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Genome Medicine

Identification of diagnostic candidates 
in Mendelian disorders using an RNA 
sequencing-centric approach
Carolina Jaramillo Oquendo1, Htoo A. Wai1, Wil I. Rich1, David J. Bunyan2, N. Simon Thomas2, David Hunt1,3, 
Jenny Lord1, Andrew G. L. Douglas1,4 and Diana Baralle1,3*   

Abstract 

Background RNA sequencing (RNA-seq) is increasingly being used as a complementary tool to DNA sequencing 
in diagnostics where DNA analysis has been uninformative. RNA-seq enables the identification of aberrant splicing 
and aberrant gene expression, improving the interpretation of variants of unknown significance (VUSs), and pro-
vides the opportunity to scan the transcriptome for aberrant splicing and expression in relevant genes that may be 
the cause of a patient’s phenotype. This work aims to investigate the feasibility of generating new diagnostic candi-
dates in patients without a previously reported VUS using an RNA-seq-centric approach.

Methods We systematically assessed the transcriptomic profiles of 86 patients with suspected Mendelian disorders, 
38 of whom had no candidate sequence variant, using RNA from blood samples. Each VUS was visually inspected 
to search for splicing abnormalities. Once aberrant splicing was identified in cases with VUS, multiple open-source 
alternative splicing tools were used to investigate if they would identify what was observed in IGV. Expression outliers 
were detected using OUTRIDER. Diagnoses in cases without a VUS were explored using two separate strategies.

Results RNA-seq allowed us to assess 71% of VUSs, detecting aberrant splicing in 14/48 patients with a VUS. We iden-
tified four new diagnoses by detecting novel aberrant splicing events in patients with no candidate sequence variants 
from prior DNA testing (n = 32) or where the candidate VUS did not affect splicing (n = 23). An additional diagnosis 
was made through the detection of skewed X-inactivation.

Conclusion This work demonstrates the utility of an RNA-centric approach in identifying novel diagnoses in patients 
without candidate VUSs. It underscores the utility of blood-based RNA analysis in improving diagnostic yields 
and highlights optimal approaches for such analyses.
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Background
With the advancement of next-generation sequencing, 

vast amounts of DNA sequencing data are continually 

generated to aid in the diagnosis and treatment of rare 

diseases. However, our ability to interpret genomic data 

has not grown at the same rate. The diagnostic yield of 

whole exome sequencing (WES) and whole genome 

sequencing (WGS) alone remains relatively low, leaving 

significant room for improvement [1–4]. For instance, 

within the Genomics England 100,000 Genomes Project, 

the average diagnostic yield using WGS is around 25% 

[1]. More broadly, diagnostic yield estimates for WGS 

range from 19.1 to 68.3%, while estimates for WES vary 

from 6.7 to 72.2% [3]. RNA sequencing (RNA-seq) is now 

being used as a complementary tool to DNA sequenc-

ing for diagnostic genetic testing in rare diseases where 

DNA analysis alone has failed to identify a clear diagno-

sis [5–15]. While some studies have focused on specific 

disorder types, such as mitochondrial disease [6, 13], 

muscle disorders [5] and neurodevelopmental disor-

ders [14], others have looked at heterogeneous disease 

populations [8, 10, 11, 15, 16]. Unlike DNA sequencing, 

high-throughput RNA-seq is a qualitative and quantita-

tive approach which allows the identification of aberrant 

splicing (AS), aberrant gene expression and monoallelic 

expression, allowing improved interpretation of variants 

of unknown significance (VUSs). An important benefit 

of the transcriptomic approach as compared to targeted 

reverse transcription PCR (RT-PCR) is that it is agnos-

tic to the resulting abnormally spliced transcript, whereas 

RT-PCR must rely on targeted primer designs that are 

intrinsically limited by factors such as known gene anno-

tations, PCR amplicon lengths and expected aberrant 

splicing event. RNA-seq therefore provides the oppor-

tunity not only to look at the splicing effects of known 

VUSs but also to scan the transcriptome for abnormal 

splicing events and expression abnormalities in other rel-

evant genes that may be the cause of a patient’s pheno-

type. This in turn allows the identification of molecular 

diagnoses in patients in which standard genomic DNA 

testing has not identified any candidate.

In this study, we have used RNA-seq to (a) investigate 

the feasibility of generating new diagnostic candidates in 

a subset of patients with no previously reported candi-

date VUSs in clinically relevant genes and (b) assess the 

use of blood as the tissue of choice in the implementation 

of an RNA-seq clinical pipeline to improve diagnostic 

yield of patients with rare diseases.

Methods
Patient recruitment

Participants were enrolled on the University of South-

ampton’s Splicing and Disease study with appropriate 

ethical approval (REC 11/SC/0269, IRAS 49685, ERGO 

23056). This cohort was comprised of rare disease 

patients assessed by UK clinical genetics services in 

whom a candidate VUS may or may not have been iden-

tified through conventional DNA-based testing (n = 86). 

Within this cohort, 48 individuals had pre-existing can-

didate VUSs (n = 51 variants) that had been clinically 

reported within genes of potential clinical relevance. 

Eighteen of the 51 VUSs have been previously assessed 

by RT-PCR [12]. Thirty-two cases had unknown molec-

ular diagnoses with no previously reported candidate 

VUSs in clinically relevant genes. Individuals without 

a molecular diagnosis had a phenotype where a genetic 

cause was suspected, and previous genetic testing was 

negative. During the study, six cases received a diagnosis 

not related to aberrant splicing, four with array deletions 

and two with indel mutations in the PURA  gene. We have 

categorised these as cases with known genetic findings. 

Details about sample collection and RNA extraction are 

described in Additional file 1.

RNA sequencing

RNA samples were sequenced via Novogene (Hong 

Kong) in four separate batches (comprising 7, 16, 33 and 

30 samples) using a total RNA-seq approach employ-

ing the NEBNext rRNA Depletion Kit and the NEBNext 

Ultra Directional RNA Library Prep Kit (New England 

Biolabs, MA). Samples in batches 1, 2 and 4 also had 

NEBNext Globin Depletion Kit applied, whereas those in 

batch 3 did not. The library was checked with Qubit and 

real-time PCR for quantification and bioanalyser for size 

distribution detection. On average 76 million 150 base-

pair paired-end reads were generated for each sample 

on a HiSeq 2000 instrument (Illumina, CA). FASTQ files 

underwent initial quality control filtering and adapter 

sequence removal by Novogene. Filtering included the 

removal of reads containing N > 10% (N: bases that cannot 

be determined) and reads with over 50% of low-quality 

bases (Qscore ≤ 5). Subsequent alignment was performed 

to the human genome reference (GRCh38) with annota-

tions from GENCODE [17] release 38 using STAR aligner 

[18] v2.6.1c with optimised parameters via the University 

of Southampton’s IRIDIS5 high-performance comput-

ing clusters. Alignment scripts can be found on GitHub 

(https:// github. com/ caroj oquen do/ RNA_ splic ing_ and_ 

disea se).

Where possible RT-PCR and Sanger sequencing were 

used to validate events (see Additional file 1).

The MRSD web portal (https:// mcgm- mrsd. github. io/) 

was used to predict the minimum number of sequenc-

ing reads required from RNA-seq experiments to confi-

dently determine aberrant splicing events for a gene of 

interest [19]. Default values for confidence level (95%) 

https://github.com/carojoquendo/RNA_splicing_and_disease
https://github.com/carojoquendo/RNA_splicing_and_disease
https://mcgm-mrsd.github.io/
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and splice junction proportion (75%) were used. For cov-

erage, a minimum of five reads were used (n = 5). The 

online SpliceAI server (https:// splic eailo okup. broad insti 

tute. org/) was used to predict the splicing effect of all 

variants [20].

Assessment of aberrant splicing in cases with VUS 

and known molecular diagnosis

Due to the nature of the cohort, the assessment of aber-

rant splicing and expression was done in stages. Cases 

with VUSs and known events were assessed first followed 

by an assessment of cases with no VUS (Fig. 1).

To determine the functional consequence at a tran-

script level for each VUS, RNA-seq data was loaded 

into the Integrative Genomics Viewer (IGV) [21] 

and each variant was visually inspected to search for 

splicing abnormalities compared against two ran-

dom samples within the cohort. To rule out mapping 

errors, new junctions required at least five support-

ing reads and ≤ 2 reads across any other sample within 

the cohort. If there were no splicing abnormalities 

in the exons and introns flanking the variant, it was 

determined that there were no splicing abnormalities 

resulting from the variant. Splicing abnormalities were 

classed as exon skipping, inclusion of cryptic exon, 

intron retention, alternative 5′ (donor) splice site and 

alternative 3′ (acceptor) splice site. The command-line 

tool ggsashimi [22] was used to create final sashimi 

plots to visualise junctions. RT-PCR was carried out in 

parallel to assess VUSs where possible. In some cases, 

RT-PCR was not carried out due to technical limita-

tions (i.e. exon was too big, TPM = 0, single exon gene). 

Fig. 1 Overview of methods. 1. Data generation. This step was generally the same for all samples (n = 86). The only difference came in the library 
preparation stage where samples in batches 1, 2 and 4 also had globin depletion, whereas samples in batch 3 did not. 2. Cases with a VUS were 
assessed first. Each variant of unknown significance (VUS) was visually inspected to search for splicing abnormalities in the Integrative Genomics 
Viewer (IGV). RT-PCR and Sanger sequencing were carried out in parallel for additional validation. 3. Cases without a clinically relevant candidate 
variant were investigated last. This also included cases for which the original candidate VUS had not been found to alter splicing. The filtering 
strategy was determined based on observations across cases with a VUS. Results were visualised in IGV, and new diagnostic candidates were 
validated with RT-PCR and Sanger sequencing

https://spliceailookup.broadinstitute.org/
https://spliceailookup.broadinstitute.org/
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Additional details on RT-PCR results can be found in 

Additional file 2: Table S1.

Once aberrant splicing events had been ascertained 

in cases that had a VUS or known molecular diagno-

sis, we used this data to identify open-source tools best 

placed to identify potential aberrant splicing in cases for 

which there was no candidate variant. FRASER2 [23, 24], 

rMATS-turbo v4.1.2 [25], MAJIQ v2.4 [26] and LeafCut-

terMD v0.2.9 [27] were used to detect aberrant splicing 

across all samples. The tools chosen are some of the most 

commonly used for splicing analyses, where rMATS-

turbo and MAJIQ are events-based methods while Leaf-

CutterMD and FRASER2 are outlier approaches. We 

decided to use tools with two different underlying meth-

odologies as there is still no gold standard for identifying 

splicing events in this type of cohort. For all tools except 

FRASER2, each sample was compared against other sam-

ples within the same batch except samples in batches 1 

and 2 which were combined to increase power. rMATS-

turbo was run with additional parameters –novelSS to 

enable detection of novel splice sites, as well as –allow-

clipping to allow alignments with soft or hard clipping to 

be used. MAJIQ modules build and DeltaPSI were run 

with default parameters using the GENCODE v38 anno-

tation gff3 files. The DeltaPSI results were then input into 

the MAJIQ voila module which provides a tab-delimited 

text file to allow parsing of the MAJIQ result and filters 

out local splice variations (LSVs) with no junctions pre-

dicted to change over a certain value. Default param-

eters for the voila module were used. LeafCutterMD 

and FRASER2 were also run with default parameters 

and results were annotated with gene symbols to extract 

genes and loci of interest for each sample. Once samples 

had been run through all the tools, events within the 

gene of interest were extracted to determine if the tools 

had been able to pick up what had been seen in IGV. This 

allowed us to check concordance between the tools and 

identify thresholds that could be used later when looking 

for events in cases without a VUS.

Assessment of aberrant splicing in patients 

without candidate VUSs

After cases with VUSs and known events were assessed, 

we investigated those without a clinically relevant candi-

date variant. This also included cases for which the origi-

nal candidate VUS had not been found to alter splicing. 

The aligned BAM files were run through rMATS-turbo 

as well as through the GATK’s Best Practices workflow 

for RNA-seq short variant discovery (https:// gatk. broad 

insti tute. org/ hc/ en- us/ artic les/ 36003 55311 92- RNA- seq- 

short- varia nt- disco very- SNPs- Indels-) to identify vari-

ants in the RNA-seq.

Variant calling

First duplicate reads were marked by Picard’s v2.18.14 

(http:// broad insti tute. github. io/ picard) MarkDuplicates 

function, followed by reformatting of the BAM files for 

HaplotypeCaller with GATK’s SplitNCigarReads v4.2.2 

[28] and Picard’s AddOrReplaceReadGroups. The next 

step was Base Quality Recalibration, consisting of two 

tools: GATK’s BaseRecalibrator and ApplyBQSR. Lastly, 

GATK’s HaplotypeCaller was used to call variants and 

write to VCF files.

To reduce spurious calls, VCF files were run through 

GATK’s VariantFiltration tool, keeping calls with a mini-

mum quality score of 50. bcftools [29] was used to fur-

ther filter variants excluding any variants with (a) less 

than eight reads covering the locus; (b) calls with geno-

type quality lower than 16; (c) calls with strand bias (FS 

metric) greater than 30; and (d) variants with a quality 

normalised by depth of at least two [30]. After filter-

ing, Ensembl’s VEP v103 [31] was used to annotate the 

variants with additional information including but not 

limited to the nearest gene, variant consequence (e.g. 

missense, splice_region) and minor allele frequency 

(MAF). The SpliceAI VEP plugin was used to produce 

a score per variant (delta score) based on the likelihood 

of the variant impacting splicing. SpliceAI scores range 

from 0 to 1 with scores closer to 1 being more likely to 

affect splicing. VCF files were further filtered to keep 

variants that met all of the following conditions: (a) 

population frequency less than 0.01; (b) variants with a 

SpliceAI score ≥ 0.2; (c) variants found in protein-coding 

genes; and (d) single nucleotide variants. Indels were not 

included as the majority had very poor quality and inclu-

sion of indels introduced a significant number of false 

positives.

Filtering strategies

To find diagnoses in cases without a VUS or gene of 

interest, two separate strategies were used. The first was 

a genotype-to-phenotype approach. The annotated and 

filtered VCF files were converted into a BED file format, 

adding 25 base pairs up and downstream of the variant 

[chromosome start(-25 bp) end(+ 25 bp) gene]. rMATS-

turbo results were also converted into BED format. After 

sorting the BED files, the variant BED file was overlapped 

with the rMATS-turbo results BED using bedtools inter-

sect v2.30 [32] keeping only overlapping features. Each 

alternative splicing event identified by rMATS-turbo that 

was found to overlap a variant was then inspected in IGV 

as previously described.

The second strategy involved using phenotype informa-

tion available to filter results from splicing tools. To do 

this, appropriate panels from the UK Genomic Medicine 

https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNA-seq-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNA-seq-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNA-seq-short-variant-discovery-SNPs-Indels
http://broadinstitute.github.io/picard
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Service (GMS) PanelApp [33] resource were applied 

to the splicing tools results and each AS event was also 

inspected in IGV.

Expression outlier detection

Salmon v1.6.0 [34] was used to quantify gene and tran-

script counts in mapping-based mode. Transcriptome 

indices for Salmon were generated using the GRCh38 

genome and transcriptome reference from GENCODE 

release 38 (https:// combi ne- lab. github. io/ alevin- tutor 

ial/ 2019/ selec tive- align ment/). The R v 4.1.1 [35] pack-

age tximport v1.22.0 [36] was used to collate and import 

raw read counts from all samples to be used as input 

into OUTRIDER v1.12.0 [37]. The OUTRIDER function 

filterExpression was used to remove genes that had low 

Fragments Per Kilobase of transcript per Million mapped 

reads (FPKM) expression values followed by the OUT-

RIDER function which ran the full OUTRIDER pipeline.

Results
Summary of RNA sequencing data outputs

The mean number of sequencing reads per sample was 

76.6 million (61.3–130.2 million) and on average 80% 

of reads were uniquely mapping (Additional file  3: Fig. 

S1 A and B). Mean number of splicing junctions iden-

tified across samples (Additional file  3: Fig. S1 C) was 

398,718 [161,, 303]. Spearman’s rank correlation between 

observed median TPM values and median TPM values 

found in the Genotype-Tissue Expression (GTEx) por-

tal [38] was 0.79 with a p value < 0.001 (Additional file 3: 

Fig. S1 D). When considering disease genes from the 

Online Mendelian Inheritance in Man (OMIM) database 

[39] and the UK Genomic Medicine Service’s PanelApp 

resource, 67% (n = 11,128) and 75% (n = 2721) of genes 

were expressed in blood respectively (TPM > 1 in at least 

4 samples).

As mentioned previously, globin depletion was not 

applied to one of the batches (batch 3). Analysis of the 

transcriptomic profiles showed this difference in target-

ing methodology as samples within batch 3 clustered 

together in principal component analysis as well as hier-

archical clustering (Additional file  3: Fig. S1 E and F). 

Furthermore, median TPM values for the most abundant 

haemoglobin genes were in line with values reported in 

GTEx, which also did not utilise globin depletion. To 

avoid bias due to differences in sequencing methodol-

ogy, samples were run in separate batches through the 

splicing tools. TPM values across genes which had VUSs 

within our cohort were also assessed (Additional file  3: 

Fig. S2), which showed that gene coverage in genes of 

interest was not negatively affected by the lack of glo-

bin depletion and, in some cases, the TPM values were 

higher in batch 3. A possible explanation for the slight 

increase of reads in the non-depleted batch is that the 

globin depletion step could also be reducing the reads 

for some non-haemoglobin genes as well [40]. A com-

parison of the whole transcriptome between batch 3 and 

the other three batches (Additional file 3: Fig. S3) demon-

strated that globin depletion increased coverage of lower 

expressed genes (median TPM 0–1). Overall, 865 genes 

had a TPM = 0 in batch 3 and TPM > 0 in batches 1, 2 and 

4. Of these, 214 were OMIM genes, and 67 of those were 

also GMS PanelApp genes.

Splicing analysis in patients with a candidate VUS

We began by looking at the 48 cases which had a VUS to 

guide our analysis of those for which we had no candidate 

variant. This entailed the investigation of 51 VUSs across 

36 different genes, as some cases had more than one 

VUS. Using default parameters, the MRSD tool predicted 

that we would only be able to assess 47% (n = 17) of the 36 

genes in blood based on our mean number of sequenc-

ing reads. However, we found this tool to be overly con-

servative as we were able to assess 69% of genes (n = 25) 

using RNA-seq alone. Using the GTEx dataset as a ref-

erence, median TPM values across the 25 genes ranged 

from 0.89 to 73.24 with a mean and median of 19.43 and 

11.16 respectively. The experimental median TPM values 

in our sequencing data ranged from 2.142 to 75.896 with 

a mean and median of 15.718 and 7.637 respectively.

Visual inspection of the RNA-seq BAM files in IGV 

allowed the detection of aberrant splicing in 14 cases 

with candidate VUSs (Table  1). Of these splice-altering 

VUSs, 13/14 were predicted to affect splicing according 

to SpliceAI (Δ score ≥ 0.2) and all 14 were validated via 

RT-PCR (RT-PCR results for 6 of the 14 variants have 

been previously reported [12]). The gene with the lowest 

median TPM value in GTEx for which we were able to 

detect aberrant splicing was KAT6B with a GTEx TPM 

of 0.890 and an experimental median TPM value of 9.79. 

Out of the 38 VUSs where aberrant splicing events were 

not detected, 15 variants could not be assessed as a result 

of low gene expression in blood (< 10 reads covering 

locus or normal junctions not observed in the sample and 

controls). For genes where RNA-seq was uninformative, 

median GTEx TPM values ranged from 0.00 to 4.91 with 

a mean and median of 0.49 and 0.08 respectively. RT-

PCR was able to validate aberrant splicing in four addi-

tional cases with variants in TERT, PRG4 and TAOK1. 

Details of all assessed variants can be found in Additional 

file 2: Table S1. Cases (n = 23) which showed no aberrant 

splicing linked to a VUS were subsequently analysed as 

unknown cases.

The DKC1 variant (NM_001363.5:c.915 + 10G > A) was 

initially not found to affect splicing using RT-PCR in our 

previous publication [12]. However, once the effect could 

https://combine-lab.github.io/alevin-tutorial/2019/selective-alignment/
https://combine-lab.github.io/alevin-tutorial/2019/selective-alignment/
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Table 1 Variants of unknown significance (VUSs) for which aberrant splicing (AS) was observed in IGV. SpliceAI Lookup scores are indicated stating if donor loss (DL), donor gain 
(DG), acceptor loss (AL) or acceptor gain (AG) is predicted. Events that were identified by the splicing tools but had an adjusted p value > 0.05 are denoted with an asterisk (*)

Gene Variant of unknown significance 
(VUS)

SpliceAI prediction (type|Δ 
score|pre-mRNA pos)

Observed splicing abnormality Tools that identified aberrant 
splicing

Median TPM 
(experimental|GTEx)

SF3B4 NM_005850.5:c.417C > T, p.Gly139 = 
Previously reported (Wai et al., 2020b)

DG|0.37|2; AG|0.18|− 124 Novel splice donor and accep-
tor sites in exon 3 r.416_540del, 
p.(Asp140LeufsTer3)

None 2.142|46.190

MED13L NM_015335.4:c.2570-4_2574del
Previously reported (Wai et al., 2020b)

AL|0.99|5; AG|0.98|− 4 Alternative splice acceptor site in exon 
15 r.2570_2578del, p.(Thr857_Asp-
860delinsAsn)

rMATS, MAJIQ and LeafCutterMD 56.150|5.887

DKC1 NM_001363.5:c.915 + 10 G > A
Previously reported (Wai et al., 2020b)

DG|0.87|1; DL|0.02|− 10 Novel splice donor site in intron 
9, r.915_916ins915 + 1_915 + 11, 
p.(Asn307SerfsTer3)

rMATS 7.019|7.531

NF1 NM_000267.3:c.1168_1179del, 
p.Asn390_His393del
Previously reported (Wai et al., 2020b)

DL|0.04|18 Skipping of exon 10 r.1063_1185del, 
p.(Asp355_Lys395del)

rMATS 5.981|1.673

NF1 NM_000267.3:c.7832A > G, 
p.Asp2632Gly
Previously reported (Wai et al., 2020b)

DG|0.43|− 1; AL|0.12|− 25; AG|0.01|− 83 Skipping of exon 54 r.7870_7970del, 
p.(Thr2625Ter)

rMATS 5.981|1.673

P3H1 NM_022356.4:c.1224-80G > A
Previously reported (Wai et al., 2020b)

DG|0.62|3 Novel donor site created within intron 
7 with a novel acceptor site in exon 8 
and an authentic acceptor site in exon 
8, intron 7 retentionr.1223_1224ins1223 
+ 1_1223 + 92, p.(Ser409Ter), r.1223_122
4ins1223 + 1_1223 + 92, r.1224_1228del, 
p.(Ser409Ter), r.1223_1224ins1223 + 1_1
223 + 92, r.1224_1240del, p.(Ser409Ter)

rMATS 3.482|9.066

TSC2 NM_000548.5:c.4492A > C, p.Ser1498Arg
Previously reported (Wai et al., 2020b)

DL|0.41|1; DG|0.23|− 253 Activation of cryptic splice donor 
site within exon 34, r.4240_4493del, 
p.(Val1414PhefsTer24)

rMATS and MAJIQ 7.73|14.030

UBR4 NM_020765.3:c.8488 + 3A > G DL|0.26|3; DG|0.13|− 117; AG|0.03|430 Retention of intron 57, r. 
8488_8489ins8488 + 1_8489-1, 
p.(Ser2831ArgfsTer23)

none 15,594|10.800

SMARCE1 NM_003079.5:c.8-4A > G AL|0.22|− 4; AG|0.48|− 1 Alternative 3′ splice acceptor site 
within intron 2, r.7_8ins8-3_8-1 
p.(Lys3delinsThrGlu)

none 15.474|7.107

EFTUD2 NM_004247.4:c.702 + 5G > A DL|0.93|5; DG|0.13|− 73 Skipping of exon 9, r.620_702del, 
p.(His208AspfsTer26)

rMATS 17.587|17.770

ARID1A NM_006015.6:c.3198G > A, p.Gln1066 = DG|0.25|− 65; DL|0.03|0 Loss of donor site and activation 
of cryptic donor site in exon 11; 
r.3134_3198del, p.(Gly1046GlyfsTer38)

rMATS 7.963|11.160

KAT6B NM_012330.4:c.2629 + 5G > A DL|0.98|− 5; DG|0.02|− 37 Skipping of exon 13 r.2536_2629del, 
p.(Glu846AlafsTer71)

rMATS* 9.799|0.891
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Table 1 (continued)

Gene Variant of unknown significance 
(VUS)

SpliceAI prediction (type|Δ 
score|pre-mRNA pos)

Observed splicing abnormality Tools that identified aberrant 
splicing

Median TPM 
(experimental|GTEx)

PHF8 NM_015107.3:c.784-2A > G AL|0.99|− 2; AG|0.27|− 11 Skipping of exon 8 and skipping 
of exons 7 and 8; r.784_946del, p. 
(Glu263GlyfsTer6); r.597_946del, 
p.(Leu200ValfsTer23)

rMATS, MAJIQ and LeafCutterMD 7.536|8.11

WDR26 NM_001379403.1:c.823-10A > G AG|1.00|− 1; AL|0.87|− 10 Alternative 3′ splice acceptor site 
in intron 2 (in-frame insertion of three 
amino acids) r.822_823ins823-9_823-1 
p.(Lys274_Ala275insPheLeuGln)

rMATS, MAJIQ and LeafCutterMD 30.680|38.32
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be seen using RNA-seq, it was possible to design targeted 

assays to confirm the findings on RT-PCR. Thus, initial 

detection was not achieved by RT-PCR but post RNA-

seq confirmation was possible.

We ran the RNA-seq data through different splic-

ing tools to identify the best tool/s to use when assess-

ing cases with no candidate variants. The splicing tools 

rMATS-turbo, MAJIQ, FRASER2 and LeafCutterMD 

each identified 11, 4, 4 and 2 of the AS events respec-

tively. rMATS-turbo had the best sensitivity identifying 

79% of the AS events, where 7 were events identified 

solely by this tool. Details on the number of events called 

by each tool can be found in Additional file 1.

The aberrant splicing effects of three variants, SF3B4 

c.417C > T, UBR4 c.8488 + 3A > G and SMARCE1 c.8-

4A > G, were consistently missed by all tools. The 

SF3B4 variant is predicted to affect splicing (SpliceAI ∆ 

score = 0.37); however, this gene has a high GC content 

and low mappability in large regions of its exons. Admit-

tedly, only two reads mapped to the new junction and 

there were seven reads with the mutant allele that did 

not show aberrant splicing. Nonetheless, this event was 

validated via RT-PCR [results previously reported [12]] 

and has also been characterised using a β-globin hybrid 

minigene assay [41]. The UBR4 variant is predicted to 

cause donor loss leading to intron retention (SpliceAI ∆ 

score = 0.26). In IGV 46 reads with the mutant allele and 

loss of the donor site were observed, but the event was 

not detected by any of the tools (Additional file  3: Fig. 

S4). Lastly, the SMARCE1 variant is predicted to cause 

an acceptor loss (SpliceAI ∆ score = 0.22). Like the SF3B4 

variant, it also has few (n = 9) reads mapping to the new 

junction. All three events were validated via RT-PCR and 

in the case of the UBR4 intron retention with additional 

qPCR.

Using the evidence from RNA-seq and RT-PCR results, 

we were able to identify patterns in the data that would 

help us determine potential thresholds and limitations 

when assessing cases with no VUSs. This included the 

following: (1) SpliceAI predictions showed high con-

cordance (sensitivity and specificity of 94% and 91% 

respectively) with the RNA-seq and RT-PCR results; (2) 

in general, for VUSs which caused aberrant splicing, the 

variant was present in the data and reads with the mutant 

allele did not show normal splicing; (3) the splicing tools 

were able to detect aberrant events with as low as 5 reads 

supporting a new junction; and (4) intron retention has 

a higher probability of being missed compared to other 

aberrant splicing events.

Splicing analysis in patients without candidate VUSs

The patient cohort without a candidate VUS was com-

prised of 32 individuals plus an additional 23 cases where 

the original candidate VUS had not been found to cause 

aberrant splicing. To identify new candidate events in 

these cases, we took a systematic approach to narrow 

down the results obtained from rMATS-turbo to a man-

ageable number so these could be inspected manually in 

IGV. rMATS-turbo was the preferred tool as it had the 

highest sensitivity in identifying aberrant splicing events 

ascertained in the patients with a VUS. rMATS-turbo 

identified an average of 3578 (2370–115,522) significant 

events (FDR < 0.05) per sample with an inclusion level 

greater than 0.2 or less than − 0.2.

Our first approach used filtered VCF files obtained by 

the RNA-seq variant calling pipeline to extract AS events 

within 25 base pairs of a variant. This first filtering step 

reduced the mean number of aberrant splicing events 

identified ~ 300-fold to an average of 12 events per sam-

ple. Inspection of all events in IGV led to the identifica-

tion of two new variants and associated aberrant splicing 

events. Here we highlight the cases and events which 

were identified with our RNA-centric approach.

Case 1—S075 (NARS1): identification of a splice‑altering 

variant in a child with undiagnosed global developmental 

delay

rMATS-turbo identified two AS events within the 

NARS1 gene. The first event was an alternative donor site 

within exon 13 and the second was retention of intron 

13 (Fig.  2). These events were linked to a heterozygous 

missense variant within exon 13 (NARS1 c.1460C > T) 

predicted to affect splicing (SpliceAI ∆ score = 0.93) by 

creating a new donor site. Deleterious variants in NARS1 

are associated with neurodevelopmental disorder with 

microcephaly, impaired language and gait abnormalities, 

which would be consistent with the patient’s phenotype 

[42, 43]. NARS1 pathogenicity is generally associated 

with biallelic deleterious variants; however, a recent study 

by Manole and colleagues has shown that de novo vari-

ants, including a recurrent nonsense variant at the end of 

the protein, can have a gain-of-function effect that alters 

normal protein function by interfering with the ATP-

binding domain, crucial for enzymatic function [42]. In 

this case, the intron retention is predicted to lead to an 

out-of-frame transcript, while the new donor site is pre-

dicted to lead to an in-frame deletion of 19 amino acids, 

both affecting the ATP-binding domain.

Case 2—S047 (ARFGEF1): inclusion of a cryptic exon in a child 

with undiagnosed developmental delay

rMATS-turbo identified an AS event within the ARF-

GEF1 gene associated with a deep intronic variant 

(chr8:67274263A > T, NM_006421.5:c.1337 + 1713 T > A). 

This particular case was originally referred for analy-

sis of a VUS (NM_138927.4:c.1160C > T), which after 
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assessment in IGV was not observed to cause aberrant 

splicing. The ARFGEF1 variant is not predicted to affect 

splicing (SpliceAI ∆ score = 0.0); however, the sequenc-

ing data shows the creation of a new acceptor and donor 

site within intron 9 suggesting the inclusion of a cryptic 

exon (Fig.  3). The inclusion of this cryptic exon would 

result in an out-of-frame insertion of 186 nucleotides 

p.(Ser447PhefsTer19).

Our second filtering strategy was a phenotype-to-

genotype approach. Using the phenotype information 

Fig. 2 Alternative donor site and intron retention in the NARS1 gene. A Sashimi plot of the proband and two controls of the alternative donor 
and intron retention region in NARS1. For the proband only (red track), we observed an alternative donor site in exon 13 as well as intron 13 
retention. Alignments in exons are represented as read densities (not normalised) and splice junction reads are represented as arcs connecting 
a pair of exons, where the number in the middle of the arc shows the number of reads aligning to the splice junction. B IGV screenshot of RNA 
coverage across exons 13 and 14. C Close-up of NARS1:c.1460C > T variant, a deep exonic variant predicted to affect splicing by creating a new 
donor site within exon 13
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available, results from the splicing tools were filtered 

using the appropriate Genomic Medicine Service 

(GMS) gene panels. This strategy led to the identifica-

tion of one new candidate variant and associated aber-

rant splicing events.

Case 3—S076 (AP4E1): identification of cryptic exon inclusion 

and a second frameshift variant in a child with undiagnosed 

hypotonia

The hypotonic infant GMS panel (v18.1) was applied 

to rMATS-turbo results, which identified activation 

Fig. 3 Activation of cryptic exon caused by intronic variant in the ARFGEF1 gene. A Sashimi plot of the proband and two controls of the ARFGEF1 
region of interest. For the proband only (red track), two novel splice junctions can be seen suggesting the activation of a cryptic exon in intron 9. B 
IGV screenshot of RNA coverage across the region of interest. C Close-up of the chr8:67274263A > T variant



Page 11 of 19Jaramillo Oquendo et al. Genome Medicine          (2024) 16:110  

of a pseudoexon within intron 1 of AP4E1 involving 

the use of one alternative splice acceptor site and two 

alternative donor sites (Fig.  4). The two resulting tran-

scripts are predicted to be out of frame, leading to an 

insertion of 142 and 38 nucleotides. These events were 

associated with an intronic variant (chr15:50911536G > A, 

NM_007347.5:c.151-542G > A) weakly predicted to affect 

splicing. SpliceAI delta scores were 0.11 and 0.09 for 

acceptor gain (− 32 bp) and donor gain (5 bp) respec-

tively, but these were just below the 0.2 cut-off. However, 

Fig. 4 Activation of pseudoexon caused by an intronic variant in the AP4E1 gene. A Sashimi plot of the proband and two controls of the AP4E1 
region of interest. For the proband only (red track), three novel splice junctions can be seen suggesting the activation of a pseudoexon in intron 1. B 
Close-up of NM_007347.5:c.151-542G > A variant in IGV. C Heterozygous single nucleotide deletion observed in exon 6 (chr15:50929032delT)
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analysis of the mutated sequence using ESEfinder pre-

dicts that the G > A base transition identified at this 

position may act as an exonic splicing enhancer through 

the creation of a binding site for splicing factors SC35 

(SRSF2) and/or SRp40 (SRSF5) [44]. This event was not 

picked up by the first method, as the variant was filtered 

out due to stringent quality thresholds [genotype qual-

ity (GQ) < 16; variant had a GQ of 6] required to manage 

noise when calling variants in RNA-seq data. Consider-

ing this gene has a biallelic mode of inheritance, we inter-

rogated the rest of the gene for a second deleterious event 

and found a heterozygous single-nucleotide deletion in 

exon 6, NM_007347.5:c.567del, p.(Leu190TrpfsTer43), 

predicted to lead to an out-of-frame transcript (Fig. 4C). 

Further testing confirmed that the variants are biparen-

tal. Biallelic variants in AP4E1 are associated with spastic 

paraplegia type 51, which is consistent with the pheno-

type information we have available for the proband.

All four variants identified (NM_006421.5:c.1337 + 1713 

T > A, NM_006421.5:c.1337 + 1713 T > A, NM_007347.5: 

c.151-542G > A and NM_007347.5:c.567del) were Sanger 

confirmed by the corresponding genetics laboratory sub-

sequently generating three new diagnostic candidates 

across these 56 patients.

Gene expression outlier analysis with OUTRIDER

Once aberrant splicing was systematically assessed we 

investigated if (1) gene expression profiles would gener-

ate new diagnostic candidates and (2) whether expression 

outliers correlated with aberrant splicing. OUTRIDER 

was run across the entire cohort (n = 85) excluding sam-

ple S017 for which only 16% of reads were uniquely map-

ping. OUTRIDER identified 175 gene expression outliers 

(FDR < 0.05) across 39 samples. Of the 39 samples that 

had expression outliers, 16 were cases with a VUS, 18 

were cases without a VUS and 5 were cases with known 

molecular diagnosis. Ten cases within our cohort had 

known chromosome microdeletions previously identified 

through microarray analysis (4 cases with known diag-

nosis and 6 with unknown diagnosis). In 5/10 of these 

cases, OUTRIDER identified genes with significantly 

lower expression which overlapped the deleted regions 

previously identified (Fig.  5). For the 16 cases which 

had a VUS, none of the outliers identified matched the 

gene in which the VUS was found. A deeper analysis of 

the results revealed that two samples with splice-alter-

ing variants, NM_001363.5(DKC1):c.915 + 10G > A and 

NM_022356.4(P3H1):c.1224-80G > A were also found 

to have the lowest gene expression in the whole cohort 

for DKC1 and P3H1 respectively (the expression rank of 

the gene was 1 for that sample) but was not significant 

after correction for multiple testing (Additional file 3: Fig. 

S5). The OUTRIDER gene p value before correction was 

0.0002 (z-score =  − 3.76) and 0.0009 (z-score =  − 3.31) for 

DKC1 and P3H1 respectively. The adjusted p values were 

calculated a second time using only OMIM genes result-

ing in a modest increase of 26 significant events across 

the whole cohort; however, none of the expression out-

liers overlapped genes where VUSs had been previously 

identified.

While gene expression profiles did not generate new 

diagnostic candidates, OUTRIDER results did lead to 

further investigation of one of the analysed cases (S064) 

to confirm skewed X-inactivation. This individual was a 

female child with developmental delay and dysmorphic 

features. Chromosome microarray analysis had identified 

a de novo 10.2 Mb deletion of Xp22.33p22.2. However, 

this copy number variant was classified as a VUS owing 

to the child being female and the assumption that the X 

chromosome carrying the deletion would be preferen-

tially inactivated. Standard DNA-based X-inactivation 

testing proved uninformative in this case, but further 

primer sets showed unilateral inactivation. Trio whole-

genome sequencing was subsequently undertaken to 

further seek a potential cause for the patient’s condition. 

No candidate variant was identified. However, it was pos-

sible to use parental SNP data to determine that the Xp 

deletion had occurred on the paternal X chromosome. 

Analysis of 9 additional heterozygous expressed SNPs in 

the patient’s RNA-seq data from loci across both arms 

of the X chromosome also revealed monoallelic pater-

nal expression of X-linked genes (Fig.  6). This therefore 

confirms complete skewing of X-inactivation towards the 

paternally inherited X-chromosome carrying the 10.2 

Mb deletion. The cause of this extreme skewing currently 

remains unknown, as no candidates were found on the 

maternal X. However, the deletion is now thought to be 

causative for the patient’s presenting phenotype, result-

ing in a functional nullisomy for all genes in the deletion 

region that are subject to X-inactivation.

Discussion
In this work, we have systematically assessed patients 

with no candidate VUSs in clinically relevant genes 

identifying three new diagnostic candidates and one 

additional diagnosis through analysis of expression 

profiles. We show that it is possible to make diagno-

ses using just RNA-seq in patients without a candidate 

VUS as well as classify VUSs using blood-based RNA-

seq and RT-PCR to uplift diagnostic yield in rare dis-

ease patients. This work displays the variety of events 

that can be picked up using RNA-seq (i.e. deep intronic 

and exonic variants, complex splicing abnormalities, 

deletions, skewed X-inactivation) highlighting the wide 

range of applications this technology can have in the 

clinical setting.
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Fig. 5 Manhattan plot of RNA aberrant expression detection using OUTRIDER. The Y-axis represents the z-score. Coloured labels (red) indicate 
significant events (adjusted p value ≤ 0.05). The figure displays OUTRIDER results for A sample S086—proband with an array 5q31 deletion, B sample 
S070—proband with 16p11.2 deletion and C sample S064—proband with array Xp22 deletion
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Fig. 6 RNA-seq confirms skewed X-inactivation. A Table of expression of selected heterozygous X-linked SNPs from across the X chromosome 
confirming skewing towards the paternal X. B IGV screenshots of RNA-seq data for heterozygous IDS SNP illustrating lack of maternal allele 
expression. C IGV screenshots of RNA-seq data for heterozygous C1GALT1C1 SNP illustrating lack of maternal allele expression
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Splicing analysis in patients with VUSs

High-throughput blood-based RNA sequencing allowed 

us to evaluate the effect on splicing of 37/52 VUSs across 

48 patients in clinically relevant genes. Thirty-eight per-

cent of assessed VUSs (n = 14) caused aberrant splicing 

detectable by RNA-seq, helping to clarify variant inter-

pretation and provide supporting evidence of patho-

genicity [45]. For the 15/52 VUSs in which splicing could 

not be assessed using RNA-seq, the corresponding gene 

was not expressed in blood. In comparison to RNA-seq, 

RT-PCR proved to be more sensitive allowing us to assess 

41 VUSs and confirmed a further four likely pathogenic 

AS events, meaning that in total 35% (n = 18) of VUSs in 

this cohort were found to affect splicing (see Additional 

file  2: Table  S1). These figures are in concordance with 

SpliceAI predictions which had a sensitivity and specific-

ity of 94% and 91% respectively. The increase in sensitiv-

ity of RT-PCR can be attributed to the targeted approach 

allowing amplification of AS events in lowly expressed 

genes [46], as well as amplification of AS events with 

low inclusion levels (in some cases accounting for non-

sense-mediated decay). For the nine cases where neither 

RNA-seq nor RT-PCR was able to resolve the VUS, such 

variants would need to be assessed with other tissue 

types or via alternative methods such as minigene analy-

sis or potentially using animal models should the collec-

tion of an appropriate or adequately representative tissue 

not be feasible [46].

The MRSD tool was used to predict the minimum 

required sequencing depth for genes of interest and was 

found to be very conservative. From our empirical data, 

genes with whole-blood TPM values of 5 or above are 

likely to be assessable for splicing analysis using the RNA-

seq parameters employed in this study, while genes with 

TPM values down to 0.9 may be assessable by RT-PCR. 

Within GTEx, a TPM threshold of 5 would correspond 

to 1104/3113 (35%) of genes listed in the UK Genomic 

Medicine Service’s PanelApp list of disease genes, while 

a threshold of 0.9 would include 1866/3113 (60%) (see 

Additional file 3: Fig. S6). Based on our analysis, we rec-

ommend RT-PCR be the first-choice test to assess VUSs 

in genes with low expression in blood such as BRCA1, 

BRCA2 and FBN1. In some instances, informative RT-

PCR results can be obtained even in genes reported to 

have a TPM value of zero in GTEx [46]. However, in most 

other cases, RNA-seq is likely to prove more advanta-

geous as a first-line test. RNA-seq can identify splicing 

events with more granularity, particularly when new AS 

events entail only one or a few nucleotides. Furthermore, 

with RNA-seq, we can quantify splice isoforms, identify 

expression outliers and most importantly, investigate 

aberrant splicing events without prior knowledge of the 

causal variants. Case 2 (S047) highlights the utility of 

transcriptome-wide data. In this case, this patient was 

referred with a VUS that did not cause aberrant splic-

ing; however, the comprehensive transcriptome analysis 

revealed a likely disruptive splicing event in a different 

gene.

While the VUSs in this cohort were enriched for vari-

ants affecting splicing, these were clinically identified 

VUSs for which clarification of pathogenicity was sought 

by clinicians, highlighting the need for this type of test to 

be integrated into clinical practice. Overall, we were able 

to assess 86% of VUSs (RNA-seq [n = 37] and RT-PCR 

[n = 7] combined), confirming the utility of blood as a 

suitable tissue for validating aberrant splicing in rare dis-

ease patients.

Identification of splicing events linked to VUSs by different 

splicing tools

While we did not set out to benchmark a comprehen-

sive selection of splice junction detection tools, we did 

however want to establish if widely used tools could be 

used to detect aberrant splicing in rare disease patients 

as datasets used in previous benchmarking studies were 

not comparable to ours [47–49]. Using the 14 cases with 

aberrant splicing linked to known VUSs, rMATS-turbo 

had the highest sensitivity followed by FRASER2, MAJIQ 

and then LeafCutterMD. FRASER2 and LeafCutterMD 

were developed for outlier splicing detection and there-

fore it was unexpected that LeafCutterMD had the low-

est sensitivity. Additionally, the tools’ performance was 

evaluated using default parameters. Therefore, there is 

room to optimise parameters for improved specificity 

and sensitivity. There were three events which were con-

sistently missed by the splicing tools (caused by variants: 

SF3B4 c.417C > T, UBR4 c.8488 + 3A > G and SMARCE1 

c.8-4A > G) and it is likely that the low number of reads 

covering the junctions within SF3B4 and SMARCE1 is 

the reason the splicing tools are not picking up these AS 

events. We suspect that the low number of reads support-

ing the new splicing events is due to nonsense-mediated 

decay or leaky splicing; however, in these two cases, there 

were not any coding SNPs to confirm NMD. Long-reads 

may help but determining the difference between par-

tial/leaky splicing and NMD, or possible feedback effects 

on decreased transcription using short-read data will 

require new analytical methods. Furthermore, regarding 

intron retention in UBR4, the presence of intronic reads 

in controls makes it difficult for the tools to distinguish 

noise from real intron retention events (see Additional 

file 3: Fig. S4).

Splicing analysis in patients without VUSs

In patients with no prior VUS, the sheer number of sig-

nificant events resulting from splicing tools creates a 
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challenge when identifying new potential aberrant splic-

ing events that could be linked to the patient’s conditions. 

However, we were able to filter these down to a manage-

able number and identify new likely disruptive aberrant 

splicing events albeit with strict filtering criteria, render-

ing it likely genuine events were missed.

Out of a total of 55 cases without a previously identi-

fied VUS or with a VUS but with no aberrant splicing 

observed, our RNA-seq analysis identified three cases 

with relevant splicing alterations and one case with 

skewed X-inactivation, suggesting a potential diagnostic 

uplift rate of 7%. This is an important untapped group 

of variants with few established high-throughput meth-

ods of analysis in these types of cohorts [50]. We thereby 

demonstrate that it is possible to identify new candidate 

diagnoses and splicing events in patients with no prior 

candidate sequence variants, although with a much lower 

yield than if a VUS were previously identified. Two of the 

four new diagnostics candidates were caused by deep 

intronic variants, regions of the genome often overlooked 

in genomic investigations and where it is difficult to pre-

dict functional effects. If prediction algorithms are to be 

used for prioritising variants, these may need to be tai-

lored by genomic region, such as having a more permis-

sive SpliceAI score threshold for deep intronic variants. 

This is demonstrated by the activation of a cryptic exon 

caused by a deep intronic variant in the ARFGEF1 gene 

whose SpliceAI delta score was just below the widely 

used 0.2 cut-off.

The low diagnostic yield in patients without a candi-

date VUS could be attributed to several factors: (1) the 

patient could have a variant affecting splicing in a gene 

that is not expressed in blood or there is a tissue-specific 

impact that is not present in blood; (2) the molecular 

cause of the disease does not affect splicing; (3) the tools 

are not able to identify these events with high confidence 

(e.g. aberrant isoform is undergoing nonsense-mediated 

decay or difficult to align); (4) performance of the tools 

is variable, some events are picked up better than others 

(e.g. exon skipping compared to intron retention); and (5) 

the variant could have been filtered out.

We were limited to using RNA for variant calling as 

there was no matching DNA sequencing available for 

most cases in this study. Consequently, the high number 

of false positive variant calls led to strict filtering criteria 

where only SNVs were inspected and thus events caused 

by indels will have been missed. RNA sequencing may not 

be ideal for variant calling as it generates high numbers 

of false positive calls compared to DNA sequencing due 

to both biological and technical differences. Nonetheless, 

the use of gene panels to restrict results from the splic-

ing tool (rMATS-turbo) did recover a variant that had 

been excluded due to harsh filters. This approach does 

limit the analysis by restricting to known disease genes 

and relies on having robust phenotypic information. If 

matched whole genome or exome sequencing along with 

detailed phenotypic information were available, integra-

tion of this data would likely increase events identified in 

this patient subgroup and potentially increase diagnostic 

yield.

Gene expression analysis

OUTRIDER detected half of the known microdele-

tions in the cohort; however, it did not identify signifi-

cant alterations in gene expression for those genes with 

variants causing aberrant splicing. There were only two 

instances where the VUS gene was ranked first (low-

est expression for the whole cohort), and although nei-

ther passed the significance threshold, this suggests a 

likely decrease in normal transcripts. This finding also 

indicates that abnormal splicing is not necessarily asso-

ciated with a significant reduction in gene expression, 

at least in blood, and over-reliance on such expression 

changes for identifying splicing abnormalities is unlikely 

to have reliable sensitivity. This is particularly interest-

ing as we would expect many of the splicing abnormali-

ties to shift the reading frame and therefore undergo 

nonsense-mediated decay (NMD) significantly decreas-

ing the abundance of the transcript. This lack of change 

in the expression of genes with aberrant splicing could 

be a reflection of biological mechanisms indicating 

that the impact of NMD is not as effective at depleting 

aberrant transcripts or it could be due to technical fac-

tors such as limited sensitivity of the tools as mentioned 

previously; the impact of NMD is not very pronounced 

in blood-based RNA-seq and tissue-specific RNA-seq 

is required; and/or the targeting methodologies bias the 

type of transcripts and number of transcripts we observe. 

Furthermore, whole blood has been shown to have high 

variability in gene expression profiles particularly when 

compared to skin fibroblasts [16]. Some studies suggest 

that fibroblast RNA enables the investigation of a more 

comprehensive set of genes than whole blood and that 

this is likely the better tissue for detecting clinically rel-

evant differences in gene expression [10, 13, 19]. While 

blood-based RNA analysis may not be optimal, it does 

offer several benefits over fibroblasts. It is more routinely 

sampled, less invasive to obtain and does not require cell 

culture before testing, meaning it is faster to obtain and 

analyse and has lower requirements in terms of special-

ised knowledge and facilities.

Therapeutic applications

Accurate diagnoses facilitate appropriate clinical man-

agement, accurate genetic counselling and informed 

reproductive decision-making, but in some cases, there 
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would be the potential for bespoke RNA-targeted thera-

pies to be designed to correct a given splicing abnormal-

ity and slow or halt the progression of an individual’s 

disease. Cases such as that of the AP4E1 cryptic exon 

inclusion variant highlighted in this study may be espe-

cially suitable targets in this regard, on account of the 

gradual neurodegenerative nature of the associated con-

dition and the known efficacy of other antisense oligonu-

cleotide therapies delivered to the central nervous system 

such as nusinersen [51, 52]. Notwithstanding, the sub-

stantial challenges and barriers facing the development 

of such bespoke therapeutics, precedent does exist for 

n = 1 oligonucleotide therapies [53]. The utility of RNA-

seq in being able to identify these types of variants means 

that an effective personalised medicine healthcare system 

will benefit from having access to RNA transcriptomics 

within the diagnostic clinical setting.

Conclusions
To our knowledge, this study is the first to incorporate 

variant calling data from RNA-seq to results from splic-

ing tools to identify new diagnostic candidates in rare 

diseases. While the diagnostic uplift is modest in patients 

with no known candidate variants in clinically relevant 

genes, our analyses suggest at least one-third of patients 

with rare disorders could benefit from the increased diag-

nostic yield offered by RNA-seq by providing additional 

functional evidence for VUSs. When considering the 

analysis of RNA, RT-PCR should be the first-choice test 

to assess VUSs in genes with low expression, but high-

throughput RNA sequencing is more advantageous as a 

first-line test. Overall, we were able to validate splicing 

abnormalities in 35% [18/51] of patients with a VUS and 

identified four new diagnoses by detecting novel AS and 

expression events in patients with no candidate sequence 

variants, giving an overall uplift in diagnostic yield of 7% 

[4/55] in this subset of patients. We believe that RNA-seq 

should be considered as a complementary tool in genetic 

testing to uplift diagnostic yield in cohorts of patients 

with rare disorders particularly when integrated with 

other omic data.
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