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Abstract

The two main competing theories proposed to explain the formation of massive (>10Me) stars—competitive
accretion and monolithic core collapse—make different observable predictions for the environment of the massive
stars during, and immediately after, their formation. Proponents of competitive accretion have long predicted that
the most massive stars should have a different spatial distribution to lower-mass stars, through the stars being either
mass segregated or being in areas of higher relative densities or sitting deeper in gravitational potential wells. We
test these predictions by analyzing a suite of smoothed-particle hydrodynamics simulations where star clusters
form massive stars via competitive accretion with and without feedback. We find that the most massive stars have
higher relative densities, and sit in deeper potential wells, only in simulations in which feedback is not present.
When feedback is included, only half of the simulations have the massive stars residing in deeper potential wells,
and there are no other distinguishing signals in their spatial distributions. Intriguingly, in our simple models for
monolithic core collapse, the massive stars may also end up in deeper potential wells because if massive cores
fragment then the stars that form are also massive, and dominate their local environs. We find no robust diagnostic
test in the spatial distributions of massive stars that can distinguish their formation mechanisms, and so other
predictions for distinguishing between competitive accretion and monolithic collapse are required.

Unified Astronomy Thesaurus concepts: Star forming regions (1565); Massive stars (732); Star formation (1569)

1. Introduction

The formation of massive stars is one of the least understood
aspects of star formation (Zinnecker & Yorke 2007). It is
unclear how massive stars can assemble their mass without
breaching the Eddington limit (Humphreys & Davidson 1979;
Sanyal et al. 2015), unclear whether they undergo a pre-main-
sequence phase in the same way that low-/intermediate-mass
stars do (Palla & Stahler 1991; Behrend & Maeder 2001),
unclear how massive they can be (Figer 2005; Crowther et al.
2010), and unclear how exactly they form with such high
masses (Hosokawa & Omukai 2009; Rosen et al. 2016).

There are two contrasting theories for how massive stars form.
The first, referred to as “competitive accretion,” posits that all
stars initially start with similar masses, and it is the lucky ones
that grow to high masses by virtue of forming in the most gas-
rich areas of the star-forming region (Zinnecker 1982; Bonnell
et al. 1997, 2001). Once they grow to substantial masses, they
dominate their local environs and grow to even larger masses.

The second theory, sometimes referred to as “monolithic
collapse,” posits that stars inherit their masses from their pre/
protostellar cores (McKee & Tan 2003; Krumholz et al. 2005),
and it is the core mass that dictates the final mass of the star
(Alves et al. 2007). Here, the assumption is that the massive
core does not fragment into lots of much less massive stars
(Krumholz 2006) and that the core does not accrete any
significant amount of leftover gas from the surrounding
envelope (in this scenario, it would become even more difficult
to distinguish between this and competitive accretion).

In addition to these two models, Vázquez-Semadeni et al.
(2019) propose the “global hierarchical collapse” (GHC)

model, whereby the masses of stars are set by the collapse of
the giant molecular cloud and subsequent Bondi–Hoyle–
Lyttleton accretion (Hoyle & Lyttleton 1939; Bondi &
Hoyle 1944; Bondi 1952). Padoan et al. (2020) propose the
“inertial–inflow” (I2) model, where massive stars gain their
mass from the convergence of gas flows driven by turbulence
in star-forming clouds. Recent observational studies (e.g., Liu
et al. 2023; Pillai et al. 2023) have used both the GHC and the
I2 models in the interpretation of their data.
While distinct from the competitive accretion and monolithic

collapse scenarios, the GHC and I2 models do share similarities
with both the more established theories, and from hereon we
only discuss competitive accretion and monolithic collapse as
these are arguably the most different (and hence likely to be
distinguishable in the spatial distributions of stars).
There are very few diagnostic observational tests that could

identify stars that formed via monolithic core collapse versus
stars that formed via competitive accretion. A “smoking gun”
for monolithic collapse would be the discovery of isolated
massive stars (Lamb et al. 2010; Bressert et al. 2012). Isolated
massive stars are those that could not have formed in a
clustered environment (as is required by competitive accretion,
Smith et al. 2009, though see Hsu et al. 2010) but that have not
been ejected from a star-forming region (Schoettler et al. 2019).
Ruling out ejection is particularly challenging (Gvaramadze &
Bomans 2008; Pflamm-Altenburg & Kroupa 2010; Oh et al.
2015), even in the era of multiepoch and multidimensional data
from Gaia (Farias et al. 2020; Schoettler et al. 2020).
A prediction of the competitive accretion theory is that the

most massive stars should sit in the deepest gravitational
potential wells in a star-forming region, in the locations where
the most gas was available to them as they were forming
(Bonnell & Bate 2006). This has led to the idea that mass
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segregation—where the most massive stars are more centrally
concentrated than the average-mass stars—would be observed
in star-forming regions where stars had formed via competitive
accretion (Maschberger & Clarke 2011; Liu et al. 2013; Wright
et al. 2014).

In previous work (Parker & Dale 2017) we have shown that
hydrodynamic simulations in which massive stars form via
competitive accretion usually lead to the most massive stars
residing in deeper potential wells although this does not always
translate into mass segregation or the most massive stars residing
in areas of relatively high stellar densities (Maschberger &
Clarke 2011).

In this paper, we extend this work to look for signatures in
the spatial distribution of massive stars in a larger suite of
simulations in which stars form via competitive accretion. We
compare the analysis of these simulations to idealized, or
“synthetic” star-forming regions, where we move the massive
stars to be more centrally concentrated, or to locations of high
relative surface densities, in addition to random distributions.
Finally, we analyze the spatial distribution of massive stars that
form in a simple model of monolithic core collapse.

The paper is organized as follows. In Section 2 we describe
our methods to analyze the spatial distribution of massive stars,
the smoothed-particle hydrodynamics (SPH) simulations from
Dale et al. (2014) and Dale (2017), the synthetic star-forming
regions, as well as our simple prescription for monolithic
collapse. In Section 3 we present our results. We provide a
discussion in Section 4, and we conclude in Section 5.

2. Method

2.1. Quantifying the Spatial Distributions of Massive Stars

2.1.1. Gravitational Potential

We follow Parker & Dale (2017) and calculate the
gravitational potential for each individual star, Φj:

( )åF = -
m

r
, 1j
i

ij

where mi is the mass of the ith star and rij is the distance

between the jth star and the ith star. When we calculate the

gravitational potential for each star in the SPH simulations, we

just consider the sink particles (stars) and not any gas

remaining from star formation. We discuss this assumption in

subsequent sections.
We calculate the median potential for all the stars in the star-

forming region, F̃all, and compare this to the median potential

of a subset of the most massive stars, F̃subset. We compare these
quantities via the ratio, ΦPDR,

˜

˜
( )F =

F
F

, 2PDR
subset

all

and a Kolmogorov–Smirnov test between the two distributions.

The significance of any differences between the distribution of

all of the individual stellar potentials, compared to the

distribution of the stellar potentials of the subset, is quantified

using the Kolmogorov–Smirnov test d statistic, and we reject

the hypothesis that the two distributions share the same

underlying parent distribution if the associated p-value is less

than 0.1.

2.1.2. Mass Segregation

We quantify the amount of mass segregation, which we
define as the most massive stars being closer to each other than
average stars, using the Allison et al. (2009) mass segregation
ratio, ΛMSR. This method constructs a minimum spanning tree
(MST)—a graph between a series of points where there are no
closed loops—for the subset of the most massive stars and
compares this to the MSTs of randomly chosen sets of stars.
ΛMSR is the ratio of the average length of randomly chosen

MSTs 〈laverage〉, divided by the length of the MST of the chosen
subset, lsubset:

( )L =
á ñ

s

s

-

+
l

l
. 3

l

l

MSR
average

subset
1 6 subset

5 6 subset

We conservatively estimate the uncertainty on ΛMSR by making

an ordered list of the random MST lengths and taking the

values that lie 1/6 and 5/6 of the way through the list.
Instances where ΛMSR> 1 indicate mass segregation (Allison

et al. 2009), but subsequent work (Parker & Goodwin 2015)
suggests that values of ΛMSR> 2 (with the lower uncertainty above
unity) are significant.

2.1.3. Relative Densities

Maschberger & Clarke (2011) developed a method to
quantify the relative local densities of massive stars compared
to the local densities around all stars in a star-forming region.
In order to make direct comparisons with observations,
Maschberger & Clarke (2011) used the local surface densities.
For each star, the local surface density out to the ten nearest
neighbors is calculated:

( )
p

S =
-N

r

1
, 4

N
2

where rN is the distance to the Nth nearest neighboring star (we

adopt N= 10 throughout this work).
Küpper et al. (2011) and Parker et al. (2014) introduced a

ratio between the median surface density for all the stars in the
region, S̃all, and the median surface density for a subset of the

ten most massive stars, S̃subset:

˜

˜
( )S =

S
S

. 5LDR
subset

all

The significance of any differences between the distribution of all

of the surface densities, compared to the distribution of surface

densities of the subset, is quantified using a Kolmogorov–

Smirnov test in a similar manner to the difference between the

stellar potentials.

2.2. SPH Simulations

We use simulations from Dale et al. (2014) and Dale (2017).
These simulations are an evolutionary extension of the first
simulations to model competitive accretion by Bonnell et al.
(1997, 2001), but in addition to modeling the formation of
massive stars, they also implement photoionizing and stellar
wind feedback from the most massive stars. Once three
massive stars exceeding 20Me have formed, each simulation is
split into two versions: a control run without feedback and a
run that implements the feedback.

2
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The two versions of each simulation are run until 3Myr. At this
time the most massive stars begin to leave the main sequence, and
dynamical interactions can be significant—neither process is
modeled in SPH simulations of this type. It is at this point that we
extract the sink particle distribution (their masses and positions)
and then analyze them with the metrics described in Section 2.1.
The simulations are described in detail in Dale et al. (2014) and
Dale (2017), but we summarize them in Table 1.

2.3. Synthetic Star-forming Regions

In order to demonstrate the effects of moving massive stars
on the average gravitational potential, degree of mass
segregation, and relative surface densities of the most massive
stars, we construct various synthetic star-forming regions with
different morphologies.

A significant amount of confusion abounds in the literature
(e.g., Maschberger & Clarke 2011; Parker & Goodwin 2015;
Guszejnov et al. 2022) on whether the ΛMSR or ΣLDR methods
measure the same properties (we contend that they do not) or
whether ΛMSR actually measures mass segregation (we contend
that it does). By including these synthetic morphologies, we
hope to negate some of this confusion. These idealized
morphologies will be used to interpret the outcome of both
the SPH simulations and our simulations of cores undergoing
fragmentation and monolithic collapse, which we describe in
Section 2.4.

Each star-forming region contains Nå= 300 stars. We adopt
three different spatial distributions. The first is a Plummer (1911)

sphere, in which we assign positions to stars based on the
method in Aarseth et al. (1974).
Second, we create associations following the method in

Parker & Meyer (2012). Here, we randomly produce ten
subgroups within a cubic volume (and then project in two
dimensions) and then randomly populate each of the subgroups
with Nå/10 of our stars, distributed in spheres where the
number density of stars n at position r follows the relation

( )µ -n r . 62.5

For completeness, we also adopt the box-fractal generating

method from Goodwin & Whitworth (2004). We refer the

interested reader to Goodwin & Whitworth (2004) for details

on how the box fractals are generated. For one set of

simulations we adopt a fractal dimension D= 1.6, which

results in a highly substructured distribution (in three

dimensions—again we project into two dimensions), and for

another set of simulations we adopt D= 2.0, which results in a

moderate degree of substructure.
In all regions, we select stellar masses from the Maschberger

(2013) initial mass function (IMF), which has a probability
distribution function of the form

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟( ) ( )

m m
µ +

a a b- - -

p m
m m

1 . 7

1

Table 1

A Summary of the Ten Different Pairs of SPH Simulations

Simulation ID Feedback References ainit
SPH Rcloud Mcloud Nstars Mregion

(pc) (Me) (Me)

J None Dale et al. (2014) 0.7 5 10,000 578 3207

J Photoionization + wind Dale et al. (2014) 0.7 5 10,000 564 2186

I None Dale et al. (2014) 0.7 10 10,000 186 1270

I Photoionization + wind Dale et al. (2014) 0.7 10 10,000 132 766

UF None Dale et al. (2014) 2.3 10 30,000 66 1392

UF Photoionization + wind Dale et al. (2014) 2.3 10 30,000 93 841

UP None Dale et al. (2014) 2.3 2.5 10,000 340 2718

UP Photoionization + wind Dale et al. (2014) 2.3 2.5 10,000 343 1926

UQ None Dale et al. (2014) 2.3 5 10,000 48 723

UQ Photoionization + wind Dale et al. (2014) 2.3 5 10,000 77 594

R11O None Dale (2017) 1.1 5 10,000 239 2679

R11O Photoionization + wind Dale (2017) 1.1 5 10,000 372 1853

R15L None Dale (2017) 1.5 5 10,000 170 2084

R15L Photoionization + wind Dale (2017) 1.5 5 10,000 282 1456

R15M None Dale (2017) 1.5 2.5 10,000 543 4747

R15M Photoionization + wind Dale (2017) 1.5 2.5 10,000 777 3177

R19S None Dale (2017) 1.9 5 10,000 80 1281

R19S Photoionization + wind Dale (2017) 1.9 5 10,000 160 1095

R19T None Dale (2017) 1.9 2.5 10,000 377 3530

R19T Photoionization + wind Dale (2017) 1.9 2.5 10,000 544 2492

Note. The values in the columns are the corresponding Run ID from Dale et al. (2014) or Dale (2017), the type of feedback in the SPH simulation (none, or

photoionization and stellar winds), the paper reference, the initial virial ratio of the original clouds ainit
SPH (to distinguish bound from unbound clouds), the initial radius

of the cloud in the SPH simulation (Rcloud), the initial mass of the cloud (Mcloud), the number of stars that have formed at the end of the SPH simulation (Nstars), and the

total stellar mass of this star-forming region (Mregion).
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In Equation (7) μ= 0.2Me is the scale parameter, or “peak” of

the IMF (Bastian et al. 2010; Maschberger 2013); α= 2.3 is

the Salpeter (1955) power-law exponent for higher-mass stars;

and β= 1.4 describes the slope of the IMF for low-mass

objects. We randomly sample this distribution in the mass

range 0.1–50Me, such that brown dwarfs are not included in

the simulations.
We create five realizations of each of the four morphologies

to check that none of the realizations we analyze are outliers—
the realizations we plot in Section 3 are the most representative
of each set of five. For each of the five realizations, we have
three versions, one where the massive stars are distributed
randomly, one where the massive stars are placed in the most
central locations in the realization, and one where the massive
stars are placed in the locations with the highest local densities.

2.4. Core Fragmentation

We produce a further set of model star-forming regions in
which we set up a distribution of prestellar cores and fragment
them into stars according to a simple prescription. The full
method is detailed in Alcock & Parker (2019), but we briefly
restate it here.

We assume the core mass function is the precursor to the
stellar IMF but shifted to higher masses by a factor equal to the
inverse of the star formation efficiency, ò. We set ò= 0.333 and
draw masses from the Maschberger (2013) IMF (Equation (7)),
but we now adopt m = 0.6core Me and sample masses in the
range =m 0.3core –300Me.

We distribute =N 300core cores in a fractal distribution using
the box-fractal method described in Goodwin & Whitworth
(2004), Lomax et al. (2011), and Daffern-Powell & Parker
(2020), with a high degree of substructure (fractal dimension
D= 1.6). For completeness, we also checked the results using a
smoother distribution (fractal dimension D= 2.6). In two sets of
simulations, we randomly allow the cores to fragment into
between one and five pieces (Alcock & Parker 2019). This
produces a fragment mass function that is consistent with the
IMF (likely to be because the mean number of fragments in this
scenario will be ∼three, roughly the inverse of our assumed star
formation efficiency). In the first set of simulations, we apply a
random offset to the positions of the fragments of 0.05 pc. In the
second set of simulations we increase the size of the random
offset to 0.25 pc to mimic a small degree of dynamical evolution.

In the third set of simulations, we restrict the fragmentation just
to the lower-mass cores, such that the most massive cores form
just one massive star but a core with mass�10Me fragments into
five pieces. We apply an offset of 0.05 pc to the fragments.

In a final set of simulations, we restrict the fragmentation to
just the high-mass cores, such that the least massive cores form
just one star but a core with mass >10Me fragments into five
pieces. We apply an offset of 0.05 pc to the fragments.

We then calculate the potentials, degree of mass segregation,
and relative surface densities on the fragments, as detailed in
Section 2.1.

3. Results

3.1. Competitive Accretion in SPH Simulations

We first describe the results from two versions of the same
SPH simulation of star formation. The first version is a control
run, where the gas is converted into stars (sink particles) but

there is no feedback from the most massive stars. The second
version is a run where photoionizing feedback, and stellar wind
feedback, from the most massive stars, act upon the gas that has
not yet formed stars.
This particular simulation (R15M from Dale 2017) was

chosen because the results are fairly representative of the
behavior of both the control runs and the runs with feedback in
each of the simulations. However, we list the results for all
pairs of simulations in Table 2 and present the figures for the
remaining pairs in Figures 8–25 in the Appendix.

3.1.1. SPH Control Run

In Figure 1 we show the results for the SPH control
simulation. Panel (a) shows the x−y projection, with the ten
most massive stars shown by the red circles. The relative size
of the red circle indicates where it resides in the list of the most
massive stars, with the largest circle indicating the most
massive star and the smallest circle indicating the tenth most
massive star.
In panel (b), we show the gravitational potential of the

individual stars as a function of their distance from the origin
along the x-axis. Again, the red circles show the locations of
the most massive stars.
The most massive stars appear to sit in deeper potentials than

most of the lower-mass stars, and this is confirmed in panel (c),
which shows the gravitational potential as a function of stellar
mass. The purple dashed line indicates the median potential for
all stars in the simulation, and the solid red line indicates the
median potential of the ten most massive stars. A Kolmogorov–
Smirnov (KS) test between the entire sample of stars and the
subset of the ten most massive stars returns a p-value of
4× 10−5, meaning we can reject the null hypothesis that they
share the same underlying parent distribution.
The ΛMSR mass segregation ratio is shown in Figure 1. We

plot the evolution of ΛMSR for the NMST most massive stars,
starting with NMST= 4 and increasing the numbers of stars in
the most massive subset. In no subsets do we detect a
significant deviation from unity, i.e., this simulation is not mass
segregated. In our ten sets of SPH control simulations, only one
(Run I) displays significant mass segregation and then only for
the four most massive stars. Inspection of Figure 11 in the
Appendix suggests the reason for this is that seven of the most
massive stars sit within the same subcluster in the simulation.
The most massive stars do, however, reside in areas of

significantly higher stellar densities than the average stars in the
simulation. This is shown in Figure 1(e) where we plot the
local surface density around each star as a function of its mass.
The median surface density for the cluster is shown by the
black dashed line, and the median surface density for the ten
most massive stars is shown by the solid red line. The surface
density ratio, ΣLDR= 7.97, and a KS test between the densities
for all stars and the densities of the most massive subset returns
a p-value of 2× 10−3, suggesting we can reject the hypothesis
that they share the same underlying parent distribution.
The simulation shown in Figure 1 is broadly representative

of all of the SPH control run simulations; in all of the control
run simulations, the most massive stars sit in deeper
gravitational potentials. In six out of ten simulations, they
have significantly higher-than-average surface densities but are
not mass segregated (i.e., the massive stars are not closer
together than the average-mass stars—the exception being
Run I). In one simulation (UF), the relative surface density of
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the most massive stars is very low (ΣLDR= 0.03) although this
is not statistically significant due to the very small total number
of stars in this simulation (Nstars= 66).

3.1.2. SPH Dual Feedback Run

In Figure 2 we present the same SPH simulation (R15M) but
the version in which feedback from photoionizing radiation,
and the stellar winds, from massive stars is implemented. The
visual differences between simulations with feedback, com-
pared to those without, are only obvious when looking at the
column densities of gas, and we refer the reader to Dale et al.
(2014) and Dale (2017) for examples of these.

We show the projection in the x−y plane in Figure 2(a),
where the ten most massive stars are shown by the red circles.
We then show the gravitational potential as a function of
the distance from the center of the star-forming region along
the x-axis in Figure 2(b). We quantify the depth of the
gravitational potential for all stars compared to the most
massive stars in Figure 2(c), where we show the gravitational
potential for each star as a function of the individual mass of
the stars. The median potential for all stars is shown by the
purple dashed line, and the median potential for the ten most
massive stars is shown by the solid red line. As with the control
run, the median potential of the most massive stars is larger
than the median for all stars, and a KS test between the two
samples returns a p-value of 7× 10−7, suggesting that they do
not share the same underlying parent distribution. The massive

stars sit in significantly deeper potentials in six out of ten
simulations with feedback, in contrast to the control runs,
where the massive stars sit in deeper potentials in all runs.
The mass segregation ratio, ΛMSR, is shown in Figure 2(d).

There is some deviation from unity; however, Parker &
Goodwin (2015) show in synthetic data that such deviations
could be random and recommend a threshold of ΛMSR> 2 for
significantly high-mass segregation ratios, which is not met in
this simulation.
In contrast to the control run without feedback, in this

simulation with feedback, the most massive stars do not reside
in areas of significantly higher-than-average stellar surface
densities (Figure 2(e)). The dashed black line indicates the
median surface density for all stars, and the solid red line
indicates the median surface density for the subset of the ten
most massive stars. The surface density ratio is ΣLDR= 2.93,
but a KS test between all of the stars, and the most massive,
returns a p-value of 0.15, meaning we cannot reject the
hypothesis that the two datasets share the same underlying
parent distribution. The massive stars do not attain significantly
higher surface densities in any of the simulations with
feedback, compared to six out of ten of the control runs.
In total, we have ten pairs of SPH simulations (one set of

control runs and one set of runs with feedback). In Figure 3 we
plot the mass segregation ratio for the four most massive stars
ΛMSR, 4 and its associated uncertainties with the error bars
against the surface density ratio, ΣLDR, for all ten pairs. Where
the surface density ratio is significantly above unity (as defined

Table 2

A Summary of the Results from the Ten Different Pairs of SPH Simulations

Simulation ID Feedback ΛMSR,4 ΛMSR,10 ΣLDR p-value ΦPDR p-value

J None -
+0.41 0.22
0.54

-
+0.76 0.64
1.02 15.3 5 × 10−5 1.03 3 × 10−2

J Photoionization + wind -
+1.69 0.96
2.01

-
+1.16 1.10
1.61 0.60 0.79 1.01 0.24

I None -
+125 49
165

-
+1.55 1.28
2.31 5.22 4 × 10−2 1.11 8 × 10−4

I Photoionization + wind -
+1.85 1.39
2.24

-
+0.85 0.68
0.94 0.25 0.39 1.03 0.40

UF None -
+0.33 0.07
0.63

-
+1.08 0.65
1.39 0.03 0.19 1.05 8 × 10−3

UF Photoionization + wind -
+11.1 7.6
13.6

-
+1.00 0.85
1.13 1.04 0.60 1.06 0.26

UP None -
+0.46 0.09
0.63

-
+0.88 0.72
1.12 0.72 0.43 1.09 8 × 10−4

UP Photoionization + wind -
+0.53 0.20
0.68

-
+0.84 0.69
1.12 0.57 0.78 1.07 6 × 10−2

UQ None -
+0.36 0.06
0.59

-
+0.67 0.54
0.90 11.1 2 × 10−2 1.21 2 × 10−2

UQ Photoionization + wind -
+2.10 1.33
2.38

-
+0.86 0.67
0.93 3.92 0.32 1.11 1 × 10−2

R11O None -
+0.69 0.37
1.08

-
+0.93 0.81
1.24 0.52 0.96 1.08 1 × 10−4

R11O Photoionization + wind -
+1.33 0.66
1.62

-
+1.29 0.99
1.61 0.89 0.91 1.00 0.77

R15L None -
+0.79 0.64
1.09

-
+1.17 0.64
1.41 8.11 5 × 10−2 1.10 1 × 10−6

R15L Photoionization + wind -
+2.04 1.53
2.78

-
+1.16 1.00
1.31 1.06 0.41 1.13 1 × 10−2

R15M None -
+1.45 0.59
2.36

-
+1.81 1.41
2.31 7.97 2 × 10−3 1.11 4 × 10−5

R15M Photoionization + wind -
+1.35 0.75
1.72

-
+1.71 1.24
1.83 2.93 0.15 1.10 7 × 10−7

R19S None -
+1.14 0.31
2.06

-
+1.18 0.72
1.59 4.18 9 × 10−2 1.10 1 × 10−2

R19S Photoionization + wind -
+1.00 0.61
1.25

-
+1.00 0.82
1.16 1.82 0.60 1.08 3 × 10−2

R19T None -
+3.18 0.78
4.79

-
+1.46 0.79
1.68 2.55 0.25 1.11 6 × 10−5

R19T Photoionization + wind -
+1.46 0.62
2.00

-
+1.15 0.86
1.38 0.97 0.56 1.10 2 × 10−4

Note. The values in the columns are the corresponding Run ID from Dale et al. (2014) or Dale (2017); the type of feedback in the SPH simulation (none, or

photoionization and stellar winds); the mass segregation ratio (and uncertainties) for the four most massive stars, ΛMSR,4; the mass segregation ratio (and uncertainties)

for the ten most massive stars, ΛMSR,10; the relative surface density ratio for the ten most massive stars, ΣLDR and its associated p-value; and the relative potential

difference ratio of the ten most massive stars, ΦPDR, and its associated p-value.
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by a KS test between the most massive stars and all stars in the

simulation, where the p-value is less than 0.1), we plot a filled

red circle. If the most massive stars sit significantly deeper in

the gravitational potential (again, as defined by the KS test

p-value p< 0.1), then we plot a larger cyan circle.
In the control run simulations (Figure 3(a)), the massive stars

always sit in deeper potentials, which is as predicted by the

earliest incarnations of the competitive accretion theory

(Zinnecker 1982). However, in only half of these simulations

are the massive stars in areas of higher-than-average stellar

density, and only in one region are the most massive stars mass

segregated, i.e., closer to each other than the average stars.
When feedback is implemented in the simulations

(Figure 3(b)), the massive stars may or may not sit in deeper

potentials (they do in half of these simulations). The main

action of feedback in the context of the spatial distribution of

massive stars is that they no longer reside in areas of high

stellar surface densities, and only in one simulation (UF) do we

see a high degree of mass segregation.

3.2. Synthetic Datasets

We now use “synthetic” star-forming regions to determine
the spatial distributions of massive stars, including their

gravitational potentials with respect to lower-mass stars, their

relative surface densities, and the degree of mass segregation,

for three different scenarios.
In the first, we assume the stars (including the most massive)

are distributed randomly. In the second, we assume that the
stars form in the most central locations, and we switch the

positions of the most massive stars with the stars that are

closest to the center of the star-forming region. In the third

scenario, we assume that the massive stars form in areas of high
relative surface density, and we switch the positions of the most

massive stars with the stars of highest surface density.
We do this for four different types of morphology; we start

by adopting a Plummer sphere, which has a smooth, centrally

concentrated distribution. We then show the results for a

substructured association and then the results for a highly
substructured box fractal with fractal dimension D= 1.6. We

Figure 1. Results from a representative SPH control run (i.e., where there is no feedback from the most massive stars), simulation R15M from Dale (2017). In all
panels we show the end point of the simulation. In panel (a), we show a projection of the simulation in the x−y plane. In panel (b), we show the gravitational potential
of each star in the x-axis. In panels (a) and (b), the ten most massive stars are shown by the red circles. The relative size of the red circle indicates where it resides in the
list of the most massive stars, with the largest circle indicating the most massive star and the smallest circle indicating the tenth most massive star. In panel (c), we
show the potential of each star plotted against the individual stellar masses. The median potential for all of the stars is shown by the dashed horizontal purple line, and
the median potential for the ten most massive stars is shown by the solid red line. In panel (d), we show the ΛMSR mass segregation ratio as a function of the NMST

most massive stars. The mass corresponding to this NMST value is shown on the top ordinate. The red horizontal dashed line represents ΛMSR = 1, i.e., no mass
segregation. In panel (e), we show the local surface density of each star plotted against the individual stellar masses. The horizontal blue dashed line shows the median
surface density of all stars, and the solid red line shows the median surface density of the ten most massive stars.
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also analyzed the results for a more moderately substructured

box fractal with fractal dimension D= 2.0 but did not find any

significant differences compared to the more substructured

fractal, so we omit these results from the paper.

The results for a typical realization of a Plummer sphere are

shown in Figure 4. In this figure, the first column shows the

results for the random distribution of stars, the middle column

shows the results for centrally concentrated massive stars, and

the right-hand column shows the results for massive stars in the

locations of highest surface density.

Due to the morphology of the Plummer sphere, the spatial

distributions of the massive stars are very similar when they are

centrally concentrated as they are when the massive stars are in

areas of highest surface density (as in effect the massive stars

reside at the center in both cases). The first row shows the x−y

projections, the second row shows the gravitational potential

along the x-axis, the third row shows the ΛMSR mass

segregation ratio, and the final row shows the Σ−m plot, used

to quantify differences in the relative densities of the most
massive stars.
When the massive stars are randomly distributed (left

column), the massive stars do not sit in deeper potentials than
the average stars, nor are they mass segregated, nor are they in
areas of higher-than-average surface density. However, when
they are centrally concentrated or in locations of higher-than-
average density, they sit deeper in the potential, are mass
segregated, and display high surface densities.
While a Plummer sphere is a reasonable spatial distribution

for an old, evolved star cluster, observations (Gomez et al.
1993; Cartwright & Whitworth 2004; Sánchez & Alfaro 2009;
Hacar et al. 2016; Buckner et al. 2019) and simulations
(Schmeja & Klessen 2006; Dale et al. 2012, 2013, 2014)
suggest that most star-forming regions form with spatial and
kinematic substructure.
Our next synthetic morphology is designed to mimic the

substructure in a young star-forming region, or an older
association, and we show an example in Figure 5. As with the

Figure 2. Results from a representative SPH dual feedback run (i.e., where there is photoionizing feedback, and feedback from the stellar winds, from the most
massive stars), simulation R15M from Dale (2017). In all panels we show the end point of the simulation. In panel (a), we show a projection of the simulation in the
x−y plane. In panel (b), we show the gravitational potential of each star in the x-axis. In panels (a) and (b), the ten most massive stars are shown by the red circles. The
relative size of the red circle indicates where it resides in the list of the most massive stars, with the largest circle indicating the most massive star and the smallest
circle indicating the tenth most massive star. In panel (c), we show the potential of each star plotted against the individual stellar masses. The median potential for all
of the stars is shown by the dashed horizontal purple line, and the median potential for the ten most massive stars is shown by the solid red line. In panel (d), we show
the ΛMSR mass segregation ratio as a function of the NMST most massive stars. The mass corresponding to this NMST value is shown on the top ordinate. The red
horizontal dashed line represents ΛMSR = 1, i.e., no mass segregation. In panel (e), we show the local surface density of each star plotted against the individual stellar
masses. The horizontal blue dashed line shows the median surface density of all stars, and the solid red line shows the median surface density of the ten most massive
stars.
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Plummer sphere, the left-hand column shows the association

when the massive stars are distributed randomly, the middle

column shows the association when the most massive stars are

centrally concentrated, and the right-hand column shows the

association when the most massive stars have been moved to

the positions where the stellar surface density is highest.
In the random distribution, the most massive stars do not sit

deeper in the gravitational potential, nor are they mass

segregated, nor do the most massive stars reside in significantly

higher surface densities. When the most massive stars are

moved to the most central locations (middle column of

Figure 5), they do sit deeper within the potential, and they

are mass segregated. However, the massive stars are not located

in area of high surface densities (Figure 5(k)). When we move

the most massive stars to the locations of highest surface

densities, they again sit deeper in the gravitational potential but

are not mass segregated (Figure 5(i)).
We have repeated this experiment for two other types of

substructured regions, namely a box fractal with a high degree of

substructure (D= 1.6) and a box fractal with a moderate degree of

substructure (D= 2.0). We show an example of the highly

substructured (D= 1.6) fractal in Figure 6. The results are

qualitatively similar to the those for the association shown in

Figure 5, save for the scenario where the most massive stars are

moved to the most central locations of the fractal; this causes the

massive stars to reside in locations of significantly lower surface

densities than the average stars in the region (compare the

association in Figure 5(k) to the fractal in Figure 6(k)).
In reality, massive stars would be unlikely to reside in a

centrally concentrated configuration without also being sur-

rounded by many low-mass stars (as is the case in the centrally

concentrated Plummer spheres). This would occur because

low-mass stars would also congregate in the main gravitational

potential in the event of dynamical mass segregation; or, if the

massive stars formed in a centrally concentrated configuration,

they would likely be surrounded by a significant number of
low-mass stars (Weidner & Kroupa 2006).
Of all our synthetic models, the most likely scenario might be

the occurrence of massive stars in regions of higher-than-average
surface density (like those shown in the right-hand column of
Figure 5). However, as we have seen in the SPH simulations with
stellar feedback (Figure 3(b)), we might not expect high surface
densities around the most massive stars from formation.

3.3. Core Fragmentation and Monolithic Collapse

We now describe a set of simulations similar to those in Alcock
& Parker (2019) in which we allow a distribution of pre/
protostellar cores (a fractal distribution like that shown in
Figure 6) to fragment into stars. The results are shown in
Figure 7 and in Tables 3 and 4. In Figure 7, panel (a) shows the
scenario where our cores randomly fragment into between one
and five stars but do not travel far from their fragmentation sites.
Panel (b) shows the scenario where objects formed from random
core fragmentation into between one and five stars but the
fragments have an offset of 0.25 pc applied in a random direction
to mimic the effects of dynamical evolution. Panel (c) shows the
scenario for fragments where the cores more massive than 10Me
remain as a single object but the lower-mass cores fragment into
between one and five stars. Panel (d) shows the scenario for
fragments where the cores more massive than 10Me fragment
into five stars but the low-mass cores only form single stars. Each
point represents a different realization of the same simulation, and
we run 100 of each case. Where the most massive stars have
significantly higher densities than the average stars in a region, we
plot an open square in addition to the point, and when the most
massive stars sit in deeper potentials, we plot a larger open circle.
Similar to Alcock & Parker (2019), we find that enabling cores

to fragment often produces significant mass segregation in the
entire distribution of fragments. This is seen in Figure 7(a) in the
number of black points with ΛMSR> 2. Interestingly, the majority

Figure 3. A summary of the results from our full suite of SPH simulations. In panel (a), we show the results from the control simulations, and in panel (b,) we show
the results for the SPH simulations with dual feedback (photoionizing radiation and winds from massive stars). We show the mass segregation ratio for the four most
massive stars, ΛMSR, 4, with uncertainties as defined in Equation (3), against the local surface density ratio ΣLDR. When ΣLDR significantly exceeds unity (i.e., the most
massive stars are in areas of higher-than-average local densities), we plot a larger filled circle. Where the most massive stars sit in significantly deeper potential wells
than the average-mass stars, we also plot a larger open circle. The horizontal dashed line indicates ΛMSR = 1 (no mass segregation), and the vertical dashed line
indicates ΣLDR = 1 (the massive stars are not in areas of higher or lower surface density).
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Figure 4. A typical realization of a synthetic Plummer sphere. The left-hand column shows the results when the ten most massive stars are distributed randomly, the
middle column shows the results when the most massive stars are moved to the most central locations, and the right-hand column shows the results when the massive
stars are moved to the locations with the highest relative densities. The top row shows the x−y positions, with the most massive stars shown in red. The relative size of
the red circle indicates where it resides in the list of the most massive stars, with the largest circle indicating the most massive star, and the smallest circle indicating the
tenth most massive star. The second row shows the gravitational potential for each star, where the solid red line is the median potential for the most massive stars and
the dashed purple line is the median potential for all stars. The fourth row shows the ΛMSR mass segregation ratio, where ΛMSR = 1 is shown by the red dashed line.
The bottom row shows the surface density for each star as a function of its mass; the solid red line indicates the median for the most massive stars, and the blue dashed
line shows the median for all stars.
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Figure 5. A typical realization of a synthetic association. The left-hand column shows the results when the massive stars are distributed randomly in the association,
the middle column shows the results when the most massive stars are moved to the most central locations, and the right-hand column shows the results when the ten
most massive stars are moved to the locations with the highest relative densities. The top row shows the x−y positions, with the most massive stars shown in red. The
relative size of the red circle indicates where it resides in the list of the most massive stars, with the largest circle indicating the most massive star, and the smallest
circle indicating the tenth most massive star. The second row shows the gravitational potential for each star, where the solid red line is the median potential for the
most massive stars and the dashed purple line is the median potential for all stars. The fourth row shows the ΛMSR mass segregation ratio, where ΛMSR = 1 is shown
by the red dashed line. The bottom row shows the surface density for each star as a function of its mass; the solid red line indicates the median for the most massive
stars, and the blue dashed line shows the median for all stars.
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Figure 6. A typical realization of a synthetic fractal. The left-hand column shows the results when the massive stars are distributed randomly in the fractal, the middle
column shows the results when the most massive stars are moved to the most central locations, and the right-hand column shows the results when the ten most massive
stars are moved to the locations with the highest relative densities. The top row shows the x−y positions, with the most massive stars shown in red. The relative size of
the red circle indicates where it resides in the list of the most massive stars, with the largest circle indicating the most massive star, and the smallest circle indicating the
tenth most massive star. The second row shows the gravitational potential for each star, where the solid red line is the median potential for the most massive stars and
the dashed purple line is the median potential for all stars. The fourth row shows the ΛMSR mass segregation ratio, where ΛMSR = 1 is shown by the red dashed line.
The bottom row shows the surface density for each star as a function of its mass; the solid red line indicates the median for the most massive stars, and the blue dashed
line shows the median for all stars.
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Figure 7. Simulations in which a population of pre/protostellar cores are allowed to fragment into stars and where we measure the mass segregation ratio, ΛMSR;
relative surface density ratio ΣLDR; and relative gravitational potential, of the most massive stars, compared to low-mass stars. Each point represents one simulation
(we repeat the experiment 100 times). Where the massive stars have significantly higher surface densities compared to the average stars, we add an open square
symbol. Where the most massive stars sit in significantly deeper gravitational potentials, we plot a larger open circle. Panel (a) shows the results for cores that are
allowed to randomly fragment into between one and five stars; panel (b) shows the same experiment, but the fragments are allowed to move up to 0.25 pc from their
birth core; panel (c) shows the results where the most massive cores do not fragment but low-mass (�10 Me) cores fragment into five stars; and panel (d) shows the
results where the most massive cores fragment but low-mass cores do not. In all panels, the horizontal dashed line represents ΛMSR = 1 (no mass segregation), and the
dashed vertical lines represents ΣLDR = 1 (the massive stars do not reside in areas of relatively higher or lower surface densities).

Table 3

Summary of the Main Core Fragmentation Results for a Highly Substructured (Fractal Dimension D = 1.6) Star-forming Region

Type of fragmentation ΛMSR ΣLDR ΦPDR ΛMSR and ΣLDR ΛMSR and ΦPDR ΦPDR and ΣLDR ΛMSR and ΣLDR and ΦPDR

Random 6 1 39 1 29 3 2

Random + dynamics 10 5 9 2 10 0 2

Only low-mass fragmentation 1 3 13 0 2 0 0

Only high-mass fragmentation 5 0 4 2 30 4 32

Note. We list the results for the four different core fragmentation cases: (a) random, (b) random with some dynamical evolution of the fragments, (c) fragmentation of

the low-mass (�10 Me) cores only, and (d) fragmentation of the high-mass (>10 Me) cores only. Each of these cases is shown in the respective panel in Figure 7. We

show the numbers of simulations that are significantly mass segregated (ΛMSR > 2) only; the numbers that have significantly high relative surface densities only; and

the numbers where massive stars sit in significantly deeper potentials only. We then show the numbers of simulations with various combinations of significantly high

ΛMSR, ΣLDR, and ΦPDR and finally show the numbers of simulations in which all three measures are significantly high.
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of these reside in areas of relatively low surface density (more
than half the points have ΣLDR< 1), but in most of the regions the
massive stars reside in deeper gravitational potentials than the
low-mass stars (the regions where the massive stars reside in
deeper potentials are shown by a larger open circle). These
distributions are most similar to the scenario shown in the middle
columns of Figures 5 and 6, where the massive stars can be
centrally concentrated but not in areas of high surface density.

In the simulations where the fragments are allowed to move
up to 0.25 pc due to dynamical evolution (Figure 7(b)), the
numbers of mass segregated regions is lower, as are the
numbers of regions where the most massive stars reside in
deeper potentials than the low-mass stars. The numbers of
regions where the most massive stars high higher relative
surface densities is similar.

Third, we restrict the fragmentation of the cores such that the
most massive cores (>10Me) do not fragment but the lower-
mass cores fragment into five stars. This is to mimic a scenario
where the most massive cores are prevented from fragmenting
but the low-mass cores are allowed to fragment, such that we
recover the IMF (Alcock & Parker 2019).

The results are shown in Figure 7(c). In this scenario, the
most massive stars do not have a different spatial distribution to
the low-mass stars in 80% of the star-forming regions.
However, we note that in 15 out of 100 regions, the most
massive stars sit in deeper potentials although in no region does
this also correspond to the most massive stars residing in
locations of high relative densities. Two of the regions where
the most massive stars sit in deeper potentials display
significant mass segregation (ΛMSR> 2).

Finally, when we prevent the low-mass cores from
fragmenting but allow the high-mass cores to fragment into
five objects, we see significant numbers of star-forming regions
where the fragments are mass segregated, and they lie in deeper
potential wells (Figure 7(d)). Some of these regions (though not
all) also have massive stars with high relative surface densities.
The reason for the high numbers of mass-segregated fragments
is due to an already massive core splitting into closely
associated massive objects (Alcock & Parker 2019).

If we compare the fragmentation scenarios in Figure 7 with
the SPH results summarized in Figure 3, we see some overlap,
but there appears to be no fragmentation scenario that is
fully consistent with the competitive accretion simulations.
The closest is the random fragmentation scenario with no
dynamical evolution (Figure 7(a)), where about one-tenth of
the fragmentation simulations are mass segregated, the majority
have massive stars sitting in deeper potential wells, and several
have massive stars residing in areas of high local density. This

is consistent with the SPH control simulations (Figure 3(a))
though clearly these SPH simulations (by design) are missing
important physics, namely feedback.
The fragmentation simulations where only the low-mass cores

fragment (Figure 7(c)) is most similar to the SPH simulations
that have feedback (Figure 3(b)) though these fragmentation
simulations produce some regions where the massive stars reside
in high areas of local density, whereas none of the ten
SPH simulations show this.

4. Discussion

One of the predictions of the competitive accretion theory is
that the most massive stars might be expected to have a
different spatial distribution to low-mass stars if the reason for
their growth is due to access to a larger reservoir of gas. This
might be either deep in a gravitational potential well and/or in
the central region of the star-forming region as it is forming
stars, which may also translate into the most massive stars
residing in areas of high relative densities.
We find in our SPH simulations that where the massive stars

form from competitive accretion, the massive stars do sit in
deeper potential wells, and in the majority of these simulations
they have high relative surface densities only if the growth of
massive stars proceeds unchecked by feedback from the
massive stars. When feedback is implemented, the runaway
growth of massive stars is prevented, and the massive stars sit
deeper in potentials in only six out of ten simulations.
We have attempted to map the relation between the massive

stars sitting in deeper potentials and other measures of the
spatial distribution of massive stars, such as mass segregation.
In only one-tenth of the simulations are the massive stars truly
mass segregated (more centrally concentrated than the average
stars), and there is no dependence on feedback.
Other simulations of massive star formation find similar

results for star formation that occurs without feedback
(Maschberger & Clarke 2011; Myers et al. 2014), namely that
the most massive stars tend to be in areas of high relative
densities. Our simulations do not include magnetic fields, and
Myers et al. (2014) and Guszejnov et al. (2022) find that
magnetic fields may significantly affect the final spatial
distribution of the most massive stars.
In our synthetic simulations, the massive stars sitting in

deeper potential wells corresponds to high relative surface
densities and mass segregation only if the region is smooth and
centrally concentrated (like an old, evolved star cluster). When
there is spatial substructure (as is the case in our
SPH simulations, and in observed star-forming regions), then
mass-segregated stars sit in deep potentials but do not have

Table 4

Summary of the Main Core Fragmentation Results for an Almost Smooth (Fractal Dimension D = 2.6) Star-forming Region

Type of fragmentation ΛMSR ΣLDR ΦPDR ΛMSR and ΣLDR ΛMSR and ΦPDR ΦPDR and ΣLDR ΛMSR and ΣLDR and ΦPDR

Random 2 0 45 0 33 4 5

Random + dynamics 8 1 20 2 16 4 2

Only low-mass fragmentation 0 1 12 0 1 3 0

Only high-mass fragmentation 2 2 9 1 30 7 24

Note. We list the results for the four different core fragmentation cases: (a) random, (b) random with some dynamical evolution of the fragments, (c) fragmentation of

the low-mass (�10 Me) cores only, and (d) fragmentation of the high-mass (>10 Me) cores only. We show the numbers of simulations that are significantly mass

segregated (ΛMSR > 2) only; the numbers that have significantly high relative surface densities only; and the numbers where massive stars sit in significantly deeper

potentials only. We then show the numbers of simulations with various combinations of significantly high ΛMSR, ΣLDR, and ΦPDR and finally show the numbers of

simulations in which all three measures are significantly high.
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high relative densities. Conversely, if the massive stars are in
locations of high relative densities, they sit deeper in potential
wells but are not mass segregated.

We find that massive stars can also end up in deeper
potentials (and have high surface densities and/or be mass
segregated) in models in which we assume they form via
monolithic collapse and fragmentation of very massive cores.
We see significant suppression of these signals if massive cores
are not allowed to fragment but the lower-mass cores are.
However, if we allow some fragmentation of the massive cores,
we still form massive stars, and these massive stars still
dominate their local gravitational potentials.

We note, however, that our analytic models of massive star
formation via monolithic collapse contain no physics, beyond
the assumptions that stars will form in a substructured
distribution (Cartwright & Whitworth 2004; Hacar et al.
2016), that they will form cores with a mass distribution
similar to the core mass function in Alves et al. (2007), and that
these cores fragment into several stars. Ideally, the spatial
distributions of the most massive stars in our SPH simulations
of competitive accretion should be compared to the equivalent
simulations that model monolithic collapse to determine what
fraction of star-forming regions form massive stars that reside
in deeper potential wells and have high relative surface
densities and/or mass segregation.

The calculations of the gravitational potentials do not include
the gravitational potential of the gas as this was only present in
the SPH simulations and not in our synthetic datasets or core
fragmentation simulations. We would expect that the gas might
contribute to the potentials in the SPH control runs, but in the
simulations with feedback, the massive stars clear out gas from
their vicinities.

Dale et al. (2015) calculate the potentials in some of the
SPH simulations in this paper (J, I, UF, UP, and UQ) and
include the gas particles, as well as the star particles. In their
Figure 4, they present the results for Run I (see Figures 10 and
11 in the Appendix), and while the inclusion of the gas
particles does produce different distributions, the main
differences are similar—the control run has only one main
potential well, whereas the feedback run has several.

5. Conclusions

We present the results of SPH simulations of massive star
formation via “competitive accretion,” both with and without
feedback, to search for signs that the most massive stars have a
different spatial distribution to the low-mass, or average-mass
stars. We also present synthetic models of star-forming regions
in which the massive stars have a random spatial distribution,
and a centrally concentrated distribution, and where the
massive stars are in areas of high surface densities. We also
present analytic models of massive star formation via core
collapse and fragmentation to mimic the “monolithic collapse”
scenario. Our conclusions are the following:

(i) Massive stars that form via competitive accretion sit in
deeper gravitational potentials than the average-mass
stars and usually have higher-than-average local densities
when forming in simulations with no subsequent feed-
back from the massive stars. They do not, however,
exhibit mass segregation in the sense of being more
centrally concentrated than the average-mass stars.

(ii) When feedback is implemented, massive stars reside in
deeper gravitational potentials in only half of simulations,
and in none of these simulations are the massive stars in
locations of relatively high surface densities. One simulation
is mass segregated, but the remaining nine are not.

(iii) Our synthetic data models suggest that any interpretation of
the spatial distribution of massive stars must take into
account the morphology of a star-forming region. Where the
massive stars form in a smooth, centrally concentrated star-
forming region, the most massive stars will sit in deeper
potentials, be mass segregated, and have high relative surface
densities when the massive stars are centrally concentrated or
when they are in areas of high surface densities.

(iv) Most star-forming regions (both observed and simulated)
seem to form with spatial substructure. In this scenario,
the massive stars being centrally concentrated is a very
different type of distribution compared to when they are
in locations of high relative density. In the former
scenario, the massive stars sit in deeper potential wells
but have low relative densities and are mass segregated;
in the latter scenario the massive stars again are in deeper
potential wells but have high relative densities and no
mass segregation (like the SPH control runs).

(v) Analytic models that mimic massive star formation via core
collapse and fragmentation can also lead to the most
massive stars sitting in deeper potentials, even when the
most massive stars fragment differently to lower-mass stars.

(vi) The most basic analytic fragmentation models produce
spatial distributions of massive stars that are similar to
those produced by SPH control runs with no feedback
(which are most like the competitive accretion scenario).
While these SPH runs lack important physics compared
to the runs with feedback, they demonstrate a significant
degeneracy in distinguishing between signatures of
competitive accretion and monolithic collapse.

In summary, we conclude that observations of massive stars
residing in deep gravitational potentials (and higher relative
surface densities and/or mass segregation) may not be an
indication of their formation by competitive accretion, and it is
difficult to distinguish their formation from monolithic core
collapse in an individual star-forming region.
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Appendix

In this Appendix we provide plots for the remaining nine
pairs of SPH simulations that are not shown in Figures 1 and 2.
These simulation pairs are shown in Figures 8–25. The
symbols, lines, legends, etc., are the same as in Figures 1 and 2.
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Figure 8. J Control run.

Figure 9. J Dual feedback run.

Figure 10. I Control run.

Figure 11. I Dual feedback run.
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Figure 12. UF Control run.

Figure 13. UF Dual feedback run.

Figure 14. UP Control run.

Figure 15. UP Dual feedback run.
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Figure 16. UQ Control run.

Figure 17. UQ Dual feedback run.

Figure 18. R11O Control run.

Figure 19. R11O Dual feedback run.
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Figure 20. R15L Control run.

Figure 21. R15L Dual feedback run.

Figure 22. R19S Control run.

Figure 23. R19S Dual feedback run.
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900, 82
Palla, F., & Stahler, S. W. 1991, ApJ, 375, 288

Parker, R. J., & Dale, J. E. 2017, MNRAS, 470, 390
Parker, R. J., & Goodwin, S. P. 2015, MNRAS, 449, 3381
Parker, R. J., & Meyer, M. R. 2012, MNRAS, 427, 637
Parker, R. J., Wright, N. J., Goodwin, S. P., & Meyer, M. R. 2014, MNRAS,

438, 620
Pflamm-Altenburg, J., & Kroupa, P. 2010, MNRAS, 404, 1564
Pillai, T. G. S., Urquhart, J. S., Leurini, S., et al. 2023, MNRAS, 522, 3357
Plummer, H. C. 1911, MNRAS, 71, 460
Rosen, A. L., Krumholz, M. R., McKee, C. F., & Klein, R. I. 2016, MNRAS,

463, 2553
Salpeter, E. E. 1955, ApJ, 121, 161
Sánchez, N., & Alfaro, E. J. 2009, ApJ, 696, 2086
Sanyal, D., Grassitelli, L., Langer, N., & Bestenlehner, J. M. 2015, A&A,

580, A20
Schmeja, S., & Klessen, R. S. 2006, A&A, 449, 151
Schoettler, C., de Bruijne, J., Vaher, E., & Parker, R. J. 2020, MNRAS,

495, 3104
Schoettler, C., Parker, R. J., Arnold, B., et al. 2019, MNRAS, 487, 4615

Figure 24. R19T Control run.

Figure 25. R19T Dual feedback run.

19

The Astrophysical Journal, 974:8 (20pp), 2024 October 10 Parker et al.



Smith, R. J., Longmore, S., & Bonnell, I. 2009, MNRAS, 400, 1775
Vázquez-Semadeni, E., Palau, A., Ballesteros-Paredes, J., Gómez, G. C., &

Zamora-Avilés, M. 2019, MNRAS, 490, 3061
Weidner, C., & Kroupa, P. 2006, MNRAS, 365, 1333

Wright, N. J., Parker, R. J., Goodwin, S. P., & Drake, J. J. 2014, MNRAS,
438, 639

Zinnecker, H. 1982, NYASA, 395, 226
Zinnecker, H., & Yorke, H. W. 2007, ARA&A, 45, 481

20

The Astrophysical Journal, 974:8 (20pp), 2024 October 10 Parker et al.


	1. Introduction
	2. Method
	2.1. Quantifying the Spatial Distributions of Massive Stars
	2.1.1. Gravitational Potential
	2.1.2. Mass Segregation
	2.1.3. Relative Densities

	2.2. SPH Simulations
	2.3. Synthetic Star-forming Regions
	2.4. Core Fragmentation

	3. Results
	3.1. Competitive Accretion in SPH Simulations
	3.1.1. SPH Control Run
	3.1.2. SPH Dual Feedback Run

	3.2. Synthetic Datasets
	3.3. Core Fragmentation and Monolithic Collapse

	4. Discussion
	5. Conclusions
	Data Availability
	Appendix
	References

