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Supervised machine learning for multi-
principal element alloy structural design

Joshua Berry1 and Katerina A. Christofidou1

Abstract

The application of supervised Machine Learning (ML) in material science, especially towards the design of structural Multi-

Principal Element Alloys (MPEAs) has rapidly accelerated over the past five years. However, several factors are limiting

the impact that these ML methodologies can have, chief amongst them being the availability and fidelity of data. This
review analyses how ML has been utilised to accelerate the design of novel structural MPEAs, outlining the standard pro-

cedures followed, and highlighting the successes and common pitfalls identified in current studies. The need for experi-

mental validation and incorporation into closed loop ML pipelines is also discussed, including the influence and integration
of manufacturing methodologies into the ML decision making process.
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Introduction

High Entropy Alloys (HEAs), first introduced to the scien-

tific community in 2004 by Yeh et al.1 and Cantor et al.2

respectively, are conventionally defined as a class of

alloys containing five or more elements in either equiatomic

elemental concentrations, or elemental concentrations in the

range of 5 to 35 at.%.1 This concept leads to HEAs occupy-

ing a vast uncharted compositional space3 and sparking a

wealth of studies and debates in the literature, not least on

appropriate naming conventions. Consequently, several dif-

ferent terms have been proposed and are used to encompass

different classes of materials such as, multi-component

alloys, compositionally complex alloys, complex concen-

trated alloys or indeed the broader term, Multi-Principal

Element Alloys (MPEAs). Concurrently, the term

HEA has evolved to more routinely describe single phase

MPEAs.4,5 For consistency in this review, MPEA will be

used to refer to all subclasses listed above. Recent review

articles and critical assessments of the MPEA field are

available for readers unfamiliar with the background and

application of these materials.4–8

Machine Learning (ML) is a methodology whereby

computer systems can learn to perform specific data-based

tasks without any explicit programming. Broadly speaking,

ML can be split into three different categories, supervised,

unsupervised and reinforcement learning.9 This review will

focus on the application of supervised learning, where ML

models are fit on data containing known target outputs.

Hence, the model can be trained to recognise patterns and

trends in the available input data to predict the output.10

Supervised learning can be further subdivided into classifi-

cation and regression tasks. Classification is used to cat-

egorise the discrete values of a variable and separate the

predictions into different categories. In contrast, regression

is used to predict continuous numerical values.9

With microstructural simplicity being a founding prin-

ciple of the field, efforts have been made to develop rules

to enable the prediction of the formation of solid-solution

phases. These rules commonly take the form of two-

dimensional phase stability plots and are based on the

Hume-Rothery, Gibbs free energy and valence electron cri-

teria.11–18 Furthermore, a significant number of experimen-

tal studies have been conducted to determine the

microstructural and mechanical properties of different

MPEA compositions, fabricated through a variety of manu-

facturing techniques as well as evaluating the impact of post

processing methods.19–24 The generation of rules describ-

ing the phase stability of MPEAs, continuous experimental

data collection, and vast compositional space, results in a
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natural relationship forming between ML and the MPEA

field. As ML tools and materials data have become more

accessible, especially since 2014, the application of ML

in the field of material science has been growing exponen-

tially.25 ML is rapidly becoming an accepted tool to auto-

mate materials discovery,26,27 expediting searches of the

compositional space in an unconstrained manner,28 whilst

minimising the need for expensive trial and error experi-

ments.29 ML can guide these experimental investigations

by reviewing large amounts of data to discover patterns

and trends in higher dimensions than possible for

humans. Subsequently enabling downselection of composi-

tions with desirable mechanical and microstructural proper-

ties for the intended applications.26,29 These predictions can

be performed quickly and produce informative results while

being reproducible with the capability for future scaling.9

Furthermore, newly available data can be directly incorpo-

rated into future iterations to improve the prediction

capabilities.28

However, despite these advantages there are several

drawbacks to the application of ML to the MPEA field.

Firstly, the success and development of ML within the

MPEA field is intrinsically linked to the experimental

exploration of the compositional space.26 Diverse and

expansive databases are required to train supervised ML

algorithms, but MPEA databases typically only contain

a few hundred to a few thousand data points.29,30 ML cal-

culations are also susceptible to overfitting, where an ML

model too closely matches the training data and may be

unable to make more generalised predictions on unseen

data.27 Furthermore, ML models are typically seen as

“black boxes”, with limited interpretability into the

internal mechanisms that map the input features to the

target outputs9 and a lack of materials science

insights. Interpretability refers to the transparency of the

model’s decision making process and how easy the meth-

odology of decisions is understood.31

Therefore, it is the aim of this review to investigate the

implementation of supervised ML for the design of

MPEAs through physical property predictions and the chal-

lenges associated with utilising this methodology. The

order of this review follows the key steps of a typical ML

study, Figure 1. Firstly, the availability of MPEA data suit-

able for ML is discussed. Secondly, the different input fea-

tures and ML algorithms utilised in recent studies on ML

for structural MPEA design are assessed. Finally, experi-

mental validation of ML predictions and the impact of

manufacturing on the application of ML within the

MPEA field is examined and areas of further work identi-

fied and discussed.

Multi-principal element alloy

experimental data

In any supervised ML task, the first step is collecting the

appropriate data with which to train and test the models,31

as shown in Figure 1. ML performs best when the data

and its interrelations are too complex for humans to

rationalise and often fails to produce meaningful relation-

ships from small amounts of data.30 Hence, to maximise

the ML models’ performance and predictive power,

large volumes of high-quality data are required.26,32–34

Furthermore, the size of the available data is critical in

determining the optimal ML algorithm for the task. For

small datasets, classical and statistical models such as

regression, clustering and tree based methods perform

best.30 Significantly more complex algorithms, such as

neural networks, require large amounts of data, thus, are

only suitable when thousands of unique datapoints are

available.30,35

Despite significant research and publications in the field

of MPEAs since 2004, the available MPEA data for ML

tasks is still sparse.33,36,37 Many ML studies within the

MPEA field report that this paucity of data is the main limit-

ing factor in the performance of ML models.27,32,36,38–45 In

addition, MPEA data is highly imbalanced because of the

initial emphasis towards the discovery of single-phase

solid solution microstructures and tendancy to not report

negative results in peer-reviewed literature.3,5,10,25,35

When dealing with real world data, duplicated, poorly for-

matted, and irrelevant and incomplete data is an unavoid-

able problem. Therefore, to prepare the raw data for

analysis, data cleaning and pre-processing is a critical, yet

often undocumented step within MPEA ML

studies.30,31,33,46

Table 1 summarises a series of experimental MPEA

databases available in the published literature, combina-

tions of which are often used as the foundational training

data for many published ML studies.47 Table 1 highlights

that significantly more work is needed in making well popu-

lated MPEA data open access in standardised formats, to

prevent data siloing and facilitate data sharing.25,26,48 All

reported results and data from MPEA focussed ML

studies should be provided, but this is very often not the

case.30 In addition to these experimental databases, there

are many databases constructed from modelling simula-

tions. One example of this is the Materials Project, provid-

ing structural and property information on over 150,000

inorganic materials, including MPEAs, from Density

Functional Theory (DFT) calculations.49

Because of the relative lack of availability of MPEA

data, ML models are often constructed using sparse data-

sets. For example, to the authors’ knowledge, the largest

experimental training dataset was used by Pei et al.59 and

consisted of 1252 datapoints. Conversely, a significant

number of studies constructed models from databases con-

taining 200 or fewer datapoints.36,40,42,60,61

To combat the insufficient data within the MPEA field,

many data supplementation techniques have been utilised.

The CALculation of PHAse Diagrams (CALPHAD)

method has been utilised to both generate databases and

supplement existing experimental data. Vazquez et al.35

performed single-point equilibrium calculations to generate

an MPEA database of 229,156 compositions. Similarly to

CALPHAD, DFT calculations have also been applied to

generate MPEA databases for ML training. Zhang et al.37

generated a dataset of 3579 quaternary MPEAs while
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Kaufmann et al.43 supplemented 134 experimental compo-

sitions with 1664 DFT compositions. This use of

CALPHAD and DFT to generate data for ML training

raises the question, if it is possible to generate data in this

way to train ML models, why use ML? There are multiple

reasons for this. Firstly, CALPHAD is calculated based on

energy minimisation of experimental data, which for most

alloys, often requires extrapolation from binary and

ternary systems that comprise the thermodynamic data-

bases. Secondly, ML is significantly faster and incurs

lower computational costs38 than both CALPHAD and

DFT calculations. Vazquez et al.35 reported that their

neural network is 436 times faster than the CALPHAD

method, and Kaufmann et al.28 stated that DFT can take

100s of hours of computation per composition.

As illustrated in Table 1, MPEA data on properties such

as phase, collected under a variety of experimental condi-

tions, are published in small datasets across a range of lit-

erature. Therefore, it would seem logical to aggregate

these data sources to enhance the quantity of MPEA data

for ML model training. However, Ottomano et al.62 argue

that expanding datasets in this way may affect the organi-

city and overall quality of the available data. To demon-

strate this, model performance of a range of algorithms

was compared before and after aggregation using a

variety of collation techniques. In all cases, classical ML

algorithms such as random forest and logistic regression

demonstrated a reduction in performance. In contrast,

deep learning models showed greater robustness, but no

significant change in performance. Therefore, when collat-

ing data to increase data quantity, it is critical to consider

the type of ML algorithm being utilised and the difference

in origin of the individual data.

Other methods to combat insufficient data can be as

simple as employing an empirical relationship. For

example, Equation 1 was used by Huang et al.27 to

convert reported yield strength data σy, to the target variable

hardness HV. However, such practices come at the risk of

introducing low quality data into the training dataset.

Equation 1 for example, has been found to be accurate for

BCC MPEAs, but less so for FCC MPEAs.27 Thus, such

practices are generally not recommended for MPEA

studies, unless sufficient evidence is present to ensure the

fidelity of generated data. Alternatively to physics based

or empirical modelling approaches towards data generation,

ML can also be used to generate data for ancillary ML algo-

rithms. Lee et al.63 produced a Conditional Generative

Adversarial Network (CGAN) to generate additional train-

ing data, and demonstrated that employing a CGAN in con-

junction with a neural network can improve phase

prediction performance for MPEAs. However, the number

and diversity of the generated samples depends on the ori-

ginal dataset. Hence, on smaller datasets, CGAN augmenta-

tion has limited impact on model performance.32 Finally,

Pilania et al.10 discusses the potential shift in focus

towards utilising natural language processing as a technique

to strip materials knowledge and data from published litera-

ture. This could efficiently compile existing materials

knowledge to produce substantial databases for MPEA

based ML studies.64,65

σy(MPa) ≈
1

3
H(MPa) =

9.81

3
HV (Hv) (1)

Tackling the imbalance of MPEA data, highlighted in

Figures 2 and 3, is an entirely different problem.

Traditional classification tasks struggle with imbalanced

data as they have a tendency to categorise data into the

majority class,31,39 which also tends not to be the class of

interest in the majority of studies. For small imbalanced

datasets the minority class is typically insufficient for learn-

ing, especially when there is a degree of overlap within the

classes.31 This is especially true for MPEA databases,

where FCC and BCC phases dominate, and pronounced

overlap exists between solid-solution and solid-solution

plus intermetallic phases.6

The most common methods to tackle the issue of imbal-

anced data are random oversampling and undersampling.31

Oversampling supplements the available training data with

Figure 1. Example of a typical ML study workflow or pipeline within materials science. Reprinted with permission from.30 ©2024
American Chemical Society
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clones of the minority classes in order to balance them with

the majority class.66 Risal et al.66 applied random oversam-

pling and found it to be effective for phase prediction based

on the available dataset. Ren et al.33 also utilised random

oversampling to change the distribution of their datasets

and although the authors did not directly comment on the

impact of the data augmentation, they successfully pro-

duced two models to predict high hardness MPEAs. In con-

trast, undersampling modifies the class distribution by

reducing the data of every class to match the minority

class.66 This technique is significantly less popular in the

MPEA field as it means the removal of precious data

from already small datasets. Hence, oversampling is gener-

ally preferred. Another technique to combat data imbalance

is Synthetic Minority Oversampling Technique

(SMOTE).67 SMOTE generates synthetic samples based

upon the minority classes of the input dataset, using

k-nearest neighbours to sample the feature space of the

class, such that the distribution of data across all the

classes is balanced. Crucially, this method increases the

number of datapoints while maintaining the original

trend.39,68 Bansal et al.68 reported an improvement in

model prediction by increasing the quantity of datapoints

using synthetic data. However, Singh et al.69 argue that

implementing augmented data to combat data imbalance

is not reliable. The authors claim that accuracy alone is

not the most robust measure for assessing performance

from ML models constructed from imbalanced data and,

that it cannot be guaranteed the generated samples are

MPEAs. To investigate this, multiple “vanilla” ML classi-

fier models were compared with SMOTE-Tomek augmen-

ted models of the same algorithms. The best performing

classifier was found to be a random forest model and

despite the claims that augmenting data is not the optimal

approach the augmented models showed better perform-

ance scores in all cases than the vanilla models.

Hareharen et al.70 also find that SMOTE improves the

ML model’s ability to differentiate between the various

classes.

Multi-principal element alloy feature

selection

Supervised ML tasks aim to construct models to predict a

target variable from a set of input features.9 In the case of

MPEAs, the target is often phase formation47,71 as a

proxy for microstructure, which dictates structural and

mechanical properties. Thus, the input features are most

commonly empirical relations based on the atomic

properties of the alloys’ constituent elements describing

electronic, thermodynamic, physical and chemical charac-

teristics.32,72 Table 2 summarises several examples of fea-

tures frequently utilised in MPEA ML models.

Table 1. Experimentally calculated MPEA databases published in peer-reviewed literature.

Authors Year Material Properties Included Processing Method & History Included

Number of

Datapoints

Ye et al.50 2016 Phase All As-Cast 118

Miracle et al.6 2017 Phase as SS or IM. Material properties are

mentioned

but not explicitly included.

Yes (Processing and post-processing) 648

Gorsse et al.* 51,52 2018 Phase, ρ, HV, σy , σUTS, ε, E N/A 370

Couzinié et al.53 2018 Phase, ρ, σy , E Yes (Processing) 340

Roy et al.54 2020 Phase, (E) N/A 340, (107)

Borg et al.55 2020 Phase, ρ, HV, σy , σUTS, ε, E Yes (Processing) 1545

Machaka et al.56 2021 Phase Yes (Processing and post-processing) 1360

Detor et al.57 2022 HV Yes (Processing) 86

Han et al.34 2022 Phase Yes (Processing, all as-cast) 1138

Chen et al.58 2022 Phase, Strength, Low-Cycle Fatigue, High-Cycle

Fatigue and Fatigue Crack Growth Rate

Extensive processing methodology and

history

66

ρ denotes the density, HV represents the Vickers hardness, σy is the yield strength, σUTS is the ultimate tensile strength, ε is the strain elongation and E
represents the Youngs modulus.
*Corrigendum

Figure 2. Data imbalance and domination of FCC and BCC
phases across 648 published reports of microstructure within
MPEA studies. Phases appearing less than 4 times are not shown.6

©2024 reused with permission from Elsevier
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Features, such as those summarised in Table 2, often ori-

ginate from the Hume-Rothery rules on solid-solution for-

mation for binary systems. For example, the need for

small atomic size differences, comparable valency and

similar electronegativities.80 These features have been

shown to display clear trends with MPEA microstructural

and mechanical properties, thus, successfully translating

to MPEA ML studies. Guo et al.13 determined Valence

Electron Concentration (VEC) to be the physical parameter

controlling formation of FCC (VEC ≥ 8) or BCC (VEC<

6.87) solid solutions. This observed phase formation has a

strong impact on mechanical properties with BCC phases

typically observed to display a higher hardness,81 but a

lower ductility compared to their FCC counterparts.8,82,83

Similarly, Wang et al.18 developed a new parameter, γ to

describe atomic packing as an improvement to the com-

monly accepted atomic size difference, δ, where γ< 1.175

results in solid-solution formation. Indeed, these trends

have also been observed when applied to ML studies,

with VEC and δ being reported as two of the most important

features by many authors investigating both microstructural

and mechanical properties,27,33,41,42,84 demonstrated in

Figure 3. Classification of solid solution and intermetallic phases within MPEA data. (a) Microstructure classification by phase type
with sub-classification by number of phases, (b) Number of phases classification with sub-classification by type of phase.6 ©2024 reused
with permission from Elsevier

Table 2. Examples of features commonly used in ML models in the MPEA field

Feature Name Equation Reference

δ Atomic Size Difference
δ = 100

��������������

∑

n

i=1

ci 1−
ri
�r

( )2

√

18,73,74

γ Atomic Packing Parameter γ = ωS

ωL
,

ωx = 1−
���������

(rx+�r)
2−�r2

(rx+�r)
2

√

18

Δχ Electronegativity Difference Δχ =

��������������

∑

n

i=1

ci(χ i − �χ)2

√

75

VEC Valence Electron Concentration VEC =
∑

n

i=1

ci(VEC)i
13,76

e/a Number of Itinerant Electrons per Atom e
a
=

∑

n

i=1

ci
e
a

( )

i
13,76,77

ΔHmix Enthalpy of Mixing ΔHmix = 4
∑

n

i=1,i<j

cicjΩij
11,14,78

ΔSmix Entropy of Mixing ΔSmix = −R
∑

n

i=1

ci ln ci
8,14

Tm Weighted Melting Temperature
Tm =

∑

n

i=1

ci(Tm)i

12

Ω Yang Parameter Ω = TmSmix
|Hmix |

12

Δϵ Young’s Modulus Asymmetry ε =

���������������

∑

n

i=1

ci 1− Ei
�E

( )2
√

79

Quantities denoted with a bar indicate that it is the average value, while quantities with an i indicate the i’th element. c represents the atomic fraction of the
element, r denotes the atomic radii and E represents the Youngs modulus. R is the molar gas constant. For γ, ωx denotes the solid angles around the largest
and smallest atoms, represented by subscript L and S respectively. In ΔHmix , Ωij is the enthalpy coefficient for elements i and j respectively.

Berry and Christofidou 5



Figure 4. This importance is defined and measured accord-

ing to how much impact the feature has on the models deci-

sion making process.

An important decision when selecting features for

MPEA ML studies is whether to include the chemical com-

position of the alloy as an input feature. Bakr et al.45

demonstrated that it is possible to train an artificial neural

network for phase and hardness prediction of MPEAs

using only the chemical composition as the input feature.

Similarly, Jain et al.46 included the elemental compositions

as features for phase predictions and used them as the only

feature for hardness predictions. However, Wen et al.86

argue that utilising the elemental composition, in conjunc-

tion with the elemental property features discussed above,

significantly out-performs just training ML models on the

elemental composition. Furthermore, Morgan et al.25 state

that utilising composition as an input feature means that

the model cannot be used to extrapolate to systems includ-

ing elements outside of the training data. Hence, they argue

that it is better to represent each element with elemental

properties to enable feature generation by taking compos-

itionally averaged combinations of the constituent ele-

ments, as in Table 2. If utilising ML to optimise the

composition of an already defined MPEA system, then

including composition may be useful. For example, Chen

et al.41 include the molar fraction of the six constituent ele-

ments of their MPEA system as features for the model, but

only hardness optimisation of a single alloy system was

investigated. Alternatively, if the goal of ML application

is materials discovery, then evidence suggests prioritising

elemental property features.

Subsequent to data collection, feature engineering is the

next step in model construction and consists of feature gener-

ation and selection. Firstly, the features chosen for any ML

model must be both machine readable and relevant to the

target variable.25 Following the discussion of the need for

high quantities of data to train ML models, it could be

assumed that the more features available to make predictions

of the target, the better a model will perform. However, this is

not the case and manyMPEAML studies demonstrate that as

the number of features increases, prediction accuracy plat-

eaus,33,86–88 as illustrated in Figure 5. Thisalso introduces

feature redundancy, overfitting and results in poor generalis-

ability and computational efficiency.25,33,88 Feature selection

is an essential process that reduces the dimensionality of the

ML task by identifying and removing irrelevant, noisy and

redundant features Simultaneously feature selection retains

sufficient information and enables optimisation of the

number and combination of features to maximise accuracy

and improve ease of training.31–34,38,47,89

Collinearity of features is detrimental to model perform-

ance,33 computational efficiency and, crucially, interpret-

ability, Further, it restricts the ability to ascertain the

individual contribution of each feature to the model.90

Hence, for features that are correlated, the least important

feature is typically omitted.40,44 To detect collinearity, the

most popular method is to measure the correlation of indi-

vidual features using the Pearson Correlation Coefficient

(PCC),34,91 given by Equation 2.

r =

∑n
i=1 (xi − �x)(yi − �y)

����������������

∑n
i=1 (xi − �x)2

√ ����������������

∑n
i=1 (yi − �y)2

√ (2)

Where x and y denote two of the features and �x and �y

represent the mean of the two features, respectively. PCC

values can range from +1 to −1, with positive values indi-

cating a positive relationship between the variables and vice

versa. Commonly in correlation analysis, features with PCC

values > 0.80 are considered very strongly correlated.33,41,91

However, there are no fixed cut-offs for the interpretation of

feature correlation strength, rather context is critical to

understanding both the extent and impact of the correlation

on the model.92,93 Despite this, in many MPEAML studies,

the limit for where features are considered highly correlated

Figure 4. Feature importance scores of 15 features within an
XGBoost model used for phase classification. In this case R
denotes atomic radius and VE represents valence electron
count.85 ©2024 adapted with permission from Elsevier

Figure 5. Model performance plateaus as the number of fea-
tures is increased, in this case for a support vector machine
model. The red and blue lines represent the average and lowest
prediction error for that number of features respectively.88

©2024 reused with permission from Elsevier
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is often set very close to 1, at PCC> 0.95.40,84,88 Typically,

in MPEA ML studies where the correlations are moderate,

the issue of where to place the limit of correlation is avoided

and authors often do not state at what point they would have

considered features to be correlated and why.42,44,72 It is

also common for MPEA ML studies to assess how import-

ant ML features are through their correlation with the

outputs,46 but this is not an effective method for model

interpretability.

Data, features, and models are extensively interlinked

and so the optimal feature combinations for the available

data must be found for each model tested. However, it

can be computationally prohibitive to test every possible

permutation.25 Several techniques and approaches have

been developed to enable feature engineering. The first

and simplest method of feature selection is human

context. Nonsensical features and those with no relation

to the target variable should be removed.25 Sequential

feature selection iteratively adds or subtracts features

from the dataset in order to maximise model perform-

ance.25,33,87 Li et al.88 utilised a genetic algorithm to find

the optimal combination of features. The genetic algorithm

mimics the mechanism of natural selection to arrive at the

global optimum performance without testing every possible

combination. This saves on computational efficiency over

the exhaustive sequential feature selection methods, espe-

cially for large feature spaces. MPEA ML studies mostly

agree that fewer features (4 or 5) are optimal for predicting

phase formation33,86–88 and mechanical properties.29

However, although Huang et al.40 agrees that the optimal

number of features for phase selection is small (5), they

find that the optimal number of features for hardness predic-

tion is much larger (13), in contrast to the majority of

MPEA studies.

Machine learning algorithms for

multi-principal element alloy design

An exhaustive discussion on how each individual super-

vised ML algorithm functions is beyond the scope of this

review. See Hastie et al.71 and James et al.90 for an over-

view. No supervised ML algorithm is by default superior

to any other and the choice of optimal algorithm depends

strongly on the available data and target output.30,87

Choosing a suitable algorithm is critical for improving

model performance and efficiency.33 Therefore, many ML

studies trial a handful of potential ML algorithm candidates

to determine which performs the best, for example,34,40,87

shown in Figure 6. Alternatively, some ML MPEA

studies already have a specific algorithm in mind because

of the benefits of that particular methodology. For

example, Bhandari et al.44 and Choudhury et al.94 select a

random forest algorithm for its simplicity and

interpretability.

Simple linear regression models are much easier to inter-

pret but lack in predictive power and performance.30

Clustering algorithms, such as k-nearest neighbours, often

suffer from low accuracy and when the data is imbalanced,

the more frequent classes significantly dominate predic-

tions, becoming more noticeable as the number of neigh-

bours considered increases.27,34 Tree based algorithms

have very high interpretability and training speed but are

susceptible to overfitting. However, ensemble tree based

models such as random forest have anti-overfitting proper-

ties.10,34 In contrast, support vector machines and neural

networks can provide a boost in predictive performance at

the cost of model interpretability and the need to scale

input data. Lastly, neural networks require significantly

more computational power and training time for small

gains in performance.10,30,31 Figure 7 provides an illustra-

tion of this transparency to performance trade-off.

To assess the predictive performance of supervised ML

models a range of metrics are available, split between the

classification and regression tasks, that assess the difference

between the model’s predicted outputs and the true outputs

from the validation data set.25 For classification tasks,

accuracy, precision, recall, and F1-score are the most

common performance metrics in MPEA ML studies, pro-

vided in Equation 3.39,45,47,94 A complete description of

these can be found in Dalianis.95

Accuracy =
TP + TN

TP + TN + FP + FN
(3a)

Precision =
TP

TP + FP
(3b)

Recall =
TP

TP + FN
(3c)

F1 Score = 2 ×
Precision × Recall

Precision+ Recall
(3d)

True positives (TP) are the data points that are correctly pre-

dicted by the model for a class. False negatives (FN) are

data points that are incorrectly predicted as a different

class by the model. False positives (FP) are data points

Figure 6. Comparison of model performance across the same
experimental database. Each column represents a different fea-
ture subset selected by application of the models indicated in the
legend.87 ©2024 adapted with permission from Elsevier
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that are a different class but are predicted to be the class

under consideration. True negatives (TN) are data points

that are a different class to the one under consideration

and are predicted to be a different class, thus the class

being considered is not involved. For regression models,

Root Mean Squared Error (RMSE) and Mean Absolute

Error (MAE) are the two most common metrics that

MPEA ML models will aim to minimise, Equation 4a and

4b respectively.25,32,33,38,96 In addition, the coefficient of

determination (R2), Equation 4c, combined with parity

plots of predicted vs actual data, provides an informative

assessment of model quality, with values > 0.7 typically

indicating a useful model.25

RMSE =

����������������

∑n
i=1 (yi − ŷi)

2

n

√

(4a)

MAE =

∑n
i=1 |yi − ŷi|

n
(4b)

R2 = 1−

∑

i (yi − ŷi)
2

∑

i (yi − �y)2
(4c)

Where y denotes the true value, ŷ represents the predicted

value, �y represents the mean of the true data, and n is the

number of data points. To enable the model performance

to be correctly validated using the metrics described

above, the available data first needs to be split into training,

validation and testing in a reproducible manner.30 The train-

ing data is used by the model to relate the input features to

the desired output. The validation data is then used to assess

the performance of the model on the training data and opti-

mise the chosen algorithm. Subsequently, the testing data is

used to assess the error in the final optimised version of the

model.25,30

There are two common ways to split the data to train an

ML model and assess its performance. The first is

Train-Test-Split where the database is simply split into

fixed fractions (e.g., 80% – 10% – 10%). However, this

can cause poor generalisability in the data across the

fractions if the data distribution is imbalanced.33 Bakr

et al.45 reported a significant difference between the

RMSE of the training and testing data due to a different dis-

tribution of data across the two sets. The second approach is

k-fold cross-validation, Figure 8. In this method the dataset

is divided into k equal fractions, with each fraction used

once as validation data while the other k-1 fractions are

used for training. After k iterations, the model will have

been trained and validated k times on the same database,

eliminating the effect of sampling. This enables the

average performance metrics to be calculated, providing a

more appropriate assessment of model performance, and

is particularly useful for small datasets, such as those in

the MPEA field.27,33,45 However, while the majority of

MPEA ML studies detail the methodology they have used

to assess the performance of the model on the available

data, very few discuss retraining the final model using the

whole database. This is a key step to maximise the

amount of training data. As it is not often discussed in the

published literature, it is unclear if this step is performed

in MPEA ML studies, with the notable exception of Liu

et al.36

Hyperparameter optimisation is a key step in the

development of ML models and features in the vast major-

ity of MPEA ML studies. Hyperparameters are guidelines

for the ML model construction that control the learning

process.30 For example, they could be controlling the

maximum number of trees and branches in a random

forest or the number of nodes and layers in a neural

network.72 It is important to optimise the hyperparameters

of an ML model to maximise the model performance and

speed.33,96 The two most common methods of hyperpara-

meter optimisation within MPEA ML studies are grid

search and Bayesian optimisation. For grid search, a

range for each hyperparameter is specified and each pos-

sible combination of these parameters is tested against a

baseline to find the optimal combination. This can also be

performed randomly rather than exhaustively to save on

computation time. In contrast, Bayesian optimisation mini-

mises the loss on an error function to find the optimal hyper-

parameters for a model. Neither method is by definition

better than the other, but both have been used successfully

in MPEA ML studies.39,84 Hyperparameter optimisation is

also coupled with cross-validation to provide a more accur-

ate assessment of the impact of hyperparameter changes on

performance.33,43

Table 3 summarises many recent studies where ML has

been utilised to predict MPEA microstructural and mechan-

ical properties, demonstrating the rapid adoption of ML in

the field, in contrast to the lack of development in data

availability, Table 2. As illustrated in Table 3 it is clear

that the majority of ML models target alloy phase forma-

tion, because of the strong dependence of mechanical prop-

erties on microstructure. Of the alloy mechanical properties,

hardness is the most commonly investigated in ML based

MPEA studies, likely due to the ease of experimental meas-

urement to validate model predictions and generate data.3

Phase formation prediction is a complex classification

task with many possible phases that can form within

Figure 7. Trade-off between model transparency and model
predictive performance.10 ©2024 reused with permission from
Elsevier

8 Materials Science and Technology 0(0)



MPEAs. Hence, many MPEA ML studies drastically con-

dense the phase space in order to simplify the ML task

and improve performance. For example, the MPEA data-

base produced by Machaka et al.56 contains 35 distinct

labels for the phases of different compositions, which is

simplified to 7 distinct labels. Furthermore, many MPEA

ML studies reduce the classification problems down to

binary and tertiary cases where the model is predicting

whether or not solid solution formation occurs, or some

form of solid solution, intermetallic or amorphous phase

respectively.27,34,42,72,94 This reduction in the number of

classes is helpful to obtain meaningful results from the

ML, but can be exaggerated in the aim of maximising

performance.

The studies in Table 3 mostly utilise standard ML algo-

rithms with a small number of input features based on the

intrinsic properties of the constituent elements.

Furthermore, these studies typically utilise small databases,

often with insufficient data to effectively train the more

complex models, such as neural networks. In some cases

these studies are lacking experimental validation of the

model outputs, availability of data to enable future itera-

tions, and sufficient consideration of the impact of manufac-

turing on MPEA design.

From machine learning to multi-principal

element alloy design

Once the models have been successfully constructed,

trained and their performance assessed, the next step is to

use the model to predict on unseen data. To do this most

MPEA studies generate a virtual candidate search space.

This involves selecting the desired elements and

considering every possible combination in equimolar

ratios, in a system of chosen size. For instance, Zhang

et al.87 considered 30 different elements in

MPEA systems containing 4–6 elements in equimolar

ratios. This produced a total of 763,686 unexplored alloy

compositions for the ML to make predictions on the

phase formation. This search space can be expanded to

cover non-equimolar compositions, with each element typ-

ically being varied between 5 and 35 at.% with a compos-

itional granularity of 1 at.%.84,86 In some MPEA studies,

constraints are placed on the search space to further

narrow it down. For example, in the study by Akhil

et al.,39 the search space was reduced by first applying the

constraints, δ<6.6% and −15<Hmix<5 kJ/mol to aid in

the search for HCP forming MPEAs. However, this is an

unnecessary step as ML is a very fast process and if this con-

straint was suitable for mapping HCP formation, then it

would be expected to be predicted accordingly by the ML

model if trained correctly.

Alternatively, an inverse design methodology can be uti-

lised.104 In this case the final output property criteria is first

specified as an input. The trained ML model then predicts

feature configurations and hence, alloy compositions, that

could satisfy the chosen property criteria.101,105 Yang

et al.84 utilised an inverse design methodology by project-

ing samples in the optimal property zone of the perform-

ance space and then deducing the features yielding this

performance by inverse projection. Finally, the MPEA

composition closest to the performance projection point

by Euclidean distance was selected as the alloy composition

to yield the high-performance property and was experimen-

tally fabricated. From this inverse projection three

MPEA compositions were downselected, synthesised and

Figure 8. Comparison of the train-test-split and cross-validation model performance assessment methodologies. Highlights how
cross-validation allows the model to be trained and validated multiple times before final testing.
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Table 3. List of current publications on utilising supervised ML for MPEA design. In studies that compared multiple models, the best performing model or the one used to make predictions on unseen data

is quoted in the table. Training data is experimentally determined unless otherwise stated. Data availability is the measure of how readily available the data for the published work is.

Author Year ML Target ML Architecture Training Dataset Training Method Performance Metrics

Num.

Features

Data

Availability

Islam et al.42 2018 Phase Neural Network 118 4-Fold CV Accuracy= 83.0% 5 Yes

(Reference)

Wen et al.86 2019 Hardness Support Vector Machine (RBF) 155 10-Fold CV RMSE= 54.4 6 Yes

Chang et al.96 2019 Hardness Neural Network 91 10-Fold CV R2
= 0.94

MAE= 36 HV

3 No

Huang et al.27 2019 Phase Artificial Neural Network 401 4-Fold CV Accuracy= 74.3% 5 Yes

Choudhury et al.94 2020 Phase Random Forest 119 TTS (70–30)

5-Fold CV

Accuracy= 91.6% 5 No

Kaufmann et al.28 2020 Phase Random Forest 134+ 1664 DFT 5-Fold CV Confidence= 75% 13 Yes

Roy et al.97 2020 Phase &Young’s Modulus Gradient Boosting 329+ 87 TTS (90–10) MAE= 23.59

RMSE= 87.76

10 No

Pei et al.59 2020 Phase Gaussian Process Classifier 1252 10-Fold CV Accuracy= 93% 6 Yes

Zhang et al.87 2020 Phase Support Vector Machine (RBF) 407 10-Fold CV Accuracy= 75.3% 4 No

Akhil et al.39 2021 Phase Extra Trees Classifier 111 Stratified 5-Fold CV Accuracy= 91.6% 5 No

Bhandari et al.44 2021 Yield Strength Random Forest 238 TTS (90–10)

10-Fold CV

Accuracy= 95% 4 No

Huang et al.40 2021 Hardness Random Forest 106 10-Fold CV MAE= 66.7HV

RMSE= 86.2HV

13 Yes

Revi et al.98 2021 Elastic Constants Random Forest Materials Project TTS (70–20–10) R2
= 0.925

MAE= 13.14

RMSE= 19.61

5 No

Krishna et al.72 2021 Phase Artificial Neural Network 636 TTS (75–25) Accuracy= 80.5% 5 No

Machaka89 2021 Phase Random Forest 896 TTS (75–25)

10-Fold CV

Accuracy= 97.5% 13 Yes

Han et al.34 2022 Phase Extreme Gradient Boosting 867 TTS (80–20)

5-Fold CV

Accuracy > 85% 16 Yes

Li et al.88 2022 Hardness Support Vector Machine (RBF) 205 10-Fold CV RMSE= 47.9 4 Yes

Liu et al.99 2022 Primary Phase Fraction Support Vector Machine 4+ 96

CALPHAD

TTS (80–20) R2
= 0.916 – No

Yang et al.84 2022 Hardness Support Vector Machine (RBF) 370 TTS (80–20)

10-Fold CV

r= 0.94

RMSE= 75

5 Yes

Bakr et al.45 2022 Phase+Hardness Neural Network+ Ensemble of 3 Neural

Networks

775+ 427 5 and 3-Fold CV Accuracy= 93.4%

R2= 0.895

RMSE= 65.92

20 Yes

Chen et al.41 2023 Hardness Random Forest+ Particle Swarm

Optimisation

305 TTS (80–20) R2
= 0.966

RMSE= 32.73

12 No

Sai et al.100 2023 Fatigue Life Gradient Boost+ Support Vector

Machine

68+ 50 TTS (80–20) Normalised RMSE=

0.07

9 No

(continued)
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Table 3. Continued

Author Year ML Target ML Architecture Training Dataset Training Method Performance Metrics

Num.

Features

Data

Availability

Zhu et al.32 2023 Hardness Deep Neural Network 324 4-Fold CV MAE= 44.6 8 Yes

(Reference)

Ren et al.33 2023 Hardness &Composition

Optimisation

Random Forest+ Support Vector

Machine (RBF)

205 10-Fold CV R2
= 0.9716

RMSE= 39.2525

19 No

Jain et al.46 2023 Phase+Hardness Extra Trees Classifier+Artificial Neural

Network

1120+ 99 TTS (80–20) Accuracy= 89.3%

R2= 0.95

MAE= 34.91

21 and 11 No

Shen et al.38 2023 Phase &Hardness Extreme Gradient Boosting 500+ 3-Fold CV Error Rate= 4.5%

MAE= 26.49

RMSE= 52.66

7 and 8 No

Vazquez et al.35 2023 Phase Fraction Deep Neural Network 229156

CALPHAD

TTS (70–10–20)

10-Fold CV

R2
= 0.95 96 No

Wang et al.101 2023 Yield Strength &Ultimate Tensile

Strength

Convolutional Neural Network 501 Holdout Validation (Random

Splits)

R2
= 0.866

RMSE= 122

38 Yes

Berry et al.102 2024 Phase &Hardness Random Forest 1360+ 370 5-Fold CV Accuracy= 78.7%

MAE= 66.1

10 Yes

Huang et al.103 2024 Ductility Gradient Boosting 92 TTS (85−15) Accuracy= 86%

R2= 0.85

4 No

Definition of acronyms in table: Train-Test-Split (TTS), Cross-Validation (CV), Radial Basis Function kernel (RBF), CALculations of PHAse Diagrams (CALPHAD), Density Functional Theory (DFT),

Coefficient of Determination (R2) and Root Mean Square Error (RMSE).
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characterised. The best performing of these compositions

exhibited a hardness 24.8% higher than the highest compos-

ition in the original dataset. Guo et al.106 also apply inverse

projection, but to optimise the composition of a preselected

MPEA system, AlCrFeNiTi, to maximise hardness. From

this inverse projection, four of the optimised composition

alloys were experimentally synthesised. The highest hard-

ness of these demonstrated a hardness 21.5% higher than

any composition in the original dataset.

Debnath et al.107 performed a comparative study of

forward and inverse design methodologies with a case

study on the ultimate tensile strength of refractory

MPEAs. The authors observed that the inverse design

methodology could identify a composition with the

same constraints as the forward scheme, but produced a

higher target property prediction. Additionally, the

authors state that for the inverse design case the addition

of new conditions and generation of new candidates is

incredibly fast compared to the forward case, which

needs to be regenerated with each iteration. However,

inverse design is not without its disadvantages. Often

numerous feasible solutions are presented by the inverse

ML due to a greater number of variables than constraints

and, minor variations in the desired property can produce

significant changes in alloy composition prediction.108

Experimental validation

As previously discussed, the success and development of

ML within the MPEA field is intrinsically linked to the

experimental exploration of the compositional space.

However, a significant number of MPEA ML studies do

not contain any form of experimental validation.28,39,44,45

The most common approach to experimental validation is

to fabricate a small number of downselected samples, typ-

ically between 5 and 10, via vacuum arc or induction

melting, or through powder metallurgy routes.109

Once the samples have been fabricated, the standard

approach is to investigate the microstructure and mechan-

ical properties to validate the results of the ML predictions

and discover new compositions with exceptional properties.

The vast majority of MPEA ML studies perform this

investigation via the application of scanning electron

microscopy, in conjunction with energy dispersive x-ray

spectroscopy, to determine the microstructure, compare

the nominal to actual composition, and observe any elemen-

tal segregation. X-ray diffraction is also used to further

crystallographically analyse the phase formation within

the alloy. Mechanical property assessments, most com-

monly hardness, are performed using Vickers microhard-

ness indentation.33,38,40,86,96 Examples of this

experimental assessment are provided in Figure 9.

Additional analysis techniques such as electron backscat-

tered diffraction,34 transmission electron microscopy and

selected area diffraction99 can enable greater insight into

the crystallographic phase formation of the fabricated

MPEAs, but this is typically above the resolution needed

for ML model validation. However, there is a clear

absence of extensive mechanical testing and post

processing of the alloys, with Wang et al.101 being one of

the few to measure tensile properties of MPEAs following

different post processing regimes predicted through ML.

The manufacturing methodology used to synthesise

MPEAs significantly impacts alloy microstructure and

phase formation, which governs the materials mechanical

properties and overall performance.36,45,110,111 Post pro-

cessing heat treatments can also further alter alloy micro-

structure and improve alloy mechanical performance.112

For example, Otto et al.113 demonstrated that even the

most exemplar single-phase solid solution MPEA system,

CrMnFeCoNi, is not always single phase. After annealing

at intermediate temperatures (<700°C), it will decay to

form several secondary precipitates. Hence, incorporating

the manufacturing and processing history into

the ML task would assist the models to make accurate pre-

dictions irrespective of synthesis methodology.

For small scale trials of new MPEA compositions, arc

melting is the dominant method for MPEA manufacture,114

especially for refractory MPEAs due to the high arc tem-

perature.110 However, the formation of defects such as

cold shuts,115 cracking and elemental segregation are

common in arc-melted ingots.110,114 Thus, the microstruc-

ture and mechanical properties can vary significantly

throughout the ingot in the as-cast state.114 Additive manu-

facturing processes offer faster cooling rates than conven-

tional casting, resulting in a much finer grain structure,

potentially enhancing mechanical properties.112 However,

the microstructures are more complex due to the different

temperature histories and heating of subsequent layers.112

In both cases, subsequent heat treatments can initiate

phase transformations and improve mechanical properties.

Homogenisation of MPEAs typically leads to higher

strength than their as-cast counterparts111 as well as mitigat-

ing or eliminating defects.112

Despite this, the majority of MPEA literature presents

microstructure and mechanical properties in the as-cast

condition,69,114 which is not indicative of industrial appli-

cations. Furthermore, the majority of MPEA ML studies

don’t appropriately account for processing condi-

tions,45,116 select only as-cast data or omit any samples

not in the as-cast state and manufactured via arc

melting.33,40,84,86,87 The first barrier to the implementa-

tion of processing to MPEA ML studies is the lack of

information available in publications, as it is not consist-

ently reported within the literature.40,45 In addition,

Machaka89 reported that post processing heat-treatment

features performed poorly in classification of phase for-

mation tasks.

To incorporate the effect of manufacturing into the ML

process Zhu et al.32 inserted the fabrication method into

the input layer of a deep neural network for prediction of

hardness by one-hot encoding. This is a process where cat-

egorical variables are mapped to integers so that they can be

interpreted by the ML model. However, heat treated and

laser remelted values of hardness were removed from the

database in the initial data cleaning stage to eliminate the

influence of process treatments. Two deep learning

models were produced and the one incorporating
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manufacturing was found to perform better, highlighting

the need to consider manufacturing conditions. Wang

et al.101 employed a similar approach, but instead utilised

processing conditions, such as annealing time and tempera-

ture, as input features due to their influence on mechanical

properties. Bakr et al.45 trained a series of neural networks,

using nominal MPEA composition, manufacturing route

and heat treatment temperature as the direct input features

in the hardness model.

As discussed, when MPEA ML studies experimentally

validate the ML model predictions they fabricate a small

sample of compositions.36 However, the combination of

large MPEA compositional space and capability of ML

to rapidly make predictions across this unexplored space

makes the connection of ML to High-Throughput

Experiments (HTE) a logical advancement. HTE enable

rapid synthesis and characterisations of MPEAs to valid-

ate ML predictions with enhanced efficiency.110 Thus, the

application of HTE approaches to ML has the potential to

further accelerate and reduce cost of MPEA design.117

Furthermore, the rapid generation of experimental data

by implementation of HTEs can aid in constructing sub-

stantial MPEA databases for the development of future

ML models.36 Moorehead et al.118 utilised additive

Figure 9. Experimental analysis performed on a series of 5 different compositions within the FeNiCuCo alloy system, downselected
using a random forest model. a) Hardness. b) X-ray diffraction. c) Back scattered electron images. d) Energy dispersive x-ray spec-
troscopy maps of elemental distributions.40 ©2024 reused with permission from Elsevier
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manufacturing in the form of directed energy deposition

to construct arrays of different MPEA compositions

onto a single build plate. 50 individual MPEA composi-

tions are printed onto a single plate and x-ray diffraction,

scanning electron microscopy and energy dispersive x-ray

spectroscopy are all performed without removing the

parts from the build plate. Moorehead et al.118 also pro-

duced an arc-melted button, indicative of those typically

produced by MPEA ML studies for validation and

found that additive manufacturing enabled a time saving

of an order of magnitude compared to conventional

casting. Vecchio et al.119 validated computational predic-

tions of phase formation using CALPHAD, and hardness

using an ML model with HTEs. MPEA samples were

printed using directed energy deposition with a special

hopper system allowing 16 different alloy compositions

to be printed per build cycle. The MPEAs are built specif-

ically to allow characterisation of microstructural and

mechanical properties to also be performed in a high-

throughput manner, Figure 10. In contrast, Liu et al.36

applied HTE prior to ML to fabricate 138 MPEA compo-

sitions of the chosen alloy system through powder metal-

lurgy. These compositions were then used to train an ML

model to reveal the complete composition-hardness rela-

tionships across the compositional range of the chosen

system. In addition, future expansion of HTE methodolo-

gies to include the implementation of autonomous or self-

driving laboratories could further accelerate the discovery

and optimisation of materials,120–122 with MPEAs repre-

senting a suitable materials candidate.

Conclusions

Supervised ML has the potential to accelerate materials

design and discovery within the MPEA space. The

current direction of travel in the application of ML to the

MPEA field is towards the complete automation of the

materials design process. ML can be used to make large

numbers of predictions on MPEA compositions to identify

those with potentially advantageous mechanical and struc-

tural properties. These identified compositions can then

be fabricated in a high-throughput manner within auto-

mated laboratories to enable model validation and assess

their suitability to meet the design criteria. Regardless of

the level of automation, domain knowledge of materials

science is still integral to ensure the application of ML

within the field is logical and incorporates the established

understandings of decades of research. Additionally, there

are many gaps identified within the field that need to be

addressed in the interest of standardising and enhancing

the use of supervised ML for MPEA design.

First and most critical, is the availability of MPEA data.

Lack of available data is the most commonly cited reason

for performance issues encountered in MPEA based ML

studies. Hence, experimental MPEA data needs to be pub-

lished and made open access to be utilised effectively in

Figure 10. High-throughput experimental workflow from computation ML model predictions through alloy fabrication, character-
isation, testing and analysis in an automated high-throughput manner, before closing the loop.119 ©2024 reused with permission from
Elsevier
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future work within the field. This must include the method

of fabrication and testing to improve the reliability of the

data and enable it to be incorporated into ML models.

The CALPHAD and DFT based data used in some

studies to train models should also be made available to

save on computationally expensive and time-consuming

calculations. Furthermore, a wider, more general issue

within the MPEA field is the need for a standardised

naming convention for MPEAs to be established, making

pre-existing data on alloy compositions easier to discern.

The relationship between supervised ML based alloy

design methodologies and traditional alloy design methodolo-

gies needs to be considered. As discussed and shown in

Table 3 of this report, a majority of ML MPEA studies

focus on the optimisation of a single alloy property, either

within a preselected system or across the whole MPEA

space. In contrast, conventional alloy design processes look

to balance many properties to achieve high performance

while minimising cost and maintaining manufacturability.

Hence, there is a clear need to move to multi output models.

Finally, the success and development of ML within the

MPEA field is intrinsically linked to the experimental

exploration of the compositional space. Many ML MPEA

studies contain a workflow that portray data looping,

where the experimental results of the study are fed back

into the available data. However, the studies themselves

end at the experimental assessments and publication.

Thus, it is imperative that this data is not lost and is

indeed recycled back into openly available databases to

fuel further ML studies.
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