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ABSTRACT 
Climate change poses significant challenges to the Himalayas, a 
region characterised by its fragile ecosystems and vulnerable 
communities dependent on environmental resources. Accurate cli
mate data are crucial for understanding regional climatic varia
tions and assessing climate change impacts, particularly in areas 
with limited observational networks. This study represents a pio
neering effort in evaluating climatic fluctuations in the Jhelum 
basin, located in the North Western Himalayas, by utilising a 
diverse range of gridded meteorological datasets (APHRODITE, 
CHIRPS, CRU, and IMDAA) alongside observed climate data from 
the Indian Meteorological Department. The primary goal is to 
identify the most effective gridded climate data product for 
regions with limited data and to explore the potential of combin
ing gridded data sets with observed data to understand climatic 
variability. Findings indicate a consistent upward trend in tem
perature across all datasets, with varying rates of increase. CRU 
records a rise of 1 �C in Tmax and 1.6 �C in Tmin, while 
APHRODITE shows a Tmean increase of approximately 1 �C. 
IMDAA reports increases in Tmax and Tmin. Observed mean 
annual Tmax and Tmin show net increases of 1 �C and 0.6 �C, 
respectively. Regarding precipitation, all datasets except IMDAA 
exhibit an increasing trend, contrary to observed data, which 
decreases from 1266 mm to 1068 mm over 40 years. CHIRPS, CRU, 
and APHRODITE display increasing trends, while IMDAA aligns 
closely with observed data but tends to overestimate precipita
tion by about 30%. Our research identifies IMDAA as the most   
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suitable gridded climate data for the Jhelum basin in the 
North-western Himalayas. Despite some discrepancies in precipita
tion trends, IMDAA closely aligns with observed data, providing 
valuable insights for scholars and policymakers navigating climate 
data uncertainties in complex environments. Our findings contrib
ute to informed decision-making and effective climate change 
mitigation strategies in the region.

1. Introduction

Climate change is a critical social and environmental issue, whose effects are increas
ing and may become irreversible, impacting terrestrial, freshwater, cryosphere, coastal, 
and open ocean ecosystems (IPCC, 2023). The Himalayas have garnered significant 
research attention due to their role in dictating the hydro-meteorological conditions 
of the area, their susceptibility to climate impacts and increasing disasters, and their 
status as a global biodiversity hotspot (Shrestha 2009; Xu et al. 2009; Bhutiyani et al. 
2010; Sabin et al. 2020; Malik and Hashmi 2022; Patel et al. 2022; Malik 2022a, 
2022b; Malik and Hashmi 2021; Swain et al. 2022d; Rawat et al. 2023; Ahmed et al., 
2022; Imdad et al. 2023; Malik and Ford 2024a; Rather et al. 2024). Addressing and 
adapting to the effects of climate change necessitates understanding of several inter
linked factors (Malik and Ford 2024b) and accurate measurements of various climatic 
factors. Current research is delving into trend analyses (Wang et al. 2022; Swain et al. 
2022a, 2022b) and future climate projections (Sharmila et al. 2015; Imbach et al. 
2018; Haile et al. 2020). For any time series climate data analysis and modelling, the 
availability of ample and reliable data is crucial. Gridded datasets, which are often 
preferred due to the limited spatial and temporal coverage of observed datasets, play 
a pivotal role in this context (Gulizia and Camilloni 2016; Hosseini-Moghari et al. 
2018; Caloiero et al. 2021). The foremost advantage of gridded datasets is their ability 
to encompass extensive territories and extended periods, which renders them ideal 
for climatic trend analysis, especially in data-scarce regions.

Several studies have utilized trend analysis of key climate variables like temperature 
and precipitation to understand climate change in the Himalayas (Swain et al. 2022c; 
Ahmad et al., 2022). Bhutiyani et al. (2007) observed a warming trend of 0.16 �C per 
decade in the Northwest Himalayan region during the twentieth century. Shrestha 
et al. (1999) documented warming trends between 0.06 �C and 0.12 �C in the Nepal 
Himalayas, derived from maximum temperature records collected from 49 stations in 
Nepal. Accelerated warming in the Himalayas was reported by Sabin et al. (2020) at a 
rate of 0.2 �C per decade from 1951 to 2014 in areas with elevations lower than 
4000 m and a much higher rate of 0.5 �C above 4000 m. Several studies indicate that 
the warming trends in winter temperature were more pronounced in the Himalayas 
(-1.41 �C) in comparison to the global average of 0.85 �C from 1880-2012 (Shrestha 
et al. 1999; Singh et al. 2010; Das et al. 2018). The elevated zones of the Western 
Himalayas show greater sensitivity to winter temperatures due to the extensive areas 
of snow cover and the influence of black carbon and aerosol particles (Das et al. 
2020; Ahmed et al. 2022a).
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In the Jhelum basin, studies including that of Shafiq et al. (2019) have analysed 
temperature and precipitation patterns in the Kashmir Valley within the North- 
Western Himalayas across various topographical areas from 1980 to 2014. Their find
ings indicate a significant uptick in annual temperatures and mean annual maximum 
temperatures at a rate of 0.03 �C per annum, with winter temperatures rising even 
more sharply. In a similar vein, Lone et al. (2022) examined temperature and precipi
tation from 1980 to 2020 in the Kashmir Valley, observing a mean annual tempera
ture increase of 1.55 �C, including substantial rises of 2.00 �C in mean maximum 
temperatures and 1.10 �C in mean minimum temperatures. However, their study also 
noted an insignificant downward trend in precipitation. Dash et al. (2007) identified 
a warming trend of 0.9 �C throughout the past century (1901–2003) in the Western 
Himalayas. Dad et al. (2021) documented an increase of 0.35 �C in mean maximum 
temperatures and 0.22 �C in mean minimum temperatures between 1980 and 2017, 
alongside a slight annual rise in precipitation by 0.4 mm.

Most of these previous studies like Shafiq et al. (2019) and Lone et al. (2022) dem
onstrate a steady rise in temperatures along with a trend towards reduced precipita
tion based on observed data sets. Comparative research has been conducted on 
various climate datasets around the globe. Andermann et al. (2011) evaluated the effi
cacy of different gridded climatic datasets in the area adjacent to the Himalayas. 
Palazzi et al. (2013) assessed the accuracy of multiple gridded datasets and found that 
they reliably captured the year-to-year changes in precipitation in the Hindukush 
Himalayas. However, ERA-interim estimations for the Karakoram were found to be 
consistent with the observations (Palazzi et al. 2013; Immerzeel et al. 2015; Dahri 
et al. 2016). In comparing the performance of TMPA 3B42V7 with APHRO 1101, 
Hussain et al. (2017) discovered that TMPA had a low correlation with in-situ obser
vations. They also noticed that elevation had a significant effect on the performance 
of gridded datasets.

This study addresses a significant gap in existing literature by integrating observed 
and gridded climate data to analyse trends in climatic variables within the Jhelum 
basin of the Northwestern Himalayas. Previous studies conducted in this geographical 
area heavily relied on observed data from various stations such as Shalimar 
(Srinagar), Kupwara, Pahalgam, Kokernag, Gulmarg, and Qazigund to assess changes 
in temperature and precipitation. In contrast, this study utilises a diverse range of sat
ellite-based temperature and precipitation products, enabling a more comprehensive 
and thorough evaluation. By comparing different gridded datasets, including Indian 
Monsoon Data Assimilation and Analysis (IMDAA), Climate Research Unit (CRU), 
Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), and Asian 
Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation 
(APHRODITE), with observed data obtained from six distinct stations within the 
Jhelum basin, this research introduces a new dimension to the analysis. This com
parative approach is instrumental in determining the most effective dataset for the 
region with limited data availability. Consequently, the findings of this study yield 
valuable insights for future climate research in the Himalayas. The work reported in 
this article stands out as one of the first to utilise a comprehensive range of satellite- 
based temperature and precipitation products to examine the variability of climate in 
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the Jhelum basin. Furthermore, we focused on comparative analysis of these data sets 
and subsequently verified their accuracy by comparing them with station data. This 
process is necessary to determine the level of bias present in the different gridded 
data sets produced by various organisations in the study area.

2. Description of the study area

The Jhelum basin, often referred as the valley of Kashmir, is situated between lati
tudes 32� 200 and 34� 500N and longitudes 73� 550 and 75� 350 E and is enclosed by 
the Great Himalayan Mountain range in the northeast and the Pir Panjal range of the 
lesser Himalaya in the southwest (Figure 1). The Jhelum basin spans 15,948 square 
kilometers and features the Jhelum River, a tributary of the Indus River, flowing 
through it southeast to northwest. This region typically has an average annual tem
perature and precipitation of 13.5 �C and 710 mm (about 2.33 ft) respectively. Most of 
this precipitation (�72%) is received in the winter months from the western distur
bances originating in the Mediterranean region, while a small portion (�28%) is 
from the Indian Summer Monsoon (ISM).

Rainfall averages vary across the region, from around 650 mm in Srinagar to more 
than 1500 mm in the higher elevations of Pahalgam and Sonamarg hill stations 
(Ahmed et al., 2022b). Mean monthly temperatures (Tmax and Tmin) and precipita
tion of the study area from 1980 to 2020 are illustrated in Figure 1b. Glacial and 
snowmelt significantly influence the water flow patterns of the Jhelum basin, with the 
rivers reaching their maximum discharge in May and June as a result of the acceler
ated melting of snow and ice at higher altitudes.

The data shows that observed discharge at three stations, namely Asham, Sangam, 
and Ram-Munshi Bagh, is indicating a decreasing trend, as depicted in Figure 1c. 
The observed streamflow shows a significant drop, which is attributed to the signifi
cant loss of glacier resources in the valley (Malik et al., 2024). According to Marazi 
(2019), the combined contributions of snow and glacier melt account for approxi
mately 65% of the yearly flow in the Jhelum basin. It is worth noting that the stream
flow data shows a significant increase in streamflow during the years 2006, 2010, 
2014 (flood year), and 2018, while it exhibits a consistent reduction from 2018 
onwards. This observed trend aligns with studies indicating that greater glacier melt
ing initially leads to higher streamflow in glacier-fed streams, followed by a subse
quent decline due to diminishing ice mass.

3. Materials and methodology

3.1. Data sources

Analysis of the gridded climate datasets plays a key role in understanding climate 
variability over a region, especially in areas lacking meteorological observatories. They 
offer extensive data and insights on a range of climate-related variables over an 
extended period, making them ideal for use at any geographical scale (Sidau et al., 
2021). These datasets have been widely utilized in previous studies to analyze trends 
in climate variables (Singh and Xiaosheng 2019; Caloiero et al. 2021; Reda et al. 2021; 
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Buri et al. 2022) and for comparative analysis with observed data in different parts of 
the world (Yin et al. 2015; Sidau et al. 2021).

In data-scarce regions like the Kashmir Valley, there is a sparse distribution of 
weather gauges, and access to extensive historical records of rainfall and temperature 
is restricted. Nevertheless, the existing observational data from the few available sta
tions have been thoroughly examined to discern the annual, seasonal, and monthly 
trends in temperature and precipitation (Shafiq et al. 2019; Zaz et al. 2019; Ahsan 
et al. 2022; Romshoo et al. 2020; Ahmed et al. 2021; Dad et al. 2021; Lone et al. 
2022). To conduct hydro-climatological investigations, long-term time series data is 
necessary (Sun et al. 2018). The availability of globally accredited high-resolution 

Figure 1. a) The study area map shows the 22 grids (red-coloured circles) and meteorological sta
tions (blue-coloured triangles). The white rectangles surrounding the red circles and triangles repre
sent the meteorological stations and the nearest grid station selected for the comparative analysis: 
b) Mean monthly temperature (Tmax and Tmin) and precipitation of the study area from 1980 to 
2020: c) Annual peak discharge from 2003 to 2023 at three gauging stations of Jhelum basin 
namely, Asham, Sangam and Ram-Munshi Bagh.
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gridded rainfall datasets such as CHIRPS (1981-2020), APHRODITE (1951–2015), 
IMDAA (1970-2020), and CRU (1971-2020), as well as temperature datasets like 
APHRODITE (1951-2015), IMDAA (1970-2020), and CRU (1971-2020), provides an 
alternative resource for evaluating climate variability and trends across various global 
regions.

Any analysis based on temperature and precipitation is influenced by the reso
lution and temporal granularity of the spatial data products used (Wagner et al., 
2012). Worldwide research on the validity of these gridded datasets has produced 
useful data for long-term evaluation of rainfall variability, even at a regional level 
(Singh and Xiaosheng 2019). However, the assessment of the long-term effects of 
rainfall and temperature at a higher resolution geographical scale is limited by 
their temporal and spatial availability. The details of the datasets used in this study, 
including their source, spatial resolution, and time series, are discussed in detail in 
the following sub-sections.

3.1.1. IMDAA
The Indian Monsoon Data Assimilation and Analysis (IMDAA) gridded dataset is a 
product of collaborative efforts among the National Centre for Medium-Range 
Weather Forecasting (NCMRWF) in India, the India Meteorological Department 
(IMD), and the UK Met Office (MO). This initiative is supported by the National 
Monsoon Mission (NMM) of the Ministry of Earth Sciences, Government of India. 
The IMDAA system is built upon the 4DVAR (four-dimensional variation) and its 
Unified Model (UM), developed by the Met Office. The system utilizes a sporadic 
cycle of data assimilation. The model domain encompasses areas beyond the Indian 
subcontinent that are crucial for the development of the Indian monsoon (Mahmood 
et al. 2018; Ashrit et al. 2020; Rani et al. 2021).

The IMDAA dataset, with a spatial resolution of 12.5 km, is available for access at 
https://rds.ncmrwf.gov.in/datasets. Specifically tailored for the Indian subcontinent and 
constructed using data from gauged stations and models, the IMDAA offers a highly 
precise and reliable record of observed rainfall, which is regarded as superior among 
global datasets. Rainfall measurements are provided in millimeters, and temperatures 
are recorded in Kelvin. The dataset spans from 1979 to the current period. It begins at 
a geographic coordinate of 6.5�N, 66.5�E, with subsequent data points such as 6.5�N, 
66.75�E, and continues accordingly, with the final data point lying within the coordi
nates of 38.5�N and 100.0�E. The annual data file contains 365 or 366 records to 
accommodate both leap and non-leap years. More information about the datasets uti
lized in the study is available in Table 1 of the mentioned source (Pai et al. 2014).

Table 1. Data sources.

S. No.
Dataset  
Name

Resolution  
(km)

Time  
Frame

No. of  
Grid/Station Source

1 CHIRPS 25 1981-2020 22 https://data.chc.ucsb.edu/products/CHIRPS-2.0/
2 IMDAA 12 1981-2020 22 https://rds.ncmrwf.gov.in/datasets
3 Aphrodite 25 1981-2015 22 http://aphrodite.st.hirosaki-u.ac.jp/product/
4 CRU 25 1981-2020 22 https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/
5 Observed data – 1981-2020 6 India Meteorological Department, Srinagar

6 R. AHMED ET AL.

https://rds.ncmrwf.gov.in/datasets
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://rds.ncmrwf.gov.in/datasets
http://aphrodite.st.hirosaki-u.ac.jp/product/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/


3.1.2. CHIRPS
The Climate Hazards Group Infrared Precipitation with Station Data (CHIRPS) is a 
precipitation product derived from satellite observations that offers global rainfall 
datasets spanning 40 years. CHIRPS features high spatial and temporal resolution, 
integrating information from multiple sources. The CHIRPS V-2.0 rainfall datasets 
for the present study were acquired through the web link https://data.chc.ucsb.edu/ 
products/CHIRPS-2.0/ hosted by the Climate Hazard Center, University of California. 
CHIRPS datasets are available in two spatial resolutions: 0.05�0.05� and 0.25�0.25�. In 
this study, CHIRPS data for 40 years from 1980 to 2020 was downloaded and 
extracted using Python software to analyze trends in climate variables. These datasets 
are extensively utilized for analysing trends and monitoring seasonal droughts (Funk 
et al. 2015; Paredes-Trejo et al. 2017; Sulugodu and Deka 2019).

3.1.3. APHRODITE
APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration 
Towards Evaluation) offers a comprehensive set of daily continental-scale data prod
ucts for Asia, which cover the years 1951 to 2015. This dataset includes detailed 
observations for regions such as the Himalayas, South and Southeast Asia, and moun
tainous zones in the Middle East. APHRODITE provides gridded climatological data 
solutions for a unified domain and four subdomains: Monsoon Asia, the Middle East, 
Russia, and Japan. The datasets offer a high-resolution daily record with a spatial 
resolution of either 0.25� x 0.25� or 0.05� x 0.05�, except for Japan, which consistently 
has a finer resolution of 0.05� x 0.05�. For Monsoon Asia, detailed daily mean pre
cipitation and temperature data are available with a 0.05� x 0.05� resolution 
(Kamiguchi et al. 2010; Yasutomi et al. 2011; Hamada et al. 2012). APHRODITE’s 
daily gridded precipitation dataset is unique as a long-term, continental-scale, high- 
resolution product. It incorporates data from an extensive network of 5,000 to 12,000 
stations, which significantly exceeds the data typically provided by the Global 
Telecommunication System network by 2.3 to 4.5 times (Yatagai et al., 2012). While 
APHRODITE data generally performs exceptionally well across Asia, it is notably less 
representative in regions like the Tibetan Plateau (Ji et al. 2020). The dataset, span
ning 35 years from 1980 to 2015, can be accessed through the provided link (https:// 
climatedataguide.ucar.edu/).

3.1.4. CRU
The Climate Research Unit (CRU) time series offers a set of high-resolution gridded 
data, which has been widely utilized in historical studies for trend analysis across 
various regions (Grotjahn and Huynh 2018; Rao et al. 2018; Harris et al. 2020; Mutti 
et al. 2020). This dataset has a spatial coverage of a 0.5� latitude by 0.5� longitude 
grid, encompassing the entire global land surface except for Antarctica (Harris et al. 
2020). The information provided is generated by interpolating monthly climatic 
anomalies using data from a comprehensive network of meteorological stations. The 
dataset has been updated as CRU TS v4, covering the time frame from 1901 to 2020, 
with additional station observations and annual updates (Harris et al. 2020). The cre
ation of secondary variables has been altered to best fit this method, which now 
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employs angular-distance weighting (ADW) as part of the interpolation process. In 
this study, gridded CRU temperature (Tmin, Tmax, and Tmean) and precipitation 
over 40 years from 1981 to 2020 was obtained from the Climate Research Unit of the 
University of East Anglia in the United Kingdom, available on their website at 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/.

3.1.5. Observed data
Climate change and variability represent some of the most pressing issues confronting 
humanity today and have widespread consequences on the environment (Yu et al. 
2019; Lee et al. 2023). Climate plays a significant role in people’s lifestyles, means of 
subsistence, and overall socioeconomic development. Analysing observational 
meteorological data for a specific location over a period is one of the best methods to 
understand the climate of a place or region. To detect changes or variations in cli
mate variables like temperature, precipitation, humidity, and wind across various 
time scales, conducting a trend analysis of climate data over the least 30 years is gen
erally adequate for assessing the long-term impacts of a changing climate (Guan 
2009). The observed temperature and precipitation records of the Jhelum basin, avail
able at six meteorological stations namely Shalimar (Srinagar), Kupwara, Pahalgam, 
Kokernag, Gulmarg, and Qazigund, have been collected from the regional station of 
the India Meteorological Department located in Srinagar (Table 2).

The study analysed the annual trends in mean, minimum, and maximum tempera
ture, as well as precipitation, on a station-by-station basis and for the entire Jhelum 
basin over 40 years from 1980 to 2020 (Table 1). The primary objective of this study 
was to analyse temperature and precipitation trends and compare the gridded datasets 
with the observed data. To achieve this, the annual trends of Tmin, Tmax, Tmean, 
and precipitation derived from the gridded datasets (CHRIPS, APHRODITE, CRU, 
IMDAA) from 1980 to 2020, except APHRODITE (1980-2015), were compared with 
the trends acquired from the station data. The trend is obtained by analysing the rela
tionship between the two variables and their temporal resolution. The significance of 
the trend was derived through statistical methods such as the coefficient of determin
ation R2 and regression analysis.

3.2. Resampling

The satellite-based rainfall and temperature datasets used in the study are available 
for various time periods and come with different spatial resolutions. Therefore, for 

Table 2. General information about the IMD stations.

S. No Name
Latitude  

(N)
Longitude  

(E)
Elevation  

(m)

Mean annual Temperature (�C) Mean annual  
Precipitation (mm)

Max Min Mean

1 Srinagar 34� 030 74� 480 1588 19.64 6.80 13.22 813.21
2 Kupwara 34� 250 74� 180 1609 20.10 6.26 13.18 1082.87
3 Pahalgam 34� 020 75� 200 2310 16.88 3.27 10.07 1259.53
4 Kokernag 33� 400 75� 170 1910 18.17 6.52 12.35 1056.42
5 Qazigund 33� 350 75� 050 1690 19.28 6.40 12.86 1211.12
6 Gulmarg 34� 030 74� 240 2705 14.25 2.52 8.38 1332.41
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comparison and evaluation of the datasets, homogeneous series were prepared for a 
common time period (1981–2020) for IMDAA, CHIRPS, and CRU. However, 
APHRODITE is only available up to the year 2015, so the time period from 1981- 
2015 was considered. Additionally, all datasets were available at a resolution of 0.25�

� 0.25�, except for IMDAA (0.12��0.12�) and CRU (0.5��0.5�). The IMDAA dataset 
was upscaled, and the CRU dataset was downscaled to 0.25� � 0.25� resolution using 
the nearest neighborhood interpolation method in the Python environment. The data
sets were also examined for any gaps. The analysis revealed that there were almost no 
gaps present in the data sets used in this study for the selected time period 
(Figure 2).

3.3. Trend analysis

3.3.1. Mann-Kendall test
The Mann-Kendall trend test is an effective analytical tool for scrutinizing tempera
ture and precipitation trends using observational data from six weather stations in 
the Jhelum basin of the Kashmir Himalayas, and for comparing these observations 
with assorted gridded datasets. This non-parametric test, which Mann introduced in 
1945 and Kendall enhanced in 1975, is designed to detect trends in key environmen
tal variables such as streamflow, temperature, and precipitation. These elements are 
essential to watershed modeling, a process that examines the characteristics of a 
catchment area to create sustainable water resource management strategies, as noted 

Figure 2. Flow chart of the methodology used in the study.
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by Kothawale and Kumar in 2005. Ideal for research involving multiple data sources, 
the Mann-Kendall test has a proven track record in identifying climate variable trends 
at different scales, as documented by Yadav et al. (2014), Almazroui (2020), Zaz et al. 
(2019), Nourani et al. (2018), Ahsan et al. (2022), and Dad et al. (2021). In the cur
rent study, this test has been deployed to analyze and confirm statistically significant 
trends in climate data. The Mann-Kendall Statistic S for trend is:

S ¼
Xn−1

i¼1

Xn

j¼iþ1
sgn xj − xið Þ (1) 

here, xi, xj are the sequential data values, whereas n is the length of the data set and

sgn tð Þ ¼
1, for t > 0
0, for t ¼ 0
1, for t < 0

8
<

:
(2) 

In the Mann-Kendall trend test, the ’S’ statistic is indicative of the trend’s direc
tion. A negative ’S’ value denotes a decreasing trend, whereas a positive ’S’ suggests 
an upward trend (Pal et al. 2017). Mann-Kendall has established that when n� 8, the 
’S’ statistic follows an approximate normal distribution, with specific mean and vari
ance values as follows:

EðSÞ ¼ 0 (3) 

Var Sð Þ ¼
n n − 1ð Þ 2nþ 5ð Þ −

Pm
i¼1tiðti − 1Þð2ti þ 5Þ

18
(4) 

The standardized test statistics Z is computed as follows.

ZMK ¼

S − 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞ

p , for S > 0

0, for S ¼ 0
Sþ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞ

p , for S < 0

8
>>>>>><

>>>>>>:

(5) 

In equation (5), m denotes the number of tied groups and the size of the ith tie 
group. The Z value is used to determine whether a statistically significant trend exists. 
A positive (negative) Z value indicates an upward (downward) trend. The ZMK score, 
which is distributed normally, indicates the direction of a trend: an increasing trend 
for a positive ZMK and a decreasing trend for a negative ZMK. A trend in the data is 
considered statistically significant if the ZMK value is beyond the critical value for the 
chosen significance level ZMK Z/2. The Mann-Kendall test is designed to test the null 
hypothesis, which assumes there is no discernible trend in the dataset, against the 
alternative hypothesis that posits a trend is present (Kumar et al. 2013). This test’s 
formula is applicable when there are 10 or more data points.
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3.3.2. Sen slope estimator
The method of slope estimation put forth by Sen (1968) offers another non-paramet
ric approach for conducting trend analyses on hydroclimatic data. It’s particularly 
used to ascertain the extent of trends within climatic data, quantifying the degree of 
change over time by determining the slope’s magnitude, under the presumption of a 
linear trend. This technique can be utilized to infer trends using univariate time series 
analysis. The Sen slope estimator offers a more accurate representation of trends in 
time series datasets due to its ability to remain insensitive to outliers and missing 
data (Sen, 1968; Duhan and Pandey 2013). In this study, the Sen slope estimator has 
been used, and subsequently, a test has been performed using Python 3.9.

Ti ¼
Xj − Xk

j − k
for i ¼ 1, 2, 3, ::::, N (6) 

In equation (6), Xj and Xk represent data values at times j and k respectively, 
within a given time series, where j> k. The slope between each pair of data points 
is calculated to determine the rate of change. The Sen’s Slope estimator is 
then derived by taking the median of all these calculated slopes from the N obser
vations as:

Qi ¼ TN þ 1
2

for N is odd

¼
1
2

TN
2

þ TN þ 1
2

� �
for N is even

(7) 

The Sen slope estimator is calculated as Qmed ¼ (Nþ 1)/2 when the N slope data 
are displayed as odd and as Qmed ¼ [(N/2) þ ((Nþ 2)/2)]/2 when the N slope 
observations are shown as even.

The estimate of the slope is the median of these N values of Q. If each time period 
only contains one datum, then N’ ¼ n (n − 1)12, where n is the total number of 
time periods. Two independent confidence intervals are produced by the process in 
the VB macro, which generates two separate confidence intervals ¼ 0.01 and ¼ 0.05. 
Using the non-parametric process proposed by Sen (1968), a 100 (1%) two-sided con
fidence interval around the true slope can be determined (Mondal et al. 2012). The 
positive or negative slope Qi is attained as an upward or downward trend that repre
sents the decreasing and increasing trend in the time series.

3.3.3. Regression analysis
The regression analysis method is a parametric approach that is applied to ascertain 
whether a dataset follows a normal distribution (Radhakrishnan et al. 2017). In this 
technique, time (x) is taken as an independent variable, whereas climate variables (y) 
are taken as dependent variables to analyze the linear trend. The regression line is 
employed to characterize the trend patterns in climatic variables (temperature and 
precipitation) at various levels, such as monthly, seasonal, annual, and decadal, tail
ored to the specific objectives of the research study. Equation (8) was used to analyze 
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the annual trend of climate variables from 1980 to 2020. The regression formula is:

Y ¼ aþ bx (8) 

Where ‘x’ and ‘y’ in equation (8) represent the independent and dependent varia
bles, respectively while ‘a’ represents the intercept and ‘b’ represents the slope.

3.3.4. Correlation analysis
Understanding the correlation between variables is essential for statistical modelling, 
as highlighted by various researchers such as Gong et al. (2017) (Chambers and 
Hastie, 2017), and Yan et al.(2021) . According to Zaki et al. (2020), Chatterjee and 
Rangarajan (2022), and Steger et al. (2021), correlation analysis is a descriptive tool 
that is frequently utilized and beneficial in this setting for studies of this kind. Karl 
Pearson’s correlation coefficient, which is generally accepted for its reliability in cap
turing linear correlations, was employed to evaluate the interdependence of the varia
bles in our investigation. 

r ¼

Pn
i Xi − X
� �

Yi − Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i Xi − X
� �2

r

∙
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i Yi − Y
� �2

r (9) 

Where Xi and Yi represent the ith occurrence of variables X and Y from an n- 
sample, X and Y are the sample means of the two variables. The value of r can range 
between −1 and þ1. When r¼ 0, it means that there is no connection between the 
variables of interest. In contrast, r0 shows that an increase in one variable causes a 
reduction in the value of another, implying that the variables have a negative relation
ship. On the other hand, a condition where r> 0 shows that a rise in one variable 
induces an increase in the value of another variable, which is known as a positive 
correlation. Conditions in which r approaches 1 imply that there is a strong associ
ation between the variables of interest.

Our examination focused on the relationship between observed P and Z values for 
gridded and observed Tmax and annual precipitation. The identified effectiveness of 
Karl Pearson’s coefficient of correlation in measuring linear relationships between 
variables led to its selection. This technique has been frequently used in similar scen
arios, offering a reliable and well-known tool for examining relationships within the 
datasets being studied. By using this statistical technique, our correlation analysis 
becomes more credible and robust, leading to a deeper understanding of the complex 
relationships between the variables in our study.

4. Results

The annual average trends of climate variables such as temperature (Tmax, Tmin, 
and Tmean) and precipitation were derived for both gridded and observed data using 
the Mann-Kendall test and Sen slope estimator at a 95% confidence level. ’P’ and ’Z’ 
values were generated for Tmax, Tmin, Tmean, and Precipitation (annual mean). 
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After processing the gridded data for the Jhelum basin, a .csv file with 22 grids was 
generated. We present the results in three sections. Firstly, temperature and precipita
tion trends in gridded datasets are examined across the Jhelum basin. Secondly, the 
temperature and precipitation trends are analyzed for all 6 meteorological stations: 
Shalimar, Qazigund, Kokernag, Pahalgam, Gulmarg, and Kupwara. Thirdly, the 
annual average trends for the gridded datasets and observed data are compared. The 
following results represent the annual average trend analysis for both gridded and 
observed temperature and precipitation data across the Kashmir Valley.

4.1. Annual average temperature and precipitation trends (grided datasets)

4.1.1. IMDAA trends
The Mann-Kendall test has been utilised to IMDAA-based minimum (Tmin), max
imum (Tmax), and mean (Tmean) temperatures. All the temperatures show increas
ing trends with Z> 0. The P and Z-values for Tmax, Tmin, and Tmean are given in 
Table 3. In the IMDAA gridded data, the average Tmax of the Jhelum basin is 
13.18 �C during the period from 1981 to 2020. The average change in Tmax per year 
is found to be 0.028 �C/year. The highest Tmax was found in the year 2016 
(14.94 �C), and the lowest Tmax was in the year 1986 (11.47 �C). On the other hand, 
the average Tmin for the same period is 2.27 �C. The average change in Tmin per 
year is found to be 0.035 �C/year. The highest Tmin (3.32 �C) was in the year 2020, 
whereas the lowest Tmin (0.82 �C) was found in the year 1983. Overall, all three tem
perature scenarios, i.e. Tmax, Tmin, and Tmean, revealed increasing trends in the 
study region as depicted in Figure 3a–c. The Mann-Kendall Test for the IMDAA 
dataset’s mean annual precipitation demonstrated a statistically significant decreasing 
trend with a z-statistic value of < 0. According to the IMDAA gridded dataset, the 
average annual precipitation is 1690 mm, and the average annual precipitation rate is 
−5.07 mm per year from 1981 to 2020. The highest annual precipitation (2342 mm) 
was recorded in 1992, and the lowest precipitation (1165 mm) was in 2004 (Figure 
3d). The P and Z values for average annual precipitation in each grid on the monthly 
time scale are presented in Table S1.

4.1.2. CRU trends
The trends in Tmax, Tmin, Tmean, and mean annual precipitation derived from the 
CRU data are depicted in Figure 4. The Mann-Kendall test has been applied to CRU- 
derived maximum (Tmax) and minimum (Tmin) temperature data from 1981 to 
2020. Both the maximum and minimum temperature records exhibit an upward 
trend with Z-values >0 (Figure 4a and b). Similar to the IMDAA data, the Mann- 
Kendall analysis of the mean annual temperature (Tmean) from the CRU dataset also 
demonstrates a statistically significant increasing trend with a P value >0.01 and a Z 
value of 3.7, which underscores the high significance of the trend noted.

The analysis of the mean annual maximum temperature (Tmax) for the period 
1981 to 2020 indicates an average Tmax of 12.14 �C. The highest Tmax (12.96 �C and 
12.98 �C) is found in the years 1999 and 2016, whereas the lowest Tmax (11.26 �C) is 
found in the year 1983 (Figure 4a). The mean annual Tmax rate is 0.02 �C per year. 
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Similarly, the mean Tmin is 1.56 �C, with an annual Tmin rate of 0.037 �C per year 
(Figure 4c), showcasing a notable rise in the mean temperatures for the region 
(Figure 4b). The CRU precipitation data analysis reveals that the average precipitation 
of the Jhelum basin is only 678 mm. The annual precipitation change is positive, i.e. 
it has increased by 2.9 mm per year (Figure 4d).

4.1.3. APHRODITE mean annual temperature precipitation trends
The analysis of the mean annual temperature (Tmean) derived from the Aphrodite 
dataset reveals an increasing trend with a Z value of 1.36. The mean annual tempera
ture (Tmean) in the Jhelum basin over the 1981-2015 period is 7.92 �C. The change 
rate in Tmean is 0.022 �C per year (Figure 5a). Similarly, the annual precipitation 
derived from the Aphrodite dataset also reveals an increasing trend, like the CRU 
gridded dataset, at 10 mm per year. The average annual precipitation in the Jhelum 
basin for the 1981 to 2015 period is 805 mm (Figure 5b). It also reveals that the high
est annual precipitation of 1411 mm occurred in 2011, and the lowest annual precipi
tation of 456 mm occurred in 2000.

4.1.4. Precipitation trends from the CHIRPS dataset
The CHIRPS dataset also revealed an increasing trend, like the CRU and 
APHRODITE datasets, in annual precipitation with a P value > 0.01 and Z statistic 
values > 0. According to the CHIRPS gridded dataset, the average annual precipita
tion in the Jhelum basin over the 1981-2020 period is only 563 mm (Figure 6). The 
lowest annual mean precipitation (310 mm) was recorded in 2000, while the highest 

Figure 3. Annual average temperature and precipitation of the Jhelum basin from 1981 to 2020 
derived from the IMDAA. The black line represents the linear trend.
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annual mean precipitation (998 mm) was observed in 2014 (Figure 6). The average 
annual precipitation is found to be increasing at a rate of 3.93 mm per year.

4.2. Overall trends in the gridded climate datasets

4.2.1. Precipitation trends
Tables S1 and S2 present the descriptive statistics calculated for trend analysis. The 
analysis of precipitation trends was conducted using satellite-based datasets, namely 
CHIRPS, CRU, IMDAA, and APHRODITE datasets, as mentioned in section 3. The 
CHIRPS dataset showed a non-significant increasing trend in precipitation, with an 
R2 value of 0.11 and an increase rate of 3.93 mm per year (Figure 6). The CRU 

Figure 4. Annual average temperature and precipitation of the Jhelum basin from 1981 to 2020 
derived from the CRU. Red line line represents the linear trend.

Figure 5. Trends from Aphrodite dataset (a) Tmean (b) Mean annual precipitation. Dashed lines 
represent linear trend.
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dataset also indicated a non-significant but increasing trend, with precipitation 
increasing by 2.9 mm per year (Figure 4d). APHRODITE exhibited an overall increas
ing trend, with an R2 value of 0.19 and an increase rate of annual precipitation at 
10 mm per year (Figure 5b). On the other hand, IMDAA showed an overall non-sig
nificant but decreasing trend, with an R2 value of 0.049 and annual precipitation 
decreasing at a rate of 5.07 mm per year (Figure 3d).

4.2.2. Temperature trends
Tables S1 and S2 provide the descriptive statistics for trend analysis. Satellite datasets, 
namely CRU, IMDAA, and APHRODITE, were used to analyze temperature trends 
for all three scenarios: Tmax, Tmin, and Tmean. The CRU dataset showed an increas
ing trend in all three scenarios. The mean annual maximum temperature (Tmax) was 
12.14 �C, and the minimum temperature (Tmin) was 1.56 �C during the 1981-2020 
period. The annual Tmax rate was 0.02 �C per year, and the annual Tmin rate was 
0.037 �C per year (Figure 4b). Tmax exhibited a significant increasing trend with an 
R2 value of 0.20, Tmean showed similar behavior with an R2 value of 0.38, and Tmin 
showed a significant increase with an R2 value of 0.53 (Figure 4a and c). For 
IMDAA, Tmax showed an increasing trend with an R2 value of 0.21, and the average 
change in mean Tmax was 0.028 �C/year (Figure 3c). Tmin showed a significant 
decreasing trend with an R2 value of 0.50, and the average change in mean Tmin per 
year was 0.035 �C/year (Figure 3b). Only Tmean was available for the APHRODITE 
dataset, and it showed an increasing trend with a variability (R2) of 0.23 and an aver
age change rate of 0.022 �C per year (Figure 5a). The P, Z, and Sen Slope values of 
Tmean for all the gridded datasets are provided in the Supplementary data (see 
Figure S7).

4.3. Temperature and precipitation trend analysis using observed data

For observed station data, all three temperature scenarios showed significant increas
ing trends. The average Tmax over the last four decades was 17.71 �C. Tmax 

Figure 6. Precipitation trends from CHIRPS dataset.
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exhibited an average increase rate of 0.024 �C per year with an R2 value of 0.2 (Figure 
7a). Tmean showed a significant increasing trend with an R2 value of 0.28 (Figure 
7c). The average Tmin was 5.42 �C, and it increased at a rate of 0.015 �C per year 
with an R2 value of 0.39 (Figure 7b). Regarding the precipitation scenario, the 
observed data indicated that the average annual precipitation in the Jhelum basin 
during the 1981-2020 period was 1138 mm, which showed a non-significant decrease 
at a rate of 3.36 mm per year (Figure 7d). The P, Z, and Sen Slope values of annual 
precipitation and Tmean for all the observed stations are presented in the supplemen
tary data (see Figure S8), while Tmax and Tmin are presented in Figure S9.

4.4. Temperature and precipitation trends: Station-wise analysis (1980-2020)

The analysis of long-term weather data from various stations in the Kashmir region 
provides valuable insights into the evolving climate trends over the past four decades, 
from 1981 to 2020. Beginning with the Shalimar (Srinagar) station (Table 3, Figure 
S1), significant trends are observed, particularly in maximum and minimum tempera
tures. The average maximum temperature demonstrates a noteworthy increase of 
1.79 �C over the period, indicating a consistent warming trend at an annual rate of 
0.04 �C. Conversely, the minimum temperature shows a declining trend, decreasing at 
an average annual rate of 0.02 �C. The mean temperature, derived from the combin
ation of maximum and minimum temperatures, also registers a 0.7 �C increase over 
the 40 years. Additionally, a distinct declining trend in precipitation, albeit minimal, 
is evident, suggesting potential shifts in regional rainfall patterns.

Figure 7. Trends in the recorded IMD data in the Jhelum basin.
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At the Qazigund station (Table 3, Figure S2), although temperature trends show 
less pronounced changes compared to Shalimar, incremental shifts are noted. 
Maximum temperatures exhibit a slight rise, while minimum temperatures demon
strate a minor but upward trend. The mean temperature sees a modest increase over 
the period. However, precipitation trends indicate a significant decreasing trend, 
potentially signalling alterations in the region’s precipitation dynamics.

At the Kokernag station (Table 3, Figure S3), significant increases are observed in 
both maximum and minimum temperatures, reflecting a clear warming trend over 
the past four decades. The mean temperature also shows a notable rise, albeit with 
less pronounced changes compared to individual temperature components. Despite 
these temperature shifts, precipitation trends show a slight, insignificant decrease, 
suggesting relatively stable rainfall patterns.

Moving forward to the Pahalgam station (Table 3, Figure S4), the warming trend 
becomes more pronounced, with significant increases noted in maximum, minimum, 
and mean temperatures. Maximum temperatures rise notably by 2.4 �C, accompanied 
by a substantial increase in minimum temperatures. The mean temperature also sees 
a significant rise of 2.6 �C over the period. Interestingly, despite these temperature 
shifts, precipitation trends remain relatively stable, indicating consistent rainfall pat
terns in the region.

At the Gulmarg station (Table 3, Figure S5), temperature changes are more subtle, 
with minor increases observed in both maximum and minimum temperatures. 
However, the mean temperature exhibits a noteworthy rise over the 40-year span. 
Precipitation trends indicate a slight decrease, though statistically insignificant, sug
gesting minimal changes in regional rainfall patterns.

Lastly, at the Kupwara station (Table 3, Figure S6), a significant increase in max
imum temperature is observed, accompanied by slight upward trends in minimum 
and mean temperatures. Precipitation, on the other hand, displays a non-significant 
decreasing trend. These analyses collectively highlight the complex dynamics of cli
mate change in the Kashmir region, emphasizing the need for continued monitoring 
and adaptive measures to address potential impacts effectively.

Several studies, such as Ahsan et al. (2022), Shafiq et al. (2019), and Zaz et al. 
(2019), observed warming trends in the Kashmir region using observed data from the 
India Meteorological Department (IMD). Ahsan et al. (2022) reported a Tmax 
increase of 0.034 �C/year with an R2 of 0.12 and a Tmin increase of 0.016 �C/year 
with an R2 of 0.05, while Shafiq et al. (2019) recorded slightly lower increases in 
Tmax (0.03 �C/year) but a higher R2 value of 0.22. These studies also noted signifi
cant decreases in precipitation, with Ahsan et al. reporting a reduction of −5.73 mm/ 
year and Shafiq et al. reporting −7.07 mm/year. In contrast, studies focusing on the 
Upper Indus Basin (UIB) like those by Fowler and Archer, 2006 and Archer et al. 
(2004) observed negligible changes in maximum and minimum temperatures but 
slight increases in mean temperature, as indicated by Fowler et al. (2006) with a 
Tmean increase of 0.02 �C/year and R2 of 0.04. Archer et al. (2004) found no signifi
cant temperature trend but reported a minor positive precipitation trend. Ren et al. 
(2014) and Garg et al. (2019) investigated the broader Hindukush and Eastern 
Himalayan regions, respectively, revealing more pronounced warming trends. Ren 
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et al. reported a Tmax increase of 0.08 �C/year in the Hindukush Himalayas, while 
Garg et al. documented a 0.04 �C/year increase in Tmax and 0.03 �C/year in Tmin, 
along with a slight increase in Tmean and stable precipitation trends (See Table S4). 
The present study, comparing observed data and gridded data for the Kashmir region, 
found a Tmax increase of 0.024 �C/year using observed data and varying results with 
gridded datasets. The gridded data from IMDAA showed the highest Tmax increase 
(0.028 �C/year) compared to other datasets, with a corresponding precipitation 
decrease of −5.71 mm/year. Gridded data from APHRODITE, CHIRPS, and CRU 
also revealed differing temperature and precipitation trends, with the APHRODITE 
dataset showing a significant precipitation increase of 10 mm/year. Our study aligns 
with previous research, indicating a consistent warming trend in the Kashmir region, 
with a Tmax increase of 0.024 �C/year and a Tmin increase of 0.015 �C/year, similar 
to findings by Ahsan et al. (2022) and Shafiq et al. (2019). However, our observed 
precipitation decrease of −3.36 mm/year is less severe than in some studies, while 
gridded data from APHRODITE suggests an unexpected increase in precipitation. 
This discrepancy between observed and gridded data highlights the variability in cli
mate trends across different sources, underscoring the complexity of regional climate 
dynamics.

5. Discussion

Gridded datasets are an important source of meteorological data for various hydro- 
meteorology climate change studies, particularly in regions characterised by limited 
availability and inadequate coverage of observatory stations. This study utilized 
meteorological parameters of temperature and precipitation from the gridded datasets 
(APHRODITE, CHIRPS, CRU, and IMDAA) and observed climate datasets from the 
Indian Meteorological Department. This study is probably the first of its type and 
represents a pioneering effort in investigating the climatic fluctuations within the 
Jhelum basin by employing a diverse range of gridded climate data products. 
Furthermore, a comparative examination of these datasets was undertaken, followed 
by validation through observed station data. The main goal of this research is to 
determine the degree of bias present in different gridded datasets generated by differ
ent organizations, and subsequently identify the most reliable gridded data product 
suitable for regions with limited data availability in the North Western Himalayas. It 
identifies trends in temperature and precipitation (presented in Table 3 and 
Supplementary Tables S1 and S2) in each of the gridded datasets for 22 grid points 
and 6 meteorological stations located in the Jhelum basin. The grid point-based tem
perature and precipitation trends are given in Figures 8 and 9. The comparative 
examination of temperature and precipitation trends in the Kashmir Himalayas, based 
on observed and gridded datasets, has yielded insightful findings that contribute to 
our understanding of regional climate dynamics. Our study revealed a notable 
increase in mean annual temperatures (T max, T min, and T mean) across the region 
over the 1981–2020 period, aligning with global climate change trends reported in 
various studies (Bloomfield 1992; Folland et al. 2001).

20 R. AHMED ET AL.

https://doi.org/10.1080/19475705.2024.2401994
https://doi.org/10.1080/19475705.2024.2401994


The observed mean annual Tmax and Tmin show net increases of 1 �C and 
0.62 �C, respectively. The Tmean also shows an increase of 0.9 �C. These increasing 
rates are consistent with other local studies (Shafiq et al., 2019; Zaz et al. 2019; 
Ahmed et al., 2022; Mir et al. 2024). Among the gridded datasets, although CRU 
shows similar net increases in Tmax (1 �C) and Tmin (1.6 �C), it underestimates the 
magnitude of Tmax and Tmin by approximately 5 �C and 4 �C. In APHRODITE, 
only the Tmean is available, and it shows an increase of about 1 �C (from 7.5 �C to 
8.5 �C), thus underestimating the actual observed Tmean change from 11.1 �C to 
12 �C. In IMDAA gridded data, although both Tmax and Tmin increased from 
12.6 �C to 13.7 �C and 1.6 �C to 2.9 �C, respectively, these values also underestimate 
the actual observed temperature variables for most of the stations by around 6 �C and 
3 �C. Therefore, it can be concluded that all gridded datasets considered show 
increasing trends in temperature, aligning with the direction of trends in observed 
temperature. IMDAA, which has proven to be the best available gridded data product 
for this study, indicates the least differences (2 �C to 4 �C) with respect to observed 
temperatures in areas with relatively low altitudes (Srinagar, Kokernag, and 
Qazigund), and higher differences in areas with higher altitudes (Gulmarg and 
Pahalgam). In Pahalgam, IMDAA underestimates Tmax by 11 �C and Tmin by 
6.5 �C. In the case of Gulmarg, IMDAA overestimates Tmax by 4 �C and Tmin by 
1.5 �C, respectively. The meteorological stations and subsequent grid points-based 

Figure 8. Grid point based-temperature trends of gridded datasets.
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comparison graphs of observed and IMDAA temperatures and precipitations are pro
vided in Figures 10 and 11.

The mean annual precipitation in the Jhelum basin from 1981 to 2020 stands at 
1138 mm, with a slight, insignificant decrease of 3.36 mm per year. It has decreased 
from 1266 mm to 1068 mm (198 mm) in the Jhelum basin in 40 years. In contrast, 
among the gridded datasets, the CHIRPS gridded dataset shows an average annual 
precipitation in the Jhelum basin over the period 1981-2020 of only 563 mm, exhibit
ing an increase of 160 mm from 490 mm to 650 mm. This not only presents an 
opposite or increased trend rate of 3.93 mm per year but also inaccurately shows only 
half of the actual observed precipitation. In CRU, the average precipitation of the 
basin is 678 mm, increasing at 2.9 mm per year. In APHRODITE, the average annual 
precipitation is 805 mm, showing an increasing trend of 10 mm per year. On the 
other hand, IMDAA reveals a decrease in precipitation from 1800 mm to 1600 mm, 
which is similar to the observed decrease of 198 mm, but even the gridded dataset of 
IMDAA overestimates the observed precipitation. The precipitation trends at each 
grid point are presented in Figure 9.

There are noticeable variations in the observed changing precipitation rates, with 5 
out of 6 stations showing decreasing precipitation rates ranging from −0.1 mm per 

Figure 9. Grid point-based precipitation trends of gridded datasets.
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year in Pahalgam to −12.5 mm per year in Gulmarg. Only Kupwara shows an insig
nificant increase in precipitation at 0.7 mm per year, highlighting the influence of 
local topography and microclimatic conditions on climate trends. Similarly, the 
gridded datasets exhibited decreased precipitation rates for all stations but showed 
much differences in comparison to the observed precipitation at the elevated stations 
such as Gulmarg and Pahalgam. Thus, the IMDAA gridded data shows more discrep
ancies for hill stations. Moreover, our analysis identified a decline in annual precipita
tion at a rate of 3.36 mm per year based on observed precipitation records. This 
declining trend is consistent with previous studies conducted in the Jhelum basin 
(Zaz et al., 2019; Ahmad et al., 2022; Ahsan et al. 2022; Ahmed et al., 2022; Wani et 
al. 2022; Lone et al. 2022). However, most of the gridded datasets painted unreal pre
cipitation scenarios and mostly identified increased precipitation trends over the 

Figure 10. Comparison of linear trends between observed and IMDAA annual precipitation.
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Jhelum basin. In contrast, the IMDAA gridded dataset, which is the gridded dataset 
of the Indian Meteorological Department, is an exception as it accurately shows the 
direction and magnitude of the decreased precipitation trend, but it over-represents 
the absolute annual precipitation of the basin by about 30%. The observed and 
IMDAA precipitation comparisons for each station are presented in Figure 10.

This emphasises the necessity of exercising caution when exclusively relying on 
gridded datasets for evaluating precipitation in complex topographies like the 
Himalayas. It is preferable that gridded datasets undergo bias correction by utilising 
reliable observed data as a benchmark. Gridded datasets should also investigate the 
factors driving elevation-dependent temperature changes and refine precipitation 
modelling approaches to better capture the nuances of ecologically sensitive areas like 
the Jhelum basin. This study also emphasizes the importance of integrating both 
observed and gridded datasets to gain a comprehensive understanding of climate vari
ability in areas with limited climate data.

Figure 11. Comparison of linear trends between observed and IMDAA Tmax and Tmin at six 
stations.
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Our research offers valuable insights for the comparison of gridded climate data
sets in the Jhelum Basin of the North-western Himalayas. However, it is crucial to 
acknowledge certain significant limitations. In particular, the complex topography of 
the Himalayas poses challenges, particularly at elevated altitudes where disparities in 
gridded datasets become more pronounced. These variations underscore the necessity 
of exercising caution when solely relying on gridded data in regions with such com
plex terrains. Each gridded dataset has its own unique constraints. For example, CRU 
underestimates temperature magnitudes and APHRODITE underrepresents changes 
in Tmean. These dataset-specific problems emphasize the importance of carefully 
selecting an appropriate dataset for analysis. Considering these constraints, several 
suggestions are made for future studies. In challenging environments like the 
Himalayas, advanced bias correction techniques should be investigated and used to 
improve the accuracy of gridded datasets, correcting anomalies, and enhancing their 
reliability. Integration of satellite-derived data may also provide insightful information 
on climatic variables to enhance gridded datasets and observed data for a more com
prehensive understanding of climate dynamics.

Conducting localized validation activities that compare high-quality observed data 
at specific locations with gridded datasets is of utmost importance within an academic 
context. This methodology serves to identify and resolve any limitations within the 
datasets, particularly in areas characterized by complex topography. Further research 
should focus on delving into the complex climatic dynamics of the Himalayas, with a 
specific emphasis on evaluating the efficacy of gridded datasets in capturing regional 
variations in temperature and precipitation. It is crucial to prioritize enhancing pre
cipitation modelling techniques within gridded datasets, especially in locations with 
diverse topography, to address existing research gaps. Furthermore, exploring the 
integration of different gridded datasets with observed data holds immense potential 
for the development of hybrid datasets that effectively combine the strengths of each 
dataset while mitigating their limitations. Adopting this integrated approach has the 
potential to yield more accurate climate assessments and enhance our comprehension 
of climate variability in regions with limited data availability.

5.1. Correlation analysis

The correlation coefficients and corresponding p-values between the four gridded 
precipitation datasets - APHRODITE, IMDAA, CHIRPS, and CRU - and the 
observed station data are displayed in Figure 12. Strong positive correlations (0.8) 
with APHRODITE, IMDAA, and CHIRPS, moderate negative correlations (-0.23) 
with CHIRPS, and very weak positive correlations (0.04) with CRU have been 
observed in the observed data. APHRODITE exhibits positive correlations with CRU 
(0.42) and IMDAA (0.19) among the gridded datasets, and a modest positive connec
tion with CHIRPS (0.06). IMDAA and CRU show a similar amount of positive cor
relation (0.38), whereas IMDAA and CHIRPS show a moderate positive association 
(0.33). The correlation between CHIRPS and CRU is strongly positive (0.63). The 
p-values of these correlations offer details about their statistical significance. Lower 
p-values indicate that there is more evidence against the null hypothesis of no link. 
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This in-depth investigation aids in the assessment of the reliability and potential 
applications of observed station data and gridded precipitation datasets in meteoro
logical studies by facilitating an understanding of their linkages. APHRODITE has 
the highest correlation (0.8) with observed station data among the gridded precipita
tion datasets, showing a significant positive association. Notably, the observed station 
data displays a strong positive correlation (Z¼ 0.82) with APHRODITE, highlighting 
its reliability in detecting precipitation patterns more accurately than IMDAA, 
CHIRPS, and CRU. The Z values, which reflect standard scores, provide an empirical 
measure of the significance of the correlation. APHRODITE has the highest Z value 
among the datasets, indicating that it is the dataset that best correlates with the 
observed station data. This shows that, when compared to IMDAA, CHIRPS, and 
CRU, APHRODITE captures the spatial precipitation patterns more accurately.

While the correlations between IMDAA and CHIRPS are minor, and CRU has a 
very weak positive connection, the intensity of the association with APHRODITE 
emphasises its accuracy in representing observed precipitation patterns. When looking 
for accurate gridded precipitation data that corresponds well with ground-based 
observations, researchers and meteorologists may find APHRODITE particularly use
ful, increasing their trust in its applicability for many applications in climate and 
hydrological studies. Table S3 displays the p-values for the relationships between 
observed Tmax station data and two gridded precipitation datasets, IMDAA and 
CRU. Both CRU and IMDAA have negative P-values, indicating statistically signifi
cant negative correlations with the observed Tmax data. However, CRU (-0.57) has a 
greater negative correlation and a lower P-value than IMDAA (-0.49), implying a 
closer alignment with the observed data. This suggests that CRU may be a more reli
able alternative for locations with limited or no observed Tmax data, potentially mak
ing it helpful in data-scarce regions where accurate temperature information is 
critical for numerous applications in climate and environmental studies.

6. Conclusion

Understanding climate change at a regional level, such as the Jhelum basin in the 
Himalayas, is critical for developing effective strategies for adaptation and mitigation. 

Figure 12. Pearsons’s correlation between gridded and observed datasets a) P-value b) Z-value.
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In this study, we analysed climatic variability in the Jhelum basin using meteoro
logical parameters from different gridded datasets and observed climate data from the 
Indian Meteorological Department. The study is the first of its kind to perform a 
comparative analysis between various gridded climate data products across the 
Jhelum basin. It also compared gridded datasets with respective observed station data 
to determine the degree of bias present in various datasets, identify the best available 
gridded data product, and assess its feasibility for data-scarce areas in the North- 
Western Himalayas. It was identified that most of the gridded data products depicted 
unrealistic precipitation scenarios and represented increasing trends, while the actual 
observed precipitation depicted decreasing trends. In terms of temperature, all 
gridded datasets presented increasing trends but with significant differences in terms 
of absolute observed temperature. The IMDAA proved to be the best-gridded data 
product, depicting realistic trends that matched observed data but overrepresenting 
precipitation and showing considerable differences in areas located at higher eleva
tions. The study emphasises the need for caution when using gridded datasets solely 
for precipitation assessments in complex terrains like the Himalayas. It suggests bias- 
correcting gridded data with observed data and refining precipitation modelling by 
incorporating elevation factors, resultant precipitation, and temperature variations to 
better understand climatic variability. This will enable the application and integration 
of gridded products and observed datasets in scarce and eco-sensitive areas like the 
Jhelum basin in the Himalayas.
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