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Distributed Multi-Agent Reinforcement Learning

for Heterogeneous NOMA-ALOHA Systems
Xueyu Wu, Youngwook Ko, and Andy M. Tyrrell

AbstractÐWith ever-growing machine type users in the 6G
wireless ecosystems, uncontrolled multiple access control (MAC)
is vital to alleviate random collision and fading in their transmis-
sion. In this paper, 2-steps random access method is applied for
a learning-aided non-orthogonal random access (NORA) system.
Specifically, each user independently selects a slot and a power
level for uplink packet transmission without any information
about other users’ selection and channel state information
(CSI); and the base station (BS) performs successive interference
cancellation (SIC) to decode packets from multiple users with
the use of power differences on the same slot. To design a
model-free multiple access under growing complexity and CSI
uncertainty, the joint slot and power level selecting problem is
modelled as a Markov decision process (MDP) where actions
are slot-power pairs. Multi-state Q-Learning algorithms and a
confidence-aided Q-Learning method are tailored for the NORA
system to solve the MDP under heterogeneous environments.
Simulation results show that the three proposed algorithms
help the distributed users to find their strategies for slot and
power level selections, improving system throughput and fairness
simultaneously. The proposed algorithms are particularly shown
to make superior performance compared to the benchmarks in
high congestion traffics scenarios. This is crucial for achieving
massive connectivity in 6G ecosystems, which requires intelligent
random access designs to accommodate the growing number of
machine type users in diverse conditions.

Index TermsÐReinforcement learning, distributed learning,
multiple access control, Q-Learning, NORA

I. INTRODUCTION

Random access (RA) is a crucial challenge in future internet

of things (IOT) networks due to the massive number of devices

causing serious congestion in radio access network (RAN) [1].

In a classic four-stage grant based random access (GB-RA)

procedure, before any uplink data transmission, users have to

handshake with base station (BS) through physical random

access channel (PRACH) and physical downlink control chan-

nel (PDCCH) to be allocated with a specific resource block

(RB) in the physical uplink shared channel (PUSCH) [2]. GB-

RA technologies suffer signalling overhead due to the small

payload in machine type communications (MTC) scenarios,

demanding more efficient RA protocol.

Grant free random access (GF-RA) has become an emerging

technology due to its smaller signalling overhead and higher

spectral efficiency. In GF-RA, each user randomly choose a

RB to transmit its data without handshake with BS. A classic

GF-RA protocol called ALOHA was proposed and analysed
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in [3]. In ALOHA, all the users transmit their packets by

accessing a shared channel with identical access probability.

Slotted ALOHA (SA) is a widely-used variation of ALOHA,

in which the transmission of all the users are synchronized by

identical time slots. [4] and [5] further analysed the channel

utilization and fairness of SA by adopting Markov Models.

[6] proposed a variation of slotted ALOHA minimizing the

time-average age of information (AAOI).

Moreover, in legacy orthogonal random access (ORA), each

RB can only be leveraged by one user at each transmission

interval, which limits the spectral efficiency and number of

connectivities. Non-orthogonal random access (NORA) has

attracted a lot of attention recently due to its enhanced

spectral efficiency. In power domain NORA, a RB can be

successfully accessed by multiple users with different trans-

mit power levels [7]. [8] proposed a multichannel ALOHA

procedure in conjunction with non-orthogonal multiple access

(NOMA). The analysis and simulation results shows that the

proposed NOMA-ALOHA achieves higher throughput than

conventional multichannel ALOHA. However, channel state

information (CSI) is required for channel selection and channel

inversion, which is an expense for MTC devices, and the

throughput is still limited due to collisions between users.

Learning driven algorithms are potential candidates for RA

problems since it is capable of improving the quality of

service (QoS) without comprehensive model of the process.

[9] proposed a centralized actor-critic deep reinforcement

learning (DRL) algorithm for joint optimizing the altitudes

of unmanned aerial vehicles (UAVs) and the channel access

probabilities of RA, under multiple constraints on the battery

energy of UAVs. [10] proposed a supervised deep neural net-

works (DNN) assisted transmit power optimization scheme for

NORA. [11] developed a centralized cooperative multi-agent

double deep Q networks (DDQN) algorithm to jointly opti-

mize the repetition values and the contention-transmission unit

(CTU) numbers in GF-NOMA for massive ultra-reliable and

low-latency communication (mURLLC) scenarios. In order to

resolve collisions, [12] designed a DNN assisted collision-

detection strategy to adaptively allocate PUSCH resources to

random access preambles (RAPs). [13] proposed a power level

and subchannel selecting algorithm based on DRL, enhancing

the system throughput compared to NOMA-ALOHA. [14] and

[15] proposed multi-agent DRL assisted GF-RA framwork, in

which the neural networks (NN) are first trained in central

server and then executed at users side. Both cooperative

utilities and competitive utility based algorithms are developed

and compared in terms of two performance metrics in [15],

and the results showed that the two cooperative utilities,
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proportional fair utility and sum rate utility, achieve better

performance than the competitive utility in terms of average

rate and average log rate. However, the algorithms in [13],

[14] and [15] still require CSI, and model sharing between

central server and users is needed in [14] and [15] due to the

centralized training phase, which leads to resources consuming

and low efficiency. [16] proposed a fully distributed DDQN

based GF-RA algorithm improving individual user throughput

of all the users while maintain the fairness between users

at the same time. Nevertheless, the fading is not considered

in [16], and the complexity of the DDQN is too high to be

implemented on resource limited MTC devices. [17] modelled

the GF-RA problem in wireless sensor networks (WSN) as

a decentralized partial observable markov decision process

(Dec-POMDP), and proposed a Q-Learning algorithm accel-

erated by virtual experiences (VE). [18] and [19] proposed

distributed lookup table based Q-Learning algorithms for GF-

RA with novel reward functions based on the congestion level

of the selected actions. Although the algorithms in these three

papers have low complexity and can effectively enhance the

system throughput, they only considered collisions, which is

not a realistic situation. Moreover, the congestion levels used

in [18] and [19] are non-binary numbers requiring control link

from BS to users, which is a resource cost. [20] and [21] pro-

posed stateless Q-Learning algorithms for homogeneous setup,

where all the users have same average channel gain, and het-

erogeneous NOMA-ALOHA system, respectively. However,

[21] only considered the case where the number of users is up

to the number of actions. This may not be suitable directly to

realistic scenarios where the number of users, e.g., in massive

MTC (mMTC), could be much larger than the number of

actions, causing more often collisions. Besides, the fairness

issues between users are not investigated in [21]. There are

few studies proposing distributed Q-Learning algorithms for

heterogeneous NORA systems to improve system throughput

and fairness, taking into account both collision and fading.

In this paper, distributed Q-Learning algorithms for hetero-

geneous NOMA-ALOHA systems are proposed to optimize

the slot and power level selections of each user without any

information sharing between users. In this context, both action

collision and fading are considered, and there is no CSI

availability at users’ transmitters due to the limited spectrum

and energy resources of MTC devices. More importantly, a

network in which users have asymmetric conditions in terms

of average SNR is considered, which makes it challenging for

each user to independently learn a strategy maximizing the

throughput. Moreover, many existing papers only consider the

total throughput of the system while this paper additionally

measures the fairness between users in terms of the average

number of users achieving the minimum desired throughput.

Details are introduced in Section II. Main contributions of this

paper are summarized as following.

• A heterogeneous NOMA-ALOHA system where users

under different average channel gains send packets by dy-

namically exploiting one of channel slots and power dif-

ferences is proposed. To detect and avoid both collisions

and fading in the NOMA-ALOHA system, a multi-agent

(a) Geographic layout of the NORA
system

(b) Uplink transmission process of the
n-th user

Fig. 1: System diagram of the Q-Learning NORA system.

Provided that a distance between the n-th user and BS is

dn ∈ (0, R], transmission feedback Flagn ∈ {0, 1}, n ∈
{1, . . . , N}

Q-Learning framework is designed. This framework in-

corporates a new reward function, which influences the

exploitation and exploration of action selections.

• Within the multi-agent reinforcement learning framework

for NOMA-ALOHA, three algorithms are developed for

each user to find a strategy of selecting both channel

slots and power levels, towards the enhanced throughput.

They are multi-state Q-Learning with state definitions

1 and 2, and confidence-aided Q-Learning. For this,

insights into the benefits of multiple state-action values

and confidence-aided action values are discussed.

• Through simulative analysis, the impact of hyper param-

eters such as the numbers of users and slots, as well

as heterogeneous average channel gains among users

are investigated. In addition, the proposed algorithms

are compared to the benchmarks in terms of both the

packet throughput and the number of users under the

desired performance, over several congestion scenarios.

In particular, when the number of users are greater than

the number of possible actions, the proposed algorithms

are shown to increase the throughput over trials, while

the benchmarks suffer from the performance degradation

at high congestion level.

• Based on these observations, it is clearly found that under

a medium congestion level, the multi-state Q-Learning

with state definition 1 may perform the best in terms of

average number of users with desired throughput while

the confidence-aided algorithm is the best candidate for

the system throughput. The algorithm with state definition

2 can be chosen as the best with the consideration of a

trade-off between system throughput and fairness, under

medium congestion level. When it comes to extreme

congestion condition, the confidence-aided algorithm per-

forms best on both system throughput and fairness.

II. SYSTEM MODEL

Suppose that N users are randomly distributed to trans-

mit packets over K slots to the BS, as shown in Fig.1(a).

Denote by R the radius of the coverage area, dn(≤ R)
denotes the distance between the n-th user and the BS, and

dn ̸= dm, ∀m ̸= n. Denote by hn;k channel coefficient from

andytyrell
Cross-Out
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user n to the BS over slot k ∈ {1, · · · ,K}, where K is the

number of slots. Assume that given dn, each user experiences

Rayleigh fading channel, considering hn;k under a complex

Gaussian distribution with zero mean and variance ḡn;k, i.e.,

hn;k ∼ CN (0, ḡn;k), where CN (·) denotes complex Gaussian

distribution, and ḡn;k = A0d
−κ
n , κ is the pathloss exponent and

A0 is a shadowing coefficient. The instantaneous channel gain

of the n-th user is gn;k = |hn;k|
2, where gn;k ∼ Exp( 1

ḡn;k
),

Exp(·) denotes exponential distribution.

A distributed user randomly selects one out of K slots and

deliver its packet over the chosen slot, without interaction

among them. In this situation, the users are motivated to find

their own strategies of grant-free random access, under hetero-

geneous condition. Inspired by the concept of GF-NORA [8]

[22], it is required to eliminate the signalling overhead and

improve the spectrum efficiency such that N users transmit

packets with the use of power differences. Details of NORA

systems are presented in the following section.

A. NORA Process

Each user randomly choose an action at each transmission

interval without any CSI at the transmitter. The action of the

n-th user, an(t) ∈ A, is defined as a combination of choosing

channel slot k and transmit power Pl, which is given by

an(t) =

{

(0, 0) no transmit at step t

(k, Pl) (1)

where k ∈ {1, . . . ,K} and l ∈ {1, . . . , L} are the slot

index and the transmit power level index, respectively, L

is the number of power levels, and A is the set of all

actions. Pl ∈ (0, 1) denotes the normalized power level,

P1 < . . . < PL,
∑

l Pl = 1. Denote by ✶(·) the binary

indicator function. The action selection is indicated by

Zn;k,l = ✶(an = (k, Pl)). (2)

The received signal at the BS on slot k is given by

yk =

L
∑

l=1

N
∑

n=1

√

Plhn;kSnZn;k,l + wk (3)

where wk ∈ CN (0, N0) denotes the additive white gaussian

noise (AWGN) on slot k, N0 is the noise power spectrum

density, Sn denotes the modulated symbol. As shown in (3),

when more than two users randomly compete the same slot

k, the NOMA transmission may allow to decode the signals,

through successive interference cancellation (SIC) steps.

Given an = (k, Pl) from the n-th user, the received signal

SINR at the BS on slot k with power level Pl is given by

SINRn;k,l =
Plgn;k

∑l−1
i=1

∑N

n′=1,n′ ̸=n Pign′;kZn′;k,i +N0

. (4)

Particularly, the SINRn;k,l will become SNRn;k,l if there is

no interference (
∑l−1

i=1

∑N

n′=1 Zn′;k,i = 0).

The criteria for successful decoding for action (k, Pl) is

Con1)
∑N

n=1 Zn;k,l′ ≤ 1, for l′ ≥ l (no action collision)

Con2) SINRn;k,l′ ≥ Γ
∑N

n=1 Zn;k,l′ , for l′ ≥ l (SIC

success)

where Γ is the SINR threshold. Assume that packets are

successfully decoded only when meeting both Con1) and

Con2). Con1) indicates a no-collision event that there are no

more than two users choosing the same action. For example,

given an action (k, Pl), at most one user (if exist) is allowed

to choose this action, which means, if exist, Con1 allows only

one user choosing Pl′ for l′ ≥ l at a given slot k. In other

words, since the power domain NOMA technology enables

multiple users to simultaneously send their packets through

the same RB using different transmit power levels, an action

(k, Pl) can be chosen at most by one user. Otherwise, packet

decoding is assumed to fail due to random collision (more

than one user chooses the same power level at same RB)

because the capturing effect is not considered in this work.

Con2) represents an event associated with channel fading.

That is, packet decoding can be successful only if the SINR

after the SIC is greater than or equal to the desired threshold.

In addition, the packets transmission will fail if the decoding

of any higher power level signal at the same RB fail since the

SIC decoding order is from high power level to low power

level. The transmission feedback of the n-th user at time step

t is indicated by Flagn(t), which is given by

Flagn(t) =

{

1 , for successful decoding at step t

0 , for failure. (5)

B. Problem formulation

A distributed grant-free NORA algorithms is developed in

order to maximize the system throughput while maintaining

the fairness among users. Denote ASRn the average success

rate (ASR) [20] of the n-th user, which is viewed as

ASRn = E[Flagn]. (6)

where E[·] denotes expectation. ASR measures the average

number of packets successfully conveyed by the n-th user for

given users’ strategies. In addition, the algorithm design needs

to monitor the fairness among users such that each intends to

make ASRn at minimum the throughput threshold. Based on

these, the performance of the algorithms is analysed through

two metrics: average number of users with desired ASR and

average packet throughput. For the case of fairness-sensitive

systems, the fairness is measured by counting the number of

users whose ASRn is greater than the throughput threshold.

For the case of fairness-tolerant systems, the average packet

throughput introduced by [21] is used to measure the system

throughput only with no fairness. They are defined as:

• Average number of users per slot with desired ASR: Given

N users and K slots, the average number of users per slot

with ASR > ASR0 is calculated by

Nusers =
1

K

N
∑

n=1

✶(ASRn > ASR0). (7)

Each indicator function in (7) can be approximated by

the sigmoid function, (1+e−θ(ASRn−ASR0))−1, when the

steepness parameter θ is chosen to be sufficiently large to

mimic the sharp transition of the indicator function [23].

Note the strategies of all the users change over steps,

andytyrell
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ASRn is a random variable which is effected by the

users’ strategies. By taking expectation, it becomes

E[Nusers] ≈ E[
1

K

N
∑

n=1

1

1 + e−θ(ASRn−ASR0)
] (8)

where θ is the slop parameter of the sigmoid function.

• Average packet throughput per slot: Given N users and

K slots, the average packet throughput per slot is

E[Npacket] =
1

K

N
∑

n=1

E[ASRn]. (9)

Notice that the probability density function (PDF) of ASRn

is not trackable due to the time-varying strategies of other

users. Denote xn ∈ X the mixed strategy of the n-th user,

xn = [xn;0,0 xn;1,1 · · ·xn;K,1 · · ·xn;k,l · · ·xn;1,L · · ·xn;K,L]
T

(10)

where xn;k,l denotes the probability that the n-th user takes

action (k, Pl), and

xn;0,0 = 1−
K
∑

k=1

L
∑

l=1

xn;k,l. (11)

The mixed strategies of the other users are given by

x−n = [x1, · · · ,xn−1,xn+1, · · · ,xN ]T . (12)

With given x−n, ASRn;k,l denotes the ASR of the n-th

user being associated only to action (k, Pl). The analytical

expression for ASRn;k,l can be derived in Appendix A. The

expectation of the average number of users per slot with

ASR > 0.1 is given by

E[Nusers] ≥
1

K

N
∑

n=1

K
∑

k=1

L
∑

l=1

xn;k,l

1 + e−θ(E[ASRn;k,l]−ASR0)
.

(13)

The expectation of the average packet throughput is given by

E[Npacket] ≥
1

K

N
∑

n=1

K
∑

k=1

L
∑

l=1

xn;k,lE[ASRn;k,l]. (14)

Due to the fact that xn is influenced by x−n, which are

unknown to the n-th user, each user is desired to learn from

its own trials in making actions in a distributed manner. The

optimization problem is given by

max
xn

ASRn, ∀n ∈ {1, · · · , N}. (15)

In order to enhancing the average number of users with desired

ASR and average packet throughput, distributed Q-Learning

aided NORA algorithms optimizing xn, the action strategy of

individual user, are investigated in Section III.

III. PROPOSED REINFORCEMENT LEARNING ALGORITHMS

The slot and power level selection task is modeled as

a MDP in this paper. In a MDP, the agent interacts with

the environment by taking action according to its state and

receiving reward at each step. One of the widely used rein-

forcement learning algorithms resolving MDP is Q-Learning

[24]. Although deep reinforcement learning algorithms, such

as DDQN and actor-critic [25], [26], are more efficient than

Q-Learning algorithms, those algorithms are too complex to be

implemented on resource limited MTC devices. Consequently,

Q-Learning is a competitive candidate in this application sce-

nario. The adopted Q-Learning model in this paper considers

each user as an agent, and individual users select one of the

actions (k, Pl) according to the action value function, which is

the Q table in this paper. The Q-table of each user is updated

following the equations below.

Qn(sn(t), an(t))← Qn(sn(t), an(t)) + αδn(t) (16)

where sn(t), an(t) and α denote the state, action and learning

rate, respectively. δn(t) is the temporal difference (TD) error,

δn(t) = Gn(t)−Qn(sn(t), an(t))

= Rn(t) + γmax
a

Qn(sn(t+ 1), a)−Qn(sn(t), an(t))

(17)

where Rn(t) and γ denote the immediate reward and discount

factor, respectively.

Three state definition and one reward definition are proposed

in this paper, which are used to develop three novel Q-

Learning algorithms for the NORA problem formulated in

Section II.B. The Q-table of each user is designed to be up-

dated in every coherence NORA step to adapt to the dynamic

environment. The algorithms demonstrate the independent

behaviour of each user and thus are identical for all users.

A. Reward

In a number of papers [21], [20], [14], [27], the reward of

fail transmission is set to −1 or 0, which is straightforward and

can result in a fast convergence in their system model. How-

ever, in the proposed system model, the difference between the

average channel gains of individual users are relatively large,

which may increase the probability of fail decoding caused

by interferences from other users. In this case, part of the Q-

values will be underestimated if the rewards for successful

transmission and fail transmission have the same absolute

value. The absolute value of the reward for failed transmission,

µ, is made smaller than that for successful transmission. The

reward function of the MDPs is considered as

Rn(t) ≜











1 if Flagn(t) = 1

0 if an(t) = (0, 0)

−µ if an(t) ̸= (0, 0) and Flagn(t) = 0 (18)

where µ > 0, such that

E[Rn] = E[ASRn]− µ(1− E[ASRn]). (19)

It can be seen from (19) that the mean reward received by

the n-th user, E[Rn], increases with the ASRn so that the

algorithm maximizing the reward enhances average number of

users with desired ASR and average packet throughput. Using

(18), the learning models and algorithms are presented below.
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B. State Definition 1

In the first learning model, the process is modelled as a

MDP. The state of the MDP at step t is defined as the action

taken by the individual user at last step t−1, and two indicators

on whether the slot and power level selection at last step are

the same as those at t− 2.

sn(t) ≜ (an(t− 1), σn;ch(t− 1), σn;pow(t− 1)) (20)

where

σn;ch(t) ≜ ✶(an(t)1 ̸= an(t− 1)1) (21)

σn;pow(t) ≜ ✶(an(t)2 ̸= an(t− 1)2) (22)

and the subscript j in an(t)j is the index for j-th element of

an(t). By this definition, the users can leverage the history

information to find a dynamic strategy rather than a static

action selection. This allows each slot-power pair to alternately

serve multiple users. Algorithm 1 illustrates the multi-state Q-

Learning assisted NORA algorithm with the state definition 1.

Algorithm 1 Q-Learning Assisted NORA with State Def.1

Output: Updated Q-values Qn(s, a), ∀s, a
Initialization: Initialize all the Q-values with zeros, t = 0,

an(0) = (0, 0), sn(1) = [(0, 0), 0, 0], T = 5000, α = 0.1,

γ = 0.05
while t < T do

t← t+ 1
an(t)← argmax

a
Qn(sn(t), a)

if an(t) = (0, 0) then

Rn(t)← 0
else

Access the channel according to an(t) and observe

Flagn(t) through the feedback signal from the BS

if Flagn(t) = 1 then

Rn(t)← 1
else

Rn(t)← −µ
end if

end if

σn;ch(t)← ✶(an(t)1 ̸= a(t− 1)1)
σn;pow(t)← ✶(an(t)2 ̸= a(t− 1)2)
sn(t+ 1)← (an(t), σn;ch(t), σn;pow(t))
Qn(sn(t), an(t))← Qn(sn(t), an(t)) + αδn(t)

end while

C. State Definition 2

Although Algorithm 1 allows the users to leverage history

information, the large state space might lead to low conver-

gence speed and insufficient exploration. To address this issue,

another state definition with a smaller state space is proposed.

This only consists of the action taken at the last step t− 1.

sn(t) ≜ an(t− 1). (23)

Algorithm 2 illustrates the multi-state Q-Learning assisted

NOMA-ALOHA algorithm with the state definition 2.

Algorithm 2 Q-Learning Assisted NORA with State Def.2

Output: Updated Q-values Qn(s, a), ∀s, a
Initialization: Initialize all the Q-values with zeros, t = 0,

an(0) = (0, 0), sn(1) = (0, 0), T = 5000, α = 0.1, γ =
0.05
while t < T do

t← t+ 1
an(t)← argmax

a
Qn(sn(t), a)

if an(t) = (0, 0) then

Rn(t)← 0
else

Access the channel according to an(t) and observe

Flagn(t) through the feedback signal from the BS

if Flagn(t) = 1 then

Rn(t)← 1
else

Rn(t)← −µ
end if

end if

sn(t+ 1)← an(t)
Qn(sn(t), an(t))← Qn(sn(t), an(t)) + αδn(t)

end while

D. Stateless with confidence-aided actions

In this learning model, the slot and power level selecting

process is modelled as a multi-arm bandit problem. Since

the strategies of users keep changing at the early stage of

the learning process and are unknown to each other, high

quality exploration at the early stage are crucial for potentially

converging to near optimal strategy. However, the widely used

ϵ-greedy results in a linear increase on an accumulated error

between optimal action values and estimated action values.

To address this issue, the confidence-aided algorithm [28] was

known to provide logarithmic increase on the accumulated

error. This confidence concept is motivated for the proposed

algorithm to better balance exploration and exploitation.

In the confidence-aided algorithm, the agent maintains a Q-

table consisting of the estimated reward of each action, and a

counter Wt(a) recording how many times action a has been

chosen. According to Hoeffding’s inequality, the probability

that the true Q-value exceeds its upper confidence bound is

Pr

(

Q∗(a) > Q(a) + Ut(a)

)

≤ e−2Wt(a)U
2
t (a) (24)

where Ut(a) denotes the difference between the estimated Q-

value and its upper confidence bound. Since the probability

in (24) is desired to converge to 0 (confidence level equals to

100%) as t→ +∞, the right hand side of (24) is designed as

equalling to t−4. Consequently, the Ut(a) is given by

Ut(a) =

√

2 ln t

Wt(a)
. (25)

The action policy of individual users at every transmission

interval are given by

an(t) = argmax
a

(Q(a) + Ut(a)). (26)
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Algorithm 3 Confidence-aided Q-Learning Assisted NORA

Output: Updated Q-values Qn(a), ∀a
Initialization: Initialize all the Q-values with zeros, t = 0,

T = 5000, α = 0.1, γ = 0, Wn(a) = 0, ∀a ∈ A
while t < T do

t← t+ 1
an(t)← argmax

a
(Qn(a) +

√

2 ln t
Wn(a)

)

Wn(an(t))←Wn(an(t)) + 1
if an(t) = (0, 0) then

Rn(t)← 0
else

Access the channel according to an(t) and observe

Flagn(t) through the feedback signal from the BS

if Flagn(t) = 1 then

Rn(t)← 1
else

Rn(t)← −µ
end if

end if

Qn(an(t))← Qn(an(t)) + αδn(t)
end while

By adopting this action policy, the agent selects the action with

highest upper confidence bound under a dedicate confidence

level of the moment, which makes the agent always take the

action with biggest potentials, helping the agent to explore

the unknown environment at the early stage of the learning

process. Moreover, since limt→+∞ Ut(a) = 0, the confidence-

aided algorithm actually becomes a greedy action policy when

t → +∞. After each packet transmission, each user updates

its Q-table according to the transmission result. Algorithm 3

illustrates the confidence-aided NOMA-ALOHA algorithm.

The three proposed algorithms have different properties

(e.g., convergence speed, scalability, complexity, etc), suitable

for meeting different requirements of various application sce-

narios. To improve fairness between users, Algorithm 1 with

the largest state space is able to produce diversity among users.

However, it may not be suitable for applications where the

devices have limited memory. Moreover, it may suffer slower

convergence speed compared with the other two algorithms.

Algorithm 3 adopts an unique exploration strategy aimed to

improve the exploration quality, which makes it a potential

candidate under high congestion traffics. Algorithm 2 is a

multi-state algorithm with a simplified state space, expected

to achieve trade-off between fairness and system throughput.

IV. SIMULATIONS AND DISCUSSIONS

The simulation results and numerical analysis of the three

proposed algorithms in the distributed heterogeneous NOMA-

ALOHA system are presented in this section. Four benchmark

schemes are adopted, they are

• Slotted NORA [8].

• RL-NORA Acceleration-GA [20].

• RL-NORA Acceleration-ϵ-GA [20].

• woSDC-BAP-QL [21].

For all simulations, A0 = 1, κ = 3, Γ = −3dB, L = 3
with P1 = 0.04, P2 = 0.16, P3 = 0.8. The focus is on five

simulation scenarios

• The sensitivity of the three proposed algorithms with

different µ, the absolute value of the reward for failed

transmission, in terms of average packet throughput and

average number of users with ASR > 0.1.

• The convergence properties.

• Average packet throughput and average number of users

with ASR > 0.1 for different number of users of the

three proposed algorithms and the benchmarks.

• The sensitivity of the three proposed algorithms and the

benchmark schemes with different number of slots.

• The sensitivity of the three proposed algorithms and the

benchmarks with different minimum channel gain.

In Fig.2, the average packet throughput and average number

of users with desired ASR of the three proposed algorithms, (i)

Multi-state Def.1; (ii) Multi-state Def.2; and (iii) stateless with

confidence-aided actions, are presented in a over-distributed

case (N = 2LK). Fig.2(a) illustrates that the confidence-aided

algorithm performs best in these circumstance in terms of

average packet throughput, and it reaches its best performance

around 1.029 packets/slot when µ = 10−0.1. The performance

drops rapidly when µ increases or decreases around this

value. This is due to the agents not being able to balance

the exploration and exploitation well when the ratio of fail

transmission reward and successful transmission reward is not

set properly, which leads to a convergence to local optimal

rather than global optimal. The two multi-state algorithms

reach their best performance when 10−3 < µ < 10−1.9 at

a lower average packet throughput. Fig.2(b) indicates that

the Multi-state Def.1 achieves the highest average number

of users with desired ASR when µ = 10−2.4 while the

confidence-aided algorithm and Multi-state Def.2 reaches their

best performance, which is just slightly lower than the highest

average number of users with desired ASR of the Multi-

state Def.1, when µ = 10−0.4 and µ = 10−3.2, respectively.

Moreover, it can be seen that the Multi-state Def.1 is more

sensitive with µ than the Multi-state Def.2, which is caused

by the larger state space of Multi-state Def.1. Based on the

above observations, in the following simulations µ is set to

10−0.1 and 10−3 for the confidence-aided algorithm and the

multi-state algorithms, respectively, considering the trade off

between average packet throughput and average number of

users with desired ASR.

The convergence behaviour of the three proposed algorithms

are shown in Fig.3. The average number of users per slot

have a negative trend in the first iterations. This is because

the number of steps is very small so that the ASR, which

is a numerical average value, hasn’t been accurate enough

to approximate the real value (much higher than the real

value). The Multi-state Def.2 has the fastest convergence

speed, and Multi-state Def.1 is the slowest. The confidence-

aided algorithm converges just slightly slower than the Multi-

state Def.2 while it achieves much higher average packet

throughput compared with the other two algorithms.

In Fig.4, the average packet throughput and average number
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Fig. 2: Effect of µ on average packet throughput and average number of users with desired ASR: (i) Multi-state Def.1, (ii)

Multi-state Def.2 and (iii) Stateless with confidence-aided actions, when N = 24, K = 4, L = 3.
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Fig. 3: Performances over steps: (i) Multi-state Def.1, (ii) Multi-state Def.2, (iii) Stateless with confidence-aided actions, and for

comparison, the benchmark schemes: iv) Slotted NORA, v) RL-NORA Acceleration-GA, vi) RL-NORA Acceleration-ϵ-GA,

vii) woSDC-BAP-QL, when N = 24, K = 4, L = 3.

of users with desired ASR for different number of users of

the three proposed algorithms and the benchmark schemes are

compared. The performance of all the schemes first increase

and then decrease as N increases. This is because the number

of users is smaller than the maximum capacity of the schemes

at the beginning so that N is the restriction of the performance.

The benchmarks are stateless algorithms, which make the

users choose one of the actions under low collisions. This

is efficient for the users to ultimately find different actions

with no collision when the number of users is smaller than

the number of actions. However, when the number of users

grows, there are more collisions. In this case, the proposed

algorithms allow the users to better deal with more dynamic

colliding events with the use of state space. Note that all

the four benchmark schemes have a performance degradation

when N > LK while the two proposed multi-state algorithms

can maintain their performance. The reason of this is that it

is difficult to learn a strategy that can avoid collision and

maximize the received signal SINR when the number of users

is bigger than the number of actions, for the algorithms that

are not capable to explore the environment sufficiently. It

can be seen that the confidence-aided algorithm has the best

performance compared to other algorithms in terms of average

packet throughput for all the values of N . The Multi-state

Def.1 is the best in terms of average number of users with

desired ASR when LK < N < 2LK, and it is worth noting

that the Multi-state Def.2 has slightly compromised average

number of users with desired ASR compared with Multi-state

Def.1 while the average packet throughput is in the middle

of the confidence-aided algorithm and the Multi-state Def.1.

Note that the average number of users with desired ASR of the

confidence-aided algorithm keep increasing with the number

of users even when N > LK, and outperforms the two multi-

state algorithms when N > 2LK.

The effect of number of slots on the average packet through-

put and average number of users with desired ASR of the three

proposed algorithms and the benchmark schemes are shown in

Fig.5. The average packet throughput and average number of

users with desired ASR of the proposed algorithms increases

with K, when K is small because the ratio between K and

L rises, which decrease the probability that the signal of in-

dividual user suffers interferences from other users. However,
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Fig. 4: Effect of N on average packet throughput and average number of users with desired ASR: (i) Multi-state Def.1, (ii)
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Fig. 5: Effect of K on average packet throughput and average number of users with desired ASR: (i) Multi-state Def.1, (ii)

Multi-state Def.2, (iii) Stateless with confidence-aided actions, and for comparison, the benchmark schemes: iv) Slotted NORA,

v) RL-NORA Acceleration-GA, vi) RL-NORA Acceleration-ϵ-GA, vii) woSDC-BAP-QL, when L = 3, N = 2LK.

TABLE I: Complexity Comparison

Algorithm Complexity

Confidence-aided stateless O(2(KL+ 1))
Multi-state Def.1 O((KL+ 1)(4KL+ 2))
Multi-state Def.2 O((KL+ 1)(KL+ 1))
RL-NORA [20] O(KL+ 1)

woSDC-BAP-QL [21] O(KL)

the performance degrades seriously when K become relatively

large because the size of the Q-table also increases with K,

which leads to an insufficient exploration when using a lookup

table method. As shown in Table I, the Q-table size of the two

proposed multi-state algorithms increase much faster than the

confidence-aided algorithm with K. Besides, the computation

complexity of the Multi-state Def.2 is nearly one quarter of the

complexity of Multi-state Def.1, which explained the reason

that Multi-state Def.1 degrade earlier than Multi-state Def.2.

The effect of the minimum average channel gain on the

average packet throughput and average number of users with

desired ASR of the three proposed algorithms and the bench-

mark schemes are shown in Fig.6. The reduction of average

channel gain leads to lower probabilities of successful decod-

ing. Moreover, the differences between the average channel

gain of the users increases when the minimum average channel

gain decreases according to the system model introduced in

Section II. It can be seen that the two multi-state algorithms

degrade less on both average packet throughput and average

number of users with desired ASR than the confidence-aided

algorithm when the minimum average channel gain decreases,

which means the multi-state algorithms are more robust to the

heterogeneity of the users’ channel conditions. Fig.7 shows the

reason for the above observation, which is that the two multi-

state algorithms can maintain the number of non-collide users

better than the confidence-aided algorithm. Note that when

the minimum average channel gain is lower than −10dB,

the confidence-aided algorithm no longer has advantage over

average packet throughput while the multi-state algorithms

achieves higher average number of users with desired ASR.
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channel gain: (i) Multi-state Def.1, (ii) Multi-state Def.2,
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vii) woSDC-BAP-QL, when N = 24, K = 4, L = 3.

To further analyse the application scenarios for the three

proposed algorithms, the performance trade-off of the three

algorithms are compared through their average packet through-

put and average number of users with desired ASR in Fig.8.

According to Fig.4, the two proposed multi-state algorithms

are preferable for the applications with medium amount of

users (LK < N < 2LK). In particular, the Multi-state Def.2

is good at the applications in which both the system throughput

and the number of users achieving target QoS are important

and the users’ computation resources are limited. Whereas

Multi-state Def.1 is more suitable when the number of users

achieving target QoS is the only performance considered and

the computation resources are no problem. The confidence-

aided algorithm is preferable for applications with massive

number of users (N > 2LK), or when the users’ computation

resources are extremely limited.
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Fig. 8: Trade-off between average packet throughput and

average number of users with desired ASR: (i) Multi-state

Def.1, (ii) Multi-state Def.2 and (iii) Stateless with confidence-

aided actions, when (1) N = 12, K = 4, L = 3, (2) N = 24,

K = 4, L = 3 and (3) N = 60, K = 10, L = 3.

V. CONCLUSION

In this paper, a distributed reinforcement learning frame-

work for joint slot and power level selecting problem in het-

erogeneous NOMA-ALOHA systems is proposed. Two multi-

state Q-Learning algorithms and a confidence-aided algorithm

are developed to find the action selection strategies in a

distributed manner. Simulation results show that the proposed

algorithms outperform the benchmarks in terms of system

throughput and fairness in high congestion traffics, which is

crucial for the massive connectivities in 6G. Additionally, the

three algorithms have advantages compared to each other in

terms of fairness, system throughput and robustness to extreme

congestion condition. Thanks for the model-free distributed

learning framework and the NOMA-ALOHA procedure, the

proposed schemes are capable of enabling efficient RA for re-

source limited MTC networks in heterogeneous environment.
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APPENDIX A

DERIVATION OF ASRn;k,l

Particularly consider L = 3 power levels, ASRs of action

(k, Pl) for l ∈ {1, 2, 3} are discussed in the following. In

addition, to simplify the equations in the later derivations,

denote

βn;k,l =
Γl

ḡn;kPl

(27)

where n ∈ {1, . . . , N}, k ∈ {1, . . . ,K}, and l ∈ {1, . . . , L}.

A. When the transmit power level P3 is chosen

The expectation of the ASR is given by

E[ASRn;k,3] = Pr(Con1, Con2)

= Pr(Con2|Con1)Pr(Con1) (28)

where

Pr(Con1) =
∏

n′ ̸=n

(1− xn′;k,3) (29)

and Pr(Con2|Con1) is given by

Pr



gn;k ≥
Γ3

P3
[N0 +

2
∑

l=1

∑

n′ ̸=n

gn′;kPlZn′;k,l]|Con1





= E[e−βn;k,3[N0+
∑

2
l=1

∑
n′ ̸=n

gn′;kPlZn′;k,l]|Con1]

= e−βn;k,3N0

∏

n′ ̸=n

ϕn′;k,3 (30)

where ϕn′;k,3 is averaged over gn′;k, and is given by

ϕn′;k,3 = E[e−βn;k,3gn′;k(P2Zn′;k,2+P1Zn′;k,1)|Con1]

= E[
1

1 + ḡn′;kβn;k,3(P2Zn′;k,2 + P1Zn′;k,1)
|Con1]. (31)

When Con1 is satisfied, for l ∈ {1, 2}

Zn′;k,l =







1 w.p.
xn′;k,l

1−xn′;k,3
,

0 w.p. 1−
xn′;k,l

1−xn′;k,3
. (32)

By substituting (32) into (31), ϕn′;k,3 is averaged over Zn′;k,l,

ϕn′;k,3 = (1−
xn′;k,2

1− xn′;k,3
)(1−

xn′;k,1

1− xn′;k,3
)

+
1

1 + ḡn′;kβn;k,3P1
(1−

xn′;k,2

1− xn′;k,3
)(

xn′;k,1

1− xn′;k,3
)

+
1

1 + ḡn′;kβn;k,3P2
(

xn′;k,2

1− xn′;k,3
)(1−

xn′;k,1

1− xn′;k,3
)

+
1

1 + ḡn′;kβn;k,3(P2 + P1)
(

xn′;k,2

1− xn′;k,3
)(

xn′;k,1

1− xn′;k,3
).

(33)

B. When the transmit power level P2 is chosen

For ASRn;k,2, the Con1 can be decomposed into two situa-

tions: Con1′) ∀n′ ̸= n,Zn′;k,2 = Zn′;k,3 = 0; Con1′′) ∀n′ ̸=
n,Zn′;k,2 = 0,

∑

n′ ̸=n Zn′;k,3 = 1. The ASRn;k,2 under the

two situations are derived respectively so that

E[ASRn;k,2] = Pr(Con1, Con2)

= Pr(Con1′, Con2) + Pr(Con1′′, Con2). (34)

1) For Con1′: The probability of successful transmission

when there is NOT any user choosing l = 3 is given by

Pr(Con1′, Con2) = Pr(Con2|Con1′) Pr(Con1′)

= Pr(SINRn;k,2 ≥ Γ2|Con1′)
∏

n′ ̸=n

(1− xn′;k,3 − xn′;k,2)

(35)

where

Pr(SINRn;k,2 ≥ Γ2|Con1′)

= Pr



gn;k ≥
Γ2

P2
(N0 +

∑

n′ ̸=n

gn′;kP1Zn′;k,1)|Con1′





= E[e
−

Γ2
P2ḡn;k

(N0+
∑

n′ ̸=n
gn′;kP1Zn′;k,1)|Con1′]

= e−βn;k,2N0

∏

n′ ̸=n

ϕn′;k,2′ (36)

where ϕn′;k,2 is averaged over gn′;k, and is given by

ϕn′;k,2′ = E[e−βn;k,2gn′;kP1Zn′;k,1 |Con1′]

= E[
1

1 + ḡn′;kβn;k,2P1Zn′;k,1
|Con1′]. (37)

When Con1 is satisfied

Zn′;k,1 =







1 w.p.
xn′;k,1

1−xn′;k,3−xn′;k,2
,

0 w.p. 1−
xn′;k,1

1−xn′;k,3−xn′;k,2
. (38)

By substituting (38) into (37), ϕn′;k,2′ is averaged over Zn′;k,1,

ϕn′;k,2′ = 1−
ḡn′;kβn;k,2P1

1 + ḡn′;kβn;k,2P1

xn′;k,1

1− xn′;k,3 − xn′;k,2
. (39)

2) For Con1′′: The probability of successful transmission

when there is only one user choosing l = 3 is given by

Pr(Con1′′, Con2)

=
∑

m ̸=n

xm;k,3

∏

n′ ̸=m,n

(1− xn′;k,3 − xn′;k,2)ξm,n;k (40)

where

ξm,n;k = Pr(SINRm;k,3 ≥ Γ3, SINRn;k,2 ≥ Γ2|Con1′′)

= Pr

(

gm;k ≥
Γ3

P3
(N0 + gn;kP2 +

∑

n′ ̸=n

gn′;kP1Zn′;k,1),

gn;k ≥
Γ2

P2
(N0 +

∑

n′ ̸=n

gn′;kP1Zn′;k,1)|Con1′′

)

.

(41)

Because gm;k and gn;k are independent exponential random

variables, the above probability can be calculated by

ξm,n;k = E[

∫ +∞

βn;k,2b

∫ +∞

ay+βm;k,3b

e−xdxe−ydy|Con1′′]

= E[
e−[(1+a)βn;k,2+1]b

1 + a
|Con1′′]

=
e−[(1+a)βn;k,2+1]N0

1 + a

∏

n′ ̸=m,n

ϕn′;k,2′′ (42)
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where b = N0 +
∑

n′ ̸=m,n gn′;kP1Zn′;k,1, a = βm;k,3ḡn;kP2,

c = (1 + a)βn;k,2 + 1, and ϕn′;k,2′′ is averaged over gn′;k by

ϕn′;k,2′′ = E[e−cgn′;kP1Zn′;k,1 |Con1′′]

= E[
1

1 + ḡn′;kcP1Zn′;k,1
|Con1′′]. (43)

By substituting (38) into (43), ϕn′;k,2′′ is averaged over

Zn′;k,1, and is given by

ϕn′;k,2′′ = 1−
ḡn′;kcP1

1 + ḡn′;kcP1

xn′;k,1

1− xn′;k,3 − xn′;k,2
. (44)

C. When the transmit power level P1 is chosen

For ASRn;k,1, the Con1 can be decomposed into three

situations: Con1′) ∀n′ ̸= n,Zn′;k,1 = Zn′;k,2 = Zn′;k,3 =
0; Con1′′) ∀n′ ̸= n,Zn′;k,1 = 0,

∑

n′ ̸=n Zn′;k,3 =
1,
∑

n′ ̸=n Zn′;k,2 = 1; Con1′′′) ∀n′ ̸= n,Zn′;k,1 =
0,
∑

n′ ̸=n(Zn′;k,2 + Zn′;k,3) = 1. The ASRn;k,1 under the

three situations are derived respectively so that

E[ASRn;k,1] = Pr(Con1, Con2)

= Pr(Con1′, Con2) + Pr(Con1′′, Con2) + Pr(Con1′′′, Con2).
(45)

1) For Con1′: The probability of successful transmission

when there is NOT any user choosing l = 3 or l = 2 is

Pr(Con1′, Con2) = Pr(Con2|Con1′) Pr(Con1′)

= Pr(SINRn;k,1 ≥ Γ1)
∏

n′ ̸=n

(1− xn′;k) (46)

and

Pr(SINRn;k,1 ≥ Γ1) = Pr(gn;k ≥
Γ1

P1
N0)

= e−βn;k,1N0 . (47)

2) For Con1′′: The probability of successful transmission

when there are only two users who respectively choosing l = 3
and l = 2, is given by

Pr(Con1′′, Con2)

=
∑

v ̸=n

xv;k,3

∑

m ̸=v,n

xm;k,2

∏

n′ ̸=v,m,n

(1− xn′;k)ξv,m,n;k (48)

where

ξv,m,n;k

= Pr(SINRv;k,3 ≥ Γ3, SINRm;k,2 ≥ Γ2, SINRn;k,1 ≥ Γ1)

= Pr

(

gv;k ≥
Γ3

P3
(N0 + gm;kP2 + gn;kP1),

gm;k ≥
Γ2

P2
(N0 + gn;kP1),

gn;k ≥
Γ1

P1
N0

)

. (49)

Because gv;k, gm;k and gn;k are independent exponential

random variables, the above probability can be calculated by

ξv,m,n;k

=

∫ +∞

βn;k,1N0

∫ +∞

βm;k,2(rZ+N0)

∫ +∞

βv;k,3(qy+rz+N0)

e−x−y−zdxdydz

=
1

(qβv;k,3 + 1)ur
e−u(rβn;k,1+1)N0 (50)

where q = ḡm;kP2, r = ḡn;kP1, u = (qβv;k,3 + 1)βm;k,2 +
βv;k,3.

3) For Con1′′′: The probability of successful transmission

when there is only one user choosing l = 3 or l = 2 is

Pr(Con1′′′, Con2)

=

3
∑

i=2

∑

j ̸=n

xj;k,i

∏

n′ ̸=j,n

(1− xn′;k)ξj,n;k (51)

where

ξj,n;k = Pr(SINRj;k,i ≥ Γi, SINRn;k,1 ≥ Γ1)

= Pr

(

gj;k ≥
Γi

Pi

(N0 + gn;kP1), gn;k ≥
Γ1

P1
N0

)

.

(52)

Because gj;k and gn;k are independent exponential random

variables, the above probability can be calculated by

ξj,n;k =

∫ +∞

w

∫ +∞

fy+p

e−xdxe−ydy

=
e−(1+f)o−p

1 + f
(53)

where f = Γi
P1ḡn;k

Piḡj;k
, p = βj;k,iN0, and o = βn;k,1N0.
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