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Robust Humanoid Locomotion via Sequential
Stepping and Angular Momentum Optimization

Jiatao Ding, Cosimo Della Santina, Tin Lun Lam∗, Jianxin Pang∗,

Xiaohui Xiao, Nikos Tsagarakis, and Yanlong Huang

Abstract—Stepping strategy, including step time and
step location modulation, and hip strategy, i.e., upper-body
movement, play crucial roles in achieving robust humanoid
locomotion. However, exploiting these balance strategies in
a unified and flexible manner has not been well addressed.
In this work, we propose a sequential convex optimization
approach. Based on the linear inverted pendulum model,
we modulate step parameters, including step location and
step time, using quadratically constrained quadratic pro-
gramming in real time. Then, based on the nonlinear in-
verted pendulum plus flywheel model, we regulate angu-
lar momentum using the linear model predictive control.
To accommodate for scenarios with height variation, we
consider nonlinear 3D locomotion dynamics explicitly. The
proposed approach is validated via comparison studies
and extensive experiments on the humanoid with planar
and linear feet. The results demonstrate enhanced robust-
ness against dynamic disturbances and adaptability to
real-world scenarios. On average, the enhanced stepping
strategy rejects 135% larger external forces than our pre-
vious work. Also, robust locomotion across height-varying
stepping stones is realized, which is rarely reported for a
humanoid robot with planar feet.

Index Terms—Robust locomotion, optimization, angular
momentum, step time modulation, humanoid robot.

I. INTRODUCTION

H
UMANOID locomotion is a challenging task due to

high-dimensional hybrid nonlinear dynamics and in-

herent instability [2]–[4]. Observations from human walking
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A part of preliminary results have been presented in IEEE Interna-
tional Conference on Intelligent Robots and Systems [1].

Fig. 1. The humanoid robot rejects external pushes (marked by red ar-
rows) when walking across sparse stepping stones at different heights.

reveal that multiple balance strategies, such as reactive step-

ping [5], body rotation [6], and height variation [7] could

be used to maintain balance. The utilization of template

models, such as the 3D linear inverted pendulum (LIP) model

[8], the nonlinear inverted pendulum plus a flywheel (NIPF)

model [9] and virtual-mass-ellipsoid inverted pendulum [10],

makes it possible to obtain time-efficient solutions for robust

locomotion [11], [12]. However, exploiting multiple strategies

in a unified and flexible manner, which is required in achieving

robust locomotion in challenging scenarios, e.g., push recovery

when walking across height-varying surfaces (as illustrated in

Fig. 1), still needs further studies.

A. Related work

The stepping strategy plays a crucial role in enhancing

locomotion robustness, whereby the support region is extended

through adjusting step locations and time online [13]–[16].

However, the modulation of step parameters, especially the

step time (i.e., step duration), usually leads to computing-

intensive nonlinear programming (NLP). To overcome this,

[17] used quadratic programming (QP) to adjust the step

time first. Then, a time-intensive model predictive strategy

(MPC) strategy was needed later to optimize the step location

and center of mass (CoM) trajectory. In [18] and [1], step-

duration alternative variables were introduced to simplify the

formulation. Particularly, the work in [18] built a QP to solve

the problem efficiently, where an accurate estimation of the

capture point is required. [1] formulated a quadratically con-

strained QP (QCQP) to adjust the step location and step time

simultaneously. Nonetheless, this work adopted sequential QP

(SQP) to solve the non-convex problem without guaranteeing

global convergence. Aside from optimization, [5] proposed

a closed-form solution for rapidly adjusting step parameters,

where, however, physical constraints are ignored.
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Furthermore, the above works ignore angular momentum

regulation (i.e., hip strategy) and height variation, limiting the

applications. To tackle this issue, [19] proposed a hierarchical

strategy to modulate step time and angular momentum. [12]

formulated a QP to integrate ankle, stepping and hip strategies

together by ignoring multiplications among decision variables.

[20] and [21] proposed a hybrid formulation, i.e., QP plus

a closed-form solution, for modulating step parameters and

angular momentum, which, however, overlooked the feasibility

constraints. A constrained MPC scheme was proposed in [11]

to modulate step parameters and body rotation. Nevertheless,

this work, together with other aforementioned works, did not

consider the nonlinear dynamics with respect to (w.r.t) height

variation. The height variation was discussed in [9], [22] and

then was incorporated [10] for 3D walking with momentum

regulation. Nonetheless, it is difficult, if not impossible, to

obtain the global optimum using the formulation in [10].

In [23], the cascaded MPC was formulated for multiple

strategies integration, guaranteeing the global convergence of

each smaller optimization problem. However, the step time

modulation is missing.

B. Our solution & contribution

In this work, we aim for robust locomotion via sequential

convex optimization. The proposed two-layer optimization

structure integrates stepping (including step location and step

time modulation) and hip strategy while accounting for height

variation. Due to the usage of reduced-order template models,

i.e., the LIP model in the first layer and the NIPF model in

the second layer, efficient solutions with global convergence

are achieved to fully exploit each balance strategy, which has

been validated by extensive experiments.

This article has extended [1] with substantial algorithmic

and experimental contributions. The contributions are

1) we generate the optimal step parameters, including step

location and step time, using semidefinite relaxation

(SDR). As a result, an efficient solution with global

convergence is obtained. Compared with [1], the push

recovery capability is largely improved;

2) we adjust angular momentum while addressing the non-

linear dynamics caused by height variations using QP,

enhancing walking robustness and adaptability;

3) we validate the approach via extensive experiments. Since

multiple balance strategies are integrated in a unified

and flexible manner, robots achieve robust and adaptable

locomotion in challenging scenarios, such as walking

across height-varying stepping stones against external

pushes, which has rarely been reported by humanoids

with planar feet. Furthermore, the proposed approach can

directly apply to the humanoid with line feet.

The rest is organized as follows: Section II provides a first

glance at the proposed method. Section III and Section IV

separately detail step parameters optimization and angular mo-

mentum modulation. In Section V, we validate the proposed

approach by extensive tests and comparison studies. Section VI

concludes this work.

II. OVERVIEW

This work aims to exploit multiple balance strategies, es-

pecially the step and hip strategies, to enhance locomotion

robustness. Fig. 2 illustrates the control architecture.

As a key design choice, sequential convex optimization is

proposed to generate the reactive gaits, making it possible

to integrate stepping and hip strategies without bringing in

a heavy computing burden. Based on the 3D LIP model, a

QCQP problem is formulated first to modulate step location

and step time (namely, step duration) in a real-time fashion.

By virtue of SDR, the step parameters are updated at 40 Hz.

Then, angular momentum is regulated by rotating the upper

body. Defining the height trajectory in advance, a linear MPC

(LMPC) is built to manipulate the centroidal moment pivot

(CMP) [24], on the basis of the 3D NIPF model [9]. The

second-layer optimization runs at 100 Hz. As a result, the

stepping and hip strategies with height variation are integrated.

After modulating the gait parameters, we adopt an imita-

tion learning scheme to generate the swing leg trajectories,

providing another adaptation feature [25]. To save the space,

we omit the details here.

After achieving reference motion, the admittance control

scheme similar to [26] is used for tracking control. Feasibility

constraints such as joint limits and friction restrictions are

considered when computing joint angle commands. In real

tests, a high-order sliding mode observer is used to estimate

3D CoM status and body rotation status [23]. The low-level

tracking control and state estimation run at 1 KHz.

Notations: In the following sections, vectors and matrices

are bold. Given a variable, (·)2 denotes the square operation,

cosh(·) and sinh(·) separately denote the hyperbolic cosine

and sine function, (·)r and (·)e separately denote the refer-

ence and estimated value, (·)min and (·)max separately denote

the minimal and maximal boundary value. Other important

notations are listed in Table I.

III. REACTIVE STEP VIA QCQP

This section details the stepping strategy. To start, we

derive an analytic solution for 3D LIP. Then, we present the

optimization formulation and solution.

A. 3D LIP dynamics: an analytic solution

In this stage, the 3D LIP model is employed to capture

the locomotion dynamics by which the body movement, e.g.,

the pelvis center in the humanoid robot, is characterized by

CoM motion. When walking without vertical accelerations1,

the CoP dynamics within each step cycle is determined by [8]

pγ = cγ − c̈γ/(ω0)
2, with ω0 =

√

g/Zc, (1)

where Zc is the nominal height of the 3D LIP.

Assuming that there is no CoP movement during each step

cycle, i.e., CoP coincides with the support center (as illustrated

in Fig. 3(b)), Eq. (1) can be simplified as

c̈γ = cγ(ω0)
2. (2)

1In 3D LIP, linear variation of vertical height (see the dashed red line
in Fig. 3(a)) is allowed for a 3D locomotion task.
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Fig. 2. Block diagram of the proposed method. The robot locomotion is obtained by sequential convex optimization that accounts for step parameters
modulation and angular momentum variation. [drx, d

r
y , T

r]T and [dx, dy , T ]T separately denote the reference and optimized sagittal step location,

lateral step location and step cycle. [θrr , θ
r
p]

T and [θr, θp]T separately denote the reference and optimized roll angle and pitch angle. [cx, cy , cz ]T

denote the optimized 3D CoM trajectory.

TABLE I
VARIABLE NOTATIONS

1. Key variables first appear in the first-layer optimization

pγ Horizontal CoP position along γ- axis (γ∈{x, y})

cγ , ċγ , c̈γ Horizontal CoM position, velocity and acceleration

ω0 Constant natural frequency of the 3D LIP

cγ(t), ċγ(t), c̈γ(t) CoM position, velocity and acceleration at time t

te Elapsed time of the current step

tch/tsh Alternative variables w.r.t cosh(·) / sinh(·)

1f(1X ) Cost function w.r.t decision variables 1X

dt Sampling time for the first-stage optimization

2. Key variables first appear in the seconde-layer optimization

cmpγ CMP position along γ- axis (γ∈{x, y})

phγ CoP position along γ- axis w.r.t height variation

ω Time-varying natural frequency of the NIPF model

cz , ċz , c̈z Vertical CoM height, velocity and acceleration

θr, θp Roll and pitch angle of the upper body

θ̈r, θ̈p Roll and pitch angular acceleration

2f(2X ) Cost function w.r.t decision variables 2X

2dt Sampling time for the second-stage optimization

3. Gait and model parameters

sx, sy , sz Step length, width and height at each step cycle

dx, dy , dz 3D landing location in world coordinate

T Step time of each step

m/g Robot mass/gravitational acceleration

I
g , IB Inertial matrix in the global/body coordinate system

Given the current state, i.e., CoM position cγ(te) and veloc-

ity ċγ(te) at the elapsed time te, the final state is

[
cγ(T )

ċγ(T )

]

=

[

cγ(te)
ċγ(te)

ω0

ċγ(te) cγ(te)ω0

] [
cosh(ω0(T − te))
sinh(ω0(T − te))

]

. (3)

Here, we define step-duration alternative variables as

tch = cosh(ω0(T − te)), tsh = sinh(ω0(T − te)). (4)

Considering 0 ≤ te ≤ T , we have 0 ≤ T − te ≤ T .

Therefore, tch and tsh are the injective functions of te.

Using Eq. (4), Eq. (3) can be rewritten as
[
cγ(T )

ċγ(T )

]

=

[

cγ(te)
ċγ(te)

ω0

ċγ(te) cγ(te)ω0

] [
tch

tsh

]

. (5)

From Eq. (5), we find that the CoM movement is determined

by the current CoM state and the step-duration alternative

variables. By virtue of this property, we can optimize the step

parameters and CoM motion based on the real state.

x

y

Σw

sxdx

sy

y

x

dy

pγΣl (   )

cγ(T)cγ(T)

 x

z

Σl

cz

cγ(0)cγ(0)

cγ(t  )e

(a) (b)

Zc
Zc

sz

Fig. 3. 3D LIP. (a) plots the sagittal motion, and (b) plots the horizontal
motion. The dashed red line in (a) plots the sagittal CoM trajectory for
stair climbing, and the dashed red curve in (b) plots the horizontal CoM
trajectory. The dashed green curve in (a) plots the swig leg trajectory.
Σw and Σl represent the global and local origins, respectively. Green
and blue blocks in (b) separately mark the right and left feet. x-, y- and
z- separately point to the forward, leftward and upward direction.

B. QCQP formualtion

1) Cost function: To accomplish the desired locomotion

task, we track the reference step parameters and the desired

final CoM states. That is,

1f(1X ) =
∑

1X

σ
1X

2
∥ 1X − 1X

r ∥2, (6)

where 1X = [sx, sy, tch, tsh]
T ∈ R

4 comprises the decision

variables, 1X=[1X
T, cx(T ), cy(T ), ċx(T ), ċy(T )]

T ∈ R
8 com-

prises the variables contributing to the cost terms. σ
1X

denotes

the weight coefficient. 1X
r ∈ R

8 are the corresponding

reference values. For example, the cr
x(T ), cr

y(T ), trch and trsh

are determined by

crx(T ) = srx/2, cry(T )= sry/2,

trch = cosh(ω0(T
r − te)), trsh = sinh(ω0(T

r − te)),
(7)

where T r, srx, and sry are the reference step parameters.

Here, we set the reference final CoM position to be sγ/2 to

ensure that the final CoM stays in the middle of consecutive

step locations. The desired CoM final velocity (ċr
γ(T )) can be

computed by (3) given the reference final CoM position (cr
γ(T ))

and the current CoM position (cγ(te)). It is worth mentioning

that, for the closed-loop control, we use the estimated CoM

position (ce
γ(te)

) as the current CoM position.

2) Feasibility constraints: To obtain feasible gaits, con-

straints arising from the physical limitations are considered.
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cosh(ω0(δT
min))≤ tch≤cosh(ω0(δT

max)), (8a)

sinh(ω0(δT
min))≤ tsh≤sinh(ω0(δT

max)), (8b)

t2ch − t2sh = 1, (8c)

smin
γ ≤ sγ(k) ≤ smax

γ , (8d)

ṡmin
γ ≤ (sγ(k) − sγ(k−1))/dt ≤ ṡmax

γ , (8e)

c̈min
γ ≤ (ċγ(te+dt) − ċeγ(te)

)/dt≤ c̈max
γ . (8f)

−µ≤ c̈γ(te+dt)/g≤ µ, (8g)

where sγ(k) and sγ(k−1) separately denote the step length

and width generated by the current and the last optimization

loop, ċγ(te+dt) and ċe
γ(te)

separately denote the generated

CoM velocity for the next sampling time and estimated CoM

velocity at the current time moment, c̈γ(te+dt) is the generated

CoM acceleration for the next sampling time.

Eq. (8a)∼(8c) restrict the variation of the current step time,

by limiting tch and tsh. In Eq. (8a) and Eq. (8b), we have

δTmin = max{0, Tmin−te}, δTmax = Tmax−te, (9)

where Tmin and Tmax separately denote the minimal and the

maximal step time. max(·) represents the function to choose

the maximal value among inputs.

Using Eq. (8d), the step length and step width are both

restricted to satisfy the kinematic reachability, by assuming a

rectangular reachable zone.

In Eqs. (8e) and (8f), the swing leg velocity and the change

of CoM velocity are limited to obey the actuation capability.

Finally, the friction cone is obeyed to avoid slippage by

imposing Eq. (8g), with µ being the friction coefficient.

C. QCQP solution

Section III-B establishes a constrained optimization prob-

lem. Particularly, the quadratic equality constraint in Eq. (8c)

results in a nonconvex QCQP, which is expressed as

argmin
1X

1

2
(1X

T)G(1X ) + gT(1X ),

s.t.
1

2
(1X

T)Vj(1X ) + vT
j (1X ) ≤ σj , (10)

where G, Vj ∈ R
4×4, g, vj ∈ R

4, and σj ∈ R specify the

objective function and constraints with j ∈ {1, ..., 13}.

In [1], SQP was utilized to solve the non-convex problem.

However, it could neither provide a reliable solution nor

guarantee global convergence, which is undesired for closed-

loop control. To tackle this issue, the SDR [27] is used to

transform the QCQP as a convex semidefinite programming

(SDP) problem, which is thus solved with global convergence.

Using the off-the-shelf solver, such as Mosek [28], the SDP

can be solved within 25ms2, meeting real-time requirements.

Remark 1: The usage of SDR enables us to solve the

relaxed optimization problem efficiently with global conver-

gence. However, it is hard to guarantee that the global optimum

of the relaxed problem is also that of the original QCQP in

2The time cost is estimated on the embedded board on Walker2 robot
(Linux 14.04 with Intel i5 1.6 GHz CPU).

 x

z

Σl

sxdx

sz

dz

Σw

Zc

θp cx(te)cx(te)

Zc

Fig. 4. NIPF moves in the sagittal plane. The red dashed curves plot
the CoM trajectory. dz is the vertical (global) step location.

Eq. (10). In theory, the feasibility can be easily checked [27],

and a decent solution of Eq. (10) could be obtained. A detailed

analysis of the numerical performance will be discussed in

Section V-A.

IV. ANGULAR MOMENTUM REGULATION VIA MPC

This section details LMPC for angular momentum modula-

tion. Using the reduced-order NIPF model, angular momentum

is regulated via upper-body rotation, which helps to manipulate

the CMP movement [24]. Furthermore, to enhance adaptabil-

ity, height variation in 3D walking is explicitly considered.

A. NIPF dynamics: body rotation with height variation

Assuming a flywheel at the CoM, the change of angular

momentum is characterized by the upper-body rotation. To

account for the height variation, the NIPF model [9] is used

here, as plotted by Fig. 4. Then, the CMP is determined by

cmpx = cx − c̈x/ω
2

︸ ︷︷ ︸

ph
x

−L̇g
y/(m(g + c̈z)),

cmpy = cy − c̈y/ω
2

︸ ︷︷ ︸

ph
y

+L̇g
x/(m(g + c̈z)),

(11)

where w =
√

(g + c̈z)/(cz − dz) is the time-varying natural

frequency. [L̇g
x, L̇

g
y]

T denote the change rate of angular mo-

mentum, which is given by

L̇g
x ≈ Igxxθ̈r, L̇g

y ≈ Igyy θ̈p. (12)

In Eq. (12), [Igxx, I
g
yy]

T are the first two diagonal components

of the global angular momentum matrix Ig . Assuming that

the body inclination does not vary a lot over the prediction

horizon, Ig is then determined by

Ig = R(θe)TIBR(θe), (13)

where IB ∈ R
3×3 is the inertia tensor in body coordinate,

θe ∈ R
3 denotes the estimated inclination angle. R(θe) ∈

R
3×3 is the rotation matrix.

1) Prediction model: Choosing the current state x̂(k) =
[x(k), ẋ(k)]

T (x ∈ {θr, θp}), we can predict the next state as

x̂(k+1) =

[
1 2dt
0 1

]

︸ ︷︷ ︸

A

x̂(k) +

[
(2dt)

2

2dt

]

︸ ︷︷ ︸

B

ẍ(k),
(14)

where A ∈ R
2×2 and B ∈ R

2 are both time-invarying that

are determined in advance by 2dt.
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Then, following Eq. (11), the output CMP at the j-th step

(j ∈ {1, . . . , Nh}) in the prediction window are

[
cmpx(k+j)

cmpy(k+j)

]

=

[

ph
x(k+j)

ph
y(k+j)

]

︸ ︷︷ ︸

C

+




0, −

Ig
yy

m(g+c̈z(k+j))
Ig
xx

m(g+c̈z(k+j))
, 0





︸ ︷︷ ︸

D

θ̈(k+j),

(15)

where θ̈(k+j) = [θ̈r(k+j), θ̈p(k+j)]
T consists of roll and pitch

accelerations at the j-th step. [ph
x(k+j), p

h
y(k+j)]

T are the CoP.

Assuming a constant pendulum height (Zc) at the beginning

and the end of each step (see Fig. 4), the height trajectory

can be obtained by the 5-th order polynomial interpolation,

considering the continuity of position, velocity and accelera-

tion. If the resultant CoP, i.e., [phx, p
h
y ] computed by Eq. (11),

goes beyond the support region, we use linear interpolation to

generate the vertical height. In this way, CoP stays within the

support region. And, C ∈ R
2×1 and D ∈ R

2×2 in Eq. (15)

are determined in advance.

Using Eqs. (14) and (15), the rotation and CMP state over

the horizon prediction can be obtained, given the future control

inputs θ̈(k+j) [29]. We omit the details here for brevity.

B. MPC formulation

1) Cost function: We manipulate the CMP motion during

the walking process by penalizing the deviation of body

rotation angles. We also minimize the angular accelerations,

i.e., control inputs, to achieve smooth movements. That is,

2f(2X )=
∑

2X

{α
2X

2
∥2X(k)−2X

r
(k) ∥

2+
β

2X

2
∥2Ẍ(k) ∥

2
}

+
∑

cmp

γ
cmp

2
∥cmp(k)−cmpr

(k) ∥
2,

(16)

where 2X(k) ∈ {θr(k),θp(k)} and 2Ẍ(k) ∈ {θ̈r(k), θ̈p(k)}
separately comprise the roll and pitch angles and angu-

lar accelerations over the prediction horizon, e.g, θr(k) =
[θr(k+1), . . . , θr(k+Nh)]

T, cmp ∈ {cmpx, cmpy} denotes the

predicted CMP, α
2X

, β
2X

and γ
cmp

are weights.

Control inputs (2X ∈ R
2×Nh ) are the angular acceleration

over the prediction horizon, namely, 2X = [θ̈r(k); θ̈p(k)]. By

default, the reference body rotation angles 2X
r
(k) are zeros.

And, the reference CMP positions (cmpr
(k)) coincide with

the support center, i.e., the step location, which is already

generated by the first-layer QCQP.

2) Feasibility constraints: The trunk rotation is restricted

to comply with the articulation limit and actuation capability.

Taking the roll angle as an example, we have linear constraints

θmin
r ≤ θr(k+i) ≤ θmax

r ,

τmin
r ≤ Ixθ̈r(k+i) ≤ τmax

r , i ∈ {1, ..., Nh},
(17)

where {θmin
r , θmax

r } and {τmin
r , τmax

r } are the lower and upper

boundaries of roll angle and torque, respectively.

Note that the CMP can go beyond the support region

without resulting in a fall [24]. Thus, we do not restrict the

CMP motion within the support region, which is different from

the LMPC structure in [23], [30].

TABLE II
PARAMETER SETTINGS FOR WALKER2 GAIT OPTIMIZATION

1. Default parameters

srx/s
r
y [m] 0.1/0.22 T r[s] 0.7

srz [m] 0 Zc[m] 0.5

dt[s] 0.025 2dt[s] 0.01

2. Constraint boundaries for QCQP

smin
x /smax

x [m] -0.15/0.3 Tmin/Tmax[s] 0.5/1.2

smin
y /smax

y [m] 0.12/0.25 µ 0.75

ṡmin
x /ṡmax

x [m·s−1] -2.5/3 c̈min
x /c̈max

x [m·s−2] -5/5

ṡmin
y /ṡmax

y [m·s−1] -1/2 c̈min
y /c̈min

y [m·s−2] -6/6

3. Constraint boundaries for LMPC

θmin
r /θmax

r [rad] -0.17/0.17 τmin
r /τmax

r [N·m] -20/20

θmin
p /θmax

p [rad] -0.17/0.17 τmin
p /τmax

p [N·m] -20/20

The above LMPC is formulated as a convex QP, which is

expressed as

argmin
2X

1

2
(2X

T)H(2X ) + hT(2X ),

s.t. qT
j (2X ) ≤ qj , j ∈ {1, ..., Nc}, (18)

where H ∈ R
Nt×Nt , h, qj ∈ R

Nt , and qj ∈ R specify the

objective function and constraints, Nt and Nc are the number

of decision variables and constraints. Here, we have Nt = 2Nh

and Nc = 8Nh with Nh being the prediction length.

In this work, we use ‘OSQP’ [31] to solve the above

problem. For the MPC, the prediction horizon for LMPC is

0.1s and the prediction length Nh is 10. It turns out that the

LMPC can be solved within 10ms using the onboard computer.

As a result, by using the above sequential optimization

method, the stepping and hip strategy are integrated. Par-

ticularly, following the NIPF dynamics, our formulation is

applicable to 3D locomotion with variable height, which can

not be realized by the work in [11], [12], [17] and [18].

V. EVALUATIONS

We validate the proposed method in this section. Particu-

larly, COMAN robot (pelvis height: 0.465m, weight: 31kg)

[32] is employed in simulation and the Walker2 robot (pelvis

height: 0.5m, weight: 70kg) [33] is utilized for hardware tests.

For COMAN robot, the default step width is 0.1452m. For

Walker2 robot, the default step time is 0.7s. Furthermore, for

Walker2 robot, we assume the CoM is located above the pelvis

center with a 0.1m offset. Some other parameters for Walker2

gait optimization are listed in Table II. For both robots, the

double support phase takes 20% of one stepping cycle. The

results can be addressed at https://youtu.be/YeK8jWwRbyo.

A. Template evaluation

1) Push recovery with stepping strategy: Push recovery

with the stepping strategy is demonstrated by the LIP sim-

ulation using the physical property of the COMAN robot.

The default T is 0.8s, and the default sx is 0.1m. During

the walking process, the horizontal push forces (lasting 0.1s)

were imposed at the pelvis center. Specifically, the backward
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Fig. 5. Evolutionary step parameters for push recovery. Dotted lines
mark the switch between different step cycles.
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Fig. 6. Robust gait against external pushes, where pink arrows mark
the push forces. Green and blue blocks separately mark the right and
left step locations.

200N and rightward 100N force was imposed at 2s, while the

forward 300N and leftward 150N force was imposed at 5s.

As illustrated in Fig. 5, the robot rejected external pushes

by adjusting step parameters timely. For example, at 2s with

the right support, the robot landed on the ground later with a

shorter step length and width since the external force pulled

the robot right behind, as shown in Fig. 5. Numerical analysis

reveals that the step time (T ) extended to 0.816s, and the step

length (sx) and width (sy) separately dropped to -0.017m and

0.11m. Using the updated step parameters, the CoM trajectory

was generated, see the green curve in Fig. 6. Notably, the

generated CoP is always located at the support center. Thus,

the locomotion stability is guaranteed.

2) Comparison study: To further validate the advantages of

this work, we compare it with our previous work [1] where

SQP was used to solve the NLP problem. Then, we compare

our stepping strategy with [18] and [17]. In [18], a QP was

formulated to adjust the step parameters by manipulating the

divergent component of motion (DCM) offset. In [17], a QP

was first employed to adjust the step time, and an MPC was

then solved for step location, considering the CoP movement

within the support region.

1, Robustness: We first compare the maximum push pulse

each approach can reject along various directions. In each test,

a constant horizontal force lasting 0.1s was applied to the trunk

at the middle of a step when the right foot touched the ground.

In each scenario, each method runs four times with different

weights, and the average values are reported in Fig. 7.

The green curve in Fig. 7 demonstrates that the maximum

push pulse our approach can reject varies a lot as the push

direction changes. Particularly, due to the collision limit, the

robot rejects much less external push along 240◦ ∼ 330◦

than other directions. Nevertheless, the SDR results in a much
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S+A [17]

S-SDR [This work]

Fig. 7. Comparison of the maximal push impulse (in N·s) the robot can
recover from when using different approaches. θ = 0◦ and θ = 90◦ rep-
resent the forward and left directions, respectively. ‘S’ and ‘A’ separately
denote the stepping and ankle strategy.

TABLE III
TIME COSTS NEEDED BY DIFFERENT APPROACHES

Strategy S [1] S [18] S+A [17] S [This work]

Solver SQP QP QP+QP SDR

Time cost [s] 0.7±0.2 0.3±0.1 8±1.5 3.8±0.9

higher push recovery capability than the previous work in [1]

in almost all directions (except along 330◦). On average, the

maximal pulse it can reject increases by 135%. The DCM-

based work in [18] can reject larger external pushes along

225◦ ∼ 345◦. That is because the DCM offset is allowed in

the lateral direction, working implicitly as an ankle strategy.

Note that the work in [17] rejects the largest external push

from most directions due to the integration of the ankle and

stepping strategy (denoted by ‘S+A’). However, in specific

directions, such as 15◦ ∼ 45◦, [17] does not perform the

best. We guess it is because [17] optimizes the step time

and location in a strict order, limiting its search space. Aside

from this, our work assumes no CoP motion, enabling the

application to robots with point or linear feet.

2, Computing efficiency: Table III summarizes the time costs

(1000 trials) needed by different approaches3, with the i7 2.1

GHz quad-core CPU. We found that the stepping strategy in

[18] is the most efficient since only a small QP is solved. When

solving the QCQP using SDR, this work leads to a larger time

cost than [1]. However, it is still fast enough.

B. Robust walking on real flat surface

In this section, we present experimental results on push

recovery when engaging different balance strategies.

1) recovery from ball strikes with/without stepping strategy

engaged: As can be seen from the first column in Fig. 8, a

6kg ball attached to a rope was released from a fixed height

(the rope length is 1m and the release angle Φ is 30◦) when

the robot was stepping in place. Then, the ball hit the robot

repeatedly until the kinetic energy was totally dissipated.

With stepping strategy engaged, the robot adjusted step

parameters, including step time T and step width sy (see

Table IV), while adjusting CoM motion (see ‘cx’ and ‘cy’

in Fig. 9(a) and (b)) to maintain balance. Particularly, when

3Considering the second-layer LMPC in our work can be solved fast
by a small-scale QP, we do not report the time cost here.
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Φ

Φ

Fig. 8. The Walker2 robot rejects ball strikes. The first row demonstrates stable walking when activating the stepping strategy, while the second
row demonstrates the failed motion when the stepping strategy is not activated. The red arrows in the second row indicate a tight rob for protection.
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Fig. 9. Body movements for recovering from ball strikes: (a) forward movement, (b) lateral movement, (c) upper-body rotation. [cfailx , cfaily ],

[pfailx , pfaily ] and [θfailr , θfailp ] separately denote the horizontal CoM trajectory, CoP trajectory and body rotation angles when no stepping strategy
was used. [rlx, rly ] and [llx, lly ] separately denote the right and left leg trajectory along x- and y- axis. Red arrows in (a) mark the time moments
when the ball strikes the robot body. Dashed lines in (c) mark the upper and lower boundaries of body rotations.
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Fig. 10. Vertical movements for recovering from ball strikes. cz , rlz and
llz separately denote CoM height, right leg height and left leg height

when the stepping strategy was used. cfailz plots the CoM height when
the stepping strategy was not activated.

the ball strike happened, the robot adopted a smaller step time

(e.g., T changed from 0.7s to 0.68s at the 9-th step), meaning

a higher stepping frequency. Meanwhile, the robot modulated

the upper-body rotation angles (see ‘θp’ in Fig. 9(c)). Using

the LMPC, the rotation angle fell in the feasible region.

Correspondingly, using the updated step parameters, adap-

tive leg trajectories were synthesized, as plotted by Fig. 9

and 10. The cz plot in Fig. 10 demonstrates that, when the

ball stopped moving (after about 7.5s), the robot returned to

the nominal gait with a constant height.

On the contrary, when the stepping strategy was not acti-

vated, which could be realized by setting large weights (i.e.,

σ
1X

in Eq. (6)), the robot tipped over. Corresponding plots in

Fig. 9 demonstrate larger oscillations in forward trajectories,

including cfailx , pfailx and θfailp , from 3s to 6s. Also, undesired

pfaily and θfailr are observed.

2) recovery from human pushes with/without hip strategy:

TABLE IV
STEP PARAMETERS MODULATION FOR REJECTING BALL STRIKES

Parameter
step

9 10 11 12 13 others

sx[m] -0.001 0.001 0 0 0 0

|sy |[m] 0.25 0.22 0.25 0.22 0.25 0.22

T [s] 0.68 0.7 0.68 0.7 0.64 0.7

Fig. 11. Walker2 rotates the upper body to reject human pushes when
stepping on board. Red arrows mark the lateral pushes.

Due to the hierarchical structure, the second-layer hip strategy

can be engaged alone to reject external disturbances when

step variation is restricted. To demonstrate this, we pushed

the robot when it stepped on the board, see Fig. 11. In this

case, the stepping strategy was not engaged. When the second-

layer hip strategy was engaged, the robot maintained balance

when encountering multiple lateral pushes, as can be seen in

Fig. 11. In contrast, when the hip strategy was not activated,

the robot fell, which can be found in the attached video.

3) push recovery when walking forward: Push recovery

when walking forward is also tested. In this case, the default T
is 0.7s, and the default sx is 0.1m. Using the proposed stepping

and hip strategies, the robot rotated the upper body and
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Fig. 12. Walker2 rejected rightward pushes (marked by red arrows) when walking across height-varying stepping stones. The first and the second
rows separately show the robot’s motions when using this work and the work in [23]. Note that the step location variation is not allowed here.
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Fig. 13. Body movement for the Walker2 robot when walking across
stepping stones with variable height. Pink arrows mark the time mo-
ments when external pushes were imposed.

adjusted step parameters to maintain balance when external

pushes were imposed. Please check the video for more details.

C. Robust walking across height-varying stepping stones

A more challenging scenario where human pushes were

applied when the robot stepped across stepping stones at

various heights is considered. The heights of stepping stones

are 3cm, 4cm and 1cm, respectively. To accommodate for

the uneven terrain, a time-varying CoM height trajectory was

generated in advance. In this case, the variation of step location

is forbidden.

Fig. 12 shows that with the proposed controller, the robot

successfully walked across the sparse steppable region when

encountering rightward push forces, by modulating the incli-

nation status of the upper body (plotted by the red solid curve

(‘θr’) in Fig. 13). Also, the step time slightly changed. For

example, the step period of the seventh step changed from

0.7s to 0.69s. In contrast, using [23], the robot would fall.

Please check the video for more details. The reason is that the

work in [23] does not modulate step time. Also, the CMP is

strictly constrained there, limiting the body rotation.

Notably, in our test, we did not slow down the step

frequency, meaning that the robot passed across the uneven

ground at the normal speed. To our knowledge, push recovery

in this challenging scenario has never been discussed by most

of the existing work that could activate stepping strategies or

multiple strategies, such as [11], [17], [18]. It is interesting that

Fig. 14. Walker2 rejected multiple leftward pushes (marked by red
arrows) when walking across the uneven ground.

Fig. 15. Walker2 robot walks across a stepping stone.

push recovery when walking across uneven ground is analyzed

in [10] and [21]. But to our best knowledge, no hardware

validation is provided by [10]. In [21], only one single push

was imposed on the body when the robot was walking across

the uneven ground. Besides, in [21], the steppable region is

set large enough to allow the modulation of step locations,

resulting in an easier task than ours.

Besides, walker2 could also reject leftward pushes when

walking across sparse stepping stones, as illustrated in Fig. 14.

For more details, please check the attached video.

D. 3D versatile walking: ablation studies

In addition to robust locomotion, we also demonstrate that

the Walker2 robot could accomplish 3D versatile tasks using

only the second-layer LMPC scheme. One example is that the

robot walked across a stepping stone (4cm in height). In this

case, the robot maintained balance by modulating the upper-

body status while explicitly considering the height variation as

well. The hardware motion is illustrated in Fig. 15. Also, the

robot could walk stably with time-varying step parameters, as

can be seen in the attached video.
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Fig. 16. COMAN (with line feet) walks stably against external pushes.
Purple arrows mark the forward 320N, forward 300N, backward 300N
and backward 300N pushes, respectively. Each push lasts 0.1s.

E. Stable walking of a humanoid robot with line feet

As mentioned in Section III, since we assume no CoP

movement during each step, no finite foot size is required. As

a result, the proposed approach can be applied to humanoid

robots with line or point feet. Taking the COMAN robot with

line feet (length: 15cm, width: 2cm) as an example, we validate

the robust locomotion via dynamic simulations in PyBullet.

Simulations were run at 200Hz, and the nominal T was 0.5s.

Fig. 16 visualizes the robust locomotion against sagittal pushes

when stepping forward (the default sx is 0.1m). As can be seen

from Fig. 16 and the attached video, due to the smaller contact

zone, the robot slid on the surface and rotated along the z-axis

when external forces were imposed. Nevertheless, the balance

was maintained using the proposed method.

Aside from this, COMAN could realize stable walking with

variable step parameters, as can be seen from the video.

VI. CONCLUSIONS AND DISCUSSIONS

In this work, robust locomotion in real-world scenarios

is accomplished via sequential convex optimization. First,

optimal step parameters (i.e., step time and location) under

external disturbances are obtained in real-time by solving a

QCQP problem. Then, upper-body rotation is adjusted by a

fast linear MPC. By explicitly characterizing vertical motion,

adaptable locomotion in 3D scenarios with height variation is

also accomplished. The comparison with state-of-the-art vali-

dates the enhanced robustness and adaptability of the proposed

method. Extensive evaluations with the full-sized COMAN

and Walker2 robots demonstrate the effectiveness in achieving

challenging locomotion tasks, such as rejecting pushes when

walking across stepping stones with height variation.

Nevertheless, there is still room for improvement. First, we

acknowledge that using SDR in Section III-C enables us to

solve the relaxed problem efficiently with global convergence.

However, it is hard to guarantee that the global optimum of

the relaxed problem is also that of the original QCQP in

Section III-B. To make a tight relaxation, we can take the

SDR solution as an initial guess and feed it to a general

nonlinear optimization solver, such as SQP. Furthermore, in

future work, we can integrate the ankle strategy in the future

to enhance robustness, following the idea in [11], [25]. Aside

from these, the current low-level tracking controller ignores

the mass distribution in limbs, weakening the locomotion

performance. We are keen to apply a whole-body tracking

controller [34], [35] in future.
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