometry and material properties) and

an associated fibre that contains all the sensor data col-

lected from that structure. If the AGs are similar in the

base space, the assumption is that the data in the fea-

ture space may also be similar.

The idea of transfer across heterogeneous popula-

tions raises the question of when structures or substruc-

tures are sufficiently similar that transfer is possible,

that is, does not lead to negative transfer, and make

diagnostics worse. Within the fibre bundle, there may

be some target structure St for which useful data do

not exist. By using data from a source structure Ss that

does have available data, it is possible to transfer infor-

mation across. Now, a number of candidate source

structures Sis may exist that could be used for transfer,

but each will carry some threat of negative transfer.

There is a need for a principled means of finding the

source structure Si�s that minimizes this threat. If the

2 Structural Health Monitoring 00(0)



space of structures in a metric space is measured with

some metric d(Si, Sj), then it is possible to choose,

Si�s = argmin
i

d(Sis, St):

Successful topological comparisons were conducted

using AGs to form communities of similar structures

for transfer in the context of PBSHM.21 However, the

method based on the Jaccard distance21 can only com-

pare discrete attributes within the graphs, that is,

whether the two attributes being compared are the

same or different. Moreover, the described method

leads to a high computational burden. The current

paper aims to extend these capabilities to include com-

parison of continuous node attributes by applying

kernel-based methods. This is a significant, and indeed

a necessary, extension to the current framework,

because the ability to compare continuous node labels

such as material properties is crucial to comparing

structural behaviours in PBSHM.22 The graph-kernel

methods used in this paper are based on previous work

on protein function prediction in the field of biol-

ogy,23–28 where graphs with continuous and discrete

attributes are compared in polynomial time.

In this paper, the graph-kernel approach to assessing

similarity of structures will first be applied to a toy

dataset. The toy dataset was introduced by Gosliga

et al.21 to demonstrate a method of measuring the topo-

logical similarity between structures using discrete node

labels. The same toy dataset is used in this paper to illus-

trate the benefit of implementing graph kernels – where

the comparison can be extended to continuous node

labels – while significantly reducing the computational

time required. Here, the complexity of included labels in

the formulation is systematically increased. The most

suitable developed methodology is then applied to a pop-

ulation of real operational bridges in order to form simi-

lar communities for transfer learning.

Original contribution

This is the first scientific study on developing a frame-

work for measuring similarity between graphical repre-

sentation of structures for PBSHM that extends

beyond discrete node-label comparison to continuous

node labels. This methodology takes the next step in

assessing structures in a metric space to find similar

structures for transfer. By using graph kernels, popula-

tions of structures can be compared quickly and effec-

tively. A number of graph kernels ranging from those

that compare discrete node labels to more sophisti-

cated kernels that compare continuous labels are

applied to find the most suitable solution. The advan-

tages and drawbacks of these kernels are discussed in

the context of PBSHM. The developed methods are

applied to two datasets. The first dataset contains a

population of toy structures that demonstrates the

effectiveness of these techniques in a truly heteroge-

neous population. The second is a population of real

bridges represented by much larger graphs (in compari-

son to the toy structures) that illustrates the success of

applying graph kernels to form communities of similar

structures and the computational efficiency of the pro-

posed methods.

The structure of the paper is as follows. In section

‘Graphical representation of engineering structures’,

the abstract representation of structures in the form of

IEs and AGs is explained. The toy dataset used in the

first part of this paper is then described in section ‘The

toy dataset’. In section ‘Related work on assessing simi-

larity of graphs for PBSHM’, previous work on com-

parison between structures for PBSHM is presented to

demonstrate the current state of research in this topic.

Section ‘Graph kernels’ then introduces graph kernels

and presents the results of applying graph kernels to

the toy dataset. A case study is then conducted in ‘Case

study: Measuring the similarity between a heteroge-

neous population of bridges’ section where the most

suitable graph kernels from section ‘Graph kernels’ are

applied to a population of operational bridges. Finally,

section ‘Conclusions and future work’ includes the con-

clusions and future work.

Graphical representation of engineering

structures

The first stage in establishing the representation of a

structure for similarity assessment is to construct an IE

Figure 1. Schematic of a fibre-bundle showing the spaces of

structures and features in PBSHM.
PBSHM: population-based SHM.

Wickramarachchi et al. 3



model.3 An IE model of a structure is intended to cap-

ture the essential nature of that structure in terms of a

small (if possible), set of fundamental structural ele-

ments of well-established dynamic behaviours. These

elements can be labelled as fundamental engineering

objects, for example, beam, plate, shell, etc., or contex-

tually, for example, wing, deck, blade.

The second step in representation is to convert the

IE model into an AG. In the AG representation, indi-

vidual IEs appear as nodes (vertices) in the graph,

while the information about how elements join

together is encoded in graph edges. Each node and

edge is assigned a vector of attributes, which specify

details such as type, material and geometry, etc. The

important point now is that the space of AGs is a

metric space, as mentioned above. Details of how IEs

and AGs are formed are explained by Gosliga et al.,3

along with an example of a metric on the space of

graphs.

The level of resolution one may include in these

models is subjective. For example, there is no standard

for determining the separation method for a wind-

turbine tower section or deciding the breakdown of

components in aeroplane landing gear. In this paper,

engineering judgement is used to represent the struc-

tures using the most logical elements. An in-depth

study on this topic has been conducted for PBSHM by

Brennan et al.29

Once the structures are in the form of IEs and AGs,

graph theory can be used to analyse them. A graph G is

made up of set of nodes or vertices V and edges E and

can be expressed as,

G = (V ,E): ð1Þ

For comparison, similarly, a second graph can be

expressed as H = (W ,F), where H is another graph and

V and F are the corresponding vertices and edges. Each

graph can be represented by an adjacency matrix that

defines the topology of the graph. Two neighbouring

vertices that share an edge will have a value of 1 in the

adjacency matrix and a value of 0 otherwise; that is,

½A�ij =
1 if(vi, vj) 2 E

0 otherwise

�

ð2Þ

where vi and vj are vertices in G.

Following the conversion of structures to abstract

graphical representations, similarity between graphs

can be measured. In the next section, the toy dataset

used by Gosliga et al.25 is presented to evaluate the

techniques developed in this paper.

The toy dataset

To test the suitability and effectiveness of graph ker-

nels for PBSHM, the dataset introduced by Gosliga

et al.21 is used in this paper. The dataset consists of six

simplified, common engineering structures with vary-

ing topology, geometry and material compositions,

allowing the use of kernels for assessing similarity

between discrete and continuous node labels. Figure 2

presents these labelled structures (a wind turbine, two

aeroplanes and three bridges), alongside their graphical

representations.

In this paper, the focus is on measuring the similar-

ity when considering the node labels (specifically, the

material properties, geometry and element types), of

each graph. Here, the density, tensile strength, modu-

lus of elasticity and the coefficient of thermal expan-

sion are used as the material properties. The geometry

of the element is represented by its total volume. The

elements that make up the structures are assigned a

type according to shapes with well-defined dynamical

behaviours when possible. Here, ‘beams’, ‘shells’ and

‘plates’ are used for components such as towers on tur-

bines, engine casings on aeroplanes and decks on

bridges. Additionally, some elements are assigned the

type ‘complex’ when the aforementioned types are

unsuitable; landing gear and rotor hubs fall into this

category. Finally, there exist ‘ground’ nodes; these are

connected to elements that contact the ground or their

surrounding environment. These nodes are highlighted

in blue in Figure 2, and their adjacent edges control

boundary conditions. For simplicity, boundary and

edge attributes are not considered here for similarity

comparisons.

Figure 3 visually presents the materials30–39 and

types assigned to each element in the dataset. A specific

combination of shapes and colours are used here to

define the attributes. For example, a square node,

coloured in green is a concrete beam, etc.

In the following section, previous related work that

demonstrates the methods used in PBSHM for AG

similarity assessment is presented. The described meth-

ods compare the topology and discrete node attributes,

as well as structural equivalence using ideas from graph

matching. Advantages and drawbacks of using such

methods are also discussed.

Related work on assessing similarity of

graphs for PBSHM

When it comes to measuring similarities between

graphs, the idea of topology becomes a key

4 Structural Health Monitoring 00(0)



component. The topology of structures can be estab-

lished by the connections between nodes of graphs. A

structure’s topology can help determine its dynamic

behaviour; comparing topologies between structures

enables insight into their dynamic similarities. Without

obtaining any attributes about the elements, it is possi-

ble to compare two graphs simply by assessing their

topology. By considering the isometry classes of metric

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2. The structures in the dataset, and the corresponding graphs, with nodes labelled according to elements. Each red node

represents an irreducible element from the original structure. These nodes are associated with information, such as the geometry of

the element and its material properties. The blue nodes are ground nodes that can control boundary conditions. These graphs can

be used to compare the topological similarity of the structures. The structures (a) Turbine 1, (b) Aeroplane 1, and (c) Aeroplane 2,

and the corresponding graphs (d) Turbine 1, (e) Aeroplane 1, and (f) Aeroplane 2. The structures (g) Bridge 1, (h) Bridge 2, and

(i) Bridge 3, with the corresponding graphs (j) Bridge 1, (k) Bridge 2, and (l) Bridge 3.

Wickramarachchi et al. 5



spaces, distance metrics can be found between two

graphs of different sizes.40 Gromov-Hausdorff dis-

tance, the Kantorovich-Rubinstein distance and the

Wasserstein distance are some of the example metrics

that can be used in this case.

One should, however, consider structural equiva-

lence rather than just topological similarity22 for a

stronger comparison between structures (i.e. the AGs

should be directly equivalent with ground nodes in cor-

responding places21). The current state of research in

assessing structural similarity for PBSHM is, therefore,

based on calculating the structural equivalence between

graphs.21,41 By determining the maximum common sub-

graph (MCS) between two graphs – a common sub-

structure in the structures of interest – it is possible to

include structural equivalence. Previous work21 used

the modified Bron-Kerbosch algorithm to obtain the

MCSs, which is the same process replicated in this

work. A distance metric can then be used between the

graphs of structures and their MCSs to obtain a mea-

sure of similarity. In related work by Gosliga et al.,21,41

the Jaccard similarity coefficient,

Jv(G,H) =
jV (G0)j

jV (G)j+ jV (H)j � jV (G0)j ð3Þ

is utilized to obtain the Jaccard distance,

Dv(G,H) = 1� Jv(G,H) ð4Þ

giving a measure of structural similarity. Here, jV (G)j
and jV (H)j are the number of vertices (or nodes) in

graphs G and H , respectively, and jV (G0)j is the num-

ber of vertices in the MCS of G and H .

The Jaccard distance Dv between the toy structures

introduced section ‘The toy dataset’ and their corre-

sponding MCSs is presented in Figure 4(a), reproduced

from the work by Gosliga et al.21 In this figure, a dis-

tance closer to zero implies that the structures are

Figure 3. The graphs from Figure 2 re-imagined with element types (shape of the nodes) and materials (colour of the nodes)

highlighted for visual comparison. (a) Turbine 1. (b) Aeroplane 1. (c) Aeroplane 2. (d) Bridge 1. (e) Bridge 2. (f) Bridge 3.

6 Structural Health Monitoring 00(0)



similar and values closer to 1 suggest that they are dis-

similar. The distance Dv between Aeroplane 1 and 2 is

small because they have large MCSs as seen in Figure

4(b). The same can be said for Bridges 2 and 3. On the

other hand, the distance between Bridge 1 and

Aeroplane 1 is high, as the MCS is small. Although the

Jaccard score is rather simplistic, it has proved remark-

ably useful for PBSHM already; Gosliga et al.41 has

shown that it is able to successfully pair bridges of sim-

ilar type in a population of eight bridges.

At the next level of detail in comparing structures,

one can consider other attributes, such as the material

properties and geometry of the elements that provide a

comprehensive characterization of the structures. This

information is encoded in the AG representation via

the node attributes. To aid comparison, a metric that is

more sophisticated than the Jaccard distance is needed,

because the Jaccard + MCS method is unable to pro-

cess continuous node labels. In the next section, graph

kernels are introduced as a method for assessing simi-

larity between AGs.

Graph kernels

Graph kernels, introduced by Gärtner et al.42 and

Kashima et al.,43 were designed as a similarity measure

for comparing graph substructures that can be com-

puted in polynomial-time. The aim was to find a map-

ping s : G3G ! R between two graphs G and H so

that s(G,H) determines the similarity between G and

H . The solution needed to be completed in polynomial

time as the previous methods based on computing

sub-graph isomorphism – which finds a subset of edges

and vertices of a graph that is isomorphic1 to another

smaller graph – is NP-complete, leading to large com-

putational times, especially for large graphs. Note that

the MCS-based method discussed earlier in related

work computes sub-graph isomorphisms and, there-

fore, imposes a heavy computational burden on

structural-similarity assessment for PBSHM.

In order to find the mapping s between two graphs,

the idea of a kernel44 can be used. A function

k : X3X ! R is a kernel if there is a Hilbert space H,

and a map f : X ! H, such that for all x, x0 2 X ,

k(x, x0) :¼ hf(x),f(x0)iH.45 A Hilbert space is an inner-

product space that contains all Cauchy sequence limits.

A function h�, �iH : H3H ! R is an inner product in H
if it is symmetric, non-negative, linear and hx, xiH = 0 if

and only if x= 0. A norm is also induced by the inner

product which means the triangular inequality holds.

Consequently, kernels show similar properties to dis-

tance metrics (which obey the rules set by Dudley18)

that are used to measure feature similarity in

PBSHM.19 As these kernels are positive definite, they

define a unique reproducing-kernel Hilbert space

(RKHS). The reproducing property states that

hf ( � ), k( � , x)iH = f (x) for all f 2 H and x 2 X . As there

are almost no conditions on X , graphs can be used

here, leading to the idea of a graph kernel.

Graph kernels are convolution kernels on pairs of

graphs and can be used in any kernel method, such as

classification, clustering, etc.46 Graph kernels in the

RKHS are positive definite where a distance function

can be defined as,

Figure 4. (a) The topological similarity between the structures and their MCSs, calculated using the Jaccard distance Dv . (b) The

MCSs between Aeroplane 1, Aeroplane 2 and Bridge 1 (found in the off-diagonal plots), that lead to some of the highest and lowest

similarity scores. These figures are reproduced from the work by Gosliga et al.21

MCSs: maximum common subgraphs.

Wickramarachchi et al. 7



D(x, y) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k(G,G)� 2k(G,H) + k(H ,H):
p

If f is injective here, k is a complete graph kernel and,

k f(G)� f(H) k = 0

if and only if G is isomorphic to H . A kernel is, there-

fore, a proxy for a distance metric, and imposing kernel

structure in the space of graphs acts as a correlation

function, giving an indication of graph similarity.

Following Mercer’s theorem, the Gram matrix that

represents the positive definite graph kernels can be

normalized to obtain a scale-invariant similarity mea-

sure.47 The Gram matrix or the graph kernel is normal-

ized by

knorm(G,H) =
k(G,H)

k k(G,G) k � k k(H ,H) k ð5Þ

where the norm of a graph kernel calculated on G is

given by k k(G,G) k, etc. The norm is calculated by

taking the diagonals of the symmetric Gram matrix

(which corresponds to the inner product of each graph

with itself), then taking the square root of each diago-

nal element. The resulting normalized Gram matrix

Knorm has 1s along the diagonal, because a graph com-

pared with itself results in a value of 1, representing

isomorphism. Therefore, a similarity measure can be

calculated using 1� knorm. A large value then suggests

a greater difference in the graphs, whereas a value of

zero indicates that the two graphs are the same (or

isomorphic).

There exists many types of graph kernels; some are

based on ‘walks’,23 some on ‘paths’,24 others on ‘graph-

lets’48 and ‘subtrees’,49 to name a few. The strength of

these kernels arise from the ability to compare, not

only the substructure of graphs, but also their node

attributes.

One of the fastest kernels capable of assessing large

graphs with discrete node labels is the Weisfeiler-

Lehman (WL) graph kernel.49 This kernel can be used

as a suitable first step to assess the similarity of IEs by

comparing the topology of the elements, represented in

the AGs as discrete node labels such as ‘beams’ or

‘shells’. In this paper, these node labels will be referred

to as type labels henceforth.

WL graph kernel

The WL framework is an iterative algorithm that helps

identify if two graphs are isomorphic. It is based on

assessing the subtrees of two graphs to identify if the

graph substructures are similar. The general idea here

is to iteratively relabel graph substructures that differ

until the the label sets of the two original graphs are

completely different. The runtime complexity of the

WL framework is O(Nmh), where N is the number of

graphs, m is the number of edges, and h is the number

of iterations.

The WL kernel with h iterations is defined as49

khWL(G,H) =
X

h

i = 0

k(Gi,Hi) ð6Þ

where k can be any kernel for graphs,

k(Gi,Hi) = f(Gi),f(Hi)h i ð7Þ

and f is the feature mapping corresponding to the ker-

nel. To obtain the features, the WL algorithm repre-

sents each node v by the sorted set of node labels of

neighbouring nodes Lv. By doing so, for all node pairs

of v and w from graphs G and H (respectively), the WL

framework counts pairs of matching substructures in

subtree patterns rooted at v and w.

The new labels Lv get compressed into short labels

or hash values h(Lv). The nodes v are then relabelled

with h(Lv) as their new node labels,

k(Gi,Hi) = k(r
i
(G), ri(H)) = f(ri(G)),f(ri(H))

� �

ð8Þ

where ri(G) is the relabelled graph G at the ith itera-

tion. These steps are repeated until the node label sets

of the two original graphs differ, or the number of

iterations reaches a given value. The new labels h(Lv)

are then counted at each iteration for each graph and

used for the final kernel calculation. If the feature map-

ping C(G) is defined as f(ri(G)), then

k(Gi,Hi) = C(G),C(H)h i ð9Þ

which suggests that khWL is positive semidefinite, as a

sum of positive semidefinites.

The kernel values of each iteration are added to

obtain the final kernel value. The Gram matrix normal-

ization method discussed earlier is applied to obtain a

measure of similarity across the entire population.

A visual example of the graph relabelling process is

is presented in Figure 5(a) to (d). Here, Bridge 1

(referred to as graph G) and Bridge 2 (graph H) from

the toy dataset in Figure 3 are used with their discrete

element type labels. Any difference in substructure

between the original graphs in Figure 5(a) are identi-

fied by the WL framework and given a new label, as

highlighted by the change in numbers and colours of

each following figure (Figure 5(b) to (d)). Take, node

A from graphs G and H , for example. The correspond-

ing discrete labels of the original graphs are 5. The

neighbours of A in G are 1,3,B (written as A,13B) and

in H are 1,B,C (or A,1BC). The corresponding com-

bined discrete node labels L1(A)ð Þ for G and H are

5, 002 and 5, 025. The long labels are shortened and
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given new hash values 9 and 10 for G and H , respec-

tively. This means that node A now has two differing

node labels hL1(A), suggesting the substructure is not

isomorphic across the two graphs rooted at node A.

The neighbouring node labels Li(v) and hash values

hLi(v) at each iteration are presented in Table 1 and 2

for Bridges 1 and 2, respectively. Table 3 shows the

counts of new hL labels that make up the feature vec-

tors of the kernel at each iteration (Equation (8)). At

the end of the third iteration, the dot product between

f(G3) = ½G0G1G2G3� and f(H3) = ½H0H1H2H3� gives

k3WL(G3,H3) = hf(G3),f(H3)i= 26, which leads to a

normalized similarity score of 0:46 (because k3WL

(G3,G3) = 32 and k3WL(H3,H3) = 72, where k k3WL

(G3,G3) k � k k3WL(H3,H3) k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32372
p

= 48, giving

Knorm = 26=48= 0:54, leading to a similarity score of

1� Knorm = 1� 0:54= 0:46).

(a) (b)

(c) (d)

Figure 5. The evolution of node labels with each iteration of the WL-kernel when comparing data from Bridge 1 Gð Þ and Bridge 2

Hð Þ. The new node-label sets of the graphs are completely different at the end of the third iteration, ending the process and

determining that the graphs are not isomorphic. (a) Original labels. (b) Relabelled: first iteration. (c) Relabelled: second iteration.

(d) Relabelled: third iteration.
WL: Weisfeiler-Lehman.

Table 1. The node labels at each iteration of the WL kernel for Bridge 1 Gð Þ.

Iteration Bridge 1 nodes labels

0 Nodes 1 2 3 A B

v 0 0 0 5 2

Neighbours 1,A 2,B 3,A A,13B B,2A

1 L1(v) 0,5 0,2 0,5 5,002 2,05
hL1(v) 7 6 7 9 8

2 L2(v) 7,9 6,8 7,9 9,778 8,69
hL2(v) 12 11 12 16 14

3 L3(v) 12,16 11,14 12,16 16,121214 14,1116
hL3(v) 20 18 20 24 22

WL: Weisfeiler-Lehman.

The number of new hL are counted at the end of each iteration and stored –Table 3.

Wickramarachchi et al. 9



The similarity between the structures (introduced in

section ‘The toy dataset’) calculated using the WL ker-

nel is presented in Figure 6(a). Here, discrete node

labels that describe element shapes are included in the

formulation. Since the WL kernel only considers the

labels of the neighbouring nodes in each graph, topolo-

gical similarity is preserved here. Adding the informa-

tion about the element types has grouped the three

bridges together. This result is unsurprising as the

bridges only contain a combination of beam and plate

elements. Aeroplane 2 and Turbine 1 are constructed

predominantly of beams, which may be the reason for

their apparent high similarity. The similarity values cal-

culated by the kernel when considering only the topol-

ogy as well as the inclusion of type labels are found in

Figure 6(b). As node labels are incorporated, the

increase in distance between the structures is expected;

the structures will move further apart in the metric

space when more information – that describe the differ-

ences between them – is included.

The WL kernel is clearly a useful tool to find simi-

larity of graphs with discrete node labels. Shervashidze

et al.49 suggest a faster algorithm that enables the

global computation of multiple graphs simultaneously.

The runtimes of large graphs are much faster when

using the said global method compared to pairwise

comparisons. As civil structures can comprise many

elements, the global WL kernel may be very useful for

PBSHM. This kernel is, however, not able to compare

continuous node attributes that are included in AGs.

In the next section, the random walk (RW) kernel is

presented, that is capable of handling both discrete and

continuous node attributes.

The RW kernel

In biology research, to compare different types of

graph attributes in protein function prediction, the

RW kernel was successfully utilized by Borgwardt

et al.23 The kernel is able to analyse both continuous

and discrete node labels, providing many advantages

over previous attempts, making it a powerful tool for

attributed-graph comparison. The advantages stem

from the fact that comparing discrete labels indicates

whether two nodes are the same or not, whereas com-

paring continuous labels are helpful to obtain a sliding

Table 2. The node labels at each iteration of the WL kernel for Bridge 2 Hð Þ.

Iteration Bridge 2 node labels

0 Nodes 1 2 3 4 A B C D

v 0 0 0 0 5 2 5 2

Neighbours 1,A 2,B 3,D 4,C A,1BC B,2A C,4DA D,3C

1 L1(v) 0,5 0,2 0,2 0,5 5,025 2,05 5,025 2,05
hL1(v) 7 6 6 7 10 8 10 8

2 L2(v) 7,10 6,8 6,8 7,10 10,7810 8,610 10,7810 8,610
hL2(v) 13 11 11 13 17 15 17 15

3 L3(v) 13,1 11,1 11,1 13,1 17,13151 15,111 17,13151 15,111
hL3(v) 7 21 5 19 5 19 7 21 7 25 7 23 7 25 7 23

WL: Weisfeiler-Lehman.

The number of new hL are counted at the end of each iteration and stored –Table 3.

Table 3. The counts of node labels of Bridge 1 Gð Þ and Bridge 2 Hð Þ at each iteration.

v f0 f1 f2 f3

G0 H0 hL1(v) G1 H1 hL2(v) G2 H2 hL3(v) G3 H3

0 3 4 6 1 2 11 1 2 18 1 0
2 1 2 7 2 2 12 2 0 19 0 2
5 1 2 8 1 2 13 0 2 20 2 0

9 1 0 14 1 0 21 0 2
10 0 2 15 0 2 22 1 0

16 1 0 23 0 2
17 0 2 24 1 0

25 0 2

These counts make-up the feature vector for the kernel.
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scale of similarity/dissimilarity. In the context of SHM,

the ability to compare continuous node labels will be

used to include material properties of each element of

the structure into the kernel. Including discrete and

continuous node labels can help assess the similarity of

structures and obtain a full picture of the differences

between structures in terms of their topology, geometry

and material properties. Consequently, the RW kernel

may help to verify the PBSHM framework established

in ‘When is a bridge not an aeroplane?’ by Worden

et al.22 where the hypothesis is: distances – a measure

of dissimilarity – between structures that are different

will increase, as more information is added to the AGs

(as attributes) that describe the structures.

In its simplest form, the RW kernel counts the num-

ber of matching labelled RWs within two graphs and

provides a measure of topological similarity. Later,

methods that include discrete and continuous attributes

within the RW formulation are discussed. A ‘walk’ of

length k � 1 is defined in a graph as a set of edges

(vi�1, vi) 2 E for 1\i<k.24 In the RW kernel, ‘walks’ are

undertaken on the adjacency matrix of the direct prod-

uct of the two input graphs (G3H), A3. Simultaneous

RWs on the two input graphs are the same as conduct-

ing a walk on the direct product graph.26

The RW kernel is defined as,

k3(G,H) =
X

V3

i, j= 1

X

‘

n= 0

lnAn
3

" #

ð10Þ

where G and H are two input graphs, i and j are the

number of vertices in G and H respectively, n is the

number of steps in the walks, l is a factor that ensures

convergence, and the node set of (G3H) is,

V3 =V3(G3H) = f(v1,w1) 2 V3W :

(label(v1) = label(w1))g:
ð11Þ

Equation (10) can be computed using the precondi-

tioned conjugate-gradients method50 (used here that

computes in O(n4) time, where n is the number of nodes

in the graph), or the Sylvester equation,26 for a faster

computation (O(n3) time).

The RW kernel in Equation (10) can be modified to

include a number of other positive-definite kernels

operating on attributes, that is, kernels assessing dis-

crete and continuous labels can, therefore, be included

as part of the adjacency matrix. The adjacency matrix

of the modified RW kernel from Equation (10)

becomes,

½A3�((vi,wi), (vj,wj))
=

kstep((vi,wi), (vj,wj)) if ((vi,wi), (vj,wj)) 2 E3,

0 otherwise:

�

ð12Þ

where vi and vj are vertices in G, and wi and wj are ver-

tices in H and,

E3 =E3(G3H) = f((v1,w1), (v2,w2)) 2 V 2
(G3H) :

(v1, v2) 2 E ^ (w1,w2) 2 F

^ (label(v1, v2) = label(w1,w2))g:
ð13Þ

(a) (b)

Figure 6. (a) The similarity of graphs from section ‘The toy dataset’ calculated using the WL kernel. Here, the discrete node labels

that describe the shape of each element (as seen in Figure 3) are included in the kernel. (b) The kernel values when considering only

topology (red) and when including type labels (blue).
WL: Weisfeiler-Lehman.
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where ^ is a logical AND operator.

The step kernel (not accounting for edge similarity)

for i 2 f1, � � � , n� 1g is,

kstep((vi, vi + 1), (wi,wi+ 1)) = knode(vi,wi) � knode(vi+ 1,wi+ 1)

ð14Þ

and the knode kernel is defined as,

knode(vi,wi) = ktype(vi,wi) � knode�labels(vi,wi): ð15Þ

As suggested by Borgwardt et al.,23 a type kernel

can assess discrete labels within the RW. In this work,

discrete node labels that describe the shape of each ele-

ment (e.g. ‘beam’) are designated type labels, and will

be used within the type kernel. The type kernel only

allows a walk in the direct product graph if the two

nodes are the same type. For this step, a Dirac kernel

is used, where a value of 1 is given if the two nodes are

of the same type, and a 0 is given otherwise, that is,

ktype(x, x
0
) =

1 if type(x) = type(x0),
0 otherwise:

�

ð16Þ

For evaluating continuous attributes, a node-label ker-

nel is employed here. The node-label kernel uses the

Gaussian kernel to evaluate any vectorized continuous

attributes. In this case, the material properties of the

elements are used as the node labels. The Gaussian ker-

nel is defined here as,

knode�labels(x, x
0
) = exp �k x� x

0k2
2s1s2

� �

ð17Þ

where x and x
0 are the vectorized attributes of two

nodes x and x
0, respectively. The widths of the kernels

knode�labels(x, x) and knode�labels(x
0, x0) are s1 and s2,

respectively. The median heuristic is used to obtain s,

as explained by Gretton et al.,51 and defined by

Garreau et al.52

Once the RW kernels are calculated on each pair of

graphs in the population, similarity measures are

obtained by normalizing the Gram matrix. The similar-

ity between the structures in the toy dataset when con-

sidering their type and material properties is presented

in Figure 7(a). Slightly different types of concrete were

used in the beams and plates for Bridge 2 and 3 in

order to obtain non-zero node-label kernel values. By

including these attributes, the RW kernel has identified

high similarities within the group of bridges and within

the two aeroplanes. This is a useful initial result for

PBSHM, as likely candidates for positive transfer have

been identified and grouped together. Interestingly,

high similarities are observed between Turbine 1 and

Bridge 2, which does not make physical sense. From

Figure 7(b), the reason for this behaviour can be attrib-

uted to the similarities in the material properties as the

kernel values are not pulled apart here. Both structures

contain a combination of steel and concrete compo-

nents, which may be the underlying reason for this

result. This is possibly an artifact of comparing high-

level similarities where little information is provided in

the AGs. This result is expected to improve as more

information is included in the formulation.

One must now take care when considering these

structures for transfer, as an important attribute has

(a) (b)

Figure 7. (a) The distance between graphs from section ‘The toy dataset’ calculated using the RW kernel. Here, the discrete and

continuous node labels that describe the shape and material properties of each element are included in the kernel. (b) The kernel

values when considering only topology (red) and when including type labels (blue) and material properties (green). Worden’s22

hypothesis that distances will increase as more attributes are added to the AGs is verified in (b).
AG: attributed graph; RW: random walk.
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been left out of formulation up to now, which is the

dimensions of the elements. It should be obvious that

even though the two aeroplanes are similar to one

another when considering the current (rather crude)

attributes and the RW kernel, that they are, in fact,

considerably different in practice. In this specific con-

text, the main difference in these structures arise from

their size (if one is to make the assumption that their

aspect ratios remain consistent). By employing the

Brownian bridge kernel,23 a length kernel,

klength(x, x
0
) =max(0, c� jlength(x)� length(x0)j) ð18Þ

can be introduced into Equation (15), where c is a con-

stant. This kernel assigns the highest value to nodes

that are identical in length and a zero to all others that

are larger than c. Here, c is set to 1000 to help separate

the structures.

Figure 8(a) and (b) presents the results of the RW

kernel when taking the previous attributes as well as

the volume of each element into account. The size of

Aeroplane 253 has led the distance between itself and

the rest of the population to increase, including

Aeroplane 1. This result is promising as it demon-

strates the usefulness of the length kernel in reducing

the threat of negative transfer, by including important

geometrical considerations into the mix.

Although the RW kernel was the first of its kind to

incorporate continuous node attributes42 and has

shown to be useful in the context of PBSHM, it suffers

from the problem of ‘tottering’; the RW kernel’s walks

can revisit the same cycle of nodes leading to graphs

with similar substructures to present artificially high

similarities. Solutions to this problem have been found

using the graph-invariant kernels27 and the shortest

path (SP) (a path is a walk without repeating nodes)

kernel.24 Although calculating all paths and longest

paths is NP-hard, SPs can be computed in O(n3).46 In

the next section, a kernel that is based on the SP kernel

is investigated to identify a similarity metric for

PBSHM that avoids tottering and has a faster runtime

than the SP kernel.

The GraphHopper kernel

The GraphHopper (GH) kernel builds on the idea of

comparing paths within graphs, where it counts simul-

taneous ‘hops’ along paths of discrete lengths. It is a

sum of node kernels and is in the form,

k(G,H) =
X

v2V

X

w2W
weight(v,w)kn(v,w) ð19Þ

where kn(v,w) can be positive definite kernels such as

the type, node-label and length kernels in this case. The

weight(v,w) is calculated by considering the directed

acyclic graphs (DAGs) of the original graph (a directed

graph with no cycles) and counting the number of

paths of discrete lengths within the DAG. Example

DAGs of Bridge 1 can be found in Figure 9. The

weight(v,w),

weight(v,w) =

X

d

j = 1

X

d

i= 1

#f(p,p0
)jp(i) = v,p0

(i) =w, jpj= jp0j= jg ð20Þ

(a) (b)

Figure 8. (a) The distance between graphs from section ‘The toy dataset’ calculated using the RW kernel. Here, the material

properties, shape and volume of the nodes as well as the graph topology are included. (b) The kernel values when considering only

topology (red) and when including the type kernel (blue), node-label kernel (green) and length kernel (purple).
RW: random walk.
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counts the number of times v and w appear at the same

hop, i in the SPs p and p0 along G and H of equal dis-

crete lengths, jpj = jp0j. d here is the maximum dia-

meter (maximal number of nodes in a SP), of G and H .

The computational complexity of this kernel is

O(n2(m+ log n+ d2 + d)), where d is the dimension of

the node attributes.

The similarities measured across the population of

toy structures in Figure 10(a) show that the GH kernel

also groups the bridges together, and the aeroplanes

together. However, the difference between the aero-

planes is much larger than that of the RW kernel,

which makes physical sense as one plane is based on a

large-scale passenger jet, whereas the other is based on

a small, light propeller plane. When considering the

bridges, the RW kernel results show different similari-

ties compared to the GH kernel. For example, the RW

kernel identifies Bridge 1 and 3 to be the most similar

whereas the GH kernel detects Bridge 2 and 3 to be the

most similar. The GH results in Figure 10(b) represent

reality a little better here as it penalizes the differences

in topology, material properties, type and sizes much

more than the RW kernel, which only pulls Bridges 1

and 3 apart for difference in sizes (Figure 8(b)).

Figure 10(b) shows that the topological differences

between the AGs are captured at a similar scale to attri-

butes themselves, that is, the topological differences are

in the range of 10�2 � 10
�1 and topology + attributes

are within the range of 10�1 � 10
0. Compared to the

RW kernel where the topological differences are much

smaller (topological differences are within the

10
�9 � 10

�7 range, whereas topology + attributes are

in the 10�1 � 10
0), this result suggests that the GH ker-

nel is more suitable for identifying the structural differ-

ences across PBSHM populations.

Compared to the RW kernel, the GH kernel has

high dissimilarities between most structures because it

does not suffer from tottering. Given the faster compu-

tation times and the resistance to tottering, the GH

kernel is well suited for use in PBSHM for assessing

structural similarity. In comparison to results from

related work based on the Jaccard similarity and MCSs

(a) (b)

Figure 10. (a) The distance between graphs from section ‘The toy dataset’ calculated using the GraphHopper kernel. Here, the

material properties, shape and volume of the nodes as well as the graph topology are included. (b) The kernel values when

considering only topology (red), when including the type kernel (blue), including the type and node kernels (T&N in green), and

including the type, node and length kernels (T,N&L in purple).

Figure 9. Graph of Bridge 1 on the right and the transition to the DAGs on the left.
DAG: directed acyclic graph.

14 Structural Health Monitoring 00(0)



(that captures subgraph isomorphism) in Figure 4(a),

the GH kernel has shown to be a good contender for

structural similarity assessment in PBSHM; the GH

kernel groups the bridges and the aeroplanes together,

forming tighter communities than the Jaccard method

where the distance between Bridge 1 and Bridge 3 are

bigger than the distance between Turbine 1 and Bridge

2, for example. As a result, the GH results indicate that

transfer is less risky between the bridges which makes

practical sense.

Clearly, including attribute comparisons in the for-

mulation has been an advantage in similarity compari-

son of structures, demonstrating the power of graph

kernels in the context of PBSHM. In the next section,

these graph kernels are used to assess the similarity of a

heterogeneous population of real bridges, to evaluate

their effectiveness and to gauge their usefulness for esti-

mating the risk of negative transfer in PBSHM.

Case study: Measuring the similarity

between a heterogeneous population of

bridges

In the previous section, the use of graph kernels for

assessing suitability of transfer learning in PBSHM

was evaluated using a simulated toy dataset. The data-

set was specially designed to draw out the differences

between typical SHM structures to test the suitability

of different similarity measures. In this case study, the

aim is to test these measures on a dataset associated

with real SHM structures in order to assess their per-

formance for industrial application.

In this study, the similarity between a population of

real bridges is measured, where the number of nodes

(or individual components) in the bridges are much

higher than the partition of structures into sub compo-

nents within the toy dataset. One objective here, there-

fore, is to determine whether the graph kernels are able

to handle larger datasets, to produce fast similarity

comparisons. As the dataset only contains different

types of bridges, another objective is to evaluate

whether the graph kernels are sensitive to smaller

changes within a population (in comparison to the toy

datasets where the differences between the attributes

and topology between the structures/AGs are much

larger).

For the sake of simplicity, joints are not modelled in

this case study; that is, there are no edge attributes.

The bridge dataset

The dataset used in this case study contains seven

operational bridges from the United Kingdom.

Specifically, it contains one arch bridge, one cable-

stayed bridge, two beam-and-slab bridges, two truss

bridges and a suspension bridge. The abstract graphi-

cal representations of the bridges with attributes high-

lighted are shown in Figure 11. The IEs of these

bridges were specified in earlier work by Gosliga

et al.41 and reproduced here. An introduction to each

graph is presented in this section. Table 4 provides a

summary of the attributes included in each graph.

The element types encountered for the set of bridges

include: beam, block, cable, column, plate, slab and

wall. The shapes of the elements are cuboid (solid and

hollow), cylinder (solid and hollow), ribbed (solid), tra-

pezoid (hollow) and I and U (precast beam shapes).

The materials consists of composites (GFRP), two

types of concrete (A and B) and steel.30–34 The material

properties included are density (kg/m3), tensile strength

(MPa), modulus of elasticity (MPa) and coefficient of

thermal expansion 310
�6=K

� 	

. For simplicity, the

material properties of steel and composite are the same

across all corresponding elements within the dataset.

For all beams in the dataset, concrete A is assigned;

concrete B is assigned to all other element types. The

specific material properties used in this dataset are pre-

sented in Table 5. The volume of the elements repre-

sents their dimensions and is calculated according to

the element shapes. The specific dimensions of each

element are not listed in this paper as they contain con-

fidential proprietary information.

Arch bridge. Located in Northern Ireland, the tied-arch

bridge in this case study (referred to as the ‘Arch’

bridge or AR, henceforth) has a span of 103 m and is

composed of steel. The deck in these types of bridges is

supported by arches that span between supports. The

arch can be supported on struts where the deck is

above the arch or the arch is supported by hangers

where the deck is below the arch. The arch bridge in

this dataset contains two arches at either side of the

deck which is supported by longitudinal girders and

transverse beams. Figure 12 presents a photo and a

drawing of the bridge and Figure 11(a) shows the cor-

responding graph with attributes. Table 4 details the

summary of element types, shapes and material proper-

ties of the Arch bridge.

Cable-stayed bridge. The bridge dataset contains one

cable-stayed footbridge referred to as ‘Cable-Stayed’

or CS here. In this particular bridge, that is located in

Exeter, the deck is supported by transverse beams and

longitudinal girders and cables that are themselves con-

nected to pylons. A photo and a drawing of the bridge

is presented in Figure 13. The graphical representation

and the AG of the bridge (with material properties and

element types) can be found in Figure 11(b). Table 4
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presents the attributes in the AG of the cable-stayed

bridge.

Beam-and-slab bridges. The dataset contains two real

integral-abutment beam-and-slab bridges located in

Northern Ireland, named here as ‘Beam and Slab 1’

(BS1) and ‘Beam and Slab 2’ (BS2). Both bridges are

made of reinforced concrete and have a similar topol-

ogy. Essentially, these bridges contain beams that run

along the span of the bridge with cylindrical columns

to support the decks. Figure 11(c) and (d) present the

graph of the beam-and-slab bridges that includes the

type and material property information. Table 4 sum-

marizes the types of elements in the AGs as well as their

shapes and material properties. Figures 14 and 15 pres-

ent images of the bridges.

The main differences between the bridges stem from

the type of abutments and number of beams per span:

Figure 11. The graphs are: (a) The Arch bridge, (b) The Cable-stayed bridge, (c) The Bean and Slab Bridge 1, (d) The Beam and

Slab bridge 2, (e), The Truss bridge 1, (f) The Truss bridge 2 and (g) The Suspension bridge.
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� BS1 contains skeletal abutments designed to flex

with deck movement, and BS2 contains bank-seat

abutments.
� BS1 comprise of four precast longitudinal beams

per span, and BS2 has a slightly longer span and

contains five beams.
� In BS1, the abutment and intermediate pier each

comprise a foundation slab and four columns with

a cap beam on top. In BS2, only the intermediate

pier is supported by four cylindrical columns as a

result of the bank-seat abutments.

Truss bridges. Located in Northern Ireland, Truss 1

(TR1) is footbridge with a span of 36 m that contains a

Warren type truss for both walls. It is a simply sup-

ported single-span bridge with pad foundations. The

deck of this particular bridge is placed below the truss.

Truss 1 bridge also contains transverse beam elements

and continuous bottom chords that support the deck.

Figure 16 shows a photograph and a drawing of Truss

1 footbridge. Figure 11(e) presents the abstract graphi-

cal representation of the Truss 1 bridge and its included

attributes. The description of the elements in Truss 1

bridge can be found in Table 4. The second truss

bridge, referred to in this paper as ‘Truss 2’ (Figure

11(f)) only differs very slightly from Truss 1. Truss 2

(TR2) has a shorter span (by 2 m) and contains piled

foundations. A photograph and a drawing of Truss 2 is

presented in Figure 17.

The suspension bridge. The suspension bridge considered

here is the Humber bridge, an iconic bridge in the north

of England joining the city of Kingston-upon-Hull to

the town of Barton-on-Humber and crossing the river

Humber. A photograph of the bridge is given in Figure

18, while the abstract representation is given in Figure

11(g). It is a single-span road bridge of length 2.2 km;

at the time of its construction it was the longest bridge

of its kind in the world. A detailed description would

constitute a major digression; however, various refer-

ences can be found in The Humber Bridge Board.54

Table 4. Summary of the information contained in the AGs of the bridges in the dataset.

Arch Cable-stayed BS1 BS2 Truss 1 Truss 2 Suspension

Type (number
of elements)

Beam (32)
Cable (44)
Column (2)
Column (2)
Plate (1)
Slab (3)
Wall (2)

Beam (52)
Block (2)
Cable (14)
Cable (14)
Column (2)
Slab (2)
Wall (2)

Beam (16)
Column (12)
Slab (4)
Slab (4)

Beam (16)
Column (4)
Slab (4)
Slab (4)
Wall (2)

Beam (92)
Column (8)
Plate (1)
Plate (1)
Slab (4)
Wall (2)

Beam (92)
Column (10)
Plate (1)
Plate (1)
Slab (4)
Wall (2)

Beam (11)
Block (2)
Cable (450)
Column (6)
Slab (2)

Shape Cuboid (H)
Cuboid (S)
Cylinder (S)
I
Ground

Cuboid (H)
Cuboid (S)
Cylinder (H)
Cylinder (S)
Ground

Cuboid (S)
Cylinder (S)
U
Ground

Cuboid (S)
Cylinder (S)
U
Ground

Cuboid (H)
Cuboid (S)
Cylinder (S)
Ribbed (S)
Ground

Cuboid (H)
Cuboid (S)
Cylinder (S)
Ribbed (S)
Ground

Cuboid (H)
Cuboid (S)
Cylinder (H)
Cylinder (S)
Trapezoid (H)
Ground

Materials Composite
Concrete A
Concrete B
Steel

Concrete B
Steel

Concrete A
Concrete B

Concrete A
Concrete B

Concrete B
Steel

Concrete B
Steel

Concrete A
Concrete B
Steel

AG: attributed graph.

H stands for ‘hollow’ and S stands for ‘solid’. U and I are standard shapes of beams.

Table 5. The material properties of each material used in this dataset.

Material Density (kg/m3) Tensile strength (MPa) Modulus of elasticity (MPa) Coefficient of thermal
expansion (31026/K)

Concrete A 2500 1.77 36,283 10
Concrete B 2400 1.2 31,000 8
Composite 1500 2048.5 25,500 6
Steel 7205 880 200,000 13.7
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Results and discussions

To measure the structural similarity of the heteroge-

neous population of aforementioned bridges, the RW

and GH methods suggested in section ‘Graph kernels’

are employed, because they have the ability to include

discrete and continuous attributes. For the length ker-

nel, a value of 1000 is set for c in Equation (18) follow-

ing the points of convergence observed in Figure 21.

The confusion matrices in Figure 19(a) and (b) rep-

resent the RW and GH kernel values (respectively)

between each of the seven bridges, when including the

geometry classes, material properties and the element

sizes.

At first glance, it is clear that the results of the graph

kernel comparisons in Figure 19(a) and (b) are sensible

and follow engineering knowledge; the bridges that have

a similar construction are grouped together. This is a

major finding, as the ability to compare continuous node

attributes within the similarity formulation allows for

many possibilities in the future. For example, it may be

possible to include time-series data from a sensor located

at a specific element of an AG. Furthermore, the compu-

tational complexities of the graph-kernel methods pro-

posed here are sensible. The GH kernel can be computed

in O(n2(m+ log n+ d2 + d)) where n and m are the num-

ber of nodes and edges, d is the diameter of the graph and

d is the dimension of the node attributes. Computing the

Figure 12. (a) A photograph of the tied arch bridge. (b) A schematic of the bridge.

Figure 13. (a) A photograph of the cable-stayed bridge. (b) A schematic of the bridge.

Figure 14. (a) A photograph of Beam and Slab 1. (b) A schematic of the bridge.
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RW kernel takes O(n3) time, when using the Sylvester

equation.55 In comparison to the proposed graph kernel

methods, the computational complexity of the MCS

problem is intractable,56 leading to significantly higher

computational times when considering the current meth-

ods of graph comparison used in PBSHM.41

Figure 15. (a) A photograph of Beam and Slab 2 (b) A schematic of the bridge.

Figure 16. (a) A photograph of Truss 1. (b) A schematic of the bridge.

Figure 17. (a) A photograph of Truss 2. (b) A schematic of the bridge.

Figure 18. (a) A photograph of the Suspension bridge. (b) A schematic of the bridge.
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Some of the interesting observations from Figure

19(a), (b), Figure 20(a) and (b) are:

� The two truss bridges are found to be almost identi-

cal in structural similarity with values of 2:45310
�4

(RW kernel) and 5:7310
�4 (GH kernel). As the

bridges share a similar topology as well as geometry

classes, material properties and element sizes, this

result is unsurprising. This finding suggests that the

threat of negative transfer is likely to be low when

transferring knowledge between these two bridges.
� The two beam-and-slab bridges are also found to be

similar within the population, but with a higher

value of 0.22 (RW kernel) and 0.28 (GH kernel)

compared to the truss bridges. The middle section of

the beam and slab bridges share a similar construc-

tion, although the end sections do not,41 leading to

the larger distances between them in comparison to

the distances between the truss bridges.
� It is possible that the RW kernel is suffering from

‘tottering’ here; the similarity between the cable-

stayed bridge versus the truss bridges are much

lower compared to the similarity values between

the two beam and slab bridges, suggesting a high

artificial similarity in the former case. As the scale

of similarity is arbitrary, that is, the values of simi-

larity are dependent on the type of graph kernels

used, the useful information here is the similarity

values across the population. To that end, the

results from the GH kernel in this scenario are less

surprising and make physical sense, because they

find the difference between the cable-stayed bridge

and the truss bridges to be larger than the differ-

ence between the beam-and-slab bridges. The GH

kernel is better suited here, as it avoids the problem

of tottering.
� It is worth dwelling somewhat on the comparisons

with the suspension bridge (last row of confusion

matrices). As one might expect, there are significant

differences with the beam-and-slab bridges; the rest

of the entries are interesting. In simple terms, the

other bridges share a certain geometrical nature, in

that there are superstructures on either side of the

deck joined by hangers to deck level. The closest

match is between the arch bridge and the suspen-

sion bridge (metric value of 0.15 (RW) and 0.78

(GH)); this arguably makes sense because the topo-

logical characteristics of the hangers match. In

these two bridges, the hangers are vertical, so they

each meet both the superstructure and deck with

single graph edges. The next closest match is with

the cable-stayed bridge (metric of 0.74 (RW) and

0.9 (GH)); one might argue that this distance is

greater because the deck connections are simple

edges once more, but the connection to the super-

structure has multiple cables connected at the

tower. Finally, the truss bridges appear very differ-

ent from the suspension bridge; again this seems to

make sense from a topology point of view, as at the

points at which the ‘hangers’ meet the superstruc-

ture or deck, they also meet other ‘hangers’. The

bridges are distinguished by the topology of the

connections in their superstructure. Of course,

there are also matters of scale to consider.

AG similarity and transfer learning. Both confusion

matrices in Figure 19(a) and (b) present high similarity

scores between the cable-stayed bridge and the truss

(a) (b)

Figure 19. The similarity between the bridges calculated using the (a) RW kernel and (b) GH kernel when taking into account the

topology, type, node-label and length kernels.
GH: GraphHopper; RW: Random Walk.
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bridges. The high similarity between these bridges

stems from the similarity in compared attributes, as

seen in Figure 22; the truss bridges and the cable-

stayed bridge are both made up of the same materials

and have similar components of similar sizes. These

results suggest that the risk of negative transfer is lower

between the truss bridges and the cable-stayed bridge

compared to the others in the population. To evaluate

this outcome, consider an example where a target

structure within transfer learning is a truss bridge with

a damaged truss. These results suggest that a loss of

tension in a cable within the cable-stayed bridge may

be comparable to the presence of damage in a truss

within the truss bridges. As a result, the cable-stayed

bridge may be used as the source structure here, pro-

vided that it contains labelled information. It makes

sense not to use the beam-and-slab bridges for transfer

here as they do not contain any metal components or

overhead support structures such as cables or trusses

(as reflected in the low similarity scores). Although

visually, the arch bridge may also be a likely candidate

for transfer (as the arch bridge contains metal over-

head support archers connected to a deck, similar to a

truss bridge), greater topological differences as well as

disparities in the type, materials, and the size of the

components make the arch bridge an unsuitable

candidate.

There are clearly many benefits to using the pro-

posed graph kernel approach set out in this paper to

help evaluate the risk of negative transfer in PBSHM.

Consequently, it may be useful to consider threshold

values to determine a point at which the similarity val-

ues should be discounted for transfer learning, in order

to avoid negative transfer across a population. Taking

the earlier example of transfer between the cable-stayed

bridge and the truss bridge, consider setting a thresh-

old at a similarity value of 0.5. The idea here is that if

the kernel value between these two bridges surpass 0.5,

then transfer should not be conducted. Figure 23(a)

presents this scenario using the GH kernel results of

Truss bridge 1 versus the cable-stayed bridge and the

arch bridge. It is clear that the arch bridge crosses this

threshold, suggesting a high risk of negative transfer.

Figure 23(b) presents a similar scenario where a thresh-

old is used to evaluate which bridges are suitable to

transfer information when beam-and-slab 1 is the tar-

get structure. Here, all bridges besides beam-and-slab 2

cross the threshold, making them unviable for transfer,

where the arch bridge is the most likely candidate

source structure that will result in negative transfer.

These results closely follow the assumptions made in

the original framework of structural similarity assess-

ments set forth by Worden et al.22 in the paper ‘When

is a bridge not an aeroplane?’, thus verifying those

findings with a suitable metric.

This section has demonstrated that graph kernels

can be used as similarity measure with desirable prop-

erties that serve as a metric in the space of AGs/base

space. The available kernels not only capture the sub-

structure isomorphisms within the population well,

they are also able to assess the attributes within the

graphs, providing a complete picture of the differences.

Next, a comparison between the proposed graph ker-

nels method and the current MCS-based methods is

undertaken to highlight the advantages of the graph

kernels methodology.

(a) (b)

Figure 20. The kernel values of (a) the RW kernel and (b) the GH kernel when considering only topology (red), when including

the type kernel (blue), including the type and node kernels (T&N in green), and including the type, node and length kernels (T,N&L

in purple).
GH: GraphHopper; RW: Random Walk.
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The proposed graph kernels versus the current

methods used in PBSHM

For comparison against the proposed graph kernels

methods in this paper, the current methods of similar-

ity assessment of structures in PBSHM that utilizes the

Jaccard distance and MCSs is reproduced from

Gosliga et al.41 in Figure 24.

Figure 24 presents the similarity of the bridge data-

set when using the MCSs – which provide information

related to the sub-structures – of the bridges along with

discrete node comparisons (similar to applying the type

kernel in the graph kernels method). The approach has

led to sensible results that follow engineering judge-

ment.41 However, there are two major drawbacks to

consider. Firstly, the Jaccard + MCS method is unable

Figure 22. The attributes of the bridge dataset where the y-axis represents the number of nodes containing the specific attribute.

It is clear that the cable-stayed bridge has similar attributes to the two Truss bridges, giving a high similarity scores within the graph

kernel formulations.

Figure 21. The behaviour of the length kernel as the value of constant c in Equation (18) is increased. In most cases, the similarity

score converges as the constant c increases beyond 1000. As a result, c is set to 1000 where relevant.
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to assess continuous node attributes. Secondly, the

computational efficiency of obtaining an MCS is NP-

complete, leading to significant computational times

(in the 102 h range) when considering the large AGs of

these bridges. Graph kernels are a helpful solution here

as they can incorporate continuous node attributes and

give a measure of scale of the nodes, while computing

the similarities within seconds. Table 6 summarizes the

current state-of-the-art method of assessing structural

similarity in PBSHM (Jaccard distance calculated on

MCSs) and the graph kernels method proposed in this

paper.

Conclusions and future work

PBSHM was proposed as a solution to address the

drawbacks of SHM related to lack of labelled data.

The idea is to share labelled information between

similarly-behaving structures via transfer learning, in

order to increase the pool of available information and

improve the performances of learners across a range of

(a) (b)

Figure 23. Setting a manual threshold for transfer learning to find suitable source structures for a given target structure. (a) When

the target structure is TR1, source structures AR is unsuitable as it has crossed the threshold. Source structure CS may be suitable

for transfer. (b) When the target structure BS1, BS2 is a suitable source structure (considering all others) given the threshold. Here,

the similarity values provided when considering only topology, when including the type kernel, including the type and node-label

kernels (T&N), and including the type, node-label and length kernels (T,N&L). (a) Identifying source structures for TR1. (b)

Identifying source structures for BS1.

Table 6. Summary of methods applied in PBSHM for assessing similarity of graphs.

Method Runtime Discrete attributes Continuous attributes Measure of scale

Current41

Jaccard similarity on MCS ;102 h � � �

Proposed
Graph kernels \51 s � � �

MCS: maximum common subgraph; PBSHM: population-based SHM.

Figure 24. The Jaccard distance when considering the size of

the common maximum subgraph between structures with

attribute matching. This figure is reproduced from the work by

Gosliga et al.41
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SHM behaviours. To assess similarities within popula-

tions to find suitable candidates for transfer, metrics

are required to measure similarities in the collected

data and the structures themselves; the assumption is

that ‘similarity in data suggests similarity in structures’

and ‘similarity in structures’ suggests ‘similarity in

data’. In this paper, the focus was to find metrics that

can assess the similarity of structures.

By treating structures as AGs, this is the first study

to use graph kernels to assess various aspects of SHM

structures including their topology, geometry, scale and

material properties. Graph kernels show similar beha-

viours to distance metrics, and serve as suitable metrics

within the space of graphs/structures. The inclusion of

node attributes pulled dissimilar structures apart within

the space of graphs, verifying the findings/assumptions

from earlier studies on this topic.22 The suitability of

graph kernels was first demonstrated on a population

of simulated toy structures where they were able to

group similar structures such as bridges together.

Later, the metrics were tested on a group of real, opera-

tional bridges, where they identified structures of simi-

lar construction to be suitable for transfer. The results

suggested that the GH kernel based on measuring SPs

is well suited for assessing similarity for PBSHM as it

can handle discrete and continuous node attributes, has

runtimes in the range of 51 s, and does not suffer from

‘tottering’. In this paper, manual thresholds were set in

order to separate appropriate structures for transfer. In

future work, principled methods of determining auto-

matic thresholds will be studied.

Compared to previous methods based on the

Jaccard index and MCSs, the graph kernel methods

were better suited for industrial application of

PBSHM; the graph kernels assessed the substructure

isormorphisms between graphs in a fraction of the

time, where some graph kernels (the RW kernel and

GH kernel) were able to assess both continuous and

discrete node labels. As previous methods are unable

to assess continuous node attributes, the graph kernels

provide a considerable advantage for PBSHM. The

hope is that, in future work, sensor data can be

included in the formulation as continuous attributes,

allowing this framework to simultaneously assess struc-

ture and feature data.

In this paper, joint information was not included for

simplicity and because methods of defining joints for

PBSHM are currently ongoing. As a result, methods of

modelling joints will be conducted in future work.
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Note

1. When two graphs G and H are isomorphic, there exists a

mapping f of the vertex sets of the two graphs where any

two vertices u and v are adjacent in G if and only if f (u)

and f (v) are adjacent in H .
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