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A B S T R A C T 

We study local magnetohydrodynamical instabilities of differential rotation in magnetized, stably stratified regions of stars 
and planets using a Cartesian Boussinesq model. We consider arbitrary latitudes and general shears (with gravity direction 

misaligned from this by an angle φ), to model radial ( φ = 0), latitudinal ( φ = ±90 

◦), and mixed differential rotations, and study 

both non-dif fusi ve [including magnetorotational instability (MRI) and Solberg–Høiland instability] and dif fusi ve instabilities 
[including Goldreich–Schubert–Fricke (GSF) and MRI with diffusion]. These instabilities could drive turbulent transport and 

mixing in radiative regions, including the solar tachocline and the cores of red giant stars, but their dynamics are incompletely 

understood. We revisit linear axisymmetric instabilities with and without diffusion and analyse their properties in the presence of 
magnetic fields, including deriving stability criteria and computing growth rates, wave vectors, and energetics, both analytically 

and numerically. We present a more comprehensive analysis of axisymmetric local instabilities than prior work, exploring 

arbitrary differential rotations and diffusive processes. The presence of a magnetic field leads to stability criteria depending upon 

angular velocity rather than angular momentum gradients. We find MRI operates for much weaker differential rotations than the 
hydrodynamic GSF instability, and that it typically prefers much larger length-scales, while the GSF instability is impeded by 

realistic strength magnetic fields. We anticipate MRI to be more important for turbulent transport in the solar tachocline than the 
GSF instability when φ > 0 in the Northern (and vice versa in the Southern) hemisphere, though the latter could operate just 
below the convection zone when MRI is absent for φ < 0. 
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 I N T RO D U C T I O N  

he evolution of angular momentum (AM) and its profile in a star
s one of the most fundamental – yet poorly understood – aspects
f stellar evolution (e.g. Maeder & Meynet 2000 ; Maeder 2009 ).
an y unsolv ed problems in solar physics, including the development

nd maintenance of the differentially rotating solar convection zone,
achocline, and solar dynamo, as well as those of other stars, all likely
equire a better understanding of the mechanisms that shape the AM
ransport and hence profile of star throughout its life cycle. Current
tellar evolution codes are too simplistic and do not correctly model
he evolution of AM, as is evident from red giant and subgiant stars
or example, whose core-envelope differential rotations inferred from
steroseismology are not well explained by existing stellar evolution
odels (e.g. Aerts, Mathis & Rogers 2019 ). 
Some of the most important proposed mechanisms for AM

ransport and turbulent mixing in stars are magnetohydrodynamical
MHD) instabilities, which have not yet been fully explored (e.g.
ahn 1974 ; Maeder & Meynet 2000 ) and their non-linear evolution

s particularly poorly understood. Here we analyse local MHD
nstabilities in stellar radiative zones, focussing on the stability
roperties of stably stratified, differentially rotating, and magnetized
 E-mail: mmrwd@leeds.ac.uk (RWD); A.J.Barker@leeds.ac.uk (AJB) 
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hear flows – relevant, for example, to modelling the solar tachocline
r the cores of red giant stars. Radiative zones are often thought of as
uiescent regions, but they have already been shown to exhibit a range
f local and global MHD instabilities that transport AM and lead to
urbulent mixing. Examples of rele v ant instabilities in such regions
nclude the hydrodynamic Goldreich–Schubert–Fricke (GSF) insta-
ility, a double-dif fusi ve centrifugal instability of dif ferential rotation
nabled by thermal diffusion (Goldreich & Schubert 1967 ; Fricke
968 ; Knobloch & Spruit 1982 ; Rashid, Jones & Tobias 2008 ; Barker,
ones & Tobias 2019 , 2020 ; Park, Prat & Mathis 2020 ; Park et al.
021 ; Dymott et al. 2023 ; Tripathi et al. 2024 ), and the more violent
nstabilities excited when the Solberg–Høiland (SH) criteria for non-
if fusi ve instabilities are violated (Solberg 1936 ; Høiland 1941 ). Not
nly do these linear instabilities lead to turbulence with enhanced
ransport properties in their non-linear evolution, they also exhibit
he emergence of long-term anisotropic quasi-stable structures such
s ‘zonal jets’ (or layering in the AM; Barker et al. 2020 ; Dymott et al.
023 ). The complex anisotropic nature of the long-term evolution of
any of these instabilities suggests that modelling them in one-

imensional stellar evolution models simply as a one-dimensional
if fusi ve process is probably insufficient. Indeed, in certain cases
urbulent transport is known to be antidiffusive. 

The presence of even a weak magnetic field is known to dras-
ically modify the stability of differentially rotating flows (e.g.
handrasekhar 1961 ; Acheson & Gibbons 1978 ; Balbus & Ha wle y
© 2024 The Author(s). 
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1 The MHD equations are invariant under the transformation B → −B , so 
there is no loss of generality in considering B 0 ≥ 0. 
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991 ). Stability criteria with magnetic fields tend to involve angular 
elocity gradients – which typically require much weaker differential 
otations to predict instability – rather than the AM gradients without 
elds; this is because the field can act as a tether between fluid
articles and allow them to exchange AM. The magnetorotational in- 
tability (MRI) is one such manifestation when a weak magnetic field 
s introduced into a differentially rotating flow (e.g. Chandrasekhar 
961 ; Acheson & Gibbons 1978 ; Balbus & Ha wle y 1991 , 1994 ;
albus 1995 , 2009 ; Spruit 1999 ; Ogilvie 2007 ; Oishi et al. 2020 ;
asil et al. 2024 ). This can operate and drive turbulence even in many
ydrodynamically stable flows. Its operation in stably stratified stellar 
nteriors (i.e. radiation zones) in the presence of dif fusi ve processes
as been studied in some prior works (Menou, Balbus & Spruit 2004 ;
enou & Le Mer 2006 ; P arfre y & Menou 2007 ; Guilet & M ̈uller

015 ; Caleo & Balbus 2016 ; Caleo, Balbus & Tognelli 2016 ), but
uch remains to be explored of its linear properties, and especially 

ts non-linear evolution in stars. Guilet & M ̈uller ( 2015 ) performed
inear analysis and numerical simulations of the MRI in a local stably
tratified model of a proto-neutron star (with extra neutrino cooling). 
ur approach is broadly similar to theirs but we will study arbitrary

ocal differential rotations. Global simulations in spherical geometry 
f the MRI (or Tayler instability, which is a current-driven instability 
hat is also present in these) in stellar radiative zones have also been
erformed (Gaurat et al. 2015 ; Jouve, Gastine & Ligni ̀eres 2015 ;
eduri, Ligni ̀eres & Jouve 2019 ; Jouve, Ligni ̀eres & Gaurat 2020 ),

hough these kinds of studies may not adequately capture all of the
ossible local instabilities. We choose to adopt a local model here, 
artly for simplicity and because such models are appropriate for 
tudying small-scale MHD instabilities, and also because they can 
xplore more realistic parameter regimes with numerical simulations 
particularly with regards to smaller dif fusi vities) than global models 
ould allow in non-linear regimes. 
Here we introduce magnetic fields to build directly upon Barker 

t al. ( 2019 , hereafter Paper I ), Barker et al. ( 2020 , hereafter Paper
I ), and Dymott et al. ( 2023 , hereafter Paper III ) that studied
ydrodynamical instabilities in a local Cartesian representation of 
 small patch of a stably stratified, differentially rotating stellar or
lanetary radiation zone. A global ‘shellular’ (radial) differential 
otation varying only with spherical radius was considered at the 
quator in Paper I (and an axisymmetric turbulence closure model 
as developed and verified for this case by Tripathi et al. 2024 ), and

t a general latitude in Paper II . In Paper III , we generalized the model
o consider an arbitrary differential rotation profile, which varies with 
oth radius and latitude. Here we incorporate a poloidal magnetic 
eld into this more general model. Following a similar approach, we 
erform an axisymmetric linear stability analysis here, which we will 
ollow with complementary three-dimensional non-linear numerical 
imulations (which can consider the effects of more general field 
rientations) in future work. Our primary goals are to understand the 
roperties of the GSF instability in the magnetic system, as well as
he operation of the MRI, and to determine their potential roles in
M transport, chemical mixing, and dynamo generation. Our linear 

tudy is related to the one undertaken by Latter & Papaloizou ( 2018 )
or the vertical shear instability in astrophysical discs (e.g. Urpin & 

randenburg 1998 ; Nelson, Gressel & Umurhan 2013 ; Barker & 

atter 2015 ), which is the name used for the GSF instability in that
ontext. 

The goal of this paper is to gain insights into how the presence of
 locally uniform magnetic field affects the linear properties of local 
nstabilities of differential rotation in stellar and planetary radiative 
ones. We do this by investigating the axisymmetric linear stability 
f the system (which we define in Section 2 ), both analytically and
umerically in Sections 3 –6 . We determine how the properties of the
nstable modes depend on magnetic field strength B 0 and magnetic 
randtl number Pm = ν/η (the ratio of kinematic viscosity ν to 
hmic dif fusi vity η). We will analyse the energetics of the v arious
nstabilities in our model and deri ve se veral ne w results before
pplying them to the solar tachocline and red giant stars in Section 7 .

 L O C A L  CARTESI AN  M O D E L  

.1 The model and go v erning equations 

e follow Paper I , Paper II , and Paper III and employ a local
artesian model to study small-scale instabilities of differential 

otation in a stably stratified region of a star or planet. We use
oordinates ( x , y , z), where y is the local azimuthal coordinate,
nd x and z are two coordinates in the meridional plane. We adopt
he Bousinessq approximation (Spiegel & Veronis 1960 ), which is 
xpected to be valid for the local instabilities we study (see e.g. Paper
 , for justification regarding studying GSF modes). The differential 
otation is represented by a linear shear flow U 0 = −Sx e y , which
n general varies with both spherical radius r and latitude β, and
e have defined x to be aligned with the axis of variation of U 0 .
 is the constant value locally of −� |∇ �( r, β) | (where �( r, β)

s the angular velocity), and � is the distance from the axis
f rotation (cylindrical radius). The local ef fecti v e gravity v ector
 g = ( cos φ, 0 , sin φ) defines the angle φ, and the rotation axis lies
long the vector ˆ � = ( sin 	, 0 , cos 	 ), thereby defining the angle
 . We note that both of these are defined locally with respect to x.
he latitude angle is then given by β = 	 + φ, which measures

he angle between the equator ˆ �
⊥ = ( cos 	, 0 , − sin 	 ) and the

pherical radial direction e g . Our model is illustrated in Fig. 1 , which
hows the various angles involved. 

We build upon the hydrodynamical studies of Paper I , Paper II ,
nd Paper III by introducing a uniform static background poloidal 
agnetic field B 0 = B 0 ̂  B that is in equilibrium, satisfying the local

nalogue of Ferraro’s law of isorotation (Ferraro 1937 ). For this
ow to be in equilibrium in the meridional/poloidal ( x, z) plane, it
ust lie along z with ˆ B = (0 , 0 , 1), 1 being al w ays perpendicular to

ariation of the shear flow U 0 locally. This permits a well-defined 
quilibrium state even if it may complicate interpretation of our 
odel because the field is not purely radial or horizontal, depending

n the value of φ. The field is radial if φ = ±90 ◦ and it is latitudinal
f φ = 0 ◦, ±180 ◦. We do not consider toroidal/azimuthal fields in
ur local analysis, which are typically thought to be dominant in
he solar tachocline, because they play no role for linear incom-
ressible axisymmetric perturbations. A toroidal field would affect 
on-axisymmetric perturbations (e.g. Ogilvie & Pringle 1996 ) but 
nalysing those (and their non-modal growth) is less straightforward, 
nd it is likely that axisymmetric instabilities are the fastest growing
nes in any case (e.g. Latter & Papaloizou 2018 ). Since we have
dopted a local Cartesian model, as appropriate to explore small- 
cale instabilities in stellar radiative zones, we do not capture the
ffects of azimuthal magnetic fields on axisymmetric modes via hoop 
tresses, leading to azimuthal MRI (Hollerbach & R ̈udiger 2005 ;
irillov & Stefani 2010 ; Guse v a et al. 2017 ; Mamatsashvili et al.
019 ; Meduri, Jouve & Ligni ̀eres 2024 ). This could be important on
arger length-scales than those that we consider but it would require
s to adopt a global model. An initially purely toroidal field can
MNRAS 535, 322–343 (2024) 
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M

Figure 1. Illustration of the various vectors and corresponding angles in the 

( x, z) plane. The cylindrical radial direction (along the equator) is ˆ �
⊥ 

, and 
the rotation axis is ˆ �. The local radial direction is (approximately) along 
the ef fecti ve gravity direction e g , which is misaligned with respect to the 
x-direction when φ is non-zero. The magnetic field in linear theory is al w ays 
along z (therefore perpendicular to the shear in x), which is the only direction 
in the meridional plane in which an equilibrium exists. 
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Table 1. Differential rotation profiles and magnetic field orientations (in the 
meridional plane) as 	 and φ are varied. Here β is colatitude, z is distance 
along rotation axis, r is spherical radius, and � is cylindrical radius. 

	 φ Differential rotation Magnetic field 

0 – �( � ) (cylindrical) Arbitrary 
±90 ◦ – �( z) (axial variation) Arbitrary 
– 0 �( r) (spherical/shellular) Horizontal/latitudinal 
– ±90 ◦ �( β) (horizontal/latitudinal) Radial 
– – �( r, β) (arbitrary) Arbitrary 
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lay a role non-linearly in local models even if the linear instability
s axisymmetric ho we ver, so future non-linear simulations should
xplore these fields, also because of their possible role in driving
on-axisymmetric instabilities. 
The incompressible MHD equations go v erning perturbations to

he shear flow U 0 and background stable stratification in the Boussi-
esq approximation, in the frame rotating at the rate �, are 

 u + 2 � × u + u · ∇ U 0 = −∇p + θe g + B · ∇ B + ν∇ 

2 u , (1) 

θ + N 

2 u · e θ = κ∇ 

2 θ, (2) 

 B = B · ∇ u + B · ∇ U 0 + η∇ 

2 B , (3) 

 · B = 0 , (4) 

 · u = 0 , (5) 

 ≡ ∂ t + u · ∇ + U 0 · ∇. (6) 

ere u is a velocity perturbation and B is the total magnetic field.
e define a temperature perturbation θ having units of acceleration

nd related to the standard temperature perturbation ˜ T via θ = αg ̃  T ,
here α is the thermal expansion coefficient and g is the local grav-

tational acceleration. We use Alfv ́en speed units for the magnetic
eld, such that the dimensional magnetic field is B / 

√ 

μ0 ρ, where
is the constant reference density that we henceforth set to unity
NRAS 535, 322–343 (2024) 
nd μ0 is the vacuum permeability. Magnetic pressure is contained
ithin the total pressure p. We consider constant kinematic viscosity
, thermal dif fusi vity κ , and ohmic dif fusi vity η. For reference, the
asic state satisfies 

 � × U 0 = −∇p 0 + αg T e g , (7) 

 = κ∇ 

2 T , (8) 

ince ∂ t U 0 = U 0 · ∇ U 0 = ∇ 

2 U 0 = B 0 · ∇ B 0 = 0 and the equi v a-
ents of equations ( 3 )–( 5 ) are trivially satisfied. 

A background temperature (entropy) profile T ( x, z) has also
een adopted, with uniform gradient (hence satisfying equation 8 )
g ∇T = N 

2 e θ , where e θ = ( cos �, 0 , sin �), where the buoyancy
requency N 

2 > 0 in radiative zones. The ef fecti ve gravity vector e g 
ies approximately in the spherical radial direction, and is inclined to
 by an angle φ. For clarity, we consider sufficiently slowly rotating
tars that e g lies approximately along the spherical radial direction,
nd hence ‘radial’ will be assumed to be along e g , though the model
tself does not require this restriction (and it would not be the correct
nterpretation in very rapidly rotating stars). 

We expect the star to adjust rapidly to satisfy thermal wind balance,
nd enforcing this requirement eliminates the angle � as a free
arameter. This means that U 0 and its thermal state satisfy the thermal
ind equation (TWE), 

 �S sin 	 = N 

2 sin ( � − φ) , (9) 

hich is derived from the azimuthal component of the vorticity
quation for the basic state, i.e. the curl of equation ( 7 ). This is
naffected by our magnetic field B 0 . The representation of various
lobal differential rotation profiles and magnetic field orientations
n our local model is summarized in T able 1 . W e also illustrate the
arious angles in our problem in Fig. 2 . See Paper III for further
etails of the non-magnetic model. 
We use units defined by the rotational time-scale, �−1 , and the

ength-scale 

 = 

( νκ

N 

2 

)1 / 4 
. (10) 

he fastest growing hydrodynamic (GSF) modes typically have
avelengths O( d). With this choice of length, the buoyancy time-

cale N 

−1 is equal to the geometric mean of the viscous ( d 2 /ν) and
hermal ( d 2 /κ) diffusion time-scales (see e.g. Radko 2013 , for other
ouble-dif fusi ve problems). Note that with the addition of a magnetic
eld it is not at all clear that unstable modes will necessarily have

ength-scales O( d), and in fact we will show that MRI modes may
ave much larger scales. Ho we ver, for comparison with Paper I ,
aper II , and Paper III and for comparing GSF and MRI modes, we
ontinue to adopt this choice of units here. 
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Figure 2. Illustration of the key vectors and corresponding angles in the 

( x, z) plane. The cylindrical radial direction (along the equator) is along ˆ �
⊥ 

, 
and the rotation axis is along ˆ �. The local radial direction is (approximately) 
along the ef fecti ve gravity direction e g , which is misaligned with respect to 
the x-direction when φ is non-zero. The magnetic field is along z. 
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 LINEA R  T H E O RY  

e consider linear perturbations to our flow U 0 , thermal state, 
nd magnetic field B 0 . From equations ( 1 )–( 6 ), such velocity ( u ),
agnetic ( B ), pressure ( p), and temperature ( θ ) perturbations are

escribed by (where we have avoided introducing hats on perturba- 
ions) 

 u + 2 � × u + u · ∇ U 0 = −∇p + θe g + B 0 · ∇ B + ν∇ 

2 u , 

(11) 

θ + N 

2 u · e θ = κ∇ 

2 θ, (12) 

D B = B 0 · ∇ u + B · ∇ U 0 + η∇ 

2 B , (13) 

∇ · B = 0 , (14) 

∇ · u = 0 , (15) 

D ≡ ∂ t + U 0 · ∇. (16) 

ote that we have defined our field and flow to satisfy B 0 · ∇ U 0 = 0
o that the basic state is an equilibrium configuration. Note that this
estriction was not made in many prior works, including Balbus & 

a wle y ( 1994 ), Menou et al. ( 2004 ), and Menou & Le Mer ( 2006 ),
ut it is necessary to have a well-defined steady basic state. It
s unclear whether results obtained for any other poloidal field 
onfiguration (with a time-dependent basic state) are valid. We might 
xpect results in such cases to only be approximately valid if growth
imes are sufficiently small compared with the time-scale for the 
volution of the basic state but not when the instability grows weakly.

.1 Dispersion relation for axisymmetric modes 

e consider axisymmetric modes with meridional wave vectors k = 

 k x , 0 , k z ) = k( cos θk , 0 , − sin θk ) with magnitudes k = 

√ 

k 2 x + k 2 z 

nd angles θk , since axisymmetric modes are likely to be the 
astest growing (e.g. Latter & Papaloizou 2018 ), and we define 
ˆ k = k /k. These permit complex exponential solutions proportional 
o exp (i k x x + i k z z + st). We define the complex growth rate s =
+ i ω, where the growth (decay) rate σ ∈ R and the oscillation

requency ω ∈ R . We manipulate equations ( 11 )–( 16 ) for such
erturbations and define the modified growth rates s ν = s + νk 2 ,
 κ = s + κk 2 , and s η = s + ηk 2 , to obtain the quintic dispersion
elation 

 

2 
ηs 

2 
ν s κ + 2 s ηs νs κω 

2 
A + s κω 

4 
A + as 2 ηs κ + s κξ + b( s 2 ηs ν + s ηω 

2 
A ) = 0 , 

(17) 

here 

 = 

2 

� 

( ̂ k · �)( ̂ k · ( ∇� ) ⊥ ) (18) 

= 

2 �

k 2 
( s 	 

k x + c 	 

k z )(2 �k x s 	 

+ (2 �c 	 

− S) k z ) (19) 

= 

2 �|∇� | 
� 

s 	 −θk 
s γ−θk 

, (20) 

 = N 

2 ( ̂ k · e ⊥ 

θ )( ̂ k · e ⊥ 

g ) (21) 

= 

N 

2 

k 2 
( k z c � − k x s � )( k z c φ − k x s φ) (22) 

= N 

2 s θk + φs θk + � , (23) 

= −2( ̂ k · �) Sω 

2 
A ̂

 k z = 2 S�s 	 −θk 
s θk 

ω 

2 
A , (24) 

nd 

 

2 
A = ( B 0 · k ) 2 = k 2 B 

2 
0 s 

2 
θk 

(25) 

s the squared Alfv ́en frequency. In the above c 	 

and s 	 

refer to cos 	
nd sin 	 for brevity, and similarly for trigonometric functions with 
ther arguments (though s ν, s κ , and s η al w ays represent modified
rowth rates instead). We have also defined the local AM gradient 

� = � (2 �c 	 

− S, 0 , −2 �s 	 

) , = |∇� | ( c γ , 0 , −s γ ) , (26) 

hich has magnitude 

∇� | 2 = � 

2 
(
S 

2 + 4 �( � − Sc 	 

) 
)
. (27) 

he normal to this is 

 ∇� ) ⊥ = � (2 �s 	 

, 0 , 2 �c 	 

− S) = |∇� | ( s γ , 0 , c γ ) . (28) 

e also define the vector perpendicular to the ef fecti ve gravity, 

 

⊥ 

g = ( −s φ, 0 , c φ) , (29) 

nd the normal to stratification surfaces, 

 

⊥ 

θ = ( −s � , 0 , c � ) . (30) 

he baroclinic shear (along the rotation axis) is 

ˆ · ( ∇� ) = −S� s 	 

= |∇� | s γ−	 

. (31) 

The dispersion relation ( 17 ) can be expanded out as a quintic
quation 

 

5 + c 1 s 
4 + c 2 s 

3 + c 3 s 
2 + c 4 s + c 5 = 0 , (32) 

here the coefficients c 1 to c 5 are given by 

 1 = k 2 (2 η + 2 ν + κ) , (33) 

 2 = k 4 ( η2 + 2 ηκ + 4 ην + 2 νκ + ν2 ) + 2 ω 

2 
A + a + b, (34) 

 3 = k 6 ( η2 κ + 2 ην2 + 2 η2 ν + κν2 + 4 ηκν) 

+ 2 ω 

2 
A k 

2 ( η + ν + κ) + ak 2 (2 η + κ) + bk 2 (2 η + ν) , (35) 
MNRAS 535, 322–343 (2024) 
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 4 = k 8 (2 ην2 κ + 2 η2 νκ + η2 ν2 ) + 2 ω 

2 
a k 

4 ( ην + ηκ + νκ) 

+ ω 

4 
A + ak 4 (2 ηκ + η2 ) + ξ + bk 4 (2 ην + η2 ) + bω 

2 
A , (36) 

 5 = k 10 η2 ν2 κ + 2 ω 

2 
A k 

6 ηνκ + ω 

4 
A k 

2 κ + aη2 κk 6 

+ ξk 2 κ + bk 6 η2 ν + bω 

2 
A k 

2 η. (37) 

.2 Non-diffusi v e (in)stability 

on-dif fusi ve modes, i.e. those with ν = κ = η = 0, are described
y the reduced dispersion relation 

 

4 + (2 ω 

2 
A + a + b) s 2 + ( ω 

4 
A + b ω 

2 
A + ξ) = 0 , (38) 

gnoring neutral modes with s = 0. Note that the only appearance of
he magnetic field is through the combination B 0 · k = B 0 k z in ω A ,
herefore the adiabatic growth rate is independent of B 0 if arbitrary
 z are permitted. This can be solved to give 

 

2 = 

−(2 ω 

2 
A + a + b) ±

√ 

4 a ω 

2 
A − 4 ξ + ( a + b) 2 

2 
. (39) 

f we take B 0 = 0, then this reduces to the adiabatic dispersion
elation in Paper III (equation 27 ), s 2 = −( a + b). We would also
btain s 2 = −( a + b) in the dif fusi ve case if we took k → 0 in
quation ( 32 ), since ω 

2 
A → 0 in this limit, thereby eliminating the

nfluence of magnetic fields on such modes. 
Since s 2 is al w ays ne gativ e if a + b is positive, with s being

urely imaginary, then the system is SH stable. The discriminant
 = 4 a ω 

2 
A − 4 ξ + ( a + b) 2 in equation ( 38 ) is al w ays positive, so

he roots for s 2 are al w ays real. Hence, non-dif fusi ve oscillatory
nstabilities cannot occur. To see this, note that from equations ( 18 )
nd ( 28 ) we have 

ˆ k · ( ∇� ) ⊥ = � (2( ̂ k · �) − ˆ k z S) , (40) 

nd using the definition of ξ (equation 24 ), 

 = 4 a ω 

2 
A − 4 ξ + ( a + b) 2 = ( a + b) 2 + 16 ω 

2 
A ( ̂ k · �) 2 , (41) 

hich being the sum of squares must be non-ne gativ e. 
The criterion for onset of direct instability (real roots) occurs when

for neutral stability s = 0) 

 

4 
A + b ω 

2 
A + ξ = 0 , (42) 

nd instabilities occur when this term is ne gativ e. So the only way
o destabilize a hydrodynamically SH stable configuration without
iffusion is for the left-hand side of equation ( 42 ) to be ne gativ e,
hich corresponds with a direct instability, the MRI. MRI works best
ith a weak field (or on large length-scales), meaning the stabilizing

erm ω 

4 
A is small compared with the others, and when the fluid

s neutrally rather than stably stratified ( b = 0). Then, MRI just
equires a mode with a k which makes ξ ne gativ e. In the weak field
r small wavenumber case, ω 

4 
A → 0 faster than the remaining terms

n equation ( 42 ), so for non-zero B 0 , instability occurs if 

 − 2( ̂ k · �) S ̂

 k z < 0 . (43) 

ence in the special case of cylindrical differential rotation, �( � ),
e have N 

2 − 2 �S < 0. If the stabilizing effects of buoyancy are
bsent, the stability criterion in the weak field case is −2 �S < 0,
hich involves angular velocity rather than AM gradients (e.g.
albus & Ha wle y 1998 ). So S > 0 is required for instability (to
RI), which is generally much easier to satisfy than Rayleigh’s

riterion for centrifugal instability, which requires S > 2 in the
ydrodynamic case, implying outwardly decreasing AM. 
NRAS 535, 322–343 (2024) 
The three quantities a, b, and ξ that appear in equation ( 38 )
orrespond to three different instability mechanisms. If there is no
tratification or magnetic field, angular-momentum-driven instability
ccurs if k can be chosen so that a < 0. In the case of cylindrical
otation this is just Rayleigh’s criterion that instability occurs when
he AM decreases outwards. More generally, using equation ( 20 ),
 < 0 when the wave vector k lies in the wedge between �⊥ and
� . The quantity b is associated with the stratification, see equation

 23 ), and baroclinic instability b < 0 occurs when the wave vector
k lies in the wedge between e g and e θ . When the stratification is
ery strong, the TWE makes this wedge angle small, so baroclinic
nstability is weak. Then in a conv ectiv ely stable region b will be
arge and positive unless the wave vector is nearly parallel to gravity,
.e. horizontal flow along the isobars. The quantity ξ , equation ( 24 ),
s associated with MRI instability. From equation ( 42 ) if b > 0 we
eed ξ < 0 for instability. This happens if the wave vector k lies

utside the wedge between ˆ �
⊥ 

and the x-axis. 

.2.1 Marginal stability to stratified non-diffusive MRI 

n order to find the non-dif fusi ve unstable modes for weak fields, we
ubstitute k = k( cos θk , 0 , − sin θk ) into equation ( 43 ) and solve for
he marginal stability lines, giving 

 

2 sin ( θk + � ) sin ( θk + φ) + 2 �S sin ( 	 − θk ) sin θk = 0 . (44) 

n the strongly stratified limit, N 

2 
 | �S| and � ∼ φ (from equation
 ), 

 

2 sin 2 ( θk + φ) − 2 �S sin ( θk − 	 ) sin θk = 0 . (45) 

f N 

2 
 2 | �S| , this can only be satisfied when sin 2 ( θk + φ) ∼ 0,
ence θk + φ ≈ n π where n ∈ N . Note that θk is defined below the
-axis so −θk is the angle abo v e it. This means that −θk = φ =
 when n = 0, indicating that k lies along e θ or e g , so that fluid
otions are along stratification (or constant pressure) surfaces, i.e.

arallel to e ⊥ 

θ ∼ e ⊥ 

g . Hence instability is possible for a wedge of wave
ector angles around e θ (e.g. Balbus 1995 ). If φ > 0 and the box is
n the Northern hemisphere, e g lies outside the MRI-stable wedge

etween ˆ �
⊥ 

and the x-axis, see Fig. 2 , and we expect MRI instability.
o we ver, if φ < 0 in the Northern hemisphere, e g lies inside the
RI-stable wedge (recall 	 + φ > 0 in the Northern hemisphere so
 > | − φ| ), and so no MRI will occur, though there may be unstable
SF modes. 

.2.2 Fastest growing non-diffusive modes 

e now find the wav e v ector magnitude k and orientation θk 

orresponding to the maximum growth rate, and in turn identify the
ominant mode. To find the fastest growing mode we first maximize
 v er k 2 , and then maximize o v er the angle θk . Note a and b only
epend on θk and not on the magnitude k, so ∂ a/ ∂ k 2 and ∂ b/ ∂ k 2 are
oth zero. We also have 

∂ ω 

2 
A 

∂ k 2 
= 

ω 

2 
A 

k 2 
and 

∂ ξ

∂ k 2 
= 

ξ

k 2 
. (46) 

o obtain the fastest growing mode properties, we differentiate equa-
ion ( 38 ) with respect to both k 2 and θk and require ∂ k 2 s = ∂ θk 

s = 0.
etting the k 2 deri v ati ve of equation ( 38 ) to zero gives 

 

2 = −N 

2 

2 
s φ+ θk 

s �+ θk 
− �Ss θk 

s 	 −θk 
− k 2 B 

2 
0 s 

2 
θk 

. (47) 

his is clearly maximized for weak fields or for modes with k → 0
here the last term vanishes, since that provides a stabilizing effect,
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hough we must have non-zero B 0 to obtain this result. Now we can
aximize o v er θk to obtain 

 = −N 

2 

2 
s �+ φ+ 2 θk 

− �Ss 	 −2 θk 
− k 2 B 

2 
0 s 2 θk 

. (48) 

n the strongly stratified limit the dominant term is usually the first
ne involving N 

2 , which is stabilizing, unless we choose a specific
ange of θk . This means that in order to maximize the growth rate
e need to minimize this term. Indeed the magnitude of this term

s smallest when θk ≈ −( � + φ) / 2, i.e. when the wave vector is
pproximately halfway between e g and e θ . Note that in the strongly 
tratified limit the TWE implies that φ ≈ � and hence this term 

pproximately vanishes for θk ≈ −φ ≈ −�. For such wave vectors 
hat minimize the stabilizing effects of buoyancy, 

 

2 = �S s φs 	 + φ − B 

2 
0 ω 

2 
A s 

2 
φ. (49) 

ote that the magnetic term that only occurs in the non-weak field
imit is al w ays ne gativ e, meaning that in the adiabatic re gime a
tronger magnetic field should decrease the maximum growth rate 
f the instability. In the weak field case, where we can ignore the
econd term, we are left with 

 

2 = 2 �Ss φs 	 + φ. (50) 

ence, we require both φ and 	 + φ to have the same sign, either
oth in the Northern or Southern hemisphere for onset of instability. 

.3 Diffusi v e instabilities 

.3.1 Small Pr/Pm limit: very efficient thermal diffusion 

n the limit of very efficient thermal diffusion relative to viscous and
hmic diffusion, we would expect equation ( 38 ) to approximately 
pply for sufficiently large wavelength instabilities (with smallish k, 
or which viscous and ohmic diffusion are relatively unimportant) 
ut with b = 0. To show that this is indeed the case, if we consider
quation ( 17 ), set ν = η = 0 and then consider the limit κ → ∞ .
his means that in equation ( 17 ) ηk 2 � s and νk 2 � s but κk 2 
 s,
hich is like considering the joint limits Pr / Pm → 0 and Pr → 0
ith all other quantities O(1). We obtain the dispersion relation 

 

4 + (2 ω 

2 
A + a) s 2 + ( ω 

4 
A + ξ ) = 0 . (51) 

his is the same as equation ( 38 ) with b = 0 and describes MRI
odes satisfying the unstratified ( b = 0) non-dif fusi ve dispersion

elation with non-zero field. 2 The fastest growing modes (maximiz- 
ng o v er k 2 , i.e. setting ∂ k 2 s = 0) in the limit of weak fields or small
 (for which ω 

4 
A can be ignored relative to the other terms) satisfy 

 

2 = − ξ

2 ω 

2 
A 

= ( ̂ k · �) S 
k z 

k 
= S�s θk −	 

s θk 
. (52) 

n this limit instability occurs for any S > 0 (though strictly the
pproximations for which this limit applies are then no longer valid). 
he growth rate is maximized o v er θk when ∂ θk 

s 2 = 0, giving 

 	 −2 θk 
= 0 ⇒ θk = 

	 

2 
− n 

π

2 
(53) 
 This is analogous to what was found for the hydrodynamic case in the limit 
r → 0 and Ri Pr → 0, where the fastest growing mode growth rates were 
escribed by s 2 = −a, the adiabatic unstratified dispersion relation ( Paper 
I ; Paper III ). Ho we ver, the dispersion relation here requires the presence of 
on-vanishing magnetic field. 

ω

a  

f

a

or n ∈ N , i.e. for modes with orientations halfway between the
otation axis (along ˆ �) and the angular velocity gradient (along x)
hen n = 1. F or c ylindrical differential rotation ( 	 = 0), this implies

k = ±( π/ 2), and hence wave vectors are along z, as expected (e.g.
albus & Ha wle y 1991 ). On the other hand, when 	 = −30 ◦, θk =
105 ◦ (indicating 105 ◦above the x-axis), and when 	 = 60 ◦, θk =
60 ◦ (indicating 60 ◦above the x-axis). This is consistent with our

ater Figs 3 –5 for the largest Pm considered, and is most evident for
he strongest magnetic fields plotted there. 

F or ev en stronger fields or larger wav enumbers, there is a
tabilizing effect of magnetic tension through the ω 

4 
A term in 

he dispersion relation. Fields are sufficiently strong when ω 

2 
A = 

 

2 
0 k 

2 s 2 θk 
∼ 2 �Ss θk −	 

s θk 
, and hence typically for k 2 ∼ 2 �S/B 

2 
0 . In

ddition, larger k modes would be increasingly affected by ohmic 
iffusion and viscosity. 

.3.2 Diffusive modes in the small shear (small S/�) limit 

n Paper III , we computed the curves showing the lowest value of the
hear S for which instability is possible as a function of the angle φ,
he angle between the shear and gravity directions (see fig. 6 in Paper
II ). Apart from the exceptional case on the equator, there is a finite
inimum S below which no instability occurs. This is no longer the

ase when a magnetic field is added. There is then a whole range of φ
or which the system is unstable for arbitrarily small S. This is quite
urprising, as both GSF and MRI instability are driven by the shear,
o one might imagine that reducing the shear towards zero would
liminate them. What happens is that the growth rate does tend to
ero as S is reduced, but it can al w ays remain positive, so the critical
alue of S for instability can be zero. 

To establish this, we consider the case where S/� → 0, and
eek modes with small but positive growth rate s ∼ O( S). We
ow consider the ordering of the terms in the quintic dispersion
elation equation ( 17 ). We retain the dif fusi ve terms, choosing

( ηk 2 ) ∼ O( νk 2 ) ∼ O( κk 2 ) ∼ O( S). a is O( �2 ) and we choose
he magnetic field strength so that ω 

2 
A ∼ O( S�), which makes

∼ O( S 

2 �2 ). If we take N 

2 ∼ O( �2 ) or larger, it appears we have
n inconsistency, because then the dominant term in equation ( 17 )
s b s ηω 

2 
A ∼ O ( S 

2 �3 ), whereas the remaining terms are O ( S 

3 �2 )
r smaller. Ho we ver, the TWE (equation 9 ) implies that � and

are almost aligned if S/� � 1. If we choose our wavenum- 
er k = k( c θk 

, 0 , −s θk 
) so that θk = π − ( � + φ) / 2, aligned in the

imit S/� → 0 with both e θ and e g , then b = N 

2 s θk + � s θk + φ =
N 

2 s 2 �/ 2 −φ/ 2 , and now the TWE (equation 9 ) implies that b ∼
( S 

2 ), much smaller than O( �2 ). Numerical solutions of equation
 17 ) show that the critical wavenumber k is indeed aligned with
 θ and e g . Now the inconsistency in the b term in equation ( 17 )
s remo v ed, because this term is now negligible compared with the

( S 

3 �2 ) terms. We obtain 

s 2 ηs κ + ( ω 

4 
A + ξ ) s κ = 0 , (54) 

here 

 

2 
A = B 

2 
0 k 

2 sin 2 φ, a = 4 �2 sin 2 β, 

ξ = −2 k 2 S�B 

2 
0 sin β sin 3 φ, (55) 

nd β = 	 + φ is the latitude. Dividing by s κ , which must be positive
or growing modes, 

s 2 η + ω 

4 
A + ξ = 0 , implying s = −ηk 2 + 

√ 

−ω 

4 
A − ξ

a 
. (56) 
MNRAS 535, 322–343 (2024) 
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Figure 3. Logarithm of the growth rate log 10 ( σ/�) of axisymmetric perturbations plotted on the ( k x , k z ) plane according to equation ( 17 ), for various B 0 

and Pm, with φ = 30 ◦, 	 = −30 ◦, i.e. a mixed radial/latitudinal shear at the equator with latitude 	 + φ = 0 ◦. Parameters are N 

2 /�2 = 10, Pr = 10 −2 , and 
S/� = 2. We vary the strength of the magnetic field from B 0 = 0 to B 0 = 5 down each column, and vary Pm from Pm = 0 . 01 to Pm = 1 along each row. 

GSF modes are primarily confined within the wedge bounded by ˆ �
⊥ 

and ∇� (red lines). Ho we ver, as the field strength increases (downwards) the wave vector 
orientation is shifted to correspond more with MRI. Increasing B 0 at fixed Pm decreases both the maximum growth rate and the size of the unstable region on 
the ( k x , k z ) plane. Reducing magnetic dif fusi vity by increasing Pm on the other hand seems to have the opposite effect and enhances the destabilizing effects of 
the field, leading to a larger region of instability as well as a stronger destabilization of the dominant mode. 
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Figure 4. Logarithm of the growth rate log 10 ( σ/�) of axisymmetric perturbations plotted on the ( k x , k z ) plane according to equation ( 17 ), for various B 0 and 
Pm, with φ = −30 ◦ and 	 = 60 ◦, i.e. a mixed radial/latitudinal shear at latitude 	 + φ = 30 ◦. Parameters are N 

2 /�2 = 10, Pr = 10 −2 , and S/� = 2. We 
vary the strength of the magnetic field from B 0 = 0 to B 0 = 5 down each column, and vary Pm from Pm = 0 . 01 to Pm = 1 along each row. GSF unstable 

modes are primarily confined to within the wedge bounded by ˆ �
⊥ 

and ∇� (red lines) for weak fields, but this direction is modified when the MRI takes o v er. 
We observe a secondary set of unstable oscillatory modes, consisting of weakly destabilized magneto-inertial-gravity waves. These grow more weakly than the 
primary lobes but they are less affected by the stabilizing effects of the magnetic field and even operate (as in the B 0 = 5 , Pm = 0 . 01 case) when the primary 
lobes have been stabilized by it. 
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M

Figure 5. Logarithm of the growth rate log 10 ( σ/�) of axisymmetric perturbations plotted on the ( k x , k z ) plane according to equation ( 17 ), for various B 0 and 
Pm, with φ = 60 ◦ and 	 = −30 ◦, i.e. a mixed radial/latitudinal shear at latitude 	 + φ = 30 ◦. Parameters are N 

2 /�2 = 10, Pr = 10 −2 , and S/� = 2. We 
vary the strength of the magnetic field from B 0 = 0 to B 0 = 5 down each column, and vary Pm from Pm = 0 . 01 to Pm = 1 along each row. When B 0 = 0 the 
system is adiabatically unstable since it violates the SH criterion. This is visually characterized by a tendency for the fastest growing modes to occur even as 
k → 0, suggesting that the presence of diffusion leads to the preference of the largest possible wavelengths in this regime. This is in comparison to the GSF and 
MRI modes cases where the fastest growing modes here have a unique non-zero wavenumber and hence a preferred wavelength in real space. 
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rom equation ( 55 ) a > 0, so for instability we must have ξ < 0,
nd so for S > 0 the angle φ and the latitude β must have the same
ign for instability, so in the Northern hemisphere, β > 0, we must
ave φ > 0 for our small S modes to be unstable. In the solution
quation ( 56 ), the largest term as k → 0 is the ξ term, so that for
e gativ e ξ there is al w ays a small enough k that makes s > 0, so that
hat ho we ver small S is, it is al w ays possible to find a growing mode.
his behaviour is illustrated below in Fig. 12 for latitude 30 ◦ north
howing instability for very small S when φ > 0. For very large
 

2 , as we might expect in stars, and for small S (weak differential
otations), the inertial term a is negligible. Since b would then in
eneral dominate all other terms in equation ( 17 ), for instability we
ust choose modes for which fluid motion is along stratification 

urfaces, meaning k must be parallel or antiparallel to gravity. For 
mall S, e g is very close to e θ . Why cannot you wipe out the effect
f the stratification by thermal diffusion in this limit as you can
ith GSF (for e xample)? F or thermal diffusion to work, k must be

easonably large, and GSF modes are stabilized by the magnetic field 
t large (or moderate) k. At small S, MRI is stabilized by the ω 

4 
A 

erm too because ξ is proportional to S unlike ω 

4 
A . Only small k 

or small B 0 ) reduces ω 

4 
A relative to ξ , and having small k does not

llo w ef ficient enough thermal dif fusion for instability. Hence, the
undamental MRI mechanism that operates for small S is typically 
on-dif fusi ve. 
As N 

2 is reduced, S is made larger, or the field is reduced,
hen GSF modes with a larger k can operate, and there are more
ossibilities for instability. We will return to this point later when 
nalysing instability in the solar tachocline. 

 N U M E R I C A L  LINEAR  RESULTS  

n this section, we solve the dispersion relation and graphically 
nalyse the properties of the possible instabilities in our system. In
igs 3 –5 , we probe effects of varying the magnetic field strength B 0 

nd magnetic Prandtl number Pm for three different configurations 
ith different latitudes β = 	 + φ and orientations of the shear 
ith respect to gravity φ. We fix Pr = 0 . 01 small, but moti v ated
y parameters accessible with non-linear numerical simulations, and 
 = 2 (following Paper II ; Paper III ), since the latter choice would
e marginally stable according to Rayleigh’s criterion for cylindrical 
ifferential rotation. We present pseudo-colour plots of the base 10 
ogarithm of the growth rate of an axisymmetric perturbation in 
ourier space ( k x , k z ) in these figures. Overplotted in red are the

ines ˆ �
⊥ 

and ∇� , within which the direct GSF instability occurs, and
n light blue are the directions of buoyancy (more specifically, the 
ormal to stratification surfaces) and gravity, e θ and e g , respectively. 
or comparison the hydrodynamic cases with B 0 = 0 are shown 

n the top row of each figure. The magnetic field strength B 0 is
ncreased within the set [0, 1, 2.5, 5] with each successi ve ro w, and
m is increased within [0.01, 0.1, 1] with each successive column. 
We identify two sets of ‘lobes’ of instability operating in the 

ystem. The dominant sets are bounded by ∇� and ˆ �
⊥ 

in the 
ydrodynamic case, and they correspond to the dominant direct 
nstability. This is either the double-dif fusi ve GSF or the adiabatic
H instability (see section 3.2 of Paper III for the explicit conditions
equired for the latter to operate). The fastest growing modes typically 
ave growth rates O(1), which we note is comparable to �−1 , given
ur unit of time, and are initially (in the hydrodynamic case) observed
o lie along the line that is approximately halfway between ∇� and
ˆ ⊥ 

. This wedge is perpendicular to the physical wedge within which 
he unstable mode displacements and velocity perturbations arise due 
o incompressibility. The second set of smaller lobes, when present, 
ontains oscillatory modes, which are weakly growing internal 
agneto-inertia-gra vity wa ves that propagate and are destabilized 
ithin the wedges bounded by e g and e θ . 
The introduction of non-zero B 0 has observable effects on the 

rientation, strength, and structure of the unstable region in parameter 
pace. Increasing the strength of the field for a fixed Pm has a
endency to force the modes into alignment with the preferred 
irection for MRI modes, and to shift them to larger scales (smaller
 magnitudes), both as predicted in Section 3.3 . Note that we do not
bserve the MRI modes to be well aligned with e θ here, as explained
n Section 3.2 . This is likely due to the effects of thermal diffusion in
liminating the stabilizing effects of buoyancy forces on MRI modes 
hen Pr / Pm = η/κ and Pr are both small, which is the case here
hen Pm ≥ 0 . 01 as we fix Pr = 0 . 01. The addition of a field seems

o impose a stabilizing effect on the hydrodynamically unstable GSF 

odes, ultimately resulting from the stabilizing effects of magnetic 
ension (see also Latter & Papaloizou 2018 ), and so the majority of
ases exhibit a smaller growth rate for the dominant instability as B 0 

s increased. 
Magnetic diffusion counteracts the effects of magnetic fields, and 

his is clearest for small Pm in the left panels of Figs 3 –5 . Cases with
m = 1 have the weakest ohmic diffusion, and cases with Pm =
 . 01 have much more efficient ohmic than viscous diffusion. Small
m allows magnetic cases to return to the hydrodynamic limit and

arger Pm (closer to unity, in our case) therefore exhibit the strongest
agnetic effects for a given B 0 . When Pm = 1, instability is possible

utside the hydrodynamic region contained within the lines ˆ �
⊥ 

and 
� . This can be seen most clearly in the rightmost bottom panel of

hese figures, where magnetic effects are strongest (and magnetic 
iffusion is weakest). The direction of the preferred modes in that
ase is better described by the unstratified (due to rapid thermal
iffusion) MRI in Section 3.3 . 
The oscillatory modes seem to be only very marginally modified 

y the magnetic field, as is seen most clearly in Fig. 4 . This suggests
hat the internal inertia-gra vity wa v es observ ed to be destabilized in
aper III within the wedge between e g and e θ continue to be weakly
estabilized magneto-inertial-gravity waves. 

 PARAMETER  D E P E N D E N C E  O F  FA STEST  

ROW I N G  M O D E  

fter displaying the properties of all unstable axisymmetric modes 
n the ( k x , k z ) plane in our system as B 0 and Pm are varied, we now
urn to explore the variation in the fastest growing mode optimized
 v er k x and k z as the parameters are varied. We primarily consider
 = 2 and N 

2 = 10 at four latitudes ( β = φ + 	 = 0 ◦, 30 ◦, 60 ◦,
nd 90 ◦). 

.1 Non-diffusi v e instabilities 

e first explore non-dif fusi ve (stratified) instabilities by solving 
he quartic dispersion relation in equation ( 38 ) numerically (using
minsearch on −� [ s] in MATLAB ), to determine the properties of

he fastest growing mode, which we present in Fig. 6 as a function of
he direction of the differential rotation φ, for three different latitudes
= 30 ◦, 60 ◦, and 90 ◦. The left panel shows the growth rate σ of

he fastest growing mode, the middle panel shows the corresponding 
avenumber magnitude k, and the right panel shows the wave vector
rientation θk = tan −1 ( −k z /k x ). Note that the magnetic field only
ppears in equation ( 38 ) through powers of ω A , therefore the results
MNRAS 535, 322–343 (2024) 
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M

Figure 6. A selection of figures comparing the properties of the fastest gro wing non-dif fusi ve ( ν = κ = η = 0) modes with an imposed magnetic field for 
S = 2 and N 

2 = 10 for latitudes 30 ◦, 60 ◦, and 90 ◦. Left panel: Maximum growth rate σ as a function of φ. The blue dotted curve is where the fastest growing 
mode is hydrodynamic and the magnetic field plays no role, which prefers modes with k → 0. The solid curves are where the corresponding k is non-zero and 
magnetic field affects the growth rate. Middle panel: k when it is finite and there is instability. Right panel: Corresponding wave vector orientation θk , which is 
well-defined for all growing modes. 
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n the left and right panels of Fig. 6 are independent of the magnetic
eld, whereas the middle panel shows results for B 0 = 1 but k can be
traightforwardly scaled to consider any B 0 since the y-axis can be
nterpreted as B 0 k (and k z can be obtained using the corresponding
k ). This means that for strong fields, instability prefers small k. 

The blue lines in Fig. 6 are results at a latitude of 30 ◦. Blue dashed
ines are where the non-dif fusi ve hydrodynamic SH instability
perates, and blue lines where the magnetic field modifies the
nstability o v er the hydrodynamic case (shown in fig. 4b in Paper
II ). Values of φ for which there are no blue or red line are non-
if fusi vely stable. When the non-dif fusi ve hydrodynamic SH modes
re unstable in red, in the range approximately φ ∈ [60 ◦, 150 ◦], there
s no preferred k, only a preferred wave vector orientation. In this
imit, the blue lines suggest the wave vector k → 0 for this range
f φ. The magnetic field widens the unstable region to below φ = 0
rom φ ≈ 30 ◦. 

For latitudes 60 ◦ (green lines) and 90 ◦ (red lines), there are no
urely hydrodynamically unstable non-dif fusi ve modes, but it can
e seen by comparison with fig. 4 in Paper III that the field widens
he unstable range of φ. The growth rate has a similar maximum
alue to the hydrodynamic case, with σ ∼ 1 for the maximal φ.
≈ −30 ◦ to 180 ◦ are typically the most unstable configurations,

nd they also have the largest wavelength (smallest k) instabilities,
hereas φ approximately between −150 ◦ and −30 ◦ are typically
on-dif fusi vely stable. Note that we have obtained a new region of
nstability near to φ ≈ −180 ◦ that we omitted from fig. 4 in Paper
II but is also present in the hydrodynamic case. 

.2 Diffusi v e instabilities 

n stellar radiation zones, rapid thermal diffusion means that Pr � 1,
m � 1, and Pr / Pm = η/κ � 1. Hence, the stratified non-dif fusi ve

nstabilities we have just analysed are likely to be modified by
hermal diffusion. To explore this, we solve the full triply dif fusi ve
ispersion relation equation ( 17 ) with Pr = 10 −2 and Pm = 0 . 1,
or which Pr / Pm = 0 . 1 and is therefore small. Though these are
mall values they are not in the regime of stellar interiors – ho we ver
hese values are accessible for non-linear calculations. We show the
rowth rate (left panels), wav e v ector magnitudes (middle panels),
nd orientations θk (right panels) as a function of φ for various field
trengths B 0 ∈ [0 , 1 , 2 . 5 , 5 , 10] in Figs 7 , 8 , 9 , 10 for latitudes
 

◦, 30 ◦, 60 ◦, and 90 ◦, respectively. These demonstrate the effects of
NRAS 535, 322–343 (2024) 
 magnetic field on linear growth rates o v er the complete range of
ifferential rotation configurations (value of φ) with S = 2. 
The equatorial case in Fig. 7 is symmetric about φ = 0 and is

diabatically (non-dif fusi v ely) stable for S = 2 for an y φ and B 0 .
he hydrodynamic B 0 = 0 case is stable when φ = 0, corresponding

o cylindrical rotation at the equator, but it becomes destabilized
y even a weak magnetic field. This destabilization is seen at
ll latitudes and is a result of a change in the stability criteria
o v erning instability here. In the hydrodynamic case, we require
 violation of Rayleigh’s criterion, which requires AM to decrease
utwards on isobars for instability, whereas in the magnetic case
his criteria can – for certain field strengths – correspond to an

RI mode that requires angular velocity to decrease along isobars
nstead, which is much easier to satisfy. Within close proximity
o the cylindrically rotating profile ( −15 ◦ � φ � 15 ◦), the mag-
etic instability operating is significantly more unstable than the
ydrodynamic case. Increases in field strength of up to B 0 ≈ 2 . 5
ncrease linear growth rates of the dominant modes, paired with
 decrease in their wavelengths (increase in k), and a significant
eviation in orientation from the hydrodynamic case there (towards
k ∼ 90 ◦, implying k is along z). Outside of this region (particularly
or φ outside of −60 ◦ � φ � 60 ◦), the field inhibits growth of the
ydrodynamic GSF modes and increases their wavelength (reduces
ts k). For these parameters it is clear that the magnetic field typically
as a stabilizing effect except for close to cylindrical rotation
rofiles. 
Fig. 8 shows the same results for latitude 	 + φ = 30 ◦. Here the

ymmetry about φ = 0 seen at the equator is broken and varying
has more complicated effects. Cylindrical differential rotation

orresponds here with φ = 30 ◦ (since then 	 = 0 ◦), and we observe
hat it this stable when B 0 = 0 but is destabilized by the addition of a

agnetic field, with more magnetized cases becoming more unstable
ntil the growth rate becomes independent of B 0 for B 0 � 2 . 5. After
≈ 60 ◦ there is very good agreement between all cases. This is when

he non-dif fusi ve hydrodynamic SH instability operates (as seen in
ig. 6 ), which prefers k → 0, and magnetic fields have little effect
n it. 
There is a notable change in the φ range of non-zero | k| values

s B 0 is increased, which goes from 169 ◦ � φ � −157 ◦ ∪ −135 ◦ �
� 28 ◦ in the hydrodynamic case (note that the boundary between

80 ◦ and −180 ◦ is continuous due to symmetry) to 168 ◦ � φ �
160 ◦ ∪ −100 ◦ � φ � 60 ◦ in the strongest B 0 = 10 case. Note that



Diffusive rotational instabilities 333 

Figure 7. Properties of the fastest growing modes for various values of the magnetic field B 0 with S = 2 , Pr = 10 −2 , N 

2 = 10, and Pm = 0 . 1, for different 
rotation profiles (values of φ) at the equator. The hydrodynamically stable case of φ = 0 ◦, corresponding to cylindrical rotation, is destabilized by the magnetic 
field. Within close proximity of cylindrical rotation ( −15 ◦ � φ � 15 ◦) increases in field strength of up to roughly B 0 = 2 . 5 increase the growth rate. This is 
paired with a decrease in the wavelength of this mode and deviation in orientation from the hydrodynamic case, where θk tends to align itself more so with the 
orientation of the field. For other φ, the field tends to stabilize the instability o v er the hydrodynamic case, reducing its maximum growth rate and wavenumber k. 

Figure 8. Properties of the fastest growing modes for various values of the magnetic field B 0 with S = 2 , Pr = 10 −2 , N 

2 = 10, and Pm = 0 . 1, for different 
rotation profiles (values of φ) at a latitude β = 	 + φ = 30 ◦. The addition of a magnetic field significantly alters the linear growth rate of the diffusive modes, 
and typically acts to reduce both the growth rate σ and wavenumber k, but it does not affect the adiabatically unstable region for φ ∈ [60 ◦, 170]. The effect of 
the magnetic field depends on both field strength ( B 0 ) and differential rotation profile ( φ). Nearly cylindrical differential rotations φ ≈ 30 ◦ ( 	 = 0) that are 
hydrodynamically stable are heavily destabilized by the addition of a magnetic field, which corresponds to onset of the MRI. 
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n an y re gion where more than one B 0 has well-defined | k| values,
he smaller B 0 al w ays has the shorter wav elength. In re gions where
he magnetic instability operates the field again acts to force θk into 
lignment with the preferred direction for unstratified MRI modes 
iscussed in Section 3.3 for these parameters. Regions where the 
ominant mode switches from one form of instability to another can 
lso be seen by a discontinuity in θk , as seen in panel (c). 

At latitude 	 + φ = 60 ◦, shown in Fig. 9 , the effects of the field
re in many ways similar to Fig. 8 . The range of unstable φ values
oes ho we ver decrease with increasing B 0 , with the smallest range
f instability being −145 ◦ � φ � −100 ◦ in the hydrodynamic case 
p to −155 ◦ � φ � −59 ◦ at B 0 = 10. Ho we ver, the field is destabi-
izing, leading to larger growth rates in the range 15 ◦ � φ � 160 ◦,
here the largest B 0 is the most unstable. 
Similar results are found at latitude 	 + φ = 90 ◦ in Fig. 10 .
odes with 20 ◦ � φ � 150 ◦ are destabilized by the field, with

early cylindrical rotation profiles ( 	 ∼ 0 ◦) being most strongly
estabilized by the field. Cylindrical rotation is marginally stable in 
he hydrodynamic case but is the most unstable configuration for any 
 0 > 1 plotted here, and grows faster than any hydrodynamic case

n this figure. 
.2.1 Variation of B 0 , Pm, and Pr 

n Fig. 11 , we explore the dependence of our results on Pm , Pr ,
nd B 0 at a latitude of 30 ◦, using the same parameters otherwise
s in Fig. 8 . Our prior results indicate that increasing magnetic
iffusion can mitigate the effects of the field and bring predictions
loser to the hydrodynamic case when GSF unstable. We observe 
n Fig. 11 that increasing B 0 inhibits instability for φ < 0 in
he Northern hemisphere, but that smaller Pm / Pr (more efficient 

agnetic diffusion) can mitigate this, as seen by comparing the solid
nd dashed blue lines with the green dashed line. Fig. 11 indicates that
here does not appear to be a single parameter neatly describing the
ompeting influences of magnetic field and diffusion on instability. 
 or e xample, increasing B 0 tends to enhance instability around φ ∼ 0
hen comparing the solid red and dashed red lines (with the same
r and Pm) but it has the opposite effect for the solid blue and
ashed blue lines. Decreasing Pr, thereby reducing viscosity relative 
o thermal diffusion, enhances instability for φ < 0 (compare the pink
ashed and solid blue lines). Varying Pm can have different effects
epending on other parameters, but we see reducing Pm tends to
nhance instability for φ < 0 when comparing the green and blue
MNRAS 535, 322–343 (2024) 
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M

Figure 9. Properties of the fastest growing modes for various values of the magnetic field B 0 with S = 2 , Pr = 10 −2 , N 

2 = 10, and Pm = 0 . 1, for different 
rotation profiles (values of φ) at a latitude β = 	 + φ = 60 ◦. 

Figure 10. Properties of the fastest growing modes for various values of the magnetic field B 0 with S = 2 , Pr = 10 −2 , N 

2 = 10, and Pm = 0 . 1, for different 
rotation profiles (values of φ) at a latitude β = 	 + φ = 90 ◦. 

Figure 11. Properties of the fastest growing modes for various values of the magnetic field B 0 , Pm , and Pr with S = 2 , Pr = 10 −2 , and N 

2 = 10, for different 
rotation profiles (values of φ) at a latitude β = 	 + φ = 30 ◦. 
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ashed lines (with B 0 = 10), but inhibit it when comparing the solid
lue and red lines. (Fixing Pr / Pm = η/κ is also clearly not the sole
arameter of importance.) 

.2.2 Critical value of S 

inally, we determine numerically the critical value of S for insta-
ility ( S crit ), once again by optimizing o v er k x and k z . We show
esults in Fig. 12 for S crit as a function of φ for B 0 = 0 . 1 (solid
ines), B 0 = 1 (dashed lines), and B 0 = 10 (dotted lines) at a latitude
NRAS 535, 322–343 (2024) 
0 ◦, along with the corresponding wave vector magnitude k and
rientation θk . Our numerical results confirm the arguments presented
n Section 3.3.2 . In complete contrast to the hydrodynamic case, we
nd MRI occurs for any S > 0 for φ > 0, such that S crit = 0 for such
ifferential rotations. Note that if we had chosen a ne gativ e latitude
alue, S crit = 0 would have occurred for φ < 0. The corresponding
avenumber k also becomes arbitrarily small, implying arbitrarily

arge wavelength instabilities according to our local model. When
< 0, the dominant instability is primarily the hydrodynamic GSF

nstability, weakly modified by magnetic fields. This has a preferred
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Figure 12. Critical value of S for instability (top), and the corresponding 
wav e v ector magnitude (middle) and orientation (bottom), for B 0 = 0 . 1, 
1, and 10, with S = 2 , Pr = 10 −2 , N 

2 = 10, and Pm = 0 . 1, for different 
rotation profiles (values of φ) at latitude 	 + φ = 30 ◦. For φ > 0, there 
is instability for any S > 0 for B 0 �= 0, consistent with results obtained in 
Section 3 , due to the operation of the MRI (shown in red). This instability 
prefers arbitrarily small wav enumbers. F or φ < 0, the instability is similar to 
the hydrodynamic GSF instability (shown in blue; cf. fig. 6 in Paper III ), and 
exhibits a preferred k ∼ d. The magnetic field weakens operation of the GSF 
instability for φ < 0. 
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 = O(1) (in units of d −1 ) when it operates, and it is weakly inhibited
y the presence of the magnetic field. We expect to find similar results
in terms of the modification of the hydrodynamic results shown in
g. 6 of Paper III – for different latitudes and field strengths. Stronger
elds would widen operation of the MRI and inhibit the GSF modes
urther. Ho we ver, GSF modes may still be the dominant instability
or differential rotations with φ < 0. 

Overall, the addition of a magnetic field tends to inhibit dif fusi ve
otational instabilities by reducing σ for φ � 0, and to promote 
increase σ ) instability for φ � 0, particularly for nearly cylindrical 
ifferential rotations ( 	 ∼ 0, where φ equals the latitude). The 
avelength of the dominant instability is typically affected by the 

trength of the field, with stronger fields generally exciting larger 
avelengths (smaller ks). The orientation of the mode also differs 

rom the hydrodynamic prediction for strong enough fields. The 
ffects of magnetic fields on dif fusi ve rotational instabilities are
herefore complex, but in nearly all cases the field strongly modifies
he growth rate or wavenumber of the dominant mode. We may thus
xpect magnetic fields to substantially modify turbulent transport in 
tellar radiative regions. 

 ENERGETI CS  O F  T H E  INSTABILITIES  

.1 Deri v ation of the energy equations and evaluation for linear
odes 

n this section, we analyse the energetics of the instabilities in our
odel. This helps identify the physical mechanisms and energy 

ources that drive the various instabilities and quantify the role of
agnetic fields. In order to derive the total energy equation we must
rst calculate equations that go v ern the different types of energy

n our system, namely, kinetic, thermal/potential, and magnetic. We 
tart with the equations go v erning the evolution of perturbations
iven by equations ( 11 )–( 16 ). To obtain v olume-a veraged energy
quations we take the product of the rele v ant equation and quantity
here (scalar product of equation 11 with u and equation 13 with B 

or kinetic and magnetic energies, and multiplication of equation 12 
y θ for thermal energy) and volume average. We denote volume 

verages by 〈·〉 where 〈·〉 = 

1 
V 

•
· d V , where V is the volume of

ur box, which for linear modes is taken to be a single wavelength
f the dominant mode. We define the kinetic, magnetic, and thermal
nergies of our perturbations according to (assuming N 

2 > 0) 

 = 

1 

2 
〈| u | 2 〉 , M = 

1 

2 
〈| B | 2 〉 , P = 

1 

2 

〈 | θ | 2 
N 

2 

〉
. (57) 

For the kinetic energy equation, we obtain 

 t K = −〈 u · ( u · ∇) U 0 〉 +〈 θu · e g 〉 + ν〈 u · ∇ 

2 u 〉 + 〈 u · ( B 0 · ∇) B 〉
(58) 

ote that 〈 u · ( u · ∇) u 〉 = 〈 u · ( U 0 · ∇) u 〉 = 〈 u · ∇p〉 = 0 using the
hain rule, incompressibility and the divergence theorem (applying 
eriodic boundary conditions), and noting that the Coriolis force 
oes no work ( u · (2 � × u ) = 0). We then substitute U 0 = −Sx e y 
o yield 

 t K = S〈 u x u y 〉 + 〈 θu · e g 〉 + 〈 u · ( B 0 · ∇) B 〉 + ν〈 u · ∇ 

2 u 〉 . (59) 

his indicates that the kinetic energy of perturbations can grow by
xtracting kinetic energy from the shear flo w/dif ferential rotation 
first term), from conversions of thermal to kinetic energy (second 
erm), from conversions of magnetic to kinetic energy (third term), 
MNRAS 535, 322–343 (2024) 
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nd that it is dissipated by viscosity (fourth term, which can be shown
o be ne gativ e definite through an integration by parts). 

In a similar manner we can obtain the magnetic energy equation,
oting that 〈 B · ( u · ∇) B 〉 = 〈 B · ( U 0 · ∇) B 〉 = 0, giving 

 t M = 〈 B · ( B 0 · ∇) u 〉 − S〈 B x B y 〉 + η〈 B · ∇ 

2 B 〉 . (60) 

his indicates that magnetic energy of perturbations can grow from
onversion of kinetic to magnetic energy (first term), from extracting
inetic energy from the background shear flo w/dif ferential rotation
second term), and that it is dissipated ohmically (third term; ne gativ e
efinite). Note that the term 〈 B · ( B 0 · ∇) u 〉 in equation ( 60 ) can be
hown to be equivalent with −〈 u · ( B 0 · ∇) B 〉 in equation ( 59 ) using
ntegration by parts, which indicates that these just convert kinetic to
agnetic energy and vice versa, and do not inject total energy into

he system. 
The final energy equation that we need to consider is the one

o v erning thermal energy. We obtain 

 t P = −〈 θu · e θ 〉 + κ

〈
θ∇ 

2 θ

N 

2 

〉
, (61) 

sing the results 〈 θ ( u · ∇ ) θ〉 = 〈 θ ( U 0 · ∇) θ〉 = 0. This shows that
hermal energy grows through conversion from kinetic to thermal
nergy (first term) and that it is dissipated by thermal diffusion
second term; ne gativ e definite). Hence, the equation for the total
nergy, E = K + M + P , is 

 t E = S 

(〈 u x u y 〉 − 〈 B x B y 〉 
)+ 〈 θu · ( e g − e θ ) 〉 

+ ν〈 u · ∇ 

2 u 〉 + η〈 B · ∇ 

2 B 〉 + κ

〈
θ∇ 

2 θ

N 

2 

〉
. (62) 

his indicates that the total energy of perturbations can grow only via
xtraction of kinetic energy from the shear flo w/dif ferential rotation
nto perturbation kinetic or magnetic energies (first two terms), or
ia the baroclinic term that extracts potential energy from the basic
tate into kinetic and thermal energies (last term on first the line), if
nd only if these contributions exceed the sum of the viscous, ohmic,
nd thermal dissipations (terms on the bottom line). 

We can use these results to analyse the energy sources contributing
o the instabilities described by equation ( 17 ). To do this, we calculate
ach of the terms in these energy equations for a single axisymmetric
ourier mode with a wave vector k = ( k x , 0 , k z ). This can be used

o understand better both the driving forces of the instability and
he momentum transporting properties of the instability. We first
xpress 〈 u x u y 〉 for a single mode with u x = � 

[
ˆ u x exp ( i k · x + st ) 

]
nd u y = � 

[
ˆ u y exp ( i k · x + st ) 

]
. Using the properties of complex

umbers, � ( A ) � ( B ) = 

1 
2 � ( AB + AB 

∗), where ∗ denotes the com-
lex conjugate, this can be written as 

 u x u y 〉 = 

1 

2 
〈� 

(
ˆ u x ̂  u y exp (2 st + 2i k · x ) + exp (2 � [ s] t) ̂  u x ̂  u 

∗
y 

)〉 
= 

1 

2 
exp (2 � [ s] t) � ( ̂  u x ̂  u 

∗
y ) , (63) 

pon applying the periodic boundary conditions (thereby eliminating
he first term on the top line). 

For a single linear mode we can use equations ( 11 )–( 16 ) to relate
ˆ  y to ˆ u x (and similarly for all other variables) to obtain 

ˆ  y = 

s η

s νs η + ω 

2 
A 

( 

S 

( 

1 + 

ω 

2 
A 

s 2 η

) 

− 2 �

(
c 	 

+ 

k x 

k z 
s 	 

)) 

ˆ u x , (64) 

nd we also note that ˆ u z = −( k x /k z ) ̂  u x . Substituting this into equa-
ion ( 63 ), and using � [ ̂  u x ̂  u 

∗
y ] = � [ ̂  u 

∗
x ̂  u y ], gives the concise form for
NRAS 535, 322–343 (2024) 
he xy component of the Reynolds stress: 

 u x u y 〉 = 

| ̂  u x | 2 
2 

� 

⎡ 

⎢ ⎣ 

s η

(
S 

(
1 + 

ω 2 A 
s 2 η

)
− 2 �

(
c 	 

+ 

k x 
k z 

s 	 

))
s νs η + ω 

2 
A 

⎤ 

⎥ ⎦ 

. (65) 

e also have 

ˆ 
 y = 

i ω A 

s η

[
ˆ u y − S 

s η
ˆ u x 

]

= 

i ω A ̂  u x 

s η

⎡ 

⎢ ⎣ 

− S 

s η
+ 

S 

(
1 + 

ω 2 A 
s 2 η

)
− 2 �

(
c 	 

+ s 	 

k x 
k z 

)
s ν + 

ω 2 A 
s η

⎤ 

⎥ ⎦ 

, (66) 

long with ˆ B z = −( k x /k z ) ̂  B x , which allows the xy component of the
axwell stress for a single mode to be written as 

 B x B y 〉 = 

1 

2 
� [ ̂  B x 

ˆ B 

∗
y ] exp (2 � [ s] t) (67) 

= � 

⎡ 

⎢ ⎣ 

ω 

2 
A | ̂  u x | 2 
2 s 2 η

⎛ 

⎜ ⎝ 

− S 

s η
+ 

S 

(
1 + 

ω 2 A 
s 2 η

)
− 2 �

(
c 	 

+ s 	 

k x 
k z 

)
s ν + 

ω 2 A 
s η

⎞ 

⎟ ⎠ 

⎤ 

⎥ ⎦ 

. 

(68) 

The third and final term that can inject energy into the system is 

 θu · ( e g − e θ ) 〉 = 〈 θ [ u x ( c φ − c � ) + u z ( s φ − s � )] 〉 , (69) 

hich is essentially a measure of the extent that baroclinicity (i.e.
on-coincidence of constant density and pressure surfaces) drives
he instability. We use 

ˆ = −N 

2 

s κ

(
c � − k x 

k z 
s � 

)
ˆ u x , (70) 

long with incompressibility to write 

 θu · ( e g − e θ ) 〉 

= 

1 

2 
� 

[N 

2 

s κ

(
k x 

k z 
s � − c � 

)(
( c φ − c � ) − k x 

k z 
( s φ − s � ) 

)]
| ̂  u x | 2 . 

(71) 

ote that this term vanishes when e g = e θ , and is thus unimportant
hen s 	 

= 0 (no differential rotation along the rotation axis), and it
s small compared to the other terms in the strongly stratified limit
or which N 

2 
 2 �Ss 	 

. 
The kinetic energy is 

 = 

1 

2 
〈| u | 2 〉 = 

1 

4 
[ | ̂  u x | 2 + | ̂  u y | 2 + | ̂  u z | 2 ] exp ( 2 � [ s] t ) , (72) 

hich can be expressed in terms of | ̂  u x | 2 using the abo v e results. The
agnetic energy is 

 = 

1 

2 
〈| B | 2 〉 = 

1 

4 

[| ̂  B x | 2 + | ̂  B y | 2 + | ̂  B z | 2 
]

exp 2 � [ s] t , (73) 

hich can also be expressed in terms of | ̂  u x | 2 using the following
xpressions: 

 ̂

 B x | 2 = 

ω 

2 
A 

| s η| 2 | ̂  u x | 2 , (74) 

 ̂

 B y | 2 = − ω 

2 
A 

| s η| 2 

∣∣∣∣∣∣∣−
S 

s η
+ 

S 

(
1 + 

ω 2 A 
s 2 η

)
− 2 �

(
c 	 

+ s 	 

k x 
k z 

)
s ν + 

ω 2 A 
s η

∣∣∣∣∣∣∣
2 

| ̂  u x | 2 , 

(75) 
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 ̂

 B z | 2 = 

ω 

2 
A 

| s η| 2 
(

k x 

k z 

)2 

| ̂  u x | 2 . (76) 

he thermal energy for a single mode can be expressed as 〈 | θ | 2 
2 N 

2 

〉
= 

N 

2 

4 | s κ | 2 
(

c � − k x 

k z 
s � 

)2 

| ̂  u x | 2 . (77) 

Using these expressions we can determine the energetic contribu- 
ions to the growth rate for a single Fourier mode by noting that 

 � [ s] = ∂ t ln E = 

1 

E ∂ t E, (78) 

here the right-hand side contains all six terms in equation ( 62 ) and
s independent of the mode amplitude since | ̂  u x | 2 cancels in both
he numerator and denominator. This can also be used as a check
f our codes by ensuring that the growth rate � [ s] is predicted to
lose to machine precision by using the linear relations between the 
omponents that we have just derived. Once this has been confirmed 
e can compute the contribution of each of the first three possible
riving terms on the right-hand side of equation ( 62 ) to the growth
ate to determine whether a given instability is driven by Reynolds
tresses, Maxwell stresses, or the baroclinic term. 

.2 Numerical analysis of linear mode energetics 

.2.1 Unstable modes energetics: variation with B 0 

e present results from computing the contributions to the growth 
ate from the three source terms on the right-hand side of equation
 62 ). In particular, we determine the contributions to the growth rate
rom the Reynolds stress, Maxwell stress, and baroclinic driving 
erms in equations ( 65 ), ( 68 ), and ( 71 ) as a visual tool to understand
etter the mechanisms driving the various instabilities, as well as 
he role of the magnetic field. Each of these are divided by 2 E in
rder to compute their contribution to σ for the reason explained 
n equation ( 78 ). All of the figures in this section use our standard
hoice of parameters, Pr = 10 −2 , N 

2 = 10, and S = 2 unless stated
therwise. 
Figs 13 and 14 show pseudo-colour plots for various 	 and φ

f the growth rate (first row) along with the contributions to it
rom Reynolds stresses (second row), Maxwell stresses (third row), 
nd baroclinic source terms (fourth row) on the ( k x , k z ) plane, for
arious magnetic field strengths B 0 = 1 , 2 . 5, and 5. Rows two to
our represent the first three terms in equation ( 62 ), the sum of these,
ogether with the three dif fusi ve terms (not plotted) in equation ( 62 )
as been verified to match the growth rate σ to machine precision. In
ontrast to Figs 3 –5 , they use a linear colour scale since the various
ontributions plotted can take either sign, as we observe in these 
gures. Overall, these figures allow us to explore ho w v ariations in
eld strength for ( B 0 = 1 , 2 . 5 , 5) and rotation profile (through 	 and
) alter the instabilities whilst simultaneously probing which energy 
ource terms are responsible. 

In Fig. 13 , we first analyse the configuration at the equator with
ixed shear ( 	 = −30 ◦, φ = 30 ◦) explored earlier in Fig. 3 . This

onfiguration is GSF unstable in the hydrodynamic case and remains 
nstable for weak fields. Strong fields tend to inhibit instability for
 ∼ 1 and to shrink the unstable lobes, in addition to changing their
rientation. F or B 0 ≤ 2 . 5, Re ynolds stresses are the primary drivers
f instability for most ( k x , k z ), indicating that unstable modes are
rimarily driven by extracting kinetic energy from the differential 
otation. As B 0 is increased further, Maxwell stresses play an in-
reasingly important role, until they dominate for B 0 = 5, indicating 
hat shear flow kinetic energy is extracted and input into perturbation
agnetic energy. The different locations of the peaks in Reynolds and 
axwell stresses – and the increasingly stabilizing effects (ne gativ e 

 alues sho wn) of Maxwell stresses where the Reynolds stresses are
aximal – are consistent with the changes in orientations of the 

nstable lobes as B 0 is increased, from initially being between ˆ �
⊥ 

nd ∇� to become closer to ∇� for the strongest fields. For this
atitude and flow, baroclinic driving terms are typically subdominant, 
ut they still contribute non-negligibly to driving instabilities for 
eaker fields. The effect of the field in reducing the maximum growth 

ate observed in Fig. 7 is also confirmed here. 
We next look at a case with latitude 30 ◦ with mixed shear ( 	 =

0 ◦, φ = −30 ◦) in Fig. 14 as first studied in Fig. 4 . This configuration
s GSF unstable hydrodynamically and remains unstable for weak 
elds. We saw from Fig. 8 that the field acts to monotonically stabilize

he system with increasing B 0 , which is consistent with Fig. 14 .
e again observe that the primary lobes of instability are driven

rimarily by Reynolds stresses for B 0 ≤ 2 . 5, but become increasingly
riven by Maxwell stresses for stronger fields. We also observe the
ositiv e Re ynolds stress contributions are mainly confined to within

he hydrodynamically unstable wedge delineated by the lines ˆ �
⊥ 

nd ∇� , and are maximal approximately halfway between these. The
ncreasing importance of Maxwell stresses and the shift in orientation 
f the lobes indicates the transition in the dominant instability from
SF to MRI. Notice that the Maxwell stress generally has a preferred
av e v ector magnitude, evident by the darkest red (most unstable)
odes being located in the centre of the lobes. We also observe the

nstable region shrinking as the MRI enables instability for smaller 
nd smaller k for appropriately oriented modes. The baroclinic term 

s unimportant for the primary lobes, as is indicated by the bottom
anels. 
The secondary lobes evident in Fig. 14 are hydrodynamically 

nstable oscillatory modes within the wedge defined by e g and 
 θ . The bottom panels of this figure confirm that these modes are
aroclinically driven since σ approximately equals its baroclinic 
ontribution, with Reynolds and Maxwell stresses playing negligible 
oles in driving them. The growth rates and unstable mode wave
ectors are mostly unaffected by the magnetic field, except that these
ecome weakly destabilized magneto-inertial-gravity waves rather 
han inertia-gravity waves when the field is sufficiently strong. 

We have found similar trends as B 0 is varied are found for 	 and
that are adiabatically SH unstable in the hydrodynamic case, and 

or cases at the poles that are hydrodynamically adiabatically stable. 

.2.2 Fastest growing mode energetics: variation with B 0 

e next turn to analyse how the energetic contributions vary with B 0 

or the fastest growing modes, obtained by optimizing o v er k x and k z 
or each case. Results are shown in Fig. 15 for various latitudes and
ifferential rotations. We study both Pm = 1 and Pm = 0 . 1 in order
o investigate the role magnetic dif fusi vity plays in these results. 

Panel (a) of Fig. 15 analyses a case with φ = 60 ◦ and 	 = −30 ◦

hat is adiabatically SH unstable in the hydrodynamic case. We find
he growth rate in this case is essentially independent of B 0 , as
redicted from Figs 6 and 8 . The primary result of changing B 0 is
o decrease the range of unstable k x and k z as we have confirmed in
ig. 5 . This case is driven by the Reynolds stress for all B 0 considered,
ince the red symbols provide a larger contribution to the total
rowth rate, for both Pm plotted. Magnetic diffusion does not play 
n important role here, confirmed by the negligible role of Pm . The
aroclinic driving term is the secondary contributor to instability for 
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Figur e 13. Ener getic contributions to instability on the ( k x , k z ) plane for 	 = −30 ◦ and φ = 30 ◦, B 0 = 1 , 2 . 5 , and 5 (increasing in columns as we go from 

left to right) all with S = 2, N 

2 = 10, Pr = 0 . 01, and Pm = 0 . 1. Top ro w: Gro wth rate. Second ro w: Reynolds stress contribution. Third row: Maxwell stress 
contribution. Fourth row: Baroclinic contribution. Stable modes with � [ s] ≤ 0 are indicated in white for clarity. 
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Figur e 14. Ener getic contributions to instability on the ( k x , k z ) plane for 	 = 60 ◦ and φ = −30 ◦, B 0 = 1 , 2 . 5 , and 5 (increasing in columns as we go from 

left to right) all with S = 2, N 

2 = 10, Pr = 0 . 01, and Pm = 0 . 1. Top ro w: Gro wth rate. Second ro w: Reynolds stress contribution. Third row: Maxwell stress 
contribution. Fourth row: Baroclinic contribution. Stable modes with � [ s] ≤ 0 are indicated in white for clarity. 
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M

Figur e 15. Ener getic contributions to instability for the fastest growing mode (optimized o v er k x and k z ) as a function of the magnetic field strength B 0 for 
various 	 and φ cases. These show the growth rate, and the contributions to it from Reynolds stresses ( 〈 u x u y 〉 ), Maxwell stresses ( 〈 b x b y 〉 ), and baroclinic source 
terms ( 〈 θu · ( e g − e θ ) 〉 ) against field strength B 0 . All panels show Pm = 0 . 1 and Pm = 1, and the other parameters are Pr = 10 −2 , N 

2 = 10, and S = 2. 
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3 Please note the unfortunate typo in Paper I , where this was written as km 

instead! No other values in Paper I need modifying and slightly different 
numbers were used from stellar models for the various parameters there than 
the ones we quote here. 
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he smaller B 0 , but it appears that it may be superseded for B 0 � 25
y Maxwell stresses. There is a jump from one unstable mode 
o another around B 0 = 12 where baroclinic and Maxwell stress
erms approximately balance, where the k and θk values instantly 
witch. 

Panel (b) of Fig. 15 analyses a case with cylindrical differential 
otation ( 	 = 0, which is neutrally hydrodynamically GSF stable for
ll latitudes with S = 2). This case is significantly destabilized by
ven weak magnetic fields as we have seen in Figs 8 , 9 , and 10 , due
o the MRI. This instability is driven by an approximately equal 
ombination of Reynolds and Maxwell stresses, which perfectly 
oincide for large B 0 . This can be termed ‘Alfv ́enization’ of the
nstability for sufficiently strong fields. The complete lack of any 
aroclinic driving is evident in this figure, and is also observed in
anel (f) which also has 	 = 0, as is expected for any cylindrical
otation profile. 

Panel (c) probes instabilities at the poles by considering φ = 60 ◦

nd 	 = 30 ◦. Figs 5 and 10 indicated that this latitude is widely
nstable to adiabatic magnetic instabilities, in stark comparison 
o the hydrodynamic results ( Paper III ), which found no adiabatic
nstability there. This instability is again the MRI, and it is driven by
n approximately equal balance of Reynolds and Maxwell stresses 
ndicating Alfv ́enization once again. The growth rate increases by 
round 35 per cent between B 0 = 0 and B 0 = 5, after which increases
n B 0 lead to only marginal increases in σ . 

P anel (d) e xplores a shellular rotation profile with φ = 0 and
 = 60 ◦. These cases were explored hydrodynamically in Paper 

I . This figure indicates that the instability is initially driven almost
ntirely by Reynolds stresses when B 0 ∼ 0, but Maxwell stresses 
ominate for B 0 � 5. The introduction of magnetic fields weakens 
he instability and reduces σ (after a small rise for B 0 ∼ 1) o v er
he B 0 = 0 case. A plateau is reached for σ by B 0 � 15, where the
nstability is primarily driven by Maxwell stresses. Once again, the 
aroclinic driving term is very weak in this case for any B 0 . 
Panel (e) shows the behaviour of the fastest growing mode from

he parameters of Fig. 14 with φ = −30 ◦ and 	 = 60 ◦. As B 0 is
ncreased σ is drastically reduced. Up to B 0 ≈ 5 for Pm = 0 . 1, and
 0 = 3 for Pm = 1, Reynolds stresses are the dominant contributor

o the growth rate, but as the growth rate decreases with increasing
eld strength Maxwell stresses become the dominant contributor 
ith these lines converging towards each other. We may achieve 
lfv ́enization again for sufficiently large B 0 , but this is not observed
y B 0 = 25. As was observed in Fig. 4 the Pm = 1 case is consis-
ently more unstable than the Pm = 0 . 1 case, ho we ver, as the gro wth
ate tends to zero this difference becomes marginal. 

In this section, we have analysed the unstable mode energetics as
 0 , Pm, and the properties of the differential rotation were varied.
e have found that the fastest growing modes are always driven 

redominantly by a combination of Reynolds and Maxwell stresses 
or non-zero B 0 and that baroclinic driving is ne gligible e xcept for the
ubdominant secondary lobes. For strong enough magnetic fields, in 
any cases in which the MRI operates, the contributions of Reynolds

nd Maxwell stresses equalize. Overall, these results confirm that 
ven a weak magnetic field can drastically alter the stability of
ifferentially rotating flows in stellar radiation zones. 

 APPLICATIONS  TO  T H E  SUN  A N D  R E D  

I A N T  STARS  

e now turn to estimate parameter values for the solar tachocline 
s a potential application of this work. Recall that we defined our
ength-scale d as 

 = 

( νκ

N 

2 

)1 / 4 
, (79) 

ince this describes the scales of the dominant hydrodynamic GSF 

odes. In the solar tachocline (e.g. Gough 2007 ; Caleo et al.
016 ), we find ν = 2 . 7 × 10 1 cm 

2 s −1 , κ = 1 . 4 × 10 7 cm 

2 s −1 , hence
r = 2 × 10 −6 and N = 8 × 10 −4 s −1 . This produces a length-scale
 ≈ 49 . 3 m. 3 The linear GSF modes thus have very short length-
cales approx 10 −5 times smaller than the tachocline thickness. 
he dimensional wavenumber k dim 

= k/d , using our dimensionless 
avenumber k. Note that η = 4 . 1 × 10 2 cm 

2 s −1 in the tachocline,
o Pm = 0 . 065 and Pr / Pm = 3 × 10 −5 there. Hence, we are in the
egime of rapid thermal diffusion relative to viscous and ohmic 
iffusion in the tachocline, as we discussed in Sections 3.3 and 3.3.2 .
The magnetic field strength and structure in the tachocline is highly 

ncertain. Nev ertheless, an y poloidal magnetic field is probably in
he range 0 . 5 G to 5 kG (e.g. Mestel & Weiss 1987 , and we are not
ware of substantially stronger subsequent constraints). The field 
here is likely to be mostly toroidal, but only poloidal fields enter
ur stability analysis for axisymmetric modes. The arguments of 
ough & McIntyre ( 1998 ) for the maintenance of the tachocline also

uggest a minimum poloidal field of 1 G is required there. 
Our dimensionless magnetic field B is written in Alfv ́en speed 

nits; therefore, it has units d� where � = 2 π/P rot , and P rot =
7 d is the Sun’s mean rotation period. The corresponding physical
agnetic field magnitude B dim 

from the dimensional Alfv ́en speed 
 A = B dim 

/ 
√ 

μ0 ρ, 

 dim 

= B 0 d�
√ 

μ0 ρ ≈ 2 . 1 × 10 −6 B 0 T ≈ 0 . 021 B 0 G , (80) 

sing � = 2 . 7 × 10 −6 s −1 (implying N 

2 /�2 ≈ 8 . 7 × 10 4 ), ρ =
10 kg m 

−3 , and μ0 = 4 π × 10 −7 in SI units. This means that a
eld of 1 G corresponds to a dimensionless B 0 ≈ 46 in our units if
 is the rele v ant length-scale. Note that d was defined based on the
if fusi ve hydrodynamic GSF modes, and we have found the MRI
o potentially have much larger wavelengths. Ho we ver, the small
ength-scales which GSF modes prefer do make them very vulnerable 
o even a rather weak magnetic field. 

On the other hand if we want to consider a field of 1 kG, this
equires B 0 = 4 . 6 × 10 4 in dimensionless units, which is much
arger than we have so far considered here. The fields we have
rimarily explored in this work are at the weaker end, with B 0 � 25,
orresponding to fields weaker than approximately 0.5 G in the 
achocline. This choice was partly made to permit us to explore the

odification of hydrodynamic dif fusi ve rotational instabilities by a 
eak field, and was partly made because we found that for larger B 0 

he GSF mode is primarily stabilized and the dominant instability by
ar is the MRI. 

Moti v ated by the values in the solar tachocline, we compute the
inear growth rates, wavenumbers, and orientations numerically and 
isplay them in Fig. 16 at a latitude of 30 ◦ for a moderately strong
eld with B 0 = 10 3 for the solar-like values S = 0 . 2, Pm = 0 . 05,
nd Pr = 10 −6 (so that Pr / Pm = 2 × 10 −5 ). We consider three
if ferent v alues of N 

2 ∈ [10 , 10 3 , 10 5 ] to account for the variation
f values in the solar radiation zone as we approach the radiative–
onv ectiv e boundary. Deep down, the higher value is appropriate
and corresponds to the value in Gough 2007 ), but N 

2 passes through
MNRAS 535, 322–343 (2024) 
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M

Figure 16. Properties of the fastest growing modes for tachocline parameter values at a latitude β = 	 + φ = 30 ◦. We assume B 0 = 1000, S = 0 . 2, Pm = 0 . 05, 
Pr = 10 −6 , and explore N 

2 ∈ [10 , 10 3 , 10 5 ]. Note the growth rate is on a log-scale, because for φ > 0 we get MRI that grows much faster than the GSF modes 
that may exist for φ < 0. 
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ero as the convection zone is approached, moti v ating the smaller
alues we consider here (see e.g. fig. 1 in Barker & Ogilvie 2010 ).
e observe that MRI operates for φ > 0 with modest growth rates
∼ 0 . 1 and k ∼ 0 . 0005 (corresponding to wavelengths of order

00 –60 000 km, much smaller than the tachocline thickness), and
hat it is not affected by variations in N 

2 . This is because the
nstable modes orient themselves to a v oid doing work against gravity
uch that b ∼ 0. On the other hand, the instabilities for φ < 0 are
ubstantially modified by varying N 

2 . These instabilities are GSF
odes inhibited by magnetic tension. For N 

2 = 10 5 , rele v ant for
eeper parts of the solar tachocline and radiative interior, GSF is
liminated by the magnetic field. This agrees with some of the
onclusions of Caleo & Balbus ( 2016 ) and Caleo et al. ( 2016 ).
o we ver, closer to the radiati ve/convecti ve interface in the tachocline

egion itself, our smaller values of N 

2 are appropriate. For N 

2 = 10
nd 10 3 , the GSF instability operates but with a much weaker growth
ate than the MRI modes in operation when φ > 0. Fig. 16 suggests
hat MRI may be more important than GSF for turbulent transport
n the solar radiative interior whenever φ > 0, but that more weakly
rowing GSF modes could operate for local rotation profiles with
< 0. 
In the core of red giant stars, whose core-envelope differen-

ial rotations remain poorly understood, as considered in Paper I
nd using the numbers there, d ∼ 100 m and � ∼ 10 −7 s −1 . This
roduces B dim 

∼ 1 . 12 B 0 

√ 

ρ/ 10 5 g cm 

−3 G. Hence in that problem
 dim 

∼ B 0 G in the cores of red giant stars. Since there have been
onstraints on fields in these from asteroseismology of order 40–
10 kG (Deheuvels et al. 2023 ), this suggest we should consider
 0 � 10 3 in red giant stars also. Hence, MRI is expected to be more

mportant than GSF, depending on the rotation profile (particularly
or φ > 0), but perhaps not for φ < 0. 

 C O N C L U S I O N S  

e have presented a comprehensive theoretical analysis of local
if fusi ve instabilities of differential rotation in magnetized radiation
ones of stars and planets, building upon the hydrodynamical studies
f Paper I , Paper II , and Paper III . Understanding the properties
f these instabilities, and ultimately their non-linear behaviour, is
ssential because the y hav e been proposed to play important roles
n AM transport and chemical mixing in stars (e.g. Caleo et al.
016 ; Aerts et al. 2019 ), and they may even play a role in the solar
ynamo (P arfre y & Menou 2007 ; Vasil et al. 2024 ), but man y aspects
f them are currently very poorly understood. Our focus has been
NRAS 535, 322–343 (2024) 
n the effects of a poloidal magnetic field on the properties of linear
xisymmetric instabilities of differential rotation, which are go v erned
y a quintic dispersion relation first derived by Menou et al. ( 2004 ).
e have performed a detailed analysis of the dispersion relation,

rst for non-dif fusi ve instabilities, reproducing prior work on the
tratified MRI (e.g. Balbus 1995 ), before comprehensively analysing
if fusi ve instabilities in various limits analytically and numerically
see also Caleo & Balbus 2016 ; Caleo et al. 2016 ). 

In strongly stably stratified regions of stars, the fastest growing
ode displacements are along stratification (i.e. approximately

pherical) surfaces and correspond with operation of the MRI.
o we ver, rapid thermal dif fusion can eliminate the stabilizing

ffects of buoyancy if Pr / Pm and Pr are sufficiently small. In this
imit MRI operates and can change the properties of the unstable
odes depending on the differential rotation. We have obtained new

nalytical and numerical results on the various instabilities in this
riply dif fusi ve system as a function of the differential rotation profile
nd magnetic field strength. 

Our analytical and numerical results have highlighted that even a
eak magnetic field can considerably modify the local instabilities
f differentially rotating flows (e.g. Balbus & Ha wle y 1998 , and
any prior works). We have found that for differential rotations with

angle from the local angular velocity gradient to the ef fecti ve gravity
irection) φ > 0 in the Northern hemisphere (and vice versa in the
outhern hemisphere because the rele v ant parameter is the sign of
φ), MRI may dominate o v er the magnetic modification of hydro-
ynamic GSF instabilities. Ho we ver, for φ < 0 there, hydrodynamic
SF modes could still be important though they are weakened by
agnetic tension for moderately strong fields. We found that even
eak fields destabilize hydrodynamically stable regions in parameter

pace, particularly for nearly cylindrical differential rotation profiles.
We have analysed in detail the properties of axisymmetric modes,

ncluding how the growth rates and wav e v ectors depend on the
trength of the magnetic field, magnetic Prandtl number Pm, and local
ifferential rotation profile. We have analysed in detail the energetics
f the various instabilities in our system, first by deriving the energy
quation and then by e v aluating the v arious source terms for linear
xisymmetric modes. These consist of Reynolds stresses, Maxwell
tresses, and baroclinic driving terms. We find that the MRI is
ypically driven by Reynolds and Maxwell stresses in approximately
qual proportions (so-called Alfv ́enization) in a wide range of cases.

We believe that it is important to set up a meaningful time-
ndependent magnetic equilibrium to properly analyse MHD insta-
ilities. We take a different viewpoint to many prior works that
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ttempted to model arbitrary field configurations without ensuring 
erraro’s law of isorotation was satisfied (e.g. Balbus & Ha wle y
994 ; Menou et al. 2004 ; Menou & Le Mer 2006 ; P arfre y & Menou
007 ; Caleo et al. 2016 ). In our model, we ensured our basic state was
n equilibrium state and verified the local analogue of Ferraro’s law 

f isorotation. This is analogous to the original works of Goldreich &
chubert ( 1967 ) and Fricke ( 1968 ) having an additional degree of
reedom because they ignored the constraint of thermal wind balance 
e.g. Acheson & Gibbons 1978 ; Busse 1981 ). Similar issues have also
lagued studies of the effects of magnetic fields on the vertical shear
nstability in astrophysical discs (e.g. Urpin & Brandenburg 1998 ; 
atter & Papaloizou 2018 , in which the latter authors take the same
iewpoint as us). 
Future work should explore the non-linear evolution of the 

nstabilities we have analysed here (building upon Paper I ; Paper II ;
aper III ; Tripathi et al. 2024 ), as well as the role of compositional
radients on both the linear (Knobloch & Spruit 1983 ) and non-
inear properties of this problem. Further global simulations tailored 
o study these instabilities would also be worthwhile. 
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