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Assessment of machine learning 
models trained by molecular 
dynamics simulations results 
for inferring ethanol adsorption 
on an aluminium surface
Fatemeh Shahbazi 1,2*, Mohammad Nasr Esfahani 3, Amir Keshmiri 2 & Masoud Jabbari 4

Molecular dynamics (MD) simulations can reduce our need for experimental tests and provide detailed 
insight into the chemical reactions and binding kinetics. There are two challenges while dealing with 
MD simulations: one is the time and length scale limitations, and the latter is efficiently processing 
the massive amount of data resulting from the MD simulations and generating the proper reaction 
rates. In this work, we evaluated the use of regression machine learning (ML) methods to solve 
these two challenges by developing a framework for ethanol adsorption on an Aluminium (Al) slab. 
This framework comprises three main stages: first, an all-atom molecular dynamics model; second, 
ML regression models; and third, validation and testing. In stage one, the adsorption of ethanol 
molecules on the Al surface for various temperatures, velocities and concentrations is simulated using 
the large-scale atomic/molecular massively parallel simulator (LAMMPS) and ReaxFF. The outcome 
of stage one is utilised for training, testing, and validating the predictive models in stages two and 
three. We developed and evaluated 28 different ML models for predicting the number of adsorbed 
molecules over time, including linear regression, support vector machine (SVM), decision trees, 
ensemble, Gaussian process regression (GPR), neural network (NN) and Bayesian hyper-parameter 
optimisation models. Based on the results, the Bayesian-based GPR showed the highest accuracy and 
the lowest training time. The developed model can predict the number of adsorbed molecules for new 
cases within seconds, while MD simulations take a few weeks. This adsorption rate can then be used 
in macroscale simulations to tackle the time and length scale limitations. The proposed numerical 
framework has the potential to be generalised and, therefore, contribute to future low-cost binding 
reaction estimations, providing a valuable tool for industry and experimentalists.

Aluminium (Al) is widely used in energetic applications as the reactive metal for propulsion and energy 
 conversion1 due to two main reasons. Firstly, in comparison to the other metallic materials, Al exhibits high 
exothermic (release) energy of 31.05 kJ g −1 during oxidation  reaction2. Secondly, its reaction products are not 
toxic to the  atmosphere3. However, storing and protecting Al in an oxygen environment is challenging. Hence, 
different coating methods using organic and inorganic materials are used to ensure their safety. Organic coat-
ing helps to improve the enthalpy of combustion and provides an entire coating and preservation of the  metal4. 
Ethanol is mainly used as a protective organic coating solution for long-term storage. Understanding the adsorp-
tion behaviour of ethanol on the surface of Al slab in different conditions is important for improving the coating 
process. Although there have been numerous experimental studies, few have delved into the specific interactions 
between Al and the coating material at the molecular  level5. In this section, we first review the current devel-
opment in numerical simulations of binding reactions with a focus on adsorption of ethanol on an Al slab. As 
significant computational costs are linked to the molecular dynamics (MD) simulations, researchers are using the 
large amount of data generated by the MD simulations to train machine learning (ML) models and improve the 
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capabilities in predicting the adsorption  process6,7. Hence, we review the current use of ML models to accelerate 
MD simulations in the second part and explore the features of Bayesian optimisation and GPR methods, as well 
as their potential for predicting complex behaviours.

Numerical simulations of molecular adsorption of ethanol on an Al slab
Computational methods are helpful tools for complementing experimental techniques  8,9. Due to the complex-
ity of the binding reactions and particle behaviour in different environment conditions, numerical simulations 
can provide valuable insights. With this aim, researchers are developing various numerical solutions utilising 
molecular docking, virtual screening, hybrid approaches, quantum mechanics (QM) calculations and MD simu-
lations  10. Molecular docking predicts the most probable matching mode of a ligand  11, and virtual screening  12 
analyses the receptor-based and ligand-based approaches with the docking of the library. While QM methods 
provide accurate information regarding the mechanical and chemical changes in the atomic scale, the time and 
length scales are significantly limited  13, around 10 ps and 10 nm, respectively. In MD simulations, atoms are 
modelled as point particles, finite-size spheres, ellipsoids or triangles. MD can simulate the atomic scale (all-atom 
model) and coarse-grained up to meso/continuum scale and 10 ms. Usually, MD simulation utilises orthogonal 
or triclinic (skewed) simulation cells. MD simulations can reproduce the QM results and scale up to millions 
to billions of atoms. MD methods are not just limited to the interaction of the system of atoms; complicated 
methods can solve mechanics, material science and biophysics (proteins, brain cells)  14.

In previous works, the adsorption of ethanol on Al  slab5 and Al  nanoparticles3,15, 16 has been successfully 
simulated using MD methods. In these works, they developed a reactive force-field  (ReaxFF17) for Al, carbon and 
oxygen inter-atomic  potential18. ReaxFF implements the distance-dependent bond-order function to represent 
the contribution of chemical bonding to the potential energy. This method estimates the bond orders ( BOij ) 
between atoms from their inter-atomic distances (Eq. 1)  5.

where BOij is the bond order between atoms i and j, rij is their inter-atomic distance. The terms  ̺, π , and ππ 
are the bond characters, ro is the equilibrium bond length and pbo terms are the empirical parameters. For over 
coordination ( �i > 0 ) and under coordination ( �i < 0 estimations, Eq. (2) is used. It calculates the difference 
between the total bond order around the atom and the number of its bonding electrons.

where Vali is the number of bonding electrons, and �́i is the over  coordination19. Hong et al. validated the ReaxFF 
parameters for Al, Carbon, Oxygen, and hydrogen interactions with quantum mechanics (QM) calculations and 
experimental  data16. Hence, the ReaxFF developed by S. S. Hong et al. were used as an input for the numerical 
simulations for this project without the need for extra validation or QM simulations.

Bayesian regression ML methods for analysing the MD simulations data
Despite the successful simulation of the adsorption of ethanol on Al surfaces, MD has time and length scale 
limitations. ML can help improve molecular interaction simulation to tackle these  limitations20,21. ML is a data-
driven approach that offers a structured framework for mapping complex processes. Due to its self-learning 
ability and fast predictions, it can replace the classical models and give us more ability for  prediction21,22. These 
prediction models are generated without the previous need for physics, although recently, there has been a focus 
on developing physics-based ML methods for generalisation and higher accuracy. In this work, we focus on 
non-physical ML methods.

Molecular dynamics simulations and ML are complementary in interpreting ambiguous experimental data 
and obtaining structural models. For instance, the FLAPS platform finds functional parameters in X-ray scatter-
ing protein  simulations23. Deep learning and highly parallelisable graphics processing units (GPUs) computing 
have also benefited drug  discovery24. The transmute framework applies to vaccine design and optimisation. The 
current vaccine, drug and biosensor design methods are not yet  automated25. Another key challenges in such 
numerical simulations is their reliance on the MD  parameters26. The solution for this challenge is Bayesian meth-
ods, which drive a proper  weighting27. Bayesian approach is based on Bayes’ theorem and finds the probability of 
the parameters of the model ( θ ) after the data observation  28. Hence, the Bayesian model provides more insight 
into the data and a more intelligent prediction model. Bayesian is an optimal method for updating these beliefs 
about θ based on the new information  29.

After reviewing prior research, it appears that there is a shortage of benchmarks for evaluating various ML 
methods trained using MD simulation data of Ethanol adsorption on Al slab and testing their ability to predict 
binding reactions, which is the primary focus of this study. We made sure to include potential machine learning 
models for predicting complex behaviours, such as Gaussian process regression (GPR), in this benchmark. ML 
methods usually apply two common approaches: restriction bias and preference bias. The first one restricts the 
class of functions based on the input, which provides poor predictions if the target function is not well-modelled 
by the chosen class. As a solution, the class function’s flexibility is usually increased, which leads to over-fitting30. 
In the preference bias approach, a prior probability is assigned to every possible function, whereas higher prob-
abilities are dedicated to the functions that seem to be more likely. This approach also has the problem of giving 
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an infinite set of possible functions, which would be impossible to solve in a finite time. The GPR is the solution. 
It is a generalisation of the Gaussian probability  distribution31.

Aim and objectives
This work aims to evaluate different ML models for inferring the number of adsorbed ethanol on an Al slab for vari-
ous conditions, using the MD simulation results as the training data set. Utilising ML with MD simulation results 
will reduce the need for experimental inputs for the computational simulation of binding reactions and overcome 
the time and length scale limitation in nanoscale studies. We first introduce the three stages of the numerical 
framework and then analyse the MD simulation results and evaluate the ML predictions. The numerical frame-
work consists of molecular dynamics simulations and the training, validation and testing of 28 different Bayesian 
regression ML models. In previous attempts, the molecular interaction of the solvent and surface is studied without 
considering the fluid flow behaviour of the solvent  5, which is considered in the current MD simulation study.

Methods
The numerical framework developed in this work consists of three main stages: molecular dynamics simula-
tion of ethanol molecule on an Al slab, training regression ML models for inferring the number of adsorbed 
molecules, and validation and testing. This framework takes the surface and analyte molecule specifications as 
input. It simulates the binding reactions of the molecules passing on top of the surface and develops a prediction 
model for the binding reactions.

Stage 1: molecular dynamics simulation of ethanol molecule on an Al slab
In stage one, a reactive atomic simulation has been carried out, predicting the binding properties of the target 
species and the Al  slab32,33. The large-scale atomic/molecular massively parallel simulator  (LAMMPS34)  35 is used 
for this molecular simulation. The boundary vertical to the surface is set as fixed (z), and the two other direc-
tions (x and y) are defined as periodic. Periodic boundary conditions reduce finite-size effects and simulate bulk 
conditions. Using the OVITO  program36, the simulation box and the nano-Al block are developed. Equation (3) 
is used to calculate the overall system energy for the MD simulation.

where Ebond is the bond energy determined from the bond order. Eangle and Etors the energies associated with 
the valence angle and torsional angle strains are the. The term Eover is an energy penalty for the prevention of 
over-coordination of atoms (e.g. a penalty is applied if the carbon atoms make more than four bonds). The 
energy terms EvdWaals and ECoulomb present van der Waals interactions (dispersive contribution) and Coulomb 
(electrostatic contribution). The last term, ESpecific , represents other energy contributions specific to a system. 
They all have the same unit (kJ/mol)5,37.The energy of the system is calculated with the ReaxFF of ethanol and 
Al developed by Van Duin et al. 37, which is specifically developed for systems that include carbon, hydrogen, 
oxygen and  Al16. This method is presented in the introduction section using Eqs. (1) and (2).

MD method only considers the interactions with atoms in a spherical cut-off, which gives the linear scaling 
of the number of  atoms39. In the next step, energy minimisation is carried out at the beginning of the simulation 
by using the Conjugate gradient algorithm  40. For temperature control of the system, the Berendsen thermostat 
method  41 is used, which resets the temperature of atoms and re-scales their velocity every time step. Since the 
temperature through this reaction is lower than 500 K, a time step of 0.5 fs is considered. The steady-state condi-
tion indicators in this stage are the total potential energy and pressure. Algorithm 1 presents the main structure of 
this stage, and Table 1a, b provide the detailed information of the MD simulations parameters and code imputs.

Algorithm 1.  The algorithm for the molecular dynamics simulation (all-atom) code. We used a reactive force 
field (ReaxFF) alongside the large-scale atomic/molecular massively parallel simulator  (LAMMPS34).

(3)Esystem = Ebond + Eover + Eangle + Etors + EvdWaals + Ecoulomb + ESpecific
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Stage 2: training regression ML models for inferring the number of adsorbed molecules
In the first stage of our project, we conducted molecular dynamics simulations, which produced a set of training 
data D of n observations, D = {(Xi , yi) | i = 1, . . . , n} = (X, y) , where x denotes the input conditions, such as the 
concentration, temperature, time, pressure and velocity, y denotes the number of adsorbed ethanol molecules, and 
X is the design matrix. To identify the important predictors while training the ML models we used the minimum 
redundancy maximum relevance (MRMR)  Algorithm42, details of these features with their MRMR score are 
summarised in Table 2a. Concentration and pressure seem to be the most important features.

In the second stage, we used D to infer the relationship between the inputs and the number of adsorbed 
molecules using 28 parametric and non-parametric methods. For both methods, we used Bayesian analysis to 
find the probability of the parameters of the model ( θ ) after the data observation  28.

In parametric methods, we define a model that depends on some parameters ( θ ), and then we determine 
the best value for the parameters using the Maximum a posteriori (MAP). Linear, robust and stepwise linear 
regressions are the parametric methods used in this work. Linear Regression model multiplies each predictor 
by a coefficient and sums them together to predict the response (Eq. 4)28.

where f is the function of value, w is the weight vector of linear model parameters, n is the number of observa-
tions, and x is the input vector. The observed values y differ from the function values by additive noise ε , which 
is a Gaussian distribution with variance σ 2

n and zero mean. We added a normal prior with covariance matrix �p 
to the weights to change and improve the usual least square problem.

Then we used the Bayes’ rule to compute the posterior distribution as demonstrated in Eq. (6)28.

(4)f (x) = x⊤
w, y = f (x) + ε, ε ∼ N (0, σ 2

n ), w ∼ N (0,�p)

(5)p(y | X,w) =
n
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p(yi | Xi ,w) =
n
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1
√
2πσn

exp
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−
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i w)2

2σ 2
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∼ N (X⊤
w, σ 2

n I)

Table 1.  The specification of the inputs for the nanoscale model. (a) The details of the geometry, Al slab 
and target molecules and environment conditions for the molecular dynamics simulation. Full details of the 
inputs, including the training and validation data set details, are provided in the supplementary notes S1. (b) 
The details of the MD code inputs and functions, including the periodic (p) and fixed (f) boundaries, pair 
style from the Reaxff for Hydrogen (H), Carbon (C), Oxygen (O) and Al, neighbour parameters that affect the 
building of pairwise neighbours list and energy minimisation style and value.

Sign Description Value

(a) MD simulation parameters

  Hsb Height of the simulation box (m) 4.2 × 10
−9

  Wsb Width of the simulation box (m) 3.5 × 10
−9

  Dsb Depth of the simulation box (m) 3.4 × 10
−9

  TAl Thickness of the Aluminium slab (m) 1.65 × 10
−9

  TOE
Stopping tolerance for energy (–) 10

−10

  TOF
Stopping tolerance for force (Kcal/mole-Angstroms) 10

−10

  Vtm Velocity of the targeted molecules (m/s) 10
−3

− 1

  Tmd The environment temperature (K) 200–500

  Ntm

Number of the targeted molecules Cases G (10), F (25), A 
(50), B (100), C (150) and D (200)

 10–200

Function Input

 (b) MD code input and functions

  Units Real

  Dimension 3

  Boundary ppf

  Pair style Reax

  Pair coeff. Reaxff H C O Al

  Neighbour 1.0 bin, every 20

  Thermo style Costum, 10

  Time step 0.25 fs

  Minimisation Conjugate gradient

  Style and value 10
−10
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With training data being fixed, we need to find the value of w at which the posterior distribution is maximum. 
Since the denominator of Eq. (6) (evidence) does not change with the weights. Hence, we only need to maximise 
the numerator. This principle is called maximum a posterior (MAP).

In non-parametric methods, the number of parameters depends on the dataset size, and the parameters are 
calculated with the help of Kernel functions. In this work, we used Gaussian process regression (GPR), support 
vector machine (SVM), and regression Tree, non-parametric methods. Gaussian processes (GP) is specified by 
mean ( E f (x) = mx ) and covariance functions (Cov) in Eqs. (7) and (8).

The covariance matrix takes two points(e.g., x1 and x2 ) and returns the covariance between their value f (x1) and 
f (x2) , so it will be equal to their kernel function k(x1, x2) , which depends on the posterior of these two points 
(Eq. 7). Different kernels were used in this work for training the GP, including squared exponential, Matern 5/2, 
exponential, and rational quadratic (Table 2). Kernel machines map the nonlinear data into a higher-dimensional 
space in nonlinear problems, reducing complexity and enhancing prediction. It is the same as linear regression 
when the kernel function is  linear43,44.

where ℓ is the length scale, ν is the position parameter, α with ℓ as a scale mixture, Kν is a modified Bessel 
function, and Ŵ is the Gamma  function28,45. With GPR, we can estimate the probability distribution of f(x), the 
prediction of new points, given all previous data, which will allow us to estimate the uncertainty of the predic-
tions. SVM is another kernel machine with an ǫ-insensitive error function. The MAP value of w is calculated 
by minimising Eq. (9)28.

where z = yifi , ǫ is a margin of tolerance with no penalty for errors, gǫ(z) is the error function, xi is the ith train-
ing input, x∗ is the test input, k is the kernel (covariance) function, the parameter C > 0 specifies the relative 
importance of the two terms, and coefficients α are calculated with the quadratic programming (QP) optimi-
sation problem (the objective function is quadratic). In this project, we used different kernels to calculate the 
solution, including linear, quadratic, cubic, coarse, medium and fine Gaussian, with kernel scales of 8.9, 2.2 and 
0.56, respectively.

For the regression tree model, first, the input data D are inserted in the root node. Then, it goes from the root 
down to the leaf nodes, using binary conditions to group data with similar response variables. Each sequence of 
nodes is called a  branch46. For training the model, it tries to find the best binary conditions that split the obser-
vations into two groups. The best split is determined using the mean squared error (MSE) of both groups. The 

(6)p(w | X, y) =
p(y | X,w)p(w)
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Table 2.  Details of the features and kernel functions used in the ML models and training (a) MRMR score, 
standard deviation ( σ ) and the average value ( µ ) of features. (b) Kernel functions that are used for training the 
GP and their expression. These Kernel functions are Stationary and non-degenerate. A stationary covariance 
function is a function of r =| x − x

′ | , which can be represented as a Fourier transform. A degenerate kernel 
has a finite rank (finite number of non-zero eigenvalues)28.

Feature MRMR σ µ

(a) Features score and specifications

  Ntm 1.97 68.42 87.5

  P (kpa) 0.4 1.01 -0.17

  Tmd(K) 0.16 70.66 318.18

  Vtm(m/s) 0.06 3.38 0.93

  Time (ps) 0.05 88.9 147.29

 Covariance function Expression

 (b) Kernel functions used for the GPR models

  Exponential exp(− r
ℓ
)

  Squared exponential exp(− r2

2ℓ2
)

  Rational quadratic (1 +
r
2

2αℓ2
)−α
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r)υKυ (
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2υ
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predicted value would be the group mean. When the node can not split more, it is considered a leaf. Finer trees 
have more leaves, hence a complex predictive model.

Fine tree model would take more time for a large data set and features, and the process would become more 
 complex46. In this work, we used fine, medium and coarse trees with minimum leaf sizes of 4, 12 and 36, respec-
tively. ML models might have the same accuracy level, although their results might differ. Ensemble tree models 
(models 13 and 14) use the residuals from the tree models as a response variable to train an additional regres-
sion tree, which provides a new set of predictions and residuals. The process of generating decision trees in the 
Boosted tree model is repeated multiple times, resulting in a series of trees. The initial tree makes a prediction, 
and each subsequent tree refines that prediction (learning rate α = 0.1 ). The final prediction is the sum of all the 
results, which is more accurate than the initial prediction. In a bagged decision tree (model 14), different trees 
are trained simultaneously and independently with a random subset of available data as the training  data47. This 
means that every tree has unique training data. The results are averaged together for a final prediction. We used 
30 individual trees (learners nL = 30 ) to find the average Nad prediction in the ensemble models of this work.

To complete the ML benchmark, we included six neural network (NN) models, including narrow, medium, 
wide, Bilayered, Trilayered (models 19 to 23) and optimised NN (model 28). NN models are inspired by brain, 
consist of interconnected neurons in a layered structure and charactrised by the number of fully connected 
layers ( nlc ), the size of each layer ( l1 , l2 and l3 ) and the regularisation strength ( �)47. Stage 2 is summarised in 
Algorithm 2, details of each model including the hyper parameters are provided in Table 3 and implemented 
using  MATLAB48. 

Algorithm 2.  The algorithm for stage 2; the ML model training using

Stage 3: testing and validation of the ML models
The last stage is validating and testing the prediction model on a new data set. It is important to avoid over-fitting 
while training the model with high accuracy; k-fold cross-validation is suggested for working on a small dataset 
(such as this work), with the number of values k lower than the number of instances. Hence five k folds would 
be sufficient for this  work50. Cross-validation uses different portions of the data in the training process so that 
the model is not dependent on the specific portion of data. The model is trained with varying portions in each 
iteration. While holdout validations are more suitable for huge  datasets50.

To ensure the robustness of our ML models, we utilised both validation methods, 25% and 40% holdout and 
2-folds and 5-folds cross-validation. For all cases, we held 10% of the data set separately, which is not seen by 
the validation and used it to see the performance of the final ML model. Additionally, we conducted five runs 
of the k-fold cross-validation, randomly selecting the five folds each time and comparing them to find the most 
suitable validation method for this dataset.

Results and discussions
In this section, we will first present the results obtained from the molecular dynamics simulations for ninety 
cases (Fig. 1-stage 1). Following that, we will evaluate the performance of 28 different ML models for inferring 
a relationship between the adsorption of the ethanol molecules on the Al slab for different velocities, concentra-
tions and temperatures (Fig. 1-stages 2 and 3).

MD simulation of ethanol molecule adsorption on an Al slab
In this part, the mechanism of ethanol adsorption on an Al slab in various conditions is studied using the results 
of the MD simulations. Due to the presence of Al in the propellant, this study covers a temperature range from 
200 to 500 K. Table 1 provides the details of the simulation box, Al slab, concentration of ethanol molecules, 
velocity and temperature. The full details of the 90 different cases, convergence and results are provided in the 
supplementary materials S1 attached to this paper.

The simulation results provide the trajectory of the ethanol molecules on an Al slab through time, as presented 
in Fig. 1-stage 1 and coloured based on their charge. At the time t0 , the ethanol molecules were placed 5Å above 
the Al surface. First, the ethanol molecules get closer to the Al surface due to the electrostatic force between the 
hydroxyl group and the Al ( t1 ). The average adsorption distance is around 2.39Å . These movements are driven 
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explicitly by Oxygen and Al atom charges; the oxygen atom of the adsorbed ethanol has a negative charge ( −0.1 ), 
while the Al atoms surrounding it have positive charges up to +0.3 . The adsorption process completes at time 
tn , which varies based on the concentration of the ethanol molecules, temperature and velocity. The steady-state 
condition indicators in this stage are the total potential energy and pressure.

Physical adsorption occurs in low temperatures (around 300K), and the oxygen of ethanol molecule gets 
close to the Al atom. However, with the increase in temperature, the adsorption becomes more complicated 
due to thermal vibrations of Al atoms and the decomposition of the ethanol molecule. Hence, in temperatures 
around 400 K and higher, the adsorption is a combination of physical and chemical interactions. These findings 
are aligned with the previous research on ethanol adsorption on  Al5.

Figure 2a illustrates the number of adsorbed ethanol molecules ( Nad ) through time for all 90 cases. The Nad 
is calculated based on the number of ethanol molecules within the adsorption distance. The Nad in time varies 
based on the concentration of the target molecules. In cases G and F, with the lowest concentration of target 
molecules, the ratio of adsorbed molecules over the total number of targets passing by the surface is close to one. 
At the same time, this ratio reduces as the concentration increases in cases A to D.

The fluctuations in Nad are due to two reasons: firstly, as more ethanol molecules are adsorbed, the concentra-
tion of the free ethanol molecule reduces, and they have more freedom to find free sites for adsorption; secondly, 
in higher temperatures, the vibration of atoms increases, and the Al surface gives more chance to the ethanol 
molecules for adsorption while making the adsorbed ethanol molecules fluctuate more.

With changes in temperature and velocity, adsorption shows a different behaviour for each case. Figure 2b 
presents changes of Nad through time with concentration for five different series with the same initial temperature 
and velocity; flow velocity of 0.01 m/s and temperature of 300 K. This result supports the general statement that 
increasing the concentration increases adsorption. The adsorption is completed after 2 to 3-time slots for the cases 
with low concentration, and it does not reach 100% for high concentration cases, even if a significant time passes.

Figure 2c illustrates the effect of temperature on the adsorption of molecules for series C number of ethanol 
molecules Ntm of 150). The variation of adsorption through time is close to an exponential curve for lower tem-
peratures, and it gradually changes to a logarithmic curve as the concentration increases. To evaluate the slab 
properties and adsorption, the radial distribution function (RDF) is used (Eq. 10)  52. It calculates the probability 
of finding a particle (in this case, Oxygen) at a specific distance from another particle (Al).

where cAl and cO denote the concentration of Al and oxygen, gAl−Al , gAl−O and gO−O are the three partials func-
tions, which add up to the total RDF (g). Factor two appears as the gAl−O and gO−Al are  identical52. Due to the 
high number of cases, only sixteen are presented in the RDF graph (Fig. 2d). The location of the radial distribu-
tion function peak presents the binding distance, which is the same for all cases ( 1.8 × 10

10 m). The radial dis-
tribution function also varies with velocity but does not follow a specific pattern with a change in concentration.

The binding process does not follow a standard function of time, temperature or concentration, and it 
becomes more complicated with the increase in concentration. Another issue is the simulation time; on 16 
nodes of a high-performance computing system, it usually takes 11–14 h for each case, while it increases by 25% 
for series C and D with the highest concentrations. These two challenges in choosing a proper estimator and 
reducing the prediction time lead us to the next stage of the numerical framework, finding the relations using 
the regression ML methods.

Evaluation of the regression ML methods for the adsorption behaviour
ML is an iterative process, and it is not always possible to choose which regression model would be the best 
choice for complex processes, such as binding reactions. Hence, it is important to evaluate them. In this part, we 
used the MD simulation results for training, testing and validating 28 ML regression models. The Nad is selected 
as the response variable, and velocity, concentration, temperature and time are set as the predictor variables for 
the training process. In order to assess the performance of these ML models and make a comparison, different 
metrics are considered, including the mean absolute error (MAE), root mean squared (RMSE), correlation coef-
ficient (RSQ), as introduced in Eq. (11)47, and prediction time (PS).

where n is the number of observations, yi is the actual data points and ŷi is the predicted values, yi − ŷi is the 
residual, and ȳ is the the mean response value. Residuals close to zero indicate a good predictive model. The MSE 
value emphasises the large errors. Hence, low MSE indicates relatively few large errors in the predictions. RMSE 
has the same unit as the response value ( Nad ), which means RMSE with a value of 4 means that the predictive 
Nad calculations are off by four adsorbed molecules on average. Both MSE and RMSE are good for comparing 
the models. However, they are not effective in determining if the model is objectively a good fit for the data. 
The RSQ value is suitable for comparing the model with a simple baseline model; for that, we consider a simple 
horizontal line that passes the mean response value ( ̄y ). If the predictions are accurate, the RSQ is close to one.

Figure 3 presents the validation and test results for the data set that has not been seen during the valida-
tion process. 5-fold cross validation method shows a lower standard deviation for all ML models except model 
25 (SVM Optimisation). Model 25 already shows a how RMSE and is not suitable for our data set. Hence , 

(10)g(r) = c2AlgAl−Al(r) + 2cOcAlgAl−O(r) + c2OgO−O(r)

(11)

MSE =
1

n

n∑

i=1

(yi − ŷi)
2
, RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2, RSQ = 1 −

1
n

∑n
i=1(yi − ŷi)

2

1
n

∑n
i=1(yi − ȳ)2

, i = 1, 2, . . . , n
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cross-validation49 of data with five folds is used for this research while keeping 10% of data for testing the pre-
diction model.

Table 3 presents the prediction performance of 28 ML models for the test data. These test data were not used 
in the training and validation process. Models 1–3 in Table 3 are linear regression models, which are generally fast 
and easy to implement. However, they are not sufficient for predicting complex behaviour such as the adsorption 
 process53. This point is evident in these results; due to the nonlinear nature of the training data, linear models, 
including linear regression (models 1–3) and linear SVM (model 7), failed to provide a high-accuracy ML model 
and have the highest MAE and the lowest RSQ. Their RMSE is up to 17.42, which means their prediction of the 
number of adsorbed molecules is off by 17. To avoid under-fitting resulting from the linear models, we applied 
more complex models. However, using complex models may take longer training times and may even capture 
noises, which could result in over-fitting. Over-fitted models may exhibit low error rates for the training data, 
but when tested on new data, they may show high error rates. Therefore, it is essential to choose a complex model 
that is flexible enough to accurately predict new data.

Models 4–6 are the fine, medium and coarse regression trees with minimum leaf size ζ of 4, 12 and 36, respec-
tively. These trees differ based on the minimum number of observations allowed in a single leaf. As a result, a fine 
tree will have more leaves in total, which leads to more complex predictive models and an increase in training 
time. This point is also evident in the results, as presented in Table 3, PS increases from 40 obs/ms for linear 
models up to 72 obs/ms for the Tree models. They have a low range of MAE 3.13–4.74 but not an adequate RSQ 
(0.97–0.98). Nonlinear SVM models (models 8–12) can also achieve a comparably low MAE, but they still have a 
low RSQ. The ensemble models (models 13 and 14) consider the results from multiple models instead of relying 
on just one, which makes them more reliable. The best-performing tree model is the fine tree with a minimum 
leaf size of 4, with around 6.5 Nad overestimation; with the bagged tree ensemble model, the RMSE is reduced by 
1. The results of the GPR models with different kernel functions (models 15–18) are presented in Table 3; based 
on the results, the optimisable GPR and MatÃ©rn 5/2 kernel function seem to give a more accurate model for 
the number of adsorption of target molecules on the Al slab. These models have the lowest RMSE, maximum 
RSQ, and a comparably low prediction speed. As predicted, as we are not dealing with a large dataset, increase 
in the connected layers for the NN models (models 19–23) shows an increase in the RMSE and PS and increase 
in the layer size, decreases the prediction error. Wide NN model with 100 number of neurons, has the lowest 
MAE and RMSE, but the prediction time is more than three times higher than the GPR model.

Bayesian optimisation is applied to find the best hyper-parameter combination, according to the performance 
of the previous combinations. Each model and the results for optimised models are presented in Table 3 models 
24–28. Hyper-parameters are set before training the data; hence, it is important to choose the best one. The 
Bayesian optimisation helped to reduce the error by at least estimating one less wrong adsorbed molecule. The 
optimisation algorithm reduces the speed. The full details of validation and testing results, performance metrics, 

Figure 1.  The three main steps of the current numerical framework for predicting the binding reactions: (1) 
molecular dynamics simulation, (2) binding prediction with the predictive model generated by the Bayesian 
ML method, and (3) test and validation. The prior and posterior for a Bayesian method for a simple regression 
problem are illustrated in step  251, sample random Gaussian process functions are assigned to the sample input 
(x) and outputs (f(x)) and personalised based on the evidence in each loop.
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and model specification options for the 28 models are available in the supplementary notes S1. Here, we present 
the training and validation results for one example (GPR Bayesian optimisation, model 21) in Fig. 4. Figure 4a 
presents the predicted versus the actual values, which is helpful to evaluate whether any Nad is poorly modelled. 
Both axes present the Nad , the x axis represents the true Nad value from the MD simulations data set, and the 
y axis represents the predicted Nad values from the GPR Bayesian model. The black line represents the perfect 
prediction, and the vertical distance from this line is the residual for each data point. To evaluate the model 
residuals depend on the predictor variables, we can have a look at Fig. 4b , which presents the partial dependence 
of the predicted response of the adsorbed target molecules to time and temperature. The results show a good 
prediction through time, although we have a slight overestimation through temperature.

Figure 2.  MD results (a) all series with a velocity of 0.01 m/s, (b) sample results for 0.01 m/s velocity and 300 k 
temperature, (c) C series with a velocity of 0.01 m/s and different temperature, (d) radial distribution function 
for four sample series in 300 K through time, in different velocities (from 0.001 to 1 m/s).
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The results show a good alignment between the predicted and the actual adsorbed ethanol everywhere, but in 
the lower left corner at the zero value. The wrong predicted values tend to be higher than the perfect prediction 
line, which means the model tends to overestimate the number of adsorbed molecules. If we have a look back at 
Fig. 2a at stage zero, the beginning point of the simulations that the ethanol molecules are set as a specific position 
in the simulation box, Nad for cases with high concentrations is high, while for cases with low concentration is 
zero. This is purely due to the fact that with high concentrations (cases A–D), ethanol molecules are already very 
close to the surface, and the adsorption is already happening. Hence, the outline data points on the validation 
data set are mainly dedicated to the cases with high concentrations. This observation indicates that the leading 
cause of the error for the ML model might have been the zero point. After stage zero, all cases start to show an 
increase in the adsorbed ethanol, which is captured well with the prediction model.

Conclusion
This research demonstrates the use of machine learning and molecular dynamics simulations to enhance our 
capabilities in predicting the binding reactions at the nanoscale level. Advances in nanomaterials in recent years 
have significantly improved the development of high-performance devices. However, some deficiencies restrict 
their utilisation of sensitive devices. Processing materials at the nanoscale provides remarkable features, although 
they would trigger a series of problems; hence, detailed insight into changes in the nanoscale would be crucial. 
With this aim, we first used MD simulation to prepare a data set for the adsorption of ethanol on the Al surface 
using molecular dynamics simulations. We then evaluated different ML methods, such as linear regression, 
SVM, decision trees, ensemble, GPR, and optimised hyper-parameters with Bayesian optimisation, based on 
their capabilities in predicting the number of adsorption.

The MD simulation was applied for various conditions to study the effect of the concentration of targeted 
molecules, temperature and velocity on the thermodynamic properties, radial distribution function (RDF), 
and adsorption of ethanol. We used a large-scale atomic/molecular massively parallel simulator (LAMMPS) 
and the ReaxFF for these simulations. The results indicated the nonlinear nature of the adsorption process and 
its unique behaviour for different conditions. MD simulations also showed that an increase in velocity could 
significantly decrease the adsorption time and up to 80% increase in adsorbed target molecules for the cases 
with low concentration.

However, there is a significant limitation in length and time using molecular dynamics simulations. ML 
assisted in tackling this challenge. With the data generated for ninety various molecular dynamics simulations 

Table 3.  Details of the predictive models for a single run test data: training time, RMSE (root mean squared 
error), MAE (mean absolute error), and RSQ (correlation coefficient) for the test set. Kernel function (k), Kernel 
scale ( κ ), minimum leaf size ( ζ ) iteration limit ( ϕ ), number of learners ( nl ), connected layers ( nlc ), layer size (l), 
regularisation strength ( � ), learning rate ( α ) and prediction speed (PS) are provided for related models (full 
details are available in the supplementary notes S1).
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, we trained, validated and tested 28 different ML models for prediction. As a result, the GPR model with 
Bayesian Optimisation of hyper-parameters and MatÃ©rn 5/2 kernel function showed a good prediction per-
formance with the lowest RMSE and MAE and high RSQ (0.99) and comparably low prediction time (14–20 
obs/s). Subsequently, the model was validated, and a successful prediction matched the available data. These 
ML models predict the number of adsorbed molecules off by 4–5 molecules. This number is not as effective in 
the high-concentration cases, but it shows the unsuitability of these predictive models for low-concentration 
models. With a closer look at the predicted data and comparison with the actual data, we found out the leading 
cause of prediction error is at stage zero when the simulation starts. The prediction models tend to overestimate 
the number of adsorbed molecules at that point. In future works, we can implement physic-based Bayesian ML 
models to improve the accuracy. This framework can be applied to other binding prediction tasks and complex 
target molecules.

Figure 3.  The statistical analysis of different ML models for two validation methods: holdout validation for 25% 
and 40% holdout and cross-validation for 2-folds and 5-folds. Both validation and test results are averages of 
five different runs, the error bars are calculated using the standard deviation ( σ ) of the five runs for each cases. 
The zoomed view of top two (lowest RMSE) prediction models, number 21 (wide NN) and number 26 (GPR 
Bayesian Optimisation) are provided. .



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20437  | https://doi.org/10.1038/s41598-024-71007-z

www.nature.com/scientificreports/

Data availability
The entire data set is available in NDEx data repository http:// www. ndexb io. org.
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