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Abstract: Engaging in phone conversations or other cognitively challenging tasks while driving 14 

detrimentally impacts cognitive functions and has been associated with increased risk of accidents. 15 

Existing EEG methods have been shown to differentiate between load and no load, but not between 16 

different levels of cognitive load. Furthermore, it has not been investigated whether EEG 17 

measurements of load can be used to predict safety outcomes in critical events. EEG microstates 18 

analysis, categorizing EEG signals into a concise set of prototypical functional states, has been used 19 

in other task contexts with good results, but has not been applied in the driving context. Here, this gap 20 

is addressed by means of a driving simulation experiment. Three phone use conditions (no phone use, 21 

hands-free, and handheld), combined with two task difficulty levels (single- or double-digit addition 22 

and subtraction), were tested before and during a rear-end collision conflict. Both conventional EEG 23 

spectral power and EEG microstates were analyzed. The results showed that different levels of 24 

cognitive load influenced EEG microstates differently, while EEG spectral power remained unaffected. 25 

A distinct EEG pattern emerged when drivers engaged in phone tasks while driving, characterized by 26 

a simultaneous increase and decrease in two of the EEG microstates, suggesting a heightened focus on 27 

auditory information, potentially at a cost to attention reorientation ability. The increase and decrease 28 

in these two microstates follow a monotonic sequence from baseline to hands-free simple, hands-free 29 

complex, handheld simple, and finally handheld complex, showing sensitivity to task difficulty. This 30 

pattern was found both before and after the lead vehicle braked. Furthermore, EEG microstates prior 31 

to the lead vehicle braking improved predictions of safety outcomes in terms of minimum time 32 

headway after the lead vehicle braked, clearly suggesting that these microstates measure brain states 33 

which are indicative of impaired driving. Additionally, EEG microstates are more predictive of safety 34 

outcomes than task difficulty, highlighting individual differences in task effects. These findings 35 
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enhance our understanding of the neural dynamics involved in distracted driving and can be used in 1 

methods for evaluating the cognitive load induced by in-vehicle systems.  2 

 3 
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1 Introduction 6 

Cognitive load, as defined by Engström et al. (2017), typically refers to the “amount” of cognitive 7 

resource demanded from the driver by a competing activity. In the context of driving, cognitive load 8 

plays a crucial role in determining a driver’s ability to effectively process information, such as 9 

observing road conditions, anticipating potential hazards, and making timely decisions. However, 10 

engaging in activities such as talking on the phone diverts drivers’ cognitive resources away from the 11 

primary task of driving. Further, the content of a conversation can influence cognitive load due to 12 

factors such as the complexity and novelty (Simmons et al., 2016; Kong et al., 2021).  13 

There has been an ongoing debate regarding the impact of high cognitive loads on driver safety. 14 

Some studies argue that high cognitive load can be associated with increased arousal and compensatory 15 

safety measures from the driver, such as increasing headway or reducing speed (Simmons et al., 2016; 16 

Caird et al., 2017), while others demonstrate that excessive cognitive load leads to errors and impairs 17 

driving performance. The result of this can be increased reaction times, impaired situational awareness, 18 

and elevated accident risks (Klauer et al., 2014; Chan et al., 2020; Kong et al., 2021). These 19 

inconsistent observations may be influenced by the varied adaptability of individuals to different task 20 

conditions (Puma et al., 2018). In other words, different people might experience different cognitive 21 

loads even when faced with the same task, leading to varied adjustments in behavior (Goodridge et al., 22 

2024). Therefore, gaining insights into how cognitive load influences safety outcomes can be better 23 

achieved by directly measuring the cognitive load for each individual while driving, rather than relying 24 

solely on behavioral performance (Borghini et al., 2014; Wang et al., 2015; Fan et al., 2022). 25 

Mainstream objective measures for cognitive load include psychophysiological measurements 26 

such as eye tracking, heart rate, and electroencephalography (EEG), which have been identified as 27 

robust options for evaluating cognitive load (Charles & Nixon, 2019; Alyan et al., 2023). Among these 28 

measures, EEG has proven advantageous due to its high temporal resolution and the ability of directly 29 

representing the electrical activity of the brain, which offers a robust means of depicting the neural 30 

dynamics associated with complex cognitive tasks (Zarjam, et al., 2010; Charles & Nixon, 2019; Peng 31 

et al., 2022). This method complements behavioral analysis by offering a more direct and immediate 32 

assessment of cognitive states. Furthermore, recent research has explored alternative methods for 33 

evaluating drivers' cognitive load, such as using vehicle maneuvering data (Jang et al., 2024). 34 

 35 
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Within EEG research, theta waves, ranging from 4 to 8 Hz in frequency, have emerged as a critical 1 

component for understanding cognitive processes. Beyond the domain of driving, EEG research on 2 

cognitive load measurement has indicated that theta power is the most reliable index of cognitive load 3 

(Chikhi et al., 2022). An increase in theta power has been consistently linked to the amount of 4 

information being processed, that is, theta power tends to be higher under conditions of high cognitive 5 

load compared to low cognitive load (Deiber et al., 2007; Chikhi et al., 2022). A systematic review 6 

found a particular increase in theta power over the prefrontal cortex to be associated with increased 7 

task demands (Kabilmiharbi et al., 2022). The prefrontal area, located at the midline scalp position, is 8 

crucial for controlling the highest-order cognitive abilities. This region acts as a hub for synthesizing 9 

complex cognitive functions, including decision-making, problem-solving, and behavioral control, and 10 

is sensitive to cognitive load (Siddiqui et al., 2008; Foy & Chapman, 2018). 11 

In the context of driving, researchers have used EEG to investigate cognitive load changes when 12 

drivers are engaged in secondary tasks while driving. Most of this work has focused on the comparison 13 

between task and no task conditions. For example, Almahasneh et al. (2014) conducted a driving 14 

simulation experiment where participants were required to drive while simultaneously responding to 15 

questions, which were designed as a mix of logical reasoning in the form of analogies and real-life 16 

problems involving math tasks. They found that the right frontal cortex region was the most affected 17 

area during distracted driving. Li et al. (2023) conducted a car-following experiment and analyzed 18 

drivers’ EEG activities across three secondary tasks: a clock task, a 2-back task, and a navigation task. 19 

They observed increased activity in the theta band in the frontal lobe during all three task conditions, 20 

compared to driving without a secondary task. Some human-computer interaction-based studies have 21 

examined EEG differences across various levels of different cognitive load tasks, such as working 22 

memory tasks (Jensen and Tesche, 2002) and visual tracking tasks (Puma et al., 2018). However, it 23 

remains to be seen whether EEG has sufficient sensitivity to differentiate between different levels of 24 

cognitive load during driving and driving related tasks. The ability to recognize distinct cognitive load 25 

levels is crucial in the context of driving, as it can contribute to the development of personalized 26 

approaches in driver training, vehicle design, and interface design (Peng et al., 2022). 27 

In addition to the insufficient number of EEG studies dedicated to differentiating between 28 

different levels of cognitive load in driving scenarios, few studies have explored drivers’ EEG activity 29 

during safety-critical situations, such as when drivers are faced with an impending collision. To the 30 

best of our knowledge, only one study has attempted to analyze drivers’ EEG response in a safety 31 

critical situation, where a roadside pedestrian suddenly crossed the road when the driver approached 32 

(Li et al., 2022). They found that the activities of all EEG bands (delta to beta) changed consistently, 33 

with the power increasing significantly throughout the entire pedestrian-collision avoidance process. 34 
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However, this study mainly focused on EEG changes in the collision process, without considering the 1 

impact of cognitive load.  2 

With regards to the EEG metrics for reflecting cognitive load, EEG microstate analysis has drawn 3 

growing attention in recent years as an innovative method for investigating brain function. EEG 4 

microstate analysis assesses brain activity at a millisecond resolution by dividing the raw EEG data 5 

into quasi-stable states, often referred to as “atoms of thoughts” (Lehmann et al., 1987). Each EEG 6 

microstate remains stable for a certain duration (around 80-120 ms), and then transits into a new 7 

topography (Lehmann and Skrandies, 1980; Lehmann et al., 1998; Khanna et al., 2015). These 8 

microstates represent a recurring pattern of overall brain activation. Research has found that 9 

approximately 70-80% of EEG states could be effectively characterized by only four distinct 10 

microstates (Wackermann et al., 1993; Koenig et al., 2002), referred to as microstate A through to D. 11 

Microstate A is related to phonological processing, exhibiting a right-frontal left-posterior distribution; 12 

microstate B is related to visual processing, exhibiting a left-frontal right-posterior distribution; 13 

microstate C is a default mode, exhibiting a midline frontal-occipital orientation, and microstate D 14 

represents attention reorientation, exhibiting a midline frontal orientation (Milz et al., 2016; Michel & 15 

Koenig, 2018). The robustness and consistency of these four microstates have been demonstrated 16 

across diverse conditions, including different age groups and varying states, such as rest versus task 17 

conditions (Koenig et al., 2002; Britz et al., 2010). Therefore, the EEG microstates method holds great 18 

potential for application in measuring cognitive load during driving, which has not been attempted, to 19 

date.  20 

This study utilizes EEG microstate analysis to evaluate cognitive load during routine and safety-21 

critical driving scenarios, with a specific focus on the cognitive demands associated with cell phone 22 

use. Arithmetic tasks involving single- or double-digit addition and subtraction were designed to 23 

induce different levels of cognitive load. Three phone use modes (baseline, no phone; hands-free; 24 

handheld) were used alongside the two arithmetic tasks, as the manual interaction required for 25 

handheld mode could potentially affect cognitive load. Data on drivers’ EEG signals and vehicle 26 

kinematics were collected simultaneously in the collision avoidance scenario. 27 

The objectives of this study were as follows:  28 

(a) Determine whether EEG power and microstates are influenced by cognitive load in driving 29 

scenarios and what this means in terms of our understanding of cognitive processing. 30 

(b) Evaluate the feasibility of utilizing EEG power and microstates to classify different levels of 31 

cognitive load in driving scenarios. 32 

(c) Assess whether EEG recorded before a safety-critical rear-end collision event can aid in 33 

predicting how the driver responds to the event. 34 
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2 Method  1 

This study analyses EEG data from a previously conducted study reported by Xue et al. (2020). 2 

In Sections 2.1-3 below, we describe the experimental methods relevant to the present study. Section 3 

2.4 outlines the EEG data analysis method, and Section 2.5 introduces the statistical analysis used.  4 

 Participants and apparatus 5 

Thirty-four participants (16 females, 18 males) completed the whole experiment with valid EEG 6 

data collected. We performed a power analysis using G*Power (Faul et al., 2009), based on a medium 7 

effect size (Cohen's d = 0.5), a significance level of 0.05, and a desired power of 0.95. The medium 8 

effect size was chosen based on a series of cognitive load experiment reported by Mayer & Moreno 9 

(2003), where the observed effect sizes were greater than 0.5. With these assumptions, the minimum 10 

number of participants required was calculated to be 30, i.e., slightly less than our sample size. The 11 

participants were middle-aged adults (between 32 and 40 years, mean = 34.3, S.D. = 4.6) to minimize 12 

the potential confounding effects of age on cognitive load tasks (Trammell et al., 2017; Stacey et al., 13 

2021). All participants possessed a valid driver’s license and had a minimum of two years’ driving 14 

experience. The experiment took about 30 mins, and each participant was compensated with RMB200 15 

(approximately＄ 30) after completing the experiment. Approval was obtained from the ethics 16 

committee of Beijing Jiaotong University. 17 

We used the high-fidelity Beijing Jiaotong University (BJTU) driving simulator equipped with an 18 

EEG system to collect simultaneous behavioral and EEG data (see Fig.1). The cabin of the simulator 19 

is identical to a Ford Focus with a steering wheel, brake pedal, throttle and a real operational interface. 20 

With a pre-view display system, the simulated environment is projected at a 300-degree field of view 21 

with a resolution of 1400 * 1050 pixels on each screen. To create a fully immersive driving 22 

environment, the simulator is also equipped with a vehicle dynamic simulation system, a linear motion 23 

base capable of operation with one degree of freedom in the longitudinal direction, and an 24 

environmental noise and vibration system. To acquire EEG data, the Neuroscan system with a 25 

SynAmps2TM amplifier and a 64-electrode cap was used. The electrodes were laid out according to the 26 

international 10–20 system. While collecting the EEG signals from the electrode cap, a computer 27 

connected with the amplifier showed the data with the voltages of each electrode on the screen. This 28 

alerted the experiment of any invalid data derived from errors with the cap adjustment. The EEG 29 

signals were sampled at 1000 Hz. 30 
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 1 

Fig. 1 Apparatus used for data collection. 2 

 Scenario design 3 

The road was a 4 km long, contraflow, two-lane section, with no guardrail or center median 4 

divider. The speed limit was 80 km/h. The layout of the experiment scenario is shown in Fig. 2(a), and 5 

the simulated road environment is shown in Fig. 2(b). Considering the rarity of rear-end collisions in 6 

real-world driving within a short time period, a route incorporating two intersections and two curved 7 

segments was designed prior to the rear-end collision scenario. This design aimed to provide a more 8 

varied driving experience and discourage participants from speculating about the purpose of the 9 

experiment. The rear-end collision events only occurred when participants were driving on a straight 10 

road.  11 

The speed of the lead vehicle was predefined, as shown in the upper curve graph in Fig. 2(c). The 12 

lead vehicle initially stopped on the road and began to accelerate to 50 km/h with an acceleration rate 13 

of 1 m/s2 when the subject vehicle arrived at 55 m behind the lead vehicle. Then the lead vehicle kept 14 

a constant speed at 50 km/h until arriving at 465 m away from the starting point, where it decelerated 15 

to 40 km/h at 4 m/s2 to shorten the headway between the lead and the subject vehicle. After that, the 16 

lead vehicle kept driving and decelerated from 40 km/h to 4 km/h at 6 m/s2 when it was 675 m away 17 

from the starting point. This sudden braking was designed to create a potential rear-end collision 18 

scenario. The subject vehicle’s operating speed fundamentally depended on the lead vehicle’s speed 19 

profile (see the lower graph in Fig. 2(c)). After braking, the lead vehicle drove away with an 20 

acceleration rate of 1 m/s2. 21 

While driving, the participants were engaged in phone conversations where they had to respond 22 

to arithmetic problems. The choice of arithmetic problem-solving tasks was based on previous research 23 

demonstrating that the number of digits in arithmetic questions correlates with the perceived level of 24 

difficulty (Ryu & Myung, 2005; Molina Del Río et al., 2019). Therefore, this study designed simple 25 

and complex tasks as single- and double-digit addition or subtraction, with no phone conversation 26 

serving as the baseline. The conversation tasks were played by a sound system installed in the simulator, 27 
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and they were triggered by sensors so that participants would drive under a similar mental workload 1 

in the same situation. 2 

Participants engaged in both hands-free and handheld phone conversation, for both simple and 3 

complex versions of the task. In the handheld task, drivers had to use one hand to hold the phone to 4 

their ear and the other to operate the steering wheel, whereas, in the hands-free task, they could use 5 

both hands to operate the car. This design aimed to assess whether the handheld phone use mode would 6 

introduce additional cognitive load, due to its inherent manual demands. Therefore, each participant 7 

completed the entire 4 km drive five times, while engaged in the different cell phone tasks: baseline, 8 

hands-free simple task, hands-free complex task, handheld simple task, and handheld complex task. 9 

The tasks were performed continuously during the entire drive. Participants were required to give the 10 

answer as quickly and accurately as possible, which were recorded by an experimenter outside the 11 

simulator. 12 

  13 

The data analysis focused on two stages of this driving scenario, just before and just after the 14 

braking event: The normal driving stage refers to the last 6 seconds before the lead vehicle started 15 

braking. The critical braking stage refers to the time from the lead vehicle’s brake onset until the ego 16 

vehicle stopped braking, i.e., this stage included the entire collision avoidance process of the ego 17 

vehicle. 18 

 19 
Fig. 2 Details of the experiment scenario. 20 

 Procedure 21 

Participants were required to fill out and sign an informed consent form (per Institutional Review 22 

Board, IRB) upon arrival. They were instructed to drive in a manner consistent with their daily habits. 23 
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Before the formal experiment, each participant drove for at least five minutes to get accustomed to the 1 

driving simulator operation and driving environment. The order of the five experimental drives was 2 

randomized per participant, to counteract order effects. Participants had at least five minutes of self-3 

paced rest between tasks, and they were free to quit the experiment at any time in case of motion 4 

sickness or any discomfort. 5 

 EEG data analysis  6 

 Preprocessing of EEG signals 7 

In order to obtain a stable estimation of EEG signals, preprocessing is required, to reduce noise 8 

and eliminate artifacts. In this study, the open-source toolbox EEGLAB in MATLAB 2018a was used 9 

(Delorme & Makeig, 2004). The main steps of preprocessing were as follows:  10 

Firstly, the EEG signals underwent a 0.5–30 Hz band-pass filter across all channels, with the high-11 

pass and low-pass filters applied separately. Then, independent component analysis (ICA) was used to 12 

decompose the EEG signals. The ADJUST plugin was used to automatically identify and remove 13 

artifacts (Mognon et al., 2011). ADJUST automatically detects and removes ocular artifacts caused by 14 

blinks, eye movements and the generic artefacts caused by the recording device. An experienced EEG 15 

analyst also manually verified the removed artifacts. Finally, the EEG data were referenced to the 16 

average reference, and baseline corrections were done by removing the mean amplitude of each 17 

channel. After completing these steps, artifact-free EEG data were prepared for further analysis.  18 

 EEG spectral power analysis 19 

Based on the preprocessed artifact-free EEG data, Fast Fourier Transform (FFT, Frigo and 20 

Johnson, 1998) with Hanning window was applied to convert the EEG signal from the time domain to 21 

the frequency domain. This process decomposed the signal into individual frequency components, 22 

revealing amplitude and phase details for each frequency band. Then band power was extracted by 23 

integrating the frequency spectrum within specific frequency ranges. In this study, we mainly focus on 24 

theta band (4 Hz – 7 Hz) given its dominance in reflecting cognitive states. The process of EEG spectral 25 

power analysis is a standard method used in numerous previous studies (for a review, Haghani et al., 26 

2021).  27 

 EEG microstate analysis 28 

Prior to EEG microstate calculation, a band-pass FIR filter (Cetin et al., 1997) of 2 to 20 Hz was 29 

performed on the preprocessed data, which is a frequency range commonly used in microstate research 30 

(Koenig et al., 2002). Four sequential steps were then executed to estimate EEG microstates, as 31 

outlined below. The process adheres to the methodology proposed by Koenig et al. (1999), utilizing 32 

the microstate toolbox for EEGLAB developed by Koenig (2017).  33 
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(1) Compute global field power (GFP). GFP is the instantaneous spatial standard deviation of the 1 

signal potential values, which is calculated as: 2 

  ( ) ( )( )
2

1

( )
N

n

n

GFP t V t V t N

=

 
= −  

 
  (1) 3 

Where n denotes an electrode index, N denotes the number of electrodes. ( )n
V t represents the 4 

signal potential value of electrode n at time t. ( )V t  represents the average potential value of all 5 

electrodes at time point t. 6 

(2) Find the maxima of GFP. This is because the topographic maps tend to be most stable (with 7 

the optimal signal-to-noise ratio) around the maxima of the GFP (Lehmann et al., 2009). 8 

(3) Perform k-means clustering analysis. All maps are categorized into a set of four predefined 9 

classes, based on their topographic similarities, following Koenig et al. (1999), Koenig et al. (2002) 10 

and Lehmann et al. (2009), as shown in Fig. 3 (middle plot). According to previous research, these 11 

four prototypic topographies could represent 70%-80% maps in a multichannel recording. Even when 12 

selecting more than four cluster maps, these specific four microstates consistently stand out as the 13 

predominant ones (Khanna et al., 2015). The four classes are referred to as microstates A through D 14 

(MSA-MSD). Each class has been linked to a distinct cognitive function, namely phonological 15 

processing, visual network, default mode, and attention reorientation, respectively (Milz et al., 2016; 16 

Seitzman et al., 2016). When relating these states to driving, MSA could for example corresponds to a 17 

driver focusing on listening to the auditory content of a phone conversation; MSB could correspond to 18 

visually interpreting a traffic scene ahead; and MSD could correspond to the driver switching attention 19 

between driving and a secondary task. As for MSC, the so-called "default mode" activity of the brain 20 

refers to the type of activation observed during wakeful rest, without engagement in any external task, 21 

i.e., a priori it may not be very relevant in the driving context.  22 

(4) Match the topographic map to four clustered microstates. Each topographic map is matched 23 

to a clustered microstate based on the highest Pearson’s correlation coefficient at each time point. The 24 

correlation is calculated and compared across the four clusters to determine the microstate to which it 25 

belongs. In this way, the EEG signal can be re-expressed as a sequence of microstate classes. The 26 

global explained variance of the four clustered microstates in our dataset was 76%, within the typical 27 

reported range in previous studies (Lehmann et al., 2009). 28 
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 1 

Fig. 3 Steps to get EEG microstates. 2 

After obtaining the sequence of EEG microstates as outlined above, the following measures were 3 

calculated for each microstate (Khanna et al., 2015; Michel & Koenig, 2018):  4 

⚫ Duration (ms): The average duration for which each microstate remained stable before 5 

transitioning to another microstate.  6 

⚫ Occurrence (/s): The frequency of occurrence, representing how many times a particular 7 

microstate class appears, on average, within a one-second interval. 8 

⚫ Coverage (%): The proportion of the total time occupied by a specific microstate class, 9 

expressed as a percentage. 10 

⚫ Transition probability (%): The likelihood of transitioning from each microstate to each other 11 

microstate, presented as a percentage. 12 

 Statistical analysis 13 

Linear Mixed Model analysis was employed for inferential statistical analysis due to the repeated 14 

measures in the data (IBM Corp., 2021). This method includes both fixed effects (group-level effects) 15 

and random effects (subject-specific effects), which allows the model to capture both systematic trends 16 

and individual variability. Bonferroni correction was done for multiple comparisons. In all analyses, 17 

an alpha-level of 0.05 was used to determine statistical significance. 18 

The Linear Mixed Model analyses served two purposes. Firstly, LMMs were fitted to examine 19 

the impact of various task conditions on EEG metrics (both the spectral power metrics and the 20 
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microstate metrics, which serve as the dependent variables in the LMMs). Secondly, LMMs were fitted 1 

to quantify the relationship between pre-braking parameters and safety outcomes. In the latter analysis, 2 

kinematic and EEG parameters from before the lead vehicle brake onset were used as the independent 3 

variables, and the minimum time headway (MinTh) as the dependent variable. In the safety outcome 4 

analysis, alternative models were tested, both with and without EEG metrics among the predictors, to 5 

evaluate their contribution to the prediction of the minimum time headway outcome. 6 

3 Results 7 

 Effects of phone use on EEG power 8 

Effects of phone use on EEG power were tested in both the normal driving stage and the critical 9 

braking stage. In the normal driving stage, drivers maintained a safe following distance behind the lead 10 

vehicle, while in the critical braking stage, drivers were required to react promptly to the sudden 11 

braking of the lead vehicle. Fig. 4 depicts the observed EEG theta band power across task conditions, 12 

during normal driving and critical braking stages, respectively. When drivers were in task conditions, 13 

although there was a slightly higher theta power compared to baseline in normal driving stage, this 14 

result was non-significant (F = 1.21, p = 0.11). Whereas in critical braking stage, the difference between 15 

these four task conditions and the baseline is not significant (F = 0.39, p = 0.43).  16 

 17 

 18 

Fig. 4 Frontal theta power during normal driving and critical braking stages. 19 

 20 
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 Effects of phone use on microstates 1 

In this section, results from the impact of phone use tasks on EEG microstates and their statistical 2 

significance are reported. The occurrence, duration, coverage, and transition probability of EEG 3 

microstates were examined during normal driving and critical braking stages, respectively. 4 

A consistent change in the coverage of MSA (related to phonological processing) and MSD 5 

(related to attentional reorientation) was observed across both normal driving and critical braking 6 

stages. As shown in Fig. 5, the coverage of EEG microstates suggests a clear ordered sequence, 7 

characterized by a decrease in MSD coupled with an increase in MSA. The MSD values follow the 8 

order: baseline > hands-free simple task > handheld simple task > hands-free complex task > handheld 9 

complex task, while the MSA values show the opposite trend.  10 

To test the significance of the above sequence, post-hoc tests were done on the MSA and MSD 11 

coverage among the different task conditions, in both normal driving and critical braking stages. The 12 

results are shown in Fig. 5, using blue lines to represent significant differences between baseline and 13 

phone use tasks, and red lines to represent significant differences between the four phone use task 14 

conditions. Significant differences between phone use tasks and baseline are present in both normal 15 

driving and critical braking stages. In contrast, the differences among the four phone tasks are only 16 

significant in the normal driving stage. Particularly, there is a significantly lower MSA coverage and a 17 

higher MSD coverage in the hands-free simple scenario, compared to the handheld complex scenario. 18 

Moreover, a significantly lower MSD value is observed in the simple hands-free task, compared with 19 

the complex hands-free task. 20 

In addition to these changes in the coverage of MSA and MSD, the different phone use tasks show 21 

significant impacts on some other microstates metrics. Specifically, in the normal driving stage, 22 

different tasks affect the occurrence and duration of MSD in significantly different ways. During the 23 

critical braking stage, a significant impact is found on the duration of MSA. These changes are in line 24 

with the changes of coverage of MSA and MSD. Details about the EEG microstates metrics are shown 25 

in Table 1 for normal driving stage and Table 2 for critical braking stage. 26 

The significant impact of task conditions on microstate transition probability is depicted in Fig. 27 

6. When drivers were engaged in the arithmetic tasks while driving, there was an observed increase in 28 

the transition probability from MSB to MSA and a concurrent decrease in the transition to MSD, 29 

aligning with the observed coverage differences across task conditions. 30 
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 1 

Fig. 5 Coverage of MSA and MSD in normal driving and critical braking stages. The dot in each violin represents 2 

the mean value, and error bars represent 95% confidence interval. 3 

 4 

 5 



 

14 

 

 1 

 2 

Fig. 6 Effects of phone use on microstates transition probability. The number in each cell is the transition probability 3 

from the vertical axis to the horizontal axis, and this probability is also indicated by the color of the cell. Darker 4 

colors indicate higher transition probabilities. The cells outlined in red and marked with asterisks indicate significant 5 

differences (p<0.05) between the baseline and the task condition in question. 6 

 7 

Table 1 Effect of cell phone on EEG Microstates in normal driving stage. 8 

Variables Scenario F 

 Baseline 
Hands-free 

simple 

Hands-free 

complex 

Handheld 

simple 

Handheld 

complex 

 

 M. S.D. M. S.D. M. S.D. M. S.D. M. S.D.  

Occurrence_MSA 2.08 0.84 2.21 0.71 2.44 0.72 2.27 0.59 2.41 0.63 1.693 

Occurrence_MSB 1.93 0.88 2.17 0.62 2.08 0.74 2.10 0.68 2.14 0.65 .542 

Occurrence_MSC 1.88 0.83 1.94 0.69 1.93 0.69 1.87 0.71 1.88 0.74 .076 

Occurrence_MSD 2.01 0.77 1.71 0.73 1.45 0.77 1.60 0.68 1.39 0.55 3.657** 

Duration_MSA 119.63 38.99 134.54 47.06 141.55 42.39 144.42 38.36 146.17 48.05 1.983 

Duration_MSB 115.94 37.36 132.19 48.00 117.84 40.83 116.87 26.88 133.24 44.40 1.391 

Duration_MSC 120.04 37.29 112.37 34.48 121.42 51.15 118.68 32.22 108.01 41.99 .598 

Duration_MSD 122.61 47.15 117.86 32.79 89.57 33.87 105.55 39.40 97.25 24.82 3.585** 

Coverage_MSA 0.27 0.14 0.31 0.14 0.36 0.14 0.34 0.12 0.37 0.15 2.484* 

Coverage_MSB 0.23 0.13 0.26 0.13 0.26 0.14 0.26 0.11 0.28 0.12 1.123 
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Coverage_MSC 0.24 0.15 0.24 0.13 0.24 0.15 0.24 0.09 0.22 0.13 .251 

Coverage_MSD 0.26 0.15 0.19 0.10 0.14 0.11 0.16 0.13 0.14 0.07 5.252** 

Note: * p<0.05; ** p<0.01 1 

 2 

Table 2 Effect of cell phone on EEG Microstates in critical braking stage. 3 

Variables 

Scenario 

F Baseline 
Hands-free 

simple 

Hands-free 

complex 
Handheld simple 

Handheld 

complex 

M. S.D. M. S.D. M. S.D. M. S.D. M. S.D. 

Occurrence_MSA 2.11 0.73 2.24 0.54 2.33 0.60 2.24 0.85 2.54 0.56 2.352 

Occurrence_MSB 1.95 0.84 2.00 0.73 2.17 0.57 1.96 0.87 2.04 0.76 .415 

Occurrence_MSC 1.80 0.91 1.64 0.76 1.88 0.65 2.08 0.49 1.69 0.66 1.819 

Occurrence_MSD 1.88 0.74 1.61 0.76 1.42 0.69 1.55 0.75 1.60 0.70 1.574 

Duration_MSA 121.92 43.20 127.3 47.79 138.21 44.54 137.54 54.39 155.57 42.90 2.490* 

Duration_MSB 119.08 44.82 118.0 30.16 121.74 36.84 107.75 36.55 110.74 30.67 .817 

Duration_MSC 108.46 36.24 101.5 39.30 123.65 77.81 134.47 91.54 100.78 35.71 1.699 

Duration_MSD 134.45 102.1 93.21 31.91 99.94 41.77 100.02 35.25 102.21 31.25 2.414 

Coverage_MSA 0.27 0.14 0.31 0.15 0.33 0.14 0.32 0.17 0.41 0.15 4.241** 

Coverage_MSB 0.26 0.16 0.24 0.11 0.27 0.13 0.23 0.13 0.24 0.13 .467 

Coverage_MSC 0.21 0.15 0.28 0.12 0.23 0.15 0.28 0.18 0.18 0.10 2.244 

Coverage_MSD 0.26 0.18 0.17 0.10 0.16 0.13 0.17 0.11 0.17 0.10 2.872* 

Note: * p<0.05; ** p<0.01 4 

  5 

 The efficacy of EEG microstates in predicting behavior 6 

The aim of this section is to predict safety outcomes from information available before the safety 7 

critical event (i.e., before the lead vehicle braking), and see if EEG information can improve such 8 

predictions.  9 

As a first step, we tested to what extent the type of task could predict the safety outcome, and also 10 

whether it could predict the kinematic state before the lead vehicle began braking, since it is known 11 

that drivers may adapt their behavior to manage changes in cognitive load (Onate-Vega et al., 2020). 12 

The speed (V0) and distance headway (H0) at the time when the lead vehicle braked were used to reflect 13 

the kinematic state before the critical event, and the minimum time headway (MinTh) was adopted to 14 

represent safety outcome. As described in the statistical analysis section of the Methods, a LMM was 15 

used to test the impact of task conditions on V0, H0, and MinTh. The differences identified as 16 

statistically significant (p < 0.05) in this analysis are marked with an asterisk (*) in Fig. 7. Phone use 17 
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tasks had a significant impact on V0 and H0, both of which increased under task conditions. However, 1 

the influence of task conditions on MinTh was not statistically significant. This can be understood by 2 

considering the relationships between these variables: MinTh is negatively correlated with V0 and 3 

positively correlated with H0 (Table 3). Since both V0 and H0 increase under task conditions, their 4 

opposing effects might counteract each other, resulting in no significant impact on MinTh. 5 

The second question to be answered is how to improve the prediction results, and to test the 6 

efficacy of EEG microstates in predicting behavior. Based on the behavioral adaptation finding, V0 7 

and H0 should be included when predicting safety outcomes from pre-event information. We 8 

constructed three models: one with only V0, H0 (kinematics model), another extending with task 9 

information (kinematics + task), and a third extending with EEG information (kinematics + EEG). For 10 

the model with EEG information (kinematics + EEG), only EEG microstates were adopted in the 11 

prediction since the difference of EEG power under different task conditions was not significant. 12 

Specifically, EEG microstate coverage was chosen as the input variable because of its significant 13 

variations observed among different task conditions, as shown in Section 3.2. To alleviate collinearity, 14 

only the coverage of MSA, MSB and MSD was integrated into the model, considering that the sum of 15 

the coverage of all four microstates equals one.  16 

The model results for the second (kinematics + task) and the third extensions (kinematics + EEG 17 

microstates) are shown in Tables 4 & 5. The results indicate that task conditions were not statistically 18 

significant predictors in the model, with none of them differing significantly from the baseline 19 

condition (p > 0.05). In comparison, the coverage of EEG microstate A was a significant predictor 20 

(coefficient = -0.482, p = 0.041), indicating that a decrease in MSA contributes to a higher minimum 21 

time headway. Given the repeated measures design, we included random intercepts for subjects in our 22 

model to capture individual variability. The results showed that there was a significant portion of the 23 

variability in MinTh that could be attributed to differences between individuals (p < 0.01).  24 

Visually, the small but noticeable improvement in model fit when adding the microstates to the 25 

kinematics-only model can be seen in Fig. 8. These findings suggest that EEG microstates preceding 26 

the critical event can contribute to better prediction of safety outcomes, surpassing the predictive utility 27 

of knowing the specific task the driver is engaged in. Specifically in this case, the negative correlation 28 

between the coverage of MSA and minimum time headway suggests that when drivers concentrate 29 

more on auditory information, it is detrimental to maintaining a safe time headway. 30 
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 1 

Fig. 7 The impact of task conditions on behavioral measures. Note: * p < 0.05. 2 

 3 

Fig. 8 Model performance. 4 

 5 

Table 3 Results of linear mixed model using only behavioral measures. 6 

Variables Coefficient S.D. t p 

Intercept 1.656 0.437 1.609 <0.001 

V0 -0.196 0.026 -6.89 <0.001 
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H0 0.085 0.001 40.159 <0.001 

 1 

Table 4 Results of linear mixed model using behavioral and task conditions. 2 

Variables Coefficient S.D. t p 

Intercept 1.899 0.317 5.980 <0.001 

V0 -0.216 0.027 -7.922 <0.001 

H0 0.082 0.001 79.343 <0.001 

Hands-free simple 0.046 0.103 0.447 .656 

Hands-free complex 0.076 0.097 0.779 .437 

Handheld simple 0.008 0.096 0.839 .403 

Handheld complex 0.123 0.097 1.274 .205 

Baseline 0a    

Note: a reference category. 3 

 4 

Table 5 Results of linear mixed model using behavioral and EEG measures. 5 

Variables Coefficient S.D. t p 

Intercept 2.131 0.399 5.342 <0.001 

V0 -0.197 0.026 -7.529 <0.001 

H0 0.084 0.001 99.258 <0.001 

Coverage_MSA -0.482 0.233 -2.063 0.041 

Coverage_MSB -0.480 0.256 -1.876 0.063 

Coverage_MSD -0.579 0.305 -1.879 0.060 

4 Discussion 6 

This study aimed to investigate the impact of cognitive load levels on EEG microstates in safety-7 

critical driving scenarios. Cognitive load was induced by arithmetic tasks in combination with phone 8 

use modes in a driving simulation experiment. The efficacy of EEG in helping to predict safety critical 9 

behaviors was tested.  10 

 EEG microstates change significantly under different cognitive load levels 11 

This study found significant influences of cognitive load levels on EEG microstates in a safety 12 

critical driving scenario, which has not been previously investigated. Results showed that EEG 13 

microstates changed significantly between no task and task conditions. Specifically, the coverage of 14 

MSA in task conditions was significantly higher than in baseline (baseline, MSA = 0.27; task 15 

conditions, MSA > 0.31), while the coverage of MSD in task conditions was lower than in baseline 16 

(baseline, MSD = 0.26; task conditions, MSD < 0.19). Given that MSD is associated with attention 17 
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and MSA with auditory processing, this finding suggests that as drivers become more focused on 1 

auditory information processing when using cell phones (associated with MSA increase), an 2 

impairment of their attention reorientation ability is seen (as evidenced by MSD decrease; Milz et al., 3 

2016; Seitzman et al., 2016). These findings are in line with previous studies, suggesting that drivers 4 

need to shift their attention to either problem solving, or driving rather than do these two tasks at the 5 

same time (Wang et al., 2015). In addition, we found that the impact of cognitive load tasks in the 6 

normal driving stage is much more significant compared to the critical braking stage. This is expected, 7 

as the complexity of the critical scenario task might overshadow the impact of cell phone use, 8 

prompting drivers to shift the focus of their attention to the driving task, to avoid a collision. Therefore, 9 

during the critical braking stage, cognitive demands might be similar across different conditions. 10 

This study also found EEG microstates to be a sensitive measure of cognitive load, suggesting 11 

them to be a promising method not only for distinguishing between cognitive load and baseline 12 

conditions (no load), but also between different levels of cognitive load. A clear pattern was seen in 13 

this study: The trend in MSD values followed a decreasing order for baseline > hands-free simple task > 14 

handheld simple task > hands-free complex task > handheld complex task, whereas the trend in MSA 15 

values demonstrated the opposite trend. This observation suggests that as the difficulty level of the 16 

task increases, more cognitive load is required. This increased load leads drivers to allocate additional 17 

brain resources to process the task, resulting in a trade-off where the ability to reorient attention 18 

decreases. It should be noted, however, that within this pattern of monotonous change between 19 

conditions, the microstates changes between task conditions were not always statistically significant, 20 

and need to be interpreted carefully. The results indicate significant differences between simple and 21 

complex tasks in both MSA and MSD values. However, the significance becomes more complex when 22 

combining arithmetic tasks with phone use modes. Specifically, there appears to be a significant 23 

difference between hands-free simple tasks and handheld complex tasks. Yet, when comparing 24 

handheld simple tasks with hands-free complex tasks, the significance is not evident. These results 25 

could be explained by previous research findings, which have demonstrated that the content of the 26 

conversation exerts a greater impact on distracted driving than the method of phone conversation 27 

(Patten et al., 2004). Consequently, despite the manual demands introduced by the handheld phone use 28 

mode, it may not have led to a clear increase in cognitive load in this study.   29 

 EEG microstates help predict driving behavior 30 

The efficacy of EEG microstates for predicting safety outcomes has also been shown in this study. 31 

When EEG microstates were added along with the kinematic measures in a predictive model, MSA 32 

coverage was a statistically significant predictor of minimum time headway, improving the predictive 33 

performance compared to using only kinematic data. An interesting finding is that to the same was not 34 

true when instead adding task conditions as a predictor to the model. In other words, having 35 

information about a participant’s EEG microstates was more informative about safety outcomes than 36 
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having information about which task the participant was doing. This could be attributed to individual 1 

characteristics, which means that different people might experience different amounts of distraction 2 

even when performing the same task (Borghini et al., 2014). When we use task conditions in the model, 3 

the details of how much cognitive load each individual is undergoing is unknown. However, our results 4 

suggest that by measuring microstates, we gain a more direct insight into the level of cognitive load 5 

experienced by each participant. Therefore, changes in EEG microstate measures provide a more 6 

accurate reflection of how distracted individuals truly are, surpassing the information obtained solely 7 

from knowing which task they are performing. 8 

It is worth noting here that the repeated nature of the rear-end scenario in this study is likely to 9 

have affected the observed pre-event behavioral adaptation, and also responses to the events. It is very 10 

interesting that while the drivers probably expected the lead vehicle to brake to some extent, their brain 11 

state still exhibited predictive changes related to the event outcome. This can be understood in terms 12 

of the “cognitive control hypothesis” of how cognitive load affects driving (Engström et al., 2017): 13 

Drivers had learned during the experiment that the lead vehicle would brake, and that they would need 14 

to respond to this, but since this novel insight was not automatized, it was seen to be impaired under 15 

cognitive load. This finding suggests that EEG microstates could serve as a measure specifically of the 16 

type of working memory impairment from cognitive load suggested by the cognitive control 17 

hypothesis. It is well known that working memory capacity is inherently limited, and studies have 18 

shown that an increase in cognitive load can occupy these limited attentional resources, leaving fewer 19 

resources available for primary driving tasks (Conway et al., 2003; Wickens and McCaarley, 2008; 20 

Zhang et al., 2023). The cognitive control hypothesis suggests that this becomes problematic in driving 21 

only when the primary driving task itself requires working memory, which is the case when 22 

encountering novel or complex driving situations, for which the driver does not possess automatized 23 

responses. In such situations, if the driver is cognitively loaded by a secondary task, the driver’s ability 24 

to effectively perceive and process the necessary information from the environment diminishes. This 25 

deterioration in performance heightens the risk of traffic conflicts and accidents, underscoring the 26 

importance of minimizing distractions and managing cognitive load for safe driving, especially in 27 

driving situations which tax drivers’ working memory.  28 

From a real-world application perspective, due to the intrusive nature of EEG recording, the 29 

primary objective is not to equip drivers with EEG caps for monitoring during everyday driving at 30 

scale. Instead, EEG serves as a critical research and development tool aimed at understanding cognitive 31 

load and developing reliable measurement techniques. For instance, it can be used to estimate the 32 

distraction potential of in-vehicle systems through controlled experiments, thereby informing the 33 

design of safer and more efficient automotive interfaces. 34 



 

21 

 

 Possible explanations for EEG power results 1 

In this study, changes of theta band power were not significantly different between different task 2 

conditions, and also not so between the baseline and task conditions. This finding differs from some 3 

previous EEG studies conducted during driving tasks, which report statistically significant effects on 4 

theta power but typically with simpler primary driving tasks, such as free driving (Almahasneh et al., 5 

2014) and simple car-following (Li et al., 2023). The discrepancy between our studies could be 6 

attributed to the more complex and demanding nature of safety-critical driving scenarios used here. In 7 

these scenarios, drivers are primarily focused on collision avoidance, which may overshadow the 8 

impact of phone use conditions on EEG power. According to Friston et al. (1996), the brain operates 9 

through interactions among the cognitive components of a task, and altering one cognitive component 10 

impacts other cognitive components. This suggests that the addition or subtraction of a cognitive 11 

element within the task does not directly lead to a linear increase or decrease in brain activity; rather, 12 

it entails more intricate interactions within the brain. Xiao et al. (2023) also showed that cognitive 13 

control involves the complex interplay between multiple sensory inputs with task-dependent goals 14 

during decision making. These studies support the notion that the impact of phone use conditions on 15 

EEG power might be overshadowed by the concurrent engagement of other cognitive control processes 16 

in safety-critical driving. Another possible reason for the lack of significant differences in theta power 17 

might be the ceiling effect. This is supported by Chikhi et al. (2022), who found that performing two 18 

tasks concurrently might not be associated with an increase in theta power, even though performing 19 

one task is. This is because the theta power may already be high in the single-task condition (in our 20 

case, baseline driving), with minimal increase observed during the dual-task condition (in our case, 21 

driving while cognitively loaded). 22 

In comparison, one possible explanation for why EEG microstates can discern differences in 23 

complex driving task conditions is their capacity to capture the interactions and parallel processing 24 

between different brain areas. This is supported by research demonstrating that cognition depends on 25 

coordinated neural activations that link functional networks across multiple brain regions (Bressler 26 

and Menon, 2010; Meehan and Bressler, 2012).  27 

5 Conclusion 28 

This study investigated the influence of different levels of cognitive load on EEG performance in 29 

safety-critical driving scenarios. The influence of three phone use conditions (no phone use, hands-30 

free, and handheld), along with two task conditions (single- or double-digit addition and subtraction), 31 

were evaluated both before and during a rear-end collision conflict. EEG power and microstate 32 

measures were analyzed, and the latter showed a better performance in capturing cognitive load 33 

variation. A distinct EEG microstate pattern emerged when drivers were engaged in cell phone tasks 34 

while driving, characterized by simultaneous increases and decreases in MSA and MSD. This suggests 35 
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a heightened focus on auditory information, at the expense of an ability to reorient attention. EEG 1 

microstates show a higher predictive capability for safety outcomes compared to task conditions, 2 

suggesting that EEG microstates can be used to measure how different drivers are affected differently 3 

by a given cognitively loading task. These findings contribute to our understanding of the neural 4 

dynamics involved in distracted driving, which can provide insights for policymaking related to phone 5 

use while driving, and can assist in evaluating the cognitive load induced by in-vehicle systems. A 6 

specific future work point that would be of interest, building on the cognitive control hypothesis, would 7 

be to use EEG microstates to predict safety outcomes in the types of situations which have been 8 

previously found to be most sensitive to cognitive load, i.e. complex driving situations where 9 

anticipatory information needs to be held in working memory (Baumann et al., 2008; Engström et al., 10 

2017). 11 
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