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ABSTRACT

Detecting the faint emission of a secondary source in the proximity of the much brighter one has been the most
severe obstacle for using direct imaging in searching for exoplanets. Estimating the angular separation between
two incoherent thermal sources is a also challenging task for direct imaging. Here, we experimentally demonstrate
two tasks for super-resolution imaging based on hypothesis testing, quantum state discrimination and quantum
imaging techniques. We show that one can significantly reduce the probability of error for detecting the presence
of a weak secondary source (e.g. a planet), especially when the two sources have small angular separations. We
reduce the experimental complexity down to a single two-input interferometer: we show that (1) this simple
set-up is sufficient for the state discrimination task, and (2) if the two sources are of equal brightness, then this
measurement can super-resolve their angular separation, saturating the quantum Cramér-Rao bound. By using
a collection baseline of 5.3 mm, we resolve the angular separation of two sources that are placed 15 µm apart at
a distance of 1.0 m with an accuracy of 1.7% – this is between 2 to 3 orders of magnitudes more accurate than
shot-noise limited direct imaging.

Keywords: super-resolution, quantum imaging, quantum metrology

1. INTRODUCTION

Hypothesis testing, parameter estimation, and imaging are fundamental scientific tasks that can all be improved
using quantum techniques.1–3 A judicious choice of quantum probe state or measurement observable can signif-
icantly improve the information gained in a measurement. These improvements can manifest in a multitude of
ways. For example, the noise in an image may be reduced,4,5 or the resolution of the image may be improved be-
yond the classical Rayleigh limit.6–9 Other improvements include ghost imaging, where information is extracted
from quantum light that has not directly interacted with the object,10,11 and quantum-enhanced non-linear
microscopy.12 Quantum lithography,13,14 and quantum sensing15–17 exploit entangled or correlated sources to
enable precision beyond what is achievable classically. In microscopy, these techniques compete with classi-
cal super-resolution methods that use engineered sources that exhibit non-linear responses or exploit selective
activation and bleaching of fluorophores.18–21

When source engineering is not an option, which is the case for astronomical observations, quantum techniques
can beat the diffraction limit by unlocking all the information about amplitude and phase in the collected light.
Traditionally, the resolution of an imaging system is limited by the the Rayleigh criterion:7 the minimum angular
separation that can be resolved is θmin ≈ λ/D, where λ is the wavelength and D is the diameter of the lens.
A recent result for super-resolving a pair of incoherent sources has triggered much interest in the field.3 It was
shown that there is no loss of precision associated with estimating the sources’ angular separation, even when
their separation is smaller than θmin.
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However, prior to measuring the separation, one needs to ensure that there are two sources and not just one.
One straightforward method would be to use direct imaging (DI) to determine whether a secondary source is
present. In a diffraction limited system, the image of a point-like object is not a point but has a finite spread
characterised by the point-spread function (PSF). If the two sources overlap on the image screen, this blurring
presents a severe practical obstacle to direct detection of exoplanets,22,23 especially when one source is much
dimmer than the other.

Quantum hypothesis testing techniques, on the other hand, can be used (Fig. 1) when the task is to determine
whether a secondary source exists.1 The goal is to minimise the probability of a false negative (missing the second
source). If we are happy to accept a certain probability of false positives (type-I error), then the probability
of a false negative (type-II error) is given by the quantum Stein Lemma.24,25 This asymmetric error setting is
particularly applicable to rare events such as exoplanet identification,22,23 or events with important ramifications
such as dimer detection in microscopy.26 In quantum information theory, the two hypotheses – one source versus
two sources – are modelled by two quantum states, ρ0 and ρ1. We consider n detection events, and work in the
regime of highly attenuated signals where n corresponds to the number of photons received. We define αn and
βn as the probabilities of type-I and type-II errors, respectively. Given a bounded probability of a type-I error,
αn < δ, the quantum Stein lemma27,28 states that ∗

βn = exp
[

−nD(ρ0||ρ1)−
√
nbΦ−1(δ)−O(lnn)

]

, (1)

where
D(ρ0||ρ1) = Tr

[

ρ0(ln ρ0 − ln ρ1)
]

, (2)

is the quantum relative entropy (QRE),29 Φ(δ) is the Error Function, and b is the variance of the QRE.30 In
the limit of large n, the leading term in the error exponent is the one proportional to the QRE D(ρ0||ρ1).
Therefore βn ≃ exp [−nD(ρ0||ρ1)] asymptotically. The quantum Stein lemma is already optimised over all
possible measurements, therefore, it depends only on the two states to be discriminated, ρ0 and ρ1. The QRE
provides a significant improvement in the error exponent βn over the classical relative entropy for direct imaging,1

thereby significantly reducing the probability of error, even when the two sources have small angular separations.

Once it is established with reasonable confidence that there are two sources, one can use quantum metrology to
perform parameter estimation on the angular separation. The ultimate precision in the estimation is dictated by
the quantum Cramér-Rao bound.31 For any density matrix ρ(θ) with spectral decomposition ρ(θ) =

∑

i pi |ei〉〈ei|
that encodes the information of the parameter θ, the mean square error ∆2θ is lower bounded by the quantum
Fisher information (QFI) Iθ,

∆2θ ≥ 1

nIθ
, Iθ = 2

∑

i,j

〈ei| ∂θρ |ej〉
pi + pj

, (3)

where ∂θρ = ∂ρ/∂θ, and n is the number of photons detected. ∗ The QFI represents the ultimate precision limit
for the estimation of the given parameter, which may be achieved by some particular measurement. Obviously,
not all measurements allow us to achieve it. For any given measurement, which yields a particular distribution
of measurement outputs, the optimal mean square error is bounded by its associated classical Fisher information
(FI), which is the classical counterpart of the QFI. Here we describe a method, based on interferometry, to
experimentally achieve the ultimate quantum Cramér-Rao bound.32 If a lens is used and the PSF is approximately
Gaussian, this ultimate bound can be achieved by spatial-mode demultiplexing (SPADE) or similar methods.3,33

For estimating the transverse separation between two equally bright sources, the QFI has been shown to be finite
and independent of the separation.3 This is in contrast with DI, which allows us to estimate the separation with
limited precision that drops to zero when the separation is small compared to the width of the PSF.

Sub-Rayleigh super-resolution imaging through coherent detection of incoherent light is currently an active
area of research.5,34,35,35–47 However, implementing the optimal measurement is typically non-trivial. In this

∗The quantum Stein Lemma and the quantum Cramér-Rao bound are usually defined in terms of number of copies of
the state. However, here we work in the regime of highly attenuated signals and post-selected on photon detection events.
Therefore, we refer to n as the number of photons detected. The two approaches differ only by a normalisation factor
dictated by the overall transmission-detection efficiency.

Proc. of SPIE Vol. 12633  1263308-2



s
z
0

coherent

measurement

light

collection

z
0

(1-𝜖)

𝜖

coherent

measurement

light

collection

(a)  H
0

(b)  H
1

Figure 1. An optical imaging system is used to discern between two hypotheses, followed by parameter estimation. If
hypothesis H0 is true, only one source of intensity N is present; if H1 is true, two sources are present, with total intensity
N and the relative intensity is ǫ/(1− ǫ). For H1, angular separation between the two sources is θ = s/z0.

paper we achieve two goals: (1) we experimentally demonstrate clear sub-Rayleigh scaling for quantum state
discrimination of singular versus binary sources, and (2) we approach the quantum Cramér-Rao bound for
estimating the angular separation of two sources with equal brightness. Most importantly, we significantly
simplify the required experimental complexity: the two goals are achieved with a single measurement set-up: all
the above tasks can be performed with a simple interferometer with two spatial modes, i.e. we collect photons at
two spatial locations. Then we perform photon counting at the output of the interferometer, and by analysing
the statistics we can saturate both the QRE and the quantum Cramér-Rao bound.

2. RESULTS

2.1 The Model

First, consider the task of discriminating between one source or two sources with a separation s in the object
plane. Hypothesis H0 states that only one source is present, and it is positioned at x0. Hypothesis H1 states
that two sources are present, where the first source is centred at x0, and it has an angular separation θ = s/z0
with the second. Furthermore, they have relative intensities (1− ǫ) and ǫ respectively; without loss of generality,
we assume ǫ ≤ 0.5. We will label a photon originating from the brighter source with intensity (1− ǫ) as |ψstar〉,
and the source with intensity ǫ as |ψplanet〉. The two states on the image plane are generally non-orthogonal.
The density matrices associated with the two hypotheses H0 and H1 are, respectively

ρ0 = |ψstar〉〈ψstar| ,
ρ1 = (1− ǫ) |ψstar〉〈ψstar|+ ǫ |ψplanet〉〈ψplanet| .

(4)

These two hypotheses can be discriminated by DI, in which case an optical system (which we may model as a thin
converging lens) is used to create an image of the (unknown) source. The optical system is characterised by its
PSF, which for a circular aperture is described by the Airy function. The latter, in turn, can be well-approximated
by a Gaussian function with variance σ. In DI, the focused image is measured via pixel-by-pixel intensity
detection, which in the weak-signal regime yields the empirical probability distribution of detecting a photon in
each pixel. From the analysis of the data collected this way, one addresses the problem of hypothesis testing. The
probability of a false negative is quantified by the classical analogue of the quantum Stein lemma, which expresses
the error exponent in terms of the classical relative entropy (CRE), i.e. the Kullback-Leibler divergence. In the
limit that θ ≤ σ and ǫ≪ 1 the classical relative entropy from DI is approximately (exp

(

θ2/σ2
)

− 1) ǫ2/2.1 This
quadratic scaling in ǫ formally expresses the challenges of using DI for exoplanet detection, especially when the
planet is much dimmer and very close to the star.

By contrast, the QRE provides a 1/ǫ improvement over the CRE.1 An almost-optimal quantum measurement,
SPADE,3 is able to achieve linear scaling in ǫ by performing spatial Hermite-Gaussian mode sorting.1 Though
the SPADE device has recently been built and demonstrated,48,49 the set-up is sensitive to misalignment of
the sources’ centroid,3 cross-talk,48 and is unsuitable for large-baseline instrument devices – SPADE is suited
for circular lenses and mirrors and building such optical components larger than 10’s of meters is infeasible.
Here we present an alternative approach with reduced experimental complexity that can also be adapted for
large-baselines devices.50
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Figure 2. Schematic of two sources with a separation of s in the object plane, with relative intensities ǫ and 1 − ǫ, at
a distance z0 from the collectors. Two collectors at d1 and d2 direct light into a two-input interferometer consisting of
a phase shift of α and a 50:50 beam splitter, followed by photon counters. A collector can be any optical element that
collects light. This could incorporate lenses or in the case of this experiment, two fibre connectors that present only the
bare fibre core diameters in the direction of the source.

If instead of a lens we place two optical collectors, d1 and d2, separated by d = |d1 − d2|, and at a distance
z0 from the sources (see Fig. 2), then the states |ψstar〉 and |ψplanet〉 can be described as:

|ψstar〉 =
1√
2

(

|d1〉+ eiφ |d2〉
)

,

|ψplanet〉 =
1√
2

(

|d1〉+ eiψ |d2〉
)

,

(5)

where φ, ψ are the optical path differences of the sources to the two collectors. In the paraxial regime, these are

φ ≈ kdθ

2
, ψ ≈ −kdθ

2
, (6)

where k is the wavenumber. Here we have assumed that the centre of the two collectors aligns with the centroid
of the star-planet system for simplicity, but this is not necessary. In the limit of ǫ≪ 1, the QRE between ρ0 and
ρ1 is approximately51

D(ρ0||ρ1) ≈
θ2k2d2ǫ

4
. (7)

Equation (7) is also linear in ǫ, thus has a factor 1/ǫ improvement compared to the classical counterpart; an
optimal measurement that saturates the QRE (i.e. the measurement’s CRE that matches the QRE) is obtained
by placing a phase shifter and a 50:50 BS after the two collectors, followed by photon counting. Given an
imperfect interferometer with visibility ν, if there is no planet (H0 is true), then the probabilities that the
photon is detected at detectors a or b are

pH0
(a) =

1

2

[

1 + ν cos(φ+ α)
]

,

pH0
(b) =

1

2

[

1− ν cos(φ+ α)
]

.

(8)

where α is an adjustable phase. Otherwise, if H1 is true, then the probabilities are

pH1
(a) =

1

2

[

(1− ǫ)(1 + ν cos(φ+ α))+

ǫ(1 + ν cos(ψ + α))
]

,

pH1
(b) =

1

2

[

(1− ǫ)(1− ν cos(φ+ α))+

ǫ(1− ν cos(ψ + α))
]

.

(9)
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Given that we know the output probabilities of the two hypotheses, the CRE of this measurement is given
by the classical version of Eq. (2), where

D(pH0
||pH1

) =
∑

i∈{a,b}

pH0
(i)

[

ln pH0
(i)− ln pH1

(i)
]

. (10)

The CRE is maximised for
α ≈ −kd

[

ǫ(x0 + s)/z0 + (1− ǫ)(x0)/z0
]

, (11)

and matches the QRE. Intuitively, this corresponds to the the point where |pH1
(a)− pH0

(a)| = |pH1
(b)− pH0

(b)|
is maximised.

We now move onto performing quantum parameter estimation on the state. When the source intensities are
equal, the QFI for the above state is32

Iθ =
k2d2

4
, (12)

which is constant in the effective pupil size d and independent of the angular separation θ. Hence, the angular
separation can be estimated with constant precision even when its value is below the Rayleigh length, i.e. well
beyond the diffraction limit. The very same measurement that achieves the maximum relative entropy, also allows
to saturate the quantum Cramér-Rao bound dictated by the QFI (i.e. the measurement achieves the minimum

uncertainty). Define a†
′

d1
(a†

′

d2
) to be the creation operator at the collector position d1 (d2). The adjustable phase

shift α and the beam splitter transform the operator as

a†
′

d1
→ 1√

2

(

a†d1 + a†d2

)

,

a†
′

d2
→ eiα√

2

(

a†d1 − a†d2

)

.

(13)

Applying the transformation in Eq. (13) to the state ρ = 1/2 (|ψstar〉〈ψstar|+ |ψplanet〉〈ψplanet|), the probabilities
of detecting the photon at either detector are

pa(φ, α, ν) =
1

2

[

1 + ν cos(α) cos (φ)
]

,

pb(φ, α, ν) =
1

2

[

1− ν cos(α) cos (φ)
]

.

(14)

Here φ is the same as in Eq. (6). Determining φ statistically will provide an estimation on the angular separation,
explained in the next sections. The maximum classical relative entropy and Fisher information are achieved
around the phase values α = 0 or π. At these values, the CRE coincides with the QRE, and the Fisher
information coincides with the QFI.32

2.2 Experimental set-up

The experimental set-up is depicted in Fig. 3. A fibre-coupled vertical cavity surface-emitting laser (VCSEL)
with 848.2 nm central wavelength (0.11 nm FWHM) is operated in pulsed mode at a repetition rate of 1 MHz.
This specific wavelength is chosen as it provides a good trade-off between single-photon detection efficiency
(≈ 40%) with commercially available thick-junction silicon single photon avalanche diodes (Si-SPADs) detectors
and tolerable optical loss in silica fibres (≈ 2.2 dB/km).52 The resulting coherent states are then coupled into
two electro-optic modulators (EOMs) enabling phase and amplitude modulations of the individual coherent
states. An external arbitrary waveform generator (AWG) electrically drives the two modulators by means of
randomised modulation patterns so that the resulting optical states resemble a pseudo-thermal source,53 required
for the incoherent sources specified by the model and tested using a Hanbury Brown and Twiss interferometer.
This modulation approach provides absolute control over each coherent state emitted by the source, including
preserving the coherent state for use in interferometric measurements. In the results presented in this paper, we
alternate the pseudo-thermal state with a coherent state that acts as a reference. The reference pulses provide

Proc. of SPIE Vol. 12633  1263308-5



Figure 3. Experimental set-up. A VCSEL operated in pulsed mode generates coherent states that are phase and amplitude
modulated to reproduce a pseudo thermal state. These states are then coupled into a multimode fibre and then collimated
to a custom optical mask shaping the light beam into two pseudo-point-like sources. At 1 m distance, two single-mode
polarisation-maintaining fibres collect the transmitted beam through connectorised couplers, followed by an adjustable
air-gap that tunes the phase α, a 50:50 beam splitter and two single-photon detectors. These detectors are two Si-SPADs
and register photon detection events storing their information onto a PC for post-processing via a TCSPC module. A
feedback control system is used for interferometric stabilisation via the adjustable air gap.

the necessary interferometric stabilisation that is controlled via feedback from the two detectors, after the two
pulses interfere at the beamsplitter. The alternate set of thermally modulated states instead are used to compute
all relevant quantities detailed in our model.

After phase and amplitude modulation, the pseudo-thermal states are coupled into multimode optical fibres
(8 m in length) in order to maximise mode dispersion and reduce wavefront spatial correlations due to the initial
coupling of the VCSEL to single mode based optical components. The final thermal radiation is coupled into an
adjustable aspheric collimator lens providing precise alignment with the remaining free-space optical components.
Two pseudo-thermal sources are extracted from the collimated beam via a custom-made optical mask with two
circular pinholes etched onto the surface, effectively reproducing two idealised point-like sources corresponding
to the two distant stars of our model. Different etched patterns were fabricated using laser-written lithography
in order to study a wide range of configurations with pinhole dimensions ranging from 10 to 50 µm in diameter
and with spatial separation spanning from just 15 µm to almost 1 cm.

A neutral density filter is mounted on a separate movable micro-positioner block (not shown) placed in front
of one of the two pinholes reducing the transmitted optical power through one of the pinholes. This configuration
creates a controlled intensity imbalance between the two pseudo thermal sources effectively creating one bright
source (a distant star) and one dimmer source (a distant exoplanet). At 1 m from the mask, two single-mode
polarisation maintaining (PM) optical fibres, separated by 5.3 mm, are mounted on a micropositioner block (not
shown) coupling the transmitted light beams into a balanced interferometer whose output modes are monitored
by Si-SPAD detectors. The collectors used with the PM fibres are commercial fibre connectors with the bare
fibre cores facing the approximate direction of the source. An adjustable air-gap is placed in one of the two
optical paths allowing us to loss-balance the interferometer as well as providing direct control over the optical
path-length difference. A time-correlated single photon counting (TCSPC) unit processes the generated timetags
with 1 ps resolution enabling fast readout times as well as full digital post-processing. For each configuration of
the set-up, 25 individual measurements are taken with a 5 s integration time in order to reduce Poissonian errors
associated with photon-count data. An active feedback mechanism is implemented to ensure high interferometric
visibility (> 99%) during the entire duration of the data acquisition by means of a piezoelectric actuator adjusting
the path-length difference of the interferometer via the air-gap (see Fig. 3).
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Figure 5. Relative entropy of the two hypothesis for different values of ǫ, using an angular separation of 5.9 × 10−5 rad.
The plots shows: (1) the QRE of the two-mode state (blue solid line), (2) the CRE of the measurement maximised over
α, given ν = 0.995 (orange dotted line), (3) the CRE for shot-noise limited direct imaging (DI, teal dashed line), and (4)
the experimental data points (red crosses).

2.3 Experimental Results

We experimentally measured the probability of the photon arriving at detectors a and b. As an example, in
Fig. 4 we show the probability of the photon arriving at detector a for ǫ = 0.5 and angular As expected, the
contrast is higher for smaller separations: in the limit of small θ, the smaller the separation, the more spatially
coherent the light becomes. In the limit that θ = 0, we have a point source and the visibility should be 100% in
theory.

First, we compute the relative entropies of the two scenarios. In Fig. 5 we present the CRE of the measurement
for different values of ǫ using an angular separation of 5.9× 10−5 rad. For comparison, we also show the relative
entropy for direct imaging using a lens with a diameter equal to the fibre separation of 5.3 mm (assuming a
Gaussian PSF). Fig. 5 shows the distinct difference in scaling in ǫ between our method and DI. For ǫ > 10−2,
we see that the two-mode CRE matches the two-mode QRE well. Due to experimental imperfections, around
ǫ ∼ 10−3 the achievable relative entropy has significantly deviated from the ideal quantum case, but still surpasses
the DI limit by two orders of magnitude.

We now present the method of analysis and results for estimating the angular separation. We use maximum
likelihood estimation to first extract the optical path difference φ between the source and the two collectors, and
then obtain an estimator for the angular separation θ. Our method for extracting φ is a simpler version of the
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phase estimation method used in Refs.54,55 We can determine φ directly from the detection statistics. To choose
the estimator, it is useful to determine a probability density function for φ based on the detection results.

The probability density function for φ, P (φ), can be determined from Bayes’ theorem as follows: prior
to any detected photons, we assume no knowledge of φ, and the corresponding prior distribution is therefore
P0(φ) = 1/(2π). After one detection event µ = a, b and adjustable phase α, we have

P (φ |µ, α, ν) ∝ P(µ |φ, α, ν)P0(φ |α, ν). (15)

where P(µ |φ, α, ν) is the update probability distribution. After m detection events, the vector of measurement
outcomes is ~µm = (µ1, µ2, . . . , µm), where each element µj ∈ {a, b}, with j ∈ [1,m], corresponds to the detector
a or b that signalled the presence of the photon. The probability density function for φ is then55

P (φ | ~µm, α, ν) ∝ P(µm |φ, α, ν)P (φ | ~µm−1, α, ν) , (16)

where the proportionality constant is determined by normalising the distribution.

In order to obtain an analytic form for P (φ | ~µm, α, ν), we express it as a Fourier series

P (φ | ~µm, α, ν) =
1

2π

m
∑

k=−m

ake
ikφ , (17)

where ak depends on ~µm, α and ν. After each detection event, we can write the updated distribution in this
Fourier form as well. For example, if detector b fires, then following from Eq. (14),

P(µ = b |φ, α, ν) = 1

2

[

1− ν cos(α) cos(φ)
]

, (18)

which we can rewrite as

P(µ = b |φ, α, ν) = 1

2
− 1

4
ν cos(α) eiφ−

1

4
ν cos(α) e−iφ .

(19)

Therefore the update coefficients are a0 = π, a1 = a−1 = −π
2
ν cos(α). The factor ν cos(α) is computed directly

from the coherent state statistics . Before the first detection (the prior distribution), Eq. (17) contains only one
term, a0 = 1. After each detection event the number of Fourier coefficients grows by 2 (the ±m terms in the
Fourier expansion). The coefficients ak are updated using Eqs. (14) and (16).

As an example, Fig. 6 shows the probability density function P (φ), calculated based on Eq. (17) after 12740
detection events where 1478 were output at detector b, with ν cos(α) = 0.981. Since cos(φ) is an even function,
there are two peaks, symmetrically placed around zero. We require only the magnitude of φ in the estimation of
the angular separation θ.

Following maximum likelihood estimation, the value of φ at the maximum of P (φ) becomes our estimate,
and the estimate of the separation θ is then given by

θ̂est = 2|φ|/(kd) . (20)

Once this estimate is obtained, we use the mean-square error (MSE) to quantify the precision, given by

MSE(θ) = ∆2θ + (θ̄ − θtrue)
2 . (21)

Here θ̄ is the mean value of the estimates, and θtrue is the true value of the angle, which in this case is accessible via
direct measurement. The MSE is equal to the variance for unbiased measurements and appropriately penalises
biased estimates as well.

For each value of the angular separation we obtained 25 different estimates, each detecting approximately
n ≈ 60 000 photons. Figure 7 shows the MSE multiplied by n× Iθ. The experimental data points are indicated
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Figure 7. The mean squared error (MSE) of estimating the angular separation between two equally bright sources,
normalised by the QFI, for different values of angular separation. The plot shows (1) the normalised QFI, which is equal
to 1 here, and is constant across the whole range of angular separations θ (blue solid line); (2) the MSE for shot-noise
limited DI (teal dotted-dashed line); (3) the Fisher information for an interferometer with a visibility-phase factor ν cos(α)
between 0.965 and 0.985 (orange shaded region); (4) the experimentally achieved MSE (red crosses).

by red crosses, and the achievable precision for shot-noise limited DI (using a circular lens of diameter 5.3 mm)
is indicated by the dash-dotted line.

Experimentally, the data was collected with the factor ν cos(α) between 0.96 and 0.985. This is the shaded
orange region in Fig. 7. The quantum Cramér-Rao bound is equal to 1 in this figure (blue solid line). We
obtained unbiased estimates for values of angular separation θ that dramatically beat the Rayleigh limit. When
θ = 1.5× 10−6 rad, the root-mean-square errors are within 1.7% of the real value, which is two to three orders
of magnitude more accurate than what is achievable with DI using a lens of the same diameter. For all the
measured angular separations the MSE stayed within a factor 2 of the quantum Cramér-Rao bound.

3. DISCUSSION

In this work we have analysed theoretically, and demonstrated experimentally, two tasks for super-resolution
imaging based on quantum state discrimination and quantum parameter estimation. Estimating the angular
separation between two sources is a challenging task for direct imaging, especially when their angular separation
is smaller than the point spread function of the imaging system. The task of determining whether there are one
or two sources is in itself a difficult task, especially when one source is much dimmer than the other.

In this work, we solved both these problems and, compared with previous works,1,33,56 we have reduced
the experimental complexity down to a simple two-input interferometer: we show that a simple set-up achieves
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sub-Rayleigh scaling for the state discrimination task, and if the two sources are of equal brightness, then this
measurement can optimally estimate their angular separation, saturating the quantum Cramér-Rao bound.

We developed the theoretical analysis in the framework of single photons. However, the results extend to the
regime of thermal sources as discussed in Ref.1 The experiment was conducted with weak thermal sources, where
the probability of detecting multiple photons is highly suppressed. This reflects the fact that the measurement
is post-selecting on single-photon events, which explains why the experimental data saturates the single-photon
quantum limit. A similar observation was made for the problem of estimating the transverse separation.35 In
the absence of background noise, losses do not affect our resolution apart from reducing the total photon count.

Our experiment also shows a practical optical set-up that could potentially be integrated with current stellar
interferometers. However, this would require a different approach for the phase stabilisation of the interferometer.
For example, the stabilisation could be provided by a ground-based coherent source or an artificial guide star
which are suitably multiplexed into the interferometry system.

Our set-up is compatible with existing two-mode interferometers: the two-mode model assumes that the
dimension of the collectors is much smaller compared to the spatial separation of the collectors d. For optical
interferometers where the separation between arms is of the order of ≈ 100’s m, collection using lenses and
compound mirrors would be appropriate. For telescopes with point-spread functions that have 10’s of milliarc-
seconds in resolution, we expect our method to be able to distinguish, or measure the separation of binary stars
to precisions well-above direct imaging. As an example, the exoplanet LkCa 15 c57 was observed with a Large
Binocular Telescope (LBT) with a diffraction-limited PSF of ≈ 29 milliarcseconds (wavelength at 2.18 µm, 7 m
in baseline). Using our method, if the instrument has visibility ν ≥ 98% (achieved by CHARA58), such an
instrument can resolve two binary stars with separations less than 10 milliarcseconds.

In order to achieve the desired precision, we need a sufficient number of photon counts acquired over a time
period during which the phase is stabilised. Naturally, the phase stabilisation will be highly dependent on the
environment. One approach is that our system could be entirely translated into a planar waveguide architecture
where light from a telescope could be collimated directly into laser-inscribed couplers greatly reducing optical
losses and improving phase stabilisation due to the reduced dimensions of the interferometer.59 Moreover,
our system could improve the MSE of estimating even smaller angular separations by increasing the number
of collected photons, but higher interferometric visibility levels (≈ 99%) would be necessary to avoid signal
degradation due to sub-optimal α values.

In our work we used pulsed light for both the reference signals and the pseudo thermal states. In a practical
implementation, a celestial body would show a continuous form of radiation with a broad optical spectrum60,61

which limits the interferometric visibility. However, our system can be easily adapted to implement narrow
bandpass filters to select the right bandwidth for the detection stage at the cost of a reduced photon level.
Moreover, Si-SPADs could be replaced with SNSPDs for faster sampling time, higher detection efficiencies and
reduced dark counts and timing jitter.

Recently, there has been a renewed interest in two-photon interferometry (intensity interferometry).62,63

Compared to those techniques, our method requires phase-stabilisation of the interferometer, but makes use of
every photon received. The two-photon methods can achieve a very large baseline without needing an optical
link between the system (or phase stabilisation), but suffer from low probability of successful detection events.
In principle, if one has access to a quantum-enabled large baseline optical interferometer of the same baseline
(such as those described in Ref.64), our scheme achieves much higher precision.

Here we have focused on the most simple scenario of discriminating one versus two point-like sources, using a
two-mode interferometer. Future work could explore the hypothesis testing for discriminating between multiple
sources of different brightness, composite hypothesis testing, and the number of modes the interferometer would
require for such tasks.
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