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1. INTRODUCTION

The concept of tracking has been central to control engi-
neering. While the use of set-point tracking (described as
error-controlled regulation by Ashby (1956)) has become
the de facto standard for such tasks, the notion of ‘al-
ways keeping close to the reference’ does not accurately
represent the mission specifications of many practical ap-
plications. For example, when filming an automotive race
event using an unmanned aerial vehicle (UAV) with finite
battery resources, the goal may not necessarily be for the
target car to be tracked at the centre of the UAV camera
until the battery runs out, but instead to keep the car
always in the view of the camera (i.e. always in range,
abbreviated as ‘a.i.r.’), or have the car in the view of the
camera for the longest time possible, given the duration of
the race (i.e. not always in range, abbreviated as ‘n.a.i.r.’).

The design specifications of such applications can be classi-
fied as ‘in-range tracking’ problems. The key characteristic
of such problems is that the tracking performance of a
dynamic variable is evaluated against a given range ±δ

around a time-varying reference, with ‘in-range’ being the
desired outcome and ‘out-of-range’ being undesirable.

Importantly,

• Inside each sub-category of ‘in-range’ and ‘out-of-
range’, there should be no preferences regarding how
close the tracking is achieved against the reference
point.

• The desire to stay in range should not equate to a
requirement for the tracker to always stay in range.
In many practical problems, going momentarily out
of range may yield overall better outcomes.

In an optimisation-based control setting, the traditional
optimal control problem (OCP) formulations do not rep-
resent the nature of ‘in-range tracking’ problems well:

• The quadratic regulation cost for set-point tracking,
as in Rawlings et al. (2017), focuses on the reduction
of tracking error magnitude (often subject to a trade-
off with control efforts),

• For a.i.r. problems, formulating an OCP with the
range specified as constraints can yield the same
result as ‘in-range tracking’ problems. However, for
solutions requiring the tracker to go momentarily out
of range (i.e. n.a.i.r.), adapting the constraints as soft
constraints (Kerrigan and Maciejowski, 2000) may
not be sufficient, since such a formulation will still
bias different solutions depending on the distance to
the range boundaries.

The characteristics mentioned above are visualised in
Figure 1 for a 1-D tracking problem. For the same energy
consumption, in-range tracking with the soft constraint
formulation achieves a 31.4% increase in mission duration
in comparison to set-point tracking by keeping the tracker
always in range, but not tightly following the target.
The in-range tracking formulation that allows the tracker
to move out of range can further increase the mission
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Fig. 1. Solutions to a 1-D tracking problem. All solutions
have equal energy usage. ‘a.i.r.’ stands for always-in-
range and ‘n.a.i.r.’ stands for not always-in-range.

duration by 245 s. With an additional in-range time of
54 s, the tracker can now track the target 43.0% longer
than set-point tracking.

In this paper, we explore suitable OCP formulations that
would solve the in-range tracking problems under a tra-
jectory optimisation setting, with the eventual aim of
incorporating the design into a nonlinear model predic-
tive control (NMPC) framework. The emphasis is on the
practical implementation of the n.a.i.r. formulation, which
is one of the main contributions of this work.

Sections 2 and 3 give a formal introduction to tracking
problems in optimisation-based control. In Section 4, we
propose techniques to improve the numerical performance
of the in-range tracking problems and Section 5 extends
the work to multi-agent formulations. Two examples, in-
cluding a multi-tracker and a higher-dimensional tracking
problems, are presented in Section 6. Finally, Section 7
highlights the concluding remarks and discussions for fu-
ture work.

2. SET-POINT TRACKING WITH OPTIMAL
CONTROL

A general OCP can be formulated as such

min
t0,tf ,p,x(·),u(·)

Φ(t0, tf ,x(t0), x(tf ), u(t0), u(tf ), p)

+

∫ tf

t0

L(x(t), u(t), p, t) dt
(1a)

s.t. f(x(t), ẋ(t), u(t), p, t) = 0, ∀t ∈ [t0, tf ] (1b)

g(x(t), ẋ(t), u(t), u̇(t), p, t) ≤ 0, ∀t ∈ [t0, tf ] (1c)

φ(t0, tf , x(t0), x(tf ), u(t0), u(tf ), p) ≤ 0, (1d)

with Φ the Mayer cost, L the Lagrange cost, f the dynam-
ics constraint functions related to the system differential-
algebraic equations, g the inequality path constraint func-
tions and φ the boundary constraint functions. This is
an infinite-dimensional optimisation problem with decision
variables x : R → R

n (the states) and u : R → R
m

(the inputs) being functions or trajectories. Static decision
variables p can be included as part of the problem formu-
lation as well, and the start time t0 and end time tf of the
problem can also be free. The objective functional (1a) is
often denoted by a single variable J with optimal value
denoted as J∗.

2.1 Set-point tracking

In optimisation-based control, set-point tracking is typi-
cally achieved through the minimisation of the following
quadratic regulation cost

J =

∫ tf

t0

e(t)⊤Qe(t) + u(t)⊤Ru(t) dt, (2)

with e(t) := x(t) − xr(t) the instantaneous tracking error
between x and reference xr. Q ⪰ 0 ∈ R

n×n and R ≻

0 ∈ R
m×m are weighting matrices addressing the relative

trade-offs between different variables and different terms
in the set-point tracking.

The quadratic regulation cost is typically used under
a fixed horizon. As the tracking errors are integrated
along the time horizon, having a free tf would naturally
favour solutions with short horizons. To solve problems
that require the tracking duration to be maximised, the
common approaches are to

• iteratively increases tf , which is fixed in the OCP
formulation, until the OCP becomes infeasible or the
tracking performance is no longer acceptable, or

• add additional trade-off terms in the objective formu-
lation, e.g. −ωtf with ω a trade-off weight.

In practice, the idea of having an acceptable range around
the reference also often applies to set-point tracking, to
evaluate the tracking performance posteriorly or to be
implemented as state or output constraints to ensure
the tracking performance. Nevertheless, the preference to
reduce tracking error always exists in such formulations.

3. IN-RANGE TRACKING

In contrast, in-range tracking only focuses on whether the
tracker is within a given range ±δ around a reference.
Within each outcome category of ‘in-range’ and ‘out-of-
range’, in-range tracking is invariant to the exact deviation
from the reference. Depending on whether ‘out-of-range’
instances are allowed, in-range tracking problems can be
tackled differently.

3.1 Always-in-range

The always-in-range (a.i.r.) formulation leverages the in-
equality path constraint (1c) to achieve tracking-in-range.
This approach strictly confines the trajectory to the de-
sired tracking range ±δ. We can formulate the constraint
as such for a single tracker:

(x(t)− xr(t))
2 − δ2 ≤ 0, ∀t ∈ [t0, tf ]. (3)

The a.i.r. problems are typically formulated with minimum
energy or control effort objectives using fixed tf , or with a
time duration maximisation objective using free tf . When
such path constraints are specified as hard constraints,
the state must be initialised within the range and stay
in the range. Since this may not always be feasible in a
real-world engineering situation, practical implementation
will typically see (3) implemented as soft constraints
by augmenting the original objective J with additional
terms penalising constraint violations, introducing a trade-
off between the objective minimisation and constraint
satisfaction.



 Nikilesh Ramesh  et al. / IFAC PapersOnLine 58-18 (2024) 53–58 55

Fig. 2. Lagrange cost comparison between different formu-
lations with xr = 1.5 m and δ = 1.5 m

3.2 Not always-in-range

In not always-in-range (n.a.i.r.) problems, in-range track-
ing is achieved via mathematically encoding this tracking
behaviour in the objective function along with the orig-
inal objectives. The stage cost formulation should yield
penalties when the tracked variables fall outside the range
and yield rewards otherwise, with no preference in the
magnitude of deviation from the reference in both cases.

A straightforward choice is to use an indicator function for
the Lagrange cost in the form

LH :=

{

α for xr − δ ≤ x ≤ xr + δ

β otherwise
(4)

with α and β constants representing respectively the
reward for the tracker to be in the range of the target,
and the penalty for staying outside the range. A graphical
representation of such a function with α = −2 and β = 0
is shown in Figure 2, where a range radius δ = 1.5 m
is considered for a target located at a position xr = 1.5
m. The differences between the Lagrange cost for set-
point tracking and the soft constraint formulation for a.i.r.
tracking can also be observed in the figure.

The desire for the tracker to stay in range can be achieved
through the minimisation of the Lagrange cost, i.e.

min
t0,tf ,p,x(·),u(·)

∫ tf

t0

LH(x(t), u(t), p, t) dt (5)

subject to relevant constraints (1b)–(1d). If the problem
specifications have other original objectives, e.g. to min-
imise energy consumption or control efforts, they need to
be augmented to (5) with suitable trade-off weights.

4. IMPROVING THE NUMERICAL PERFORMANCE
OF IN-RANGE TRACKING PROBLEMS

4.1 Choice of constants in the indicator function

Due to the integration in (1a) for the Lagrange cost, the
choice of α and β will not be shift-invariant, with some
design choices better suited for numerical computations
than others. Our key observations are

• Having α = 0 and β ≥ 0 should be avoided. This is
because different solutions with the tracker staying in
range throughout the time horizons will all have zero
costs, regardless of the duration of the problem [t0, tf ]
thus resulting in non-uniqueness of solutions.

(a) Cost with varying k1

(b) Regularised cost with varying k2 and constant k1 = 100

Fig. 3. Effect of constants k1 and k2 on the stage cost
approximation

• For problem specifications solely focusing on max-
imising the in-range time, having α < 0 and β = 0
is often a good choice, since the duration for which
the tracker stays outside the range is not directly pe-
nalised. This would allow the tracker to comfortably
stay outside the range if it is beneficial to increase the
overall in-range time.

4.2 Smooth approximation of the indicator function

The design of the Lagrange cost as a discontinuous in-
dicator function will pose many challenges when using
derivative-based numerical solvers. Therefore it is desir-
able to use designs of continuous-differentiable expressions
to approximate the desired shape of the original function.

The indicator function (4) can be viewed as the combina-
tion of two Heaviside functions (Abramowitz and Stegun,
1968), for which different smooth approximations exist in
the literature, e.g. by Iliev et al. (2015).

As an example, with α = −2 and β = 0,

LH ≈ LS := tanh (k1((x− xr)− δ))

+ tanh (k1(−(x− xr)− δ))

=
2

1 + e−2k1((x−xr)−δ)

+
2

1 + e−2k1(−(x−xr)−δ)
− 2.

(6)

With k1 a real-valued parameter. Figure 3a illustrates the
effect of choosing k1 on the smooth approximation of LH .

4.3 Regularisation

Despite the smooth approximation, the numerical solution
of the in-range tracking OCP could still be challenging.
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Fig. 4. Changes of the Lagrange cost as k1, k2 and ρ
increase iteratively

We find it practically beneficial to add an additional
regularisation term

LR :=
1

k2
(x− xr)

2, (7)

with regularisation weight k2 → ∞ for LR → 0.

To further reduce the impact of the regularisation term on
the trajectory of the tracker when it is in range, we can
optionally apply the quadratic regularisation only for the
out-of-range regions by having

LR :=
1

k2
max{(x− xr)

2 − δ2, 0}, (8)

and employ a smooth approximation of the maximum
operator for the computation of the numerical value. For
example, Kreisselmeier and Steinhauser (1979) proposed

max{s1, s2, ... sn} ⪅
1

ρ
· log(eρs1 + eρs2 + ... eρsn), (9)

with the accuracy of the approximation improving as
ρ → ∞. Figure 3b illustrates the effect of varying k2 with
k1 and ρ fixed.

Alternatively, we can define

LR :=
LI

k2

(

(x− xr)
2 − δ2

)

, (10)

with LI the smooth approximation of an indicator function

LI ≈

{

0 for xr − δ ≤ x ≤ xr + δ

1 otherwise
(11)

using the same method as in Section 4.2.

4.4 Solution strategy

With the smooth approximations and the regularisation,
the desire for the tracker to stay in-range can be achieved
by solving the following OCP

min
t0,tf ,p,x(·),u(·)

∫ tf

t0

LS + LR dt (12)

subject to relevant constraints (1b)–(1d).

In practice, it is unlikely that a single choice of k1, k2 and ρ
would be sufficient for the solver to efficiently and reliably
converge to a solution. Therefore, the OCP may need to
be iteratively solved with warm-starting, with k1, k2 and
ρ increasing after each iteration. Figure 4 illustrates the
convergence of the Lagrange cost iteratively towards the
original cost (4), with α = −2 and β = 0.

5. IN-RANGE TRACKING WITH MULTIPLE
TRACKERS

The advantages of in-range tracking are greater in sce-
narios with multiple trackers, to collaboratively track the
reference. The corresponding tracking requirement is typ-
ically specified as the desire to have at least one tracker in
the range of the target.

In terms of the OCP formulation, for a.i.r. problems, the
path constraints (3) would be reformulated as

min{(xi − xr)
2}Ni=1 − δ2 ≤ 0. (13)

for a problem with N agents with xi the position of the
ith agent. For n.a.i.r. problems, the objective will be based
on the minimum value of the Lagrange cost across all N
agents, i.e.

LS + LR := min{LSi
+ LRi

}Ni=1. (14)

The minimum operator can be non-smooth and non-
differentiable, posing challenges that need to be resolved
for practical computation benefits. Here we present two
alternatives levering again the smooth maximum operator
or using the complementary conditions. Here we will only
demonstrate the n.a.i.r. problems for simplicity, as the
treatment for a.i.r. problems is analogous.

5.1 Using the smooth maximum operator

As the first step, the minimum operator can be reformu-
lated using the maximum operator as follows

LS + LR := −max{−(LSi
+ LRi

)}Ni=1. (15)

Due to particular characteristics of the smooth maximum
approximation, direct use of (9) in (15) could lead to
undesirable behaviours. For a given ρ, the accuracy of
the smooth maximum would decrease when the values
of all elements are similar. Added to the fact that the
approximation is always larger than the true maximum,
the direct use of the smooth maximum would yield a lower
value for the Lagrange cost when all trackers are in range.
Therefore, such an implementation would unintentionally
introduce biases in the solution, in contradiction to the
original specification.

Practical workarounds are available to mitigate the im-
pact. Problems with choices of α < 0 and β = 0 in (4), for
instance, can compute

LS + LR := max{−γmax{−(LSi
+ LRi

)}Ni=1, α} (16)

instead, using the smooth maximum approximation with
γ > 1 a sufficiently large positive constant that can
be flexibly chosen. To demonstrate using an example,
consider a two-agent tracking problem with α = −2 and
β = 0. With at least 1 tracker in the range, (15) should
yield a value of −2 but the use of a smooth maximum
approximation with ρ = 1 would yield −2.69 for the
instances when both trackers are in range, and yield −2.13
when only 1 tracker is in range. When using (16) instead
with γ = 6, the Lagrange cost with the smooth maximum
approximation improves to −2.00 in both cases.

5.2 Using complementary conditions

In optimisation literature, the computation of the mini-
mum value operator can be avoided by reformulating the
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problem into a mathematical program with complementar-
ity conditions (MPCC). Betts (2010) presented the MPCC
reformulation for the minimum value operator which can
be adapted to the multi-agent in-range problem.

For a two-agent problem, if we let

l1 = (LS1
+ LR1

)

l2 = (LS2
+ LR2

)
(17)

then
min{LSi

+ LRi
}2i=1

= l1 + (l1 − l2)q, (18)
if q is chosen to minimise (l1 − l2)q subject to −1 ≤
q ≤ 0. This problem can be solved directly as a bi-level
optimisation problem or reformulated as an MPCC by
obtaining the necessary conditions for optimality for the
inner optimisation problem and implementing them as
constraints in the form of complementarity conditions for
the “outer” optimisation. In this case, we would have

0 ≤ λ1 ⊥ (1 + q) ≥ 0,

0 ≤ λ2 ⊥ −q ≥ 0,

with ⊥ representing the complementarity relationship and
λ1 the Lagrange multiplier for inequality constraint −1 ≤
q and λ2 the Lagrange multiplier for q ≤ 0.

Although the use of complementary conditions leads to a
more accurate representation of the minimum operator,
this framework is more difficult to scale with an increasing
number of agents, both in terms of the complexity of the
problem formulation and the number of decision variables.
In addition, solving nonlinear programming problems aris-
ing from MPCC can be challenging due to the violation of
constraint qualifications (Betts, 2010). As a result, our ex-
perience shows that the smooth maximum is a practically
more attractive solution for multiple tracker problems.

6. NUMERICAL EXAMPLES

To demonstrate the advantages of in-range tracking, two
additional example problems are presented to focus on
different aspects. All problems are transcribed using the
toolbox ICLOCS2 (Nie et al., 2018), and solved with interior
point NLP solver IPOPT (Wächter and Biegler, 2006) to a
relative convergence tolerance of 10−9.

6.1 Multi-tracker 1D in-range tracking with out-of-range
possibilities (n.a.i.r.)

The first example is a 1D in-range tracking problem with
two trackers, with the possibility for the tracker to stay
out-of-range if desirable. The system dynamics is a double
integrator representing simplified UAV dynamics

ẍi =
ui(t)

10
, for i = 1, 2 (19)

together with a simplified energy consumption model with
the rate of discharge of the battery state-of-charge (Ei in
%) modelled to have terms dependent on the tracker’s
velocity vi and the input ui, and a constant term to
account for a pseudo-hovering state:

Ėi = −0.085− (0.283ui)
2 − 0.566v2i , for i = 1, 2. (20)

In this example, we will also explore the changes in the
solution by using

Ėi =− 0.05(0.7 + tanh(xi − xb))

− (0.283ui)
2 − 0.566v2i ,

(21)

(a) In-range tracking (n.a.i.r.) without charging

(b) In-range tracking (n.a.i.r.) with charging

(c) Long horizon in-range tracking (n.a.i.r.) with charging

Fig. 5. Solutions to multi-tracker 1D in-range tracking
problems

instead. This dynamics equation includes a slow wireless
charging capability when the vehicles are near their base
station xb.

The main objective is to maximise the in-range tracking
time for fixed tf with (12), with a secondary objective
to minimise the total energy consumption through the
maximisation of E1(tf ) + E2(tf ). The initial state-of-
charge for the batteries, E1(t0) and E2(t0), are both fixed
at 80%. The trackers are initialised at the base and are
required to come back to the base station at xb = −18m
at the end of the mission with at least 10% of battery
remaining.

The problems are solved using the automatic regularisa-
tion feature of ICLOCS2 with k1 = [1, 10, 40] and k2 =
[105, 3× 105, 106] respectively for each iteration, and with
a choice of ρ = 1. The solution trajectories are illustrated
in Figure 5.

Comparing Figure 5a and 5b, it can be observed that
the opportunity to charge at the base has led to sub-
stantial changes in the solution: the duration for which
both trackers are in-range at the same time has been
significantly reduced. With charging and in-range tracking
working together, Figure 5c shows that the two trackers
can easily keep the target in range for more than 1500
seconds, whereas standard set-point tracking for this prob-
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Fig. 6. Power required for steady level flight as a function
of airspeed and angle of attack

Fig. 7. Solution to a 3D always-in-range problem formula-
tion with fixed wing dynamics

lem would typically only allow an endurance of around 350
seconds for each tracker.

6.2 Single-tracker always-in-range tracking (a.i.r.) in 3D

The simplified model in the previous example has certain
characteristics that may give the misconception that in-
range tracking leads to slow movements of the tracker. We
aim to use this second example of 3D in-range tracking
with fixed-wing UAV to demonstrate an opposite case.

Based on Liu et al. (2017), the dynamics for the fixed-wing
UAV have different characteristics and the power required
to maintain steady flight is no longer the lowest at zero
airspeed, as shown in Figure 6. In fact, there will be an
optimal airspeed to achieve maximum endurance.

We extended the a.i.r. formulation (3) to a 3D problem,
effectively representing an UAV camera having zero-vision
at a height of 0m, and a 40m radius vision when flying at
the ceiling of 130m. The aim is to keep the target always
in the range of the vision. This results in an interesting
solution presented in Figure 7. Distinct from the previous
example, fixed-wing aerodynamics give rise to an optimal
trajectory where loitering and covering more distance
is more efficient. The in-range formulation leverages the
optimal cruise conditions to conserve energy, as opposed
to set-point tracking which consumes 6.1% more energy.

7. CONCLUSIONS AND FUTURE WORK

A framework for in-range trajectory optimisation has been
presented in this paper. The in-range formulation ad-
dresses a number of shortcomings of traditional set-point
tracking approaches for some real-world applications. By
being invariant to the exact deviation from the reference,

the optimal solutions obtained can have improved en-
durance or reduced energy consumption, as shown in the
examples. Furthermore, multiple mathematical techniques
to improve the performance of numerical solutions to these
problems, such as smooth approximations of indicator and
maximum operator functions, have been discussed.

Future work would focus on numerically efficient formula-
tions to extend the not-always-in-range problem to higher
dimensions, and a detailed analysis of the framework in
terms of mathematical properties. Further work will also
investigate the solution of in-range tracking problems in
closed-loop.
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