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Highlights

Robust and Smooth Couinaud Segmentation via Anatomical Structure-Guided Point-Voxel Net-
work

Xukun Zhang,Sharib Ali,Tao Liu,Xiao Zhao,Zhiming Cui,Minghao Han,Shuwei Ma,Jingyi Zhu,Yanlan Kang,Le Wang,Xiaoying
Wang,Lihua Zhang

• Introduced a novel automatic Couinaud liver segmentation framework, leveraging a dual-branch point-voxel fusion for
enhanced spatial and semantic modeling.

• Implemented dense sampling with vessel structure priors, significantly enhancing segmentation accuracy, especially
on thick-layer CT.

• Developed a local attention module and a novel feature-level distance loss, ensuring smooth and cohesive segmentation
boundaries.

• Demonstrated superior segmentation performance and robustness across multiple public liver datasets, including out-
of-distribution (OOD) validation.

• Released two public datasets for Couinaud segmentation, contributing to advancements in liver surgery planning and
research.
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A B S T R A C T

Precise Couinaud segmentation from preoperative liver computed tomography (CT) is crucial for
surgical planning and lesion examination. However, this task is challenging as it is defined based
on vessel structures, and there is no intensity contrast between adjacent Couinaud segments in CT
images. To solve this challenge, we design a multi-scale point-voxel fusion framework, which can
more effectively model the spatial relationship of points and the semantic information of the image,
producing robust and smooth Couinaud segmentations. Specifically, we first segment the liver and
vessels from the CT image and generate 3D liver point clouds and voxel grids embedded with the
vessel structure. Then, our method with two input-specific branches extracts complementary feature
representations from points and voxels, respectively. The local attention module adaptively fuses
features from the two branches at different scales to balance the contribution of different branches
in learning more discriminative features. Furthermore, we propose a novel distance loss at the
feature level to make the features in the segment more compact, thereby improving the certainty of
segmentation between segments. Our experimental results on three public liver datasets demonstrate
that our proposed method outperforms several state-of-the-art methods by large margins, including for
point-based (nearly 5%-15% compared to the best method) and voxel-based methods (nearly 3%-25%
compared to the best method) . Our code and manual annotations of the public datasets presented in
this paper are available online: https://github.com/xukun-zhang/Couinaud-Segmentation.

1. Introduction

Primary liver cancer (PLC) is one of the most common
and deadly cancer diseases in the world, and its incidence is
steadily increasing (2; 3). Since the liver in the human body
can regenerate after partial resection, hepatectomy is an
effective method for treating PLC (4; 5). Couinaud segmen-
tation (6) divides the liver into eight functional independent
regions, namely Couinaud segments, according to the vessel
supply of the liver. Each Couinaud region has its inflow and
outflow of vessels and biliary system (Fig. 1 a). Based on
this basis permits, segmentation of the liver only for the in-
volved segment(s) to be ablated or resected without injuring
adjacent normal parenchyma (6; 7). Couinaud segmentation
based on preoperative CT intuitively displays the positional
relationship between Couinaud segments and intrahepatic
lesions that helps surgeons make surgical planning (8; 9).

In clinical settings, obtaining Couinaud segments using
manual annotation is tedious, time-consuming, and requires
significant expertise as these are based on the vasculature
layout in the liver as a rough guide (10). As shown in Fig.

∗Corresponding author
zhangxk21@m.fudan.edu.cn (X. Zhang); S.S.Ali@leeds.ac.uk (S.

Ali); taoliu22@m.fudan.edu.cn (T. Liu); zhaox21@m.fudan.edu.cn (X. Zhao);
cuizhm@shanghaitech.edu.cn (Z. Cui); mhhan22@m.fudan.edu.cn (M. Han);
23210860015@m.fudan.edu.cn (S. Ma); zhujingyi21@m.fudan.edu.cn (J. Zhu);
ylkang21@m.fudan.edu.cn (Y. Kang); wangle@fudan.edu.cn (L. Wang);
xiaoyingwang@fudan.edu.cn (X. Wang); lihuazhang@fudan.edu.cn (L.
Zhang)

ORCID(s):

1, experienced medical experts usually perform Couinaud
segmentation based on the context information of several
adjacent slices along the z-axis direction (𝑖.𝑒, axial plane),
where segments I, II, IV, VII and VIII are separated by the
hepatic vein (Fig. 1(b-c)), and the other III, V, and VI are sur-
rounded by the portal vein (Fig. 1(d-e)). The process men-
tioned above depends on the experience of medical experts
and is highly subjective between experts. Thus, developing
an automatic method to segment Couinaud segments from
CT images precisely is essential for surgical planning and
has attracted tremendous research in this direction.

However, robust and smooth segmentation of Couinaud
segments from CT images is challenging since it is defined
according to the anatomical structure of liver vessels. There
are at least two challenges that often adversely affect the
segmentation performance: (1) The liver parenchyma inside
different Couinaud segments shows similar signal intensity
due to which there is no intensity contrast between adjacent
segments (Fig. 1(c)(e)), i.e., limitation-1, and (2) The ves-
sels embedded in the 3D liver space are thin tubular struc-
tures, so there can be high uncertainty in the intersegmental
separation planes defined by the vessels (Fig. 1(b)(d)), i.e.,
limitation-2.

Previous works (11)–(13) mainly relied on hand-designed
features or atlas-based models by detecting some anatomical
landmarks in the liver vessel system to derive 3D interseg-
mental planes. Although manual annotations are reduced,
these methods often fail to robustly handle areas with limited
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Figure 1: Couinaud segments (denoted as Roman numbers) in
relation to the liver vessel structure. (a) A visual representation
of the liver’s division into distinct Couinaud segments by
the courses of the hepatic veins (blue vascular branches)
and the portal vein (orange vascular branches). This diagram
is reproduced unaltered under the CC BY-NC-ND license.
Source: Campos et al. (1). (b) and (c) originate from CT scans
of the same subject, demonstrating several Couinaud segments
delineated by the hepatic veins, presented in both 2D and 3D
views. (d) and (e) originate from CT scans of another subject,
illustrating several segments surrounded by the portal vein and
segregated by the trajectories of the hepatic veins. Note that
in (b), (c), (d), and (e), as well as in other images later in
this paper, Couinaud segments are further identiőed by distinct
colors.

features, such as boundaries between adjacent Couinaud seg-
ments, and have limitations in accuracy. Recently, with the
advancement of deep learning, many CNN-based algorithms
perform supervised training through pixel-level Couinaud
annotations to automatically obtain segmentation results
(10)(14; 15). Unfortunately, CNN-based methods often re-
quire downsampling operations to expand the receptive field
and reduce memory consumption, inevitably losing spatial
information and making it difficult to effectively capture the
useful key anatomical regions for Couinaud segmentation.
In addition, all of these methods directly learn the intensity
of 3D voxels of the liver, which makes it easy to produce
inaccurate segmentation results in the absence of intensity
contrast (due to limitation-1). Improving the learning of
spatial relationships between different segments is the key
to solving this limitation, which can supplement CNN-based
methods and enhance the segmentation performance in
regions without intensity contrast. However, due to the high
uncertainty (due to limitation-2) in adjacent intersections
based on the Couinaud definition due to vessel course, it
is challenging to produce a smooth intersegmental plane,
further hindering clinical interpretation and understanding,
hindering surgical procedures.

In this paper, to tackle the aforementioned challenges, we
propose a point-voxel fusion framework that represents the
liver in continuous points that enables us to learn the spatial
structure better while performing the convolutions in voxels
to obtain the complementary semantic information of the
Couinaud segments. Specifically, the liver mask and vessel
attention maps are first extracted from the CT images, which
allows us to randomly sample points embedded with vessel
structure prior in the liver space and voxelize them into a

voxel grid. Subsequently, points and voxels pass through two
branches to extract features. The point-based branch extracts
the fine-grained feature of independent points and explores
spatial topological relations. The voxel-based branch com-
prises a series of convolutions to learn semantic features,
followed by de-voxelization to transfer them back to points.
The voxel-based branch gradually expands the receptive
field of convolution operations by performing voxelization
and de-voxelization operations at different resolutions. In
addition, to balance the contribution of the two branches
to learning the Couinaud segmentation, we design a local
attention module to adaptively fuse the features at each scale.
Finally, the multi-scale fusion features are fed to the decoder
to predict the Couinaud category at any sampling point in the
3D liver space. To further enhance the discriminability of the
model in the uncertain regions between segments, we design
a novel distance loss at the feature level to make the features
within the segment more compact, thus producing a smooth
segmented interface. Extensive experiments on three pub-
licly available datasets named 3Dircadb (16), LiTS (17) and
MSD8 (14; 18) demonstrate that our proposed framework
achieves state-of-the-art (SOTA) performance, outperform-
ing cutting-edge methods quantitatively and qualitatively.

This work is a comprehensive extension of a prelimi-
nary conference paper (19). Compared with the preliminary
version, the major extensions are five-fold. 1) We provide a
more comprehensive review of the work related to Couin-
aud segmentation. 2) We introduce a semi-supervised seg-
mentation network to generate more robust vessel attention
maps for liver CT with missing or low-quality labels. 3)
We design a local attention module that adaptively fuses
features to balance the contributions of the two branches
and learns more discriminative feature representations. 4)
We design a novel feature distance loss, further enhancing
the discrimination ability of the pixel-voxel model in the
uncertainty region between segments and producing smooth
segmentation results. 5) We perform more comprehensive
experiments on three public datasets to demonstrate the
superiority of our proposed method over several SOTA
methods in segmenting Couinaud segments on the intra-
distribution and out-of-distribution (OOD) datasets.

The rest of the paper is organized as follows. The most
related works, including Couinaud segmentation and point-
voxel fusion learning, are more comprehensively reviewed in
Section 2. The studied data and our full framework are de-
scribed in Section 3. Section 4 presents experimental results
and comparisons of our methods with other SOTA methods.
Section 5 discusses the hyperparameters and other settings
in our method in detail. Finally, the paper is concluded in
Section 6.

2. Related Work

In this section, we review existing methods in the litera-
ture that are closely related to our study, including Couinaud
segmentation and point-voxel fusion learning.
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2.1. Couinaud Segmentation
Various methods have been proposed for Couinaud seg-

mentation, which can be roughly grouped as 1) traditional
manual or semi-automatic methods and 2) voxel-based deep
learning methods, as briefed below.

2.1.1. Traditional Methods

Traditional methods for Couinaud segmentation tasks
typically rely on manual or semi-automatic image process-
ing, including level set, region growing, and atlas-based
methods. Selle et al. (20) presented a technique for semi-
automatic contour selection for Couinaud segmentation, uti-
lizing a region-growing approach for the vessels and graph
analysis to identify the eight segments. Huang et al. (12)
proposed a complete framework, 3D thinning, vascular tree
extraction and pruning, vascular classification and projec-
tion, for identifying Couinaud categories in 3D liver space.
Oliveira et al. (21) combined level set and region growing
methods to deal with 3D liver and vessels, thus constructing
four planes for Couinaud segmentation. Pla-Alemany et al.

(13) proposed a Couinaud classification method based on
multi-atlas registration and implemented it on the 3Dircadb
database (16). However, the methods mentioned above usu-
ally rely on the experience of clinicians, and the complete
process is time-consuming and labour-intensive. In contrast,
deep learning-based methods can perform end-to-end pro-
cessing and are widely used in 3D medical image segmenta-
tion tasks, which can produce performance close to clinical
annotations.

2.1.2. Voxel-based Deep Learning Methods

The Couinaud segmentation methods are conventionally
based on CNN models to generate or derive the correspond-
ing three-dimensional Couinaud masks from liver CT scans.
Specifically, Arya et al. (10) constructed a landmark local-
ization model using deep learning-based heatmap regression
to predict landmarks in the liver. They also derived the
Couinaud segments from the predicted landmarks and com-
pared the performance with that obtained by the network-
based direct segmentation model, showing close accuracy.
Similarly, Wang et al. (22) proposed an attentive residual
hourglass-based cascaded network to identify six key bifur-
cation points of the liver vascular system. Subsequently, the
plane dividing the liver into different Couinaud segments
was derived using the detection points. The method of deriv-
ing intersegmental planes directly from landmarks does not
consider the subtle course of critical vessels, potentially im-
pacting surgical pathway planning. Furthermore, Tian et al.

(14) and Jia et al. (15) explored direct pixel-level Couinaud
segmentation from CT/MR images using CNNs. Tian et al.

proposed the GLC-UNet (14), which processes pre-detected
key vascular slices and the target slice for segmentation,
leveraging attention mechanisms to learn inter-slice rela-
tionships, thereby achieving Couinaud segmentation across
193 cases of thick-layer CT scans. Recent work by Jia et

al. (15) focused on employing a dual attention module that
enhances critical information between adjacent segments

and experiments with 59 cases of clinically acquired 3D MRI
data. However, the methods proposed by Tian et al. (14)
and Jia et al. (15), still based on 2D U-Net architectures, do
not directly capture spatial relationships within sequences.
Moreover, the CNN model directly for voxel intensity makes
it easy to treat all voxel-wise features equally in training,
and the commonly used downsampling operation will lose
important spatial information, which still poses a challenge
to accurate Couinaud segmentation.

2.2. Point-Voxel Fusion Learning
The point-voxel fusion method aims to learn information

about the object at different levels or from various per-
spectives, thereby improving the performance of the task.
Zhou et al. (23) aggregated point data into the 3D voxel
grid and then combined point-wise features with locally
aggregated features through the voxel feature coding layer,
aiming at accurate 3D detection. Liu et al. (24) proposed
the PVCNN model, which converts the input 3D data into
a high-resolution point cloud and low-resolution voxel grid.
PVCNN consists of two different branches, which are used
to extract fine-grained features of points and local features
of voxel grids, respectively. The two features are fused,
and the decoder outputs the segmentation or classification
results. Similarly, Meng et al. (25) proposed a new point
cloud segmentation method, which transforms unstructured
point clouds into regular voxel grids and further uses a
kernel-based interpolated variational autoencoder (26) ar-
chitecture to encode the local geometry within each voxel.
In addition, many works (27; 28) have explored the deep
integration of voxel-based and point-based networks and
achieved advanced performance in 3D object detection and
semantic segmentation tasks in natural scenes. Unlike those
methods, our proposed framework is carefully designed and
targets 3D medical imaging problems, aiming to precisely
parse Couinaud segments using spatial priors and standing
robustness against corner cases.

3. Materials and Method

Our framework for robust and smooth segmentation
of Couinaud fragments from 3D CT volume is shown in
Fig. 2, including liver segmentation, vessel attention map
generation, point data sampling and multi-scale point-voxel
fusion network.

3.1. Data and Pre-Processing
This studied data from three publicly available datasets,

3Dircadb (16), LiTS (17) amd MSD8 (18). The 3Dircadb
dataset (16) contains 20 CT volumes with an average thick-
ness of 1.78 mm, and an average image size is 512×512×141
voxels with liver and vessel segmentation labels. The LiTS
dataset (17) consists of 200 CT volumes, with an average
thickness of 1.51 mm and an average image size of 512 ×

512×448 voxels, and has liver and tumour labels. The MSD8
dataset (18) includes 443 cases, the average thickness is 4.6
mm, and the average image size is 512 × 512 × 60 voxels,
with low-quality vessel labels. In our study, we annotated all
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Figure 2: Overall framework of our proposed method for Couinaud segmentation. The 3D UXNet is used to obtain the liver mask,
the semi-supervised MixMatch is used to extract the vessel structure in the image, and then the multi-scale point-voxel fusion
network performs Couinaud classiőcation on the sampling points in the liver space to reconstruct the complete 3D Couinaud
mask.

20 subjects of the 3Dircadb dataset (16) and 131 subjects
of the LiTS dataset (17) with Couinaud segmentation. For
the MSD8 dataset (18), we used 193 CT volumes annotated
by Tian et al. (14) to carry out experiments. Note that the
3Dircadb (16) and LiTS datasets (17) have an overlap and
are derived from the same institutions, but the MSD8 dataset
(18) is derived from different institutions. Our study uses the
same window width and window level setting for all 3D CT
volumes, maintaining the image intensity between -100 and
300 Hounsfield units (HU). In addition, for each stage of our
proposed method, the input images were normalized using
the 𝑧−score method.

3.2. Liver Mask and Vessel Attention Map

Generation
Liver segmentation is a fundamental step in the Couin-

aud segmentation task. Considering that the liver is large
and easily identified in the abdominal organs, we extracted
the liver mask through a trained 3D UXNet (33). Different
from liver segmentation, delicate vessel structure extraction
is challenging, so we aim to extract rough vessel regions,
namely vessel attention maps, as a guide for Couinaud
segmentation. Specifically, given a 3D CT image containing

only the area covered by the liver mask (𝐿), the semi-
supervised method (MixMatch) (30) can generate the cor-
roded and dilated vessel attention regions from the image,
respectively. Then, we combine the two regional maps and
binarize them with a threshold of 0.5 to generate the vessel
mask (𝑀). Finally, a morphological dilation encloses more
vessel pixels in the covered area represented by 𝑀 to create
the vessel attention map (𝑀 ′). Based on this, we can extract
reliable vessel structures without additional training from
both the LiTS (17) and MSD8 (18) datasets with missing
or low-quality labels.

3.3. Couinaud Segmentation
Based on the above work, we can sample the point data

with the vessel from the 3D CT volume, which can be
transformed into voxel grids by re-voxelization (as shown
in Fig. 2). Inspired by (24), a novel multi-scale point-voxel
fusion network is proposed to simultaneously process point
and voxel data through a point-based branch and voxel-based
branch, aiming to perform Couinaud segmentation accu-
rately. The details of this part of our method are described
below.
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3.3.1. Point Sampling Embedded with Vessel Stucture

To learn the topological relationship between Couin-
aud segments, a direct strategy is to obtain the coordi-
nate point data with 3D spatial information from liver
CT and perform point-wise classification. To this end,
we first unified convert the image coordinate points 𝐼 ={
𝑖1, 𝑖2, ..., 𝑖𝑡, 𝑖𝑡 ∈ ℝ

3
}

in liver CT into the world coordinate
points 𝑃 =

{
𝑝1, 𝑝2, ..., 𝑝𝑡, 𝑝𝑡 ∈ ℝ

3
}

:

𝑃 = 𝐼 ∗ 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 ∗ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑂𝑟𝑖𝑔𝑖𝑛, (1)

where 𝑆𝑝𝑎𝑐𝑖𝑛𝑔, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, and 𝑂𝑟𝑖𝑔𝑖𝑛 represent the voxel
spacing, scanning direction, and the world coordinates of
the origin of the CT image, respectively. Based on Equation
(1), we obtain the world coordinate 𝑝𝑡 = (𝑥𝑡, 𝑦𝑡, 𝑧𝑡) corre-
sponding to each point 𝑖𝑡 in the liver space. However, directly
feeding the transformed point data as input into the point-
based branch ignores the vessel structure, which is crucial
for Couinaud segmentation. We propose a dense sampling
strategy embedded with vessel prior based on the 𝑀 ′ to
solve this issue. Specifically, 𝑇 points are randomly sampled
as input in each training epoch, where 𝑇 ∕2 points fall in a
smaller space covered by 𝑀 ′, which allows the point-voxel
network to increase access to essential data in the region
during training. In addition, we apply a random perturbation
𝑂𝑓𝑓𝑠𝑒𝑡 = (Δ𝑥,Δ𝑦,Δ𝑧) in the range of [−1, 1] to each point
𝑝𝑡 = (𝑥𝑡, 𝑦𝑡, 𝑧𝑡) ∈ 𝑀 ′ in this region to obtain a new point
𝑝𝑡 = (𝑥𝑡 + Δ𝑥, 𝑦𝑡 + Δ𝑦, 𝑧𝑡 + Δ𝑧), and the intensity in this
coordinate obtained by trilinear interpolation. In the training
stage, the label of the point 𝑝𝑡 = (𝑥𝑡 +Δ𝑥, 𝑦𝑡 +Δ𝑦, 𝑧𝑡 +Δ𝑧)

is generated by:

𝑂𝑡 = 𝑂𝑡(𝑅(𝑥𝑡 + Δ𝑥), 𝑅(𝑦𝑡 + Δ𝑦), 𝑅(𝑧𝑡 + Δ𝑧)) ∈ {0, 1, ..., 7}, (2)

where 𝑅 denotes the rounding integer function, and 𝑂𝑡

indicates that the point 𝑝𝑡 belongs to the class of Couinaud
segmentation. Note that in our experiment, {0, 1, ..., 7} is
used to indicate {I, II, ..., VIII}. Based on this, we achieve ar-
bitrary resolution sampling in the continuous space covered
by the 𝑀 ′ and use it to input multi-scale point-voxel fusion
networks.

3.3.2. Re-voxelization

It is insufficient to extract the topological and fine-
grained information of independent points only by point-
based branch for accurate Couinaud segmentation. To this
end, we transform the point data

{
(𝑝𝑡, 𝑓𝑡)

}
into voxel grid{

𝑉𝑢,𝑣,𝑤
}

by re-voxelization, where 𝑓𝑡 ∈ ℝ
𝑐 is the feature

corresponding to point 𝑝𝑡, aiming to voxel-based convolution
to extract complementary semantic information in the grid.
Specifically, we first normalize the coordinates

{
𝑝𝑡
}

to [0, 1],
which is denoted as

{
𝑝𝑡
}

. Note that the point features
{
𝑓𝑡
}

remain unchanged during the normalization. Then, we trans-
form the normalized point cloud

{
(𝑝𝑡, 𝑓𝑡)

}
into the voxel

grids
{
𝑉𝑢,𝑣,𝑤

}
by averaging all features 𝑓𝑡 whose coordinate

𝑝𝑡 = (𝑥𝑡, 𝑦𝑡, 𝑧𝑡) falls into the voxel grid (𝑢, 𝑣,𝑤):

𝑽 𝑢,𝑣,𝑤,𝑐 =
∑𝑛

𝑡=1 𝕀[R(𝒙̂𝑡∗𝑟)=𝑢,R(𝒚̂𝑡∗𝑟)=𝑣,R(𝒛̂𝑡∗𝑟)=𝑤]∗𝒇 𝑡,𝑐

𝑁𝑢,𝑣,𝑤

, (3)

Conv3D(3, ), BN, 
ReLU

Conv3D(3, ), BN, 
ReLU

Conv3D(3, ), BN
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Figure 3: Detailed structure of voxel branch (𝐸𝑣) and decoder
(𝐷).

where 𝑟 denotes the voxel resolution, 𝕀 [⋅] is the binary
indicator of whether the coordinate 𝑝𝑡 belongs to the voxel
grid (𝑢, 𝑣,𝑤), 𝑓𝑡,𝑐 denotes the 𝑐 − 𝑡ℎ channel feature cor-
responding to 𝑝𝑡, and 𝑁𝑢,𝑣,𝑤 is the number of points that
fall in that voxel grid. Note that the re-voxelization in the
network is used three times (as shown in Fig. 2), and the 𝑓𝑡,𝑐
in the first operation is the coordinate and intensity, with c =
4. Moreover, due to the previously proposed point sampling
strategy, the converted voxel grid inherits the vessel structure
from the point data. It dilutes the unimportant information
in CT images and extracts effective semantic features for
Couinaud segmentation through the voxel branch.

3.3.3. Multi-scale Point-voxel Fusion Network

Based on the above-mentioned basis, we propose a
multi-scale point-voxel fusion network for accurate Couin-
aud segmentation, which exploits the topological relation-
ship of coordinate points in 3D space and leverages the
semantic information of voxel grids. As shown in Fig. 2,
our method has two branches: 1) point-based and 2) voxel-
based. Specifically, in the point-based branch, the input
point data

{
(𝑝𝑡, 𝑓𝑡)

}
passes through an MLP, denoted as 𝐸𝑝,

which aims to extract fine-grained features with topological
relationships. At the same time, the voxel grid

{
𝑉𝑢,𝑣,𝑤

}

passes the voxel branch based on convolution, denoted as
𝐸𝑣, which can aggregate the features of surrounding points
and learn the semantic information in the liver 3D space.
The structure of 𝐸𝑣 is shown in Fig. 3, where the residual
convolution stabilises the features and the sigmoid layer
balances the weights between the feature channels. Sub-
sequently, the features extracted from 𝐸𝑣 are re-transform
into point representations through trilinear interpolation
(𝑡𝑟𝑖) and combined with the fine-grained features extracted
from the point-based branch, which provide complementary
information:

(𝑝𝑡, 𝑓
1
𝑡
) = 𝐿𝐴𝑀(𝐸𝑝(𝑃 (𝑝𝑡, 𝑓𝑡)), 𝑡𝑟𝑖(𝐸𝑣(𝑉 ))𝑡), (4)
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where the superscript 1 of (𝑝𝑡, 𝑓
1
𝑡
) indicates that the fused

point data and corresponding features 𝑓 1
𝑡

are obtained after
the first round of point-voxel operation, and 𝐿𝐴𝑀(⋅) is a
local attention module for feature fusion, as shown in Fig.
2, which can adaptively balance the contributions of dif-
ferent branches and generate more discriminative features.
Then, the point data (𝑝𝑡, 𝑓

1
𝑡
) is voxelized again and extracted

point features and voxel features through two branches.
Note that the resolution of the voxel grid in this round is
halved compared to the previous round. After three rounds
of point-voxel operations, the original point feature 𝑓𝑡 and
the features

{
𝑓 1
𝑡
, 𝑓 2

𝑡
, 𝑓 3

𝑡

}
from multiple voxel scales are

concatenated and then sent to a point-wise decoder 𝐷 (Fig.
3), parameterized by a fully connected network, to predict
the corresponding Couinaud segment category:

𝑂̂𝑡 = 𝐷(𝑐𝑎𝑡
{
𝑓𝑡, 𝑓

1
𝑡
, 𝑓 2

𝑡
, 𝑓 3

𝑡

}
) ∈ {0, 1, ..., 7}, (5)

where {0, 1, ..., 7} denotes the Couinaud segment category
predicted by our model for the point 𝑝𝑡. We employ cross-
entropy (CE) and Dice losses to supervise the learning
process. Furthermore, we design a novel distance loss at the
feature level, aiming to enhance the discriminative ability
of the network in the uncertain regions between Couinaud
segments. We describe the local attention module (𝐿𝐴𝑀)

and the distance loss in detail below.

Local attention module for adaptively feature fusion.
As shown in Fig. 2, given the features from the two branches,
the channel is first reduced to 1∕4 of the original by 1D
convolution, then concatenated based on the channel. Fol-
lowed by convolution and activation operations, the feature
weight vector 𝑊 ∈ ℝ

𝑁×1 of all points is obtained. The
features from the voxel branch are fused based on the weight
𝑊 with the point features and then added with the features
from the voxel branch to obtain new point features. Note
that the model stores the location of each point, so the
features represented by the points from the two branches can
be effectively fused by locally weighted addition, and the
fused features will be used for the next round of point-voxel
operation.

The distance loss enhances model discrimination. In-
spired by (31; 32), we design a distance loss that includes
1) 𝑅intra, which is the centre loss (31), used to narrow the
internal feature distance of the Couinaud segment; 2) 𝑅inter,
which is designed to enhance further the discrimination
ability of the pixel-voxel model to identify uncertain regions
between segments. 𝑅intra is described as the following equa-
tion,

𝑅intra =
1

𝑁𝑎𝑙𝑙

8∑

𝑖

𝑁𝑖∑

𝑗

‖‖
‖
𝑥𝑖,𝑗 − 𝑐𝑖

‖‖
‖
2

2
, (6)

where 𝑐 =
{
𝑐0, 𝑐1, ..., 𝑐7

}
∈ ℝ

8×128 is the learnable features
of eight Couinaud segments centre, 𝑥𝑖,𝑗 ∈ ℝ

1×128 is the
feature vector of the 𝑗−th point in segment−𝑖 (note that we
use the features connected to the classifier in the experiment,

and the channel dimension is 128), and 𝑁𝑎𝑙𝑙 is the total num-
ber of sampling points for all segments in the training. Ac-
cording to Equation (6), in the model’s training process, the
point features 𝑥𝑖,𝑗 in each Couinaud segment will aggregate
toward 𝑐𝑖. However, the points between Couinaud segments
are highly uncertain, and the distance between classes may
be less than the distance within the class, so 𝑅intra cannot
effectively enhance the model’s ability to classify these hard
points. To this end, we further design 𝑅inter:

𝑅inter = 𝐶𝐸((𝑥′ ∗ 𝑐𝑇 ), 𝑂). (7)

The objective of our 𝑅inter can be understood as minimiz-
ing the cross entropy between the features (𝑥′) of points
in uncertain regions between segments based on centroid
aggregation and the corresponding label (𝑂) of the segment.
Specifically, in the network’s learning process, the points in
the uncertain region between segments are often difficult to
classify, which has a greater loss value. Therefore, we rank
the CE loss of all points in a batch, adaptively select the
𝑡𝑜𝑝10% as the points of the uncertain region between seg-
ments, and then obtain the features (𝑥′) of the corresponding
points. The feature (𝑥′) is multiplied by the transposition
centroid feature (𝑐𝑇 ) of different segments to recalculate loss
and update the model parameters. On this basis, the hard
points between segments will be further attracted by the
centroids of the same class and repelled by the centroids
of other classes, as shown in Fig. 2, thus promoting the
production of smooth segmentation planes. The complete
loss of our point-voxel fusion network is:

 = 𝐶𝐸 +𝐷𝑖𝑐𝑒 + 𝜆(𝛼 ⋅𝑅intra + (1 − 𝛼) ⋅𝑅inter), (8)

where 𝜆 is the weight to control the distance loss, and 𝛼 is
the weight to adjust the internal term.

3.4. Implementation Details
3.4.1. Network Details

As shown in Fig. 2, our point-voxel network consists of a
voxel-based branch, a point-based branch, the feature fusion
module, and the decoder. Three point-voxel operations out-
put fusion features of 64 channels, 128 channels, and 256
channels, respectively. The resolution of the re-voxelized
grid in the first point-voxel processing is 64×64×64. All
MLPs in our point-voxel model are implemented by 1D
convolution and followed by the BatchNorm and ReLU
layers, except for the final classification header.

3.4.2. Traning Details

The proposed framework was implemented on an RTX
A6000 GPU using PyTorch. For the point-voxel network,
we sample 𝑇 = 50, 000 points in each epoch and perform
scaling within the range of 0.9 to 1.1, arbitrary axis flipping,
and rotation of 0 to 5 degrees as the augmentation strategy.
Note that 𝑇 ∕2 = 25, 000 points in each input epoch are from
the area covered by the vessel attention map. Besides, we use
the stochastic gradient descent optimizer with a learning rate
of 0.01. All our experiments were trained for 600 epochs,
and then we used the model with the best performance on
the validation set to testing.
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Table 1

Quantitative comparison with different segmentation methods. ACC and Dice are the averages of all testing subjects, while ASD
is the average performance of all segments in all testing subjects.

Method
3Dircadb (16) LiTS (17) MSD8 (18)

Acc (% ↑) Dice (% ↑) ASD (mm ↓) Acc (% ↑) Dice (% ↑) ASD (mm ↓) Acc (% ↑) Dice (% ↑) ASD (mm ↓)

3D UNet (29) 59.29 ±18. 72.97±15. 8.64±4.5 68.73±10. 80.95±8.4 6.50±3.6 77.04±7.3 86.99±4.9 3.75±1.8

3D UXNet (33) 37.41±15. 52.97±16. 28.78±3.2 61.71±11. 77.89±9.2 7.44±3.8 77.74±9.0 87.17±6.1 4.18±2.2

Swin UNetR (34) 29.35±15. 43.68±17. 21.49±9.7 60.53±13. 76.74±11. 6.86±3.7 76.92±9.6 86.60±6.7 3.98±1.9

PointNet2Plus (35) 69.48±13. 81.36±9.7 5.66±3.7 69.79±8.2 84.15±5.8 5.39±2.6 71.93±11. 83.14±8.2 5.30±2.8

Jia et al.’s (15) 19.02±6.1 24.19±9.0 Ð 48.83±11. 64.86±11. Ð 73.47±12. 84.09±9.1 4.71±2.4

Ours 83.70±4.2 91.05±2.7 3.19±1.1 84.44±5.9 91.45±3.6 2.95±1.3 81.41±9.1 89.46±6.0 3.44±2.5

Ð indicates that there is an unrecognized Couinaud segment category, resulting in ASD cannot be calculated.

4. Experimental Results

4.1. Experimental Setup
In the experiments, we randomly divided each dataset

into the training, validation, and test sets in a 10:3:7 ratio.
For vessel region extraction, we use all training samples (168
cases) from three training sets for model training in a semi-
supervised manner and save the trained model with the least
validation loss (52 cases). We can obtain the vessel attention
maps on three test sets based on this trained vessel model.
Note that although we also obtained the liver segmentation
mask through a trained model, we used the liver label for
point sampling to train the point-voxel network, so the
classifier’s output category is 8 Couinaud segments.

We have used three widely used metrics, i.e., accuracy
(ACC, in %), Dice score (Dice, in %), and average surface
distance (ASD, in mm), to comprehensively evaluate the
performance of the Couinaud segmentation in three test sets.

4.2. Comparison With Competing Methods
We compare our framework with several SOTA ap-

proaches, including 3D UNet (29), 3D UXNet (33), Swin-
UNetR (34), the methods of Jia et al. (15), and point-based
PointNet2Plus (35). The method of Jia et al. uses 2D UNet
(36) with dual attention to focus on the object boundary
and is specifically for the Couinaud segmentation. We use
PyTorch to implement the above methods and maintain the
same learning rate and total training rounds as our point-
voxel network. However, since the CNN methods require the
input as a voxel grid of cubes, we resize the original CT
image to 256×256×64 and make the outputs 9 categories
(including background classes). In addition, we introduce
random rotation, translation, and crop as data augmentation
to train these CNN models. PointNet2Plus (35) does not have
the above limitations, so it maintains the same experimental
settings as our point-voxel model, except that the input points
are all randomly sampled from the liver region. Due to
the input differences between voxel-based and point-based
methods, we evaluate the Couinaud segmentation perfor-
mance of the liver region in this study.

4.2.1. Testing in-distribution Dataset

Table 1 summarizes the comparison results of three
metrics on three datasets. Compared with the CNN methods,
we can see that the 3D UNet(29), 3D UXNet (33), and
SwinUNetR (34) are superior to Jia et al.’s (15) 2D method

on three datasets, which shows that learning spatial relation-
ships is the key to dealing with the Couinaud segmentation
task. In addition, the performances of the CNN methods on
the MSD8 (18) dataset are better than on the 3Dircadb (16)
and LiTS (17) datasets in three metrics. The reason is that the
CT images from the 3Dircadb (16) and LiTS (17) datasets
have a lot of slices outside the liver, which interferes with
the training of the model. However, these CNN models will
also learn effective information about the Couinaud segment
from more training samples, so the model’s performance
on LiTS (17) also outperforms that of the 3Dircadb dataset
(16). By comparing the point-based methods, we can see
that PointNet2Plus (35) has achieved good and close per-
formance on all three datasets, which shows the potential
of point-based methods in Couinaud segmentation tasks
while further highlighting the importance of spatial relation-
ships. Finally, our proposed point-voxel fusion framework
achieves the best performance. Especially on the 3Dircadb
dataset (16) with only 10 training subjects, the ACC and
Dice achieved by our method exceeds other methods by a
large margin, and the ASD is also greatly reduced, which
demonstrates the effectiveness of our method.

To further evaluate the effectiveness of our method, we
also provide qualitative results on three different datasets,
as shown in Fig. 4. For the first two rows, we can see
that our method can learn the structural guidance of the
right hepatic vein and the middle hepatic vein, resulting
in accurate segmentation between Couinaud segments. For
the middle two rows, our method also captured the key
structures from the middle hepatic vein and the left hepatic
vein and accurately segmented the Couinaud segments IV
and II. However, CNN methods fail to accurately capture this
key structural relationship, generating inaccurate boundary
segmentation. Note that the last two rows show that the
portal vein branches divide the liver roughly into different
Couinaud segments. It can be seen that our method can also
learn the boundary guidance provided by the portal vein to
deal with the uncertain boundary robustly. Besides, com-
pared with the 3D view, it is obvious that the CNN methods
are easy to pay attention to the local region and produce a
large area of error segmentation, so the reconstructed surface
is uneven (e.g., the middle two rows). Although SwinUNetR
(34) with transformer can learn the region dependence in 3D
space, it is difficult to utilise effective spatial information
in this task and prone to error segmentation. In addition,
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Figure 4: Comparison of segmentation results of different methods. Different colours represent different Couinaud segments. In
the őrst column, we show the key vessels in 2D and 3D views as an additional reference for the segmentation results. Note that
although the entire CT image was used as input for the CNN methods, only the liver region is displayed for visualization (Best
viewed electronically, zoom in).

PointNet2Plus (35) directly learns the spatial location and
performs classification on each point in the liver, obtaining
the higher Dice and smooth 3D visualization. However, it
is noticeable that the PointNet2Plus (35) is more likely to
cause segmentation blur in boundary regions with high un-
certainty. In contrast, our method combines the advantages
of point-based and voxel-based methods and remedies their
respective defects, yielding smooth and accurate Couinaud
segmentation in three datasets.

4.2.2. Testing out-of-distribution Dataset

To further discuss the advantages of the proposed meth-
ods, we evaluate the generalization of all methods. However,
due to the differences in input, the comparison methods may
have two weaknesses compared to our complete framework:
a) Since the input of the CNN methods is the entire CT im-
age, the model’s training is susceptible to interference from
other organs and tissues. b) Compared with our method,
other methods do not directly utilize the extracted vessel
region as structural guidance. To this end, before evaluating

Table 2

Quantitative comparison with different enhanced methods on
the 3Dircadb dataset.

Method
3Dircadb (16)

Acc (% ↑) Dice (% ↑) ASD (mm ↓)

3D UNet ab 80.59±5.2 82.34±4.2 89.17±3.1 90.27±2.5 3.57±1.2 3.22±0.8

3D UXNet ab 73.34±4.0 81.17±4.5 84.57±2.7 89.55±2.7 14.56±4.3 5.03±1.0

SwinUNetR ab 77.94±4.5 81.35±4.1 87.54±2.9 89.67±2.5 9.73±1.5 3.68±1.1

PointNet2Plus b 69.48±13. 65.61±13. 81.36±9.7 78.55±1.0 5.66±3.7 5.97±3.0

Jia et al.’s ab 71.89±11. 76.90±7.5 83.22±7.8 86.77±4.9 4.97±2.1 4.36±1.9

Ours 83.70±4.2 91.05±2.7 3.19±1.1

a b The model is enhanced by the proposed enhancement strategy.

generalization, we enhanced all of the methods in the fol-
lowing ways: a) The input CT is cropped to obtain the liver
region and resized, and then the pixel intensity outside the
liver is set to 0 to eliminate irrelevant interference. b) Com-
bine the vessel attention map with the cropped CT image as
the model input to inject the anatomical prior. Note that for
the point-based method, we add a channel to the input point
feature, with a value of 0 or 1, to label whether the point is
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Figure 5: The visual comparison between our method and the enhanced CNN methods (a b represents the enhanced CNN model).

Table 3

Quantitative comparison with different enhanced methods on
the LiTS dataset.

Method
LiTS (17)

Acc (% ↑) Dice (% ↑) ASD (mm ↓)

3D UNet ab 76.94±6.4 77.47±5.7 89.07±4.0 89.44±3.5 3.95±1.9 3.89±1.8

3D UXNet ab 79.20±6.6 80.03±6.3 88.24±4.3 88.71±4.0 4.40±2.1 4.21±1.7

SwinUNetR ab 82.28±4.7 82.00±4.8 90.21±2.8 90.04±2.9 3.10±1.4 3.10±1.0

PointNet2Plus b 69.79±8.2 73.29±7.8 84.15±5.8 84.35±5.3 5.39±2.6 5.20±2.7

Jia et al.’s ab 62.55±15. 62.30±17. 78.07±12. 77.60±14. 8.37±4.3 8.72±5.4

Ours 84.44±5.9 91.45±3.6 2.95±1.3

a b The model is enhanced by the proposed enhancement strategy.

Table 4

Quantitative comparison with different enhanced methods on
the MSD dataset.

Method
MSD (18)

Acc (% ↑) Dice (% ↑) ASD (mm ↓)

3D UNet ab 78.29±9.2 80.74±8.0 88.37±6.1 89.11±5.1 3.49±3.2 3.22±2.7

3D UXNet ab 78.01±10. 80.66±8.1 88.45±6.8 89.07±6.3 3.58±3.2 3.49±3.0

SwinUNetR ab 79.55±10. 80.79±8.0 88.14±6.2 88.56±5.2 3.70±3.1 3.50±2.6

PointNet2Plus b 71.93±11. 72.81±10. 83.14±8.2 83.82±7.5 5.30±2.8 5.19±2.6

Jia et al.’s ab 74.84±11. 74.11±12. 85.27±8.1 84.68±9.1 4.13±2.8 4.37±3.2

Ours 81.41±9.1 89.46±6.0 3.44±2.5

a b The model is enhanced by the proposed enhancement strategy.

from the vessel region. The enhanced methods are retrained
and tested on three datasets. The results are shown in Table
2, 3 and 4. Compared with the results shown in Table 1,
the enhanced CNN methods showed significant performance
improvements across all three datasets, especially notable
in the 3Dircadb dataset (16) using Jia et al.’s 2D UNet-
based method (14) (e.g., 24.19 vs. 83.22 vs. 86.77 in Dice
score). However, the gains from utilizing the vessel as an
additional input for enhancement-(b) were not as significant.
For example, the performance of the SwinUNetR (34) on
the LiTS dataset (17) decreased, indicating that while coarse
vessel images can provide guidance, they can also introduce
additional interference, negatively impacting segmentation

performance. This observation applies to point-based meth-
ods as well. In contrast, our complete method uses the dense
sampling strategy embedded with the vessel prior, enabling
the resistance of noise interference and learning the guidance
from the key vessel structure. The visualization results of
some comparison methods are shown in Fig. 5. We can see
that the enhancement strategy helps the CNN models to
improve the segmentation of intersegmental regions, but our
method still shows great advantages, especially in generating
accurate and smooth segmentation results between the upper
and lower segments of the liver.

Following the aforementioned experiments, we exter-
nally tested the models trained on the 3Dircadb dataset (16)
on the LiTS (17) and MSD8 (18) datasets, thereby evaluating
the methods’ generalization capabilities on OOD datasets.
The results of these tests are presented in Table 5. Table 5
demonstrates that, despite enhancements, the performance
of models based on CNN significantly deteriorated on the
LiTS (17) and MSD8 (18) datasets. This degradation could
be attributed to the models’ excessive reliance on specific
features prevalent within the training dataset’s voxel distri-
bution, adversely affecting their generalization capabilities
on OOD datasets. Thus, an interesting phenomenon is ob-
served, wherein the PointNet2Plus (35) model, which takes
pixel spatial coordinates as input, surpassed the performance
of the CNN-based methods. Similarly, by incorporating the
complementary spatial information provided by point data,
our proposed method consistently outperformed, showcas-
ing superior generalization ability on OOD datasets.

Further, Fig. 6 displays the performance of various meth-
ods in segmenting each Couinaud segment, as measured by
Dice and ASD. The external testing results on the LiTS
(17) dataset reveal that our proposed method surpasses other
methods in the segmentation of every Couinaud segment,
with notable superiority in segments I, IV, VI, and VII.
By contrast, while our approach demonstrated the most
robust generalization capability on the MSD8 (18) dataset
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Table 5

Evaluate generalization with different enhanced methods on out-of-distribution datasets.

Method
3Dircadb → 𝐿𝑖𝑇𝑆 3Dircadb → 𝑀𝑆𝐷8

Acc (% ↑) Dice (% ↑) ASD (mm ↓) Acc (% ↑) Dice (% ↑) ASD (mm ↓)

3D UNet ab 54.37±21. 54.73±22. 67.99±18. 68.16±19. 17.91±13. 18.63±14. 58.36±8.3 57.89±9.6 73.34±7.1 72.82±8.6 11.50±4.2 11.04±4.8

3D UXNet ab 50.78±17. 54.26±21. 65.77±15. 67.98±18. 22.97±8.6 17.80±12. 52.76±7.9 65.16±9.4 68.71±7.4 78.48±7.8 15.82±5.8 10.13±3.7

SwinUNetR ab 51.76±21. 55.67±22. 65.76±18. 69.35±17. 20.22±8.6 17.04±12. 56.81±10. 62.30±9.4 71.91±9.0 76.33±7.8 17.94±4.6 10.27±4.0

PointNet2Plus b 67.75±14. 60.38±14. 79.88±11. 74.19±13. 7.29±6.1 9.22±7.4 69.07±10. 64.89±12. 81.25±7.8 78.06±9.4 5.74±3.2 6.60±3.1

Jia et al.’s ab 47.66±26. 51.11±25. 60.43±24. 64.20±22. 18.29±13. 16.06±11. 37.27±9.4 27.49±6.7 53.61±10. 42.71±8.1 19.16±5.6 22.93±4.2

Ours 78.46±6.3 87.79±4.0 4.48±1.9 70.04±15. 81.30±12. 6.53±4.6

a b The model is enhanced by the proposed enhancement strategy.

（a） （b）

（c） （d）

（e） （f）

Figure 6: Evaluating the generalization effects of different
enhancement methods on OOD datasets. (a) and (b) show
the segmentation performance for each segment by different
methods trained and tested on the 3Dircadb dataset. Based
on the outcomes in Table 1, besides PointNet2Plus, we
selected CNN-based methods that underwent two types of
enhancement. (c) and (d) depict the results of the chosen
methods when externally tested on the LiTS dataset. (e) and
(f) demonstrate the external testing results of the selected
methods on the MSD8 dataset.

during external testing, it also exhibited a certain degree
of performance decline (Dice: 91.05 (within-distribution)
→ 81.30 (OOD)). We speculate that the main reason for
this phenomenon is the substantial difference in average
slice thickness between the MSD8 (18) and 3Dircadb (16)
datasets (4.6mm vs. 1.78mm), against which our proposed
dense sampling strategy effectively relieves (refer to the
ablation analysis). Moreover, it is imperative to highlight
that the segmentation of segment I (i.e., the caudate lobe),

Table 6

Ablation study on different key components.

Method
3Dircadb (16) LiTS (17) MSD8 (18)

Dice (↑) ASD (↓) Dice (↑) ASD (↓) Dice (↑) ASD (↓)

(a) 89.36±4.2 3.54±1.7 90.63±3.4 3.65±1.7 86.53±9.6 4.93±4.2

(b) 89.49±4.5 3.96±2.4 91.36±3.3 3.22±2.4 88.62±7.3 4.09±2.8

(c) 90.80±2.6 3.38±1.1 91.43±3.4 3.17±1.9 89.36±6.1 3.62±2.5

(d) 90.21±2.9 3.69±2.1 91.45±3.7 3.11±1.8 89.11±6.3 3.71±2.8

Ours 91.05±2.7 3.19±1.1 91.45±3.6 2.95±1.3 89.46±6.0 3.44±2.5

located at the posterior part of the liver, relies heavily on
the model’s comprehensive understanding of spatial struc-
tures and semantic information due to its relatively con-
cealed anatomical position and the significant variability in
shape and size among individuals. As depicted in Fig. 6,
our method, integrating the complementary information of
points and voxels, achieved markedly superior segmentation
of segment I on both OOD datasets, exhibiting robust Dice
coefficients and ASDs, which is critically important for
clinical practice.

4.3. Ablation Study
To verify the effectiveness of crucial components in our

approach, we conducted an ablation study by individually
removing each component and comparing it to the complete
pixel-voxel model. Table 6 shows the experimental results
obtained on three datasets under the Dice and the ASD
metrics. In Table 6, (a) indicates the removal of the dense
sampling strategy embedded with vessel priors, choosing
instead to sample T points solely from the liver space; (b)

indicates that the point-based branch in the encoder is elim-
inated, thus the input point data is re-voxelized, aggregated
through convolution to extract multi-scale information, and
the Couinaud segmentation is output through an MLP-based
decoder; (c) indicates the removal of the attention-based
fusion module, where features from different branches are
fused through simple addition operations; and (d) indicates
the elimination of distance loss, relying on Dice and CE
losses for model training. It’s noteworthy that our previous
version (19) could be considered a combination of (c) and
(d), namely removing the attention-based fusion module as
well as the feature-based distance loss. Additionally, the
results of our complete method are detailed in the last row.
Compared with scenario (a), our full method significantly
improves Dice and ASD, particularly on the MSD8 dataset
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(a) -w/o dense sampling

Dice: 94.87 (%)
ASD: 1.44 (mm)

(c) -w/o local attention

Dice: 96.78 (%)
ASD: 0.79 (mm)

Ours

Dice: 97.62 (%)
ASD: 0.61 (mm)

(b) -w/o point branch

Dice: 96.54 (%)
ASD: 0.93 (mm)

(d) -w/o distance loss 

Dice: 96.99 (%)
ASD: 0.73 (mm)

Groud Truth

MSD-004

Axial

Ⅱ

Ⅰ

Ⅳ

Ⅷ

Ⅶ

Figure 7: The visualization results of our method after remov-
ing different components (Best viewed electronically, zoom in).

(18) (Dice: 86.53 → 89.46, ASD: 4.93mm → 3.44mm). This
improvement is attributed to the dense sampling strategy
with vessel priors, which facilitates increased critical data
access across the boundaries of the Couinaud segments.
Moreover, this strategy allows for continuous, dense sub-
pixel sampling in vital vessel regions, which is crucial for
fine-grained semantic recognition in thick-slice CT images.
For scenario (b), since the input point features include spatial
coordinates and voxel intensity, individual voxel branches
can learn features from both perspectives as well. However,
our method further enhances the extraction of fine-grained
spatial information through the point branch in the en-
coder, thereby improving segmentation performance across
all three datasets. Additionally, although the encoder in
scenario (b) operates feature maps through the voxel branch,
it still samples as points to connect with the decoder, po-
tentially introducing confusion between feature concatena-
tions. In Table 6, scenario (c), which features two branches,
uses simple feature fusion to mitigate the shortcomings of
(b). Nonetheless, compared with (c), our method adaptively
balances the contributions of both branches based on the
attention module to achieve the best performance. Lastly, our
complete approach introduces feature-based distance loss,
enhancing the model’s discriminative power in ambiguous
inter-segment areas, thus maintaining a high Dice score
while reducing ASD.

Fig. 7 presents the visualization of ablation results on
a thick-layer CT data. Observing Fig. 7(a), we can see that
the method without the dense sampling strategy struggles to
accurately learn the course of vessels in thick-layer CT data
(as seen in the 2D view), resulting in notable segmentation
errors in the generated 3D Couinaud segments (as seen in
the 3D view). Building upon the dense sampling, removing

w/o distance loss

Ⅰ

Ⅱ
Ⅲ

Ⅳ

Ⅴ

Ⅵ

Ⅶ

Ⅷ

w/ distance loss

Figure 8: Visualization of the effect of distance loss on the
features of the front layer of the classiőer.

Table 7

The results of liver and vessel segmentation on different
datasets, and the impact on Couinaud segmentation.

Dataset
Liver Vessel Couinaud Couinaud (Ref )

Dice (↑) Dice (↑) Dice (↑) ASD (↓) Dice (↑) ASD (↓)

3Dircadb 96.84 87.84 89.15±3.0 4.25±2.1 91.05±2.7 3.19±1.5

LiTS 94.05 Ð 89.04±3.9 4.63±1.7 91.45±3.6 2.95±1.3

MSD8 96.22 Ð 86.91±7.4 4.24±2.7 89.46±6.0 3.44±2.5

the point branch diminishes the capacity to extract fine-
grained spatial information, hence producing uneven inter-
segment segmentation planes (Fig. 7(b), 3D view). Simi-
larly, by comparing the presentations in Fig. 7(c) and (d), the
complete method, incorporating all components, accurately
segments uncertain regions between Couinaud segments and
yields smoother results in 3D view (Fig. 7(e)). Furthermore,
to underscore the effectiveness of our proposed distance
loss, we performed PCA on the features, followed by t-
SNE visualization (as illustrated in Fig. 8). It is evident
from Fig. 8 that employing distance loss significantly boosts
the discriminative capability of the model-generated inter-
segment features and contributes to smooth intersegment
plane segmentation.

5. Discussion

5.1. Liver and vessel region analysis
The extraction of liver and vessel regions lays the

groundwork for the task of Couinaud segmentation. In this
study, our goal was to develop a fully automated framework
capable of robustly extracting smooth Couinaud segmenta-
tions from CT images. To this end, we employed a trained
3D UXNet (33) model for liver extraction, alongside a
semi-supervised model for extracting vessel attention maps
across three datasets. Our experiments aimed to analyze the
impact of extracting liver and vessel regions on Couinaud
segmentation. As illustrated in Table 7, the first column on
the left displays the Dice scores achieved by the trained 3D
UXNet (33) model for liver segmentation across all three
datasets, exceeding 94%. While we believe that training
more complex networks individually on each dataset might
yield higher performance, the results obtained with the pre-
trained 3D UXNet (33) model demonstrate its powerful
capability in segmenting the liver in CT images, fulfilling
the requirements of this study. However, unlike liver seg-
mentation, vessel segmentation from CT images poses a
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Table 8

Analyze the inŕuence of different settings of hyperparameter
𝜆 on three datasets.

𝜆
LiTS (17) MSD8 (18)

Acc (↑) Dice (↑) ASD (↓) Acc (↑) Dice (↑) ASD (↓)

0.1 63.70±16. 48.45±15. 15.34±5.7 55.78±19. 69.73±16. 9.74±3.1

0.01 83.93±6.3 91.02±3.9 3.29±2.2 80.88±9.6 89.10±6.3 4.08±3.1

0.001 84.31±5.9 91.39±3.4 3.09±1.4 80.80±9.5 89.06±6.3 3.93±2.9

Table 9

Analyze the inŕuence of different settings of hyperparameter
𝛼. on three datasets.

𝛼
LiTS (17) MSD8 (18)

Acc (↑) Dice (↑) ASD (↓) Acc (↑) Dice (↑) ASD (↓)

0.1 84.44±5.9 91.45±3.6 2.95±1.3 81.41±9.1 89.46±6.0 3.44±2.5

0.3 84.61±5.8 91.56±3.5 3.04±1.5 81.43±9.4 89.37±6.4 3.59±2.7

0.7 84.31±6.0 91.37±3.6 3.04±1.8 81.06±9.4 89.22±6.4 3.85±3.0

0.9 84.14±6.0 91.27±3.6 3.11±2.1 81.09±9.7 89.24±6.2 3.70±2.9

challenge due to the fine topology of vessels, compounded
by the diverse imaging parameters, such as slice thickness,
commonly encountered in clinical CT scans. Our proposed
method leverages a dense sampling strategy to learn key
vessel priors from coarse vessel attention maps for Couinaud
segmentation across varied data distributions. To achieve
this objective, we selected a semi-supervised vessel seg-
mentation method, MixMatch (30), which required only one
training session to achieve vessel segmentation across all
three datasets. The second column in Table 7 showcases the
testing results of the trained MixMatch (30) model. It is note-
worthy that, due to the absence or low quality of vessel labels
in the LiTS (17) and MSD8 (18) datasets, we only display
vessel segmentation performance on the 3Dircadb dataset
(16). After obtaining liver and vessel segmentation masks,
we created three new point cloud test sets. Subsequently,
testing these new sets with our trained models to perform
Couinaud segmentation, the performances shown in the
middle two columns of Table 7 slightly decrease compared
to the results obtained on liver and vessel labels (denoted
as Ref in the last column). This slight decline demonstrates
that the liver and vessel segmentation methods chosen meet
the initial intentions of our study, further illustrating our
method’s robustness to the input liver contours and vessel
segmentation results, facilitating clinical application.

5.2. Hyperparameter Analysis in Distance Loss
In Couinaud segmentation tasks, smooth segmentation

surfaces are easier to interpret and understand, providing
clearer excision guidance for surgeons and facilitating the
planning of surgical pathways. Therefore, we introduced a
feature-based distance loss to enhance segmentation pre-
cision in the uncertain areas between Couinaud segments,
resulting in smoother segmentations. Our proposed distance
loss includes two key components and is based on the mutual
adjustment of hyperparameters 𝜆 and 𝛼 to exert a positive
effect. We detailed the influence of hyperparameters 𝜆 and 𝛼

on distance loss, as demonstrated in Table 8 and 9. Initially

Table 10

The average time cost (s) of processing a sample at different
stages in our complete method.

Dataset Liver Vessel
Couinaud

Sam Seg Rec

3Dircadb (16) 35.6 (s) 6.4 (s) 57.3 (s) 26.4 (s) 7.6 (s)
LiTS (17) 91.2 (s) 6.9 (s) 81.5 (s) 36.0 (s) 14.8 (s)
MSD (18) 19.1 (s) 5.5 (s) 17.5 (s) 9.1 (s) 2.7 (s)

"Sam" denotes to sample point cloud data embeded vascular-

priori from the liver space, "Seg" denotes to perform Couinaud

segmentation on the input point cloud data, and "Rec" denotes

to reconstruct the output point cloud segmentation results into 3D

Couinaud mask.

setting 𝛼 to 1, we adjusted 𝜆 to determine the weight of
𝑅intra, the basic component of distance loss. We can observe
that using smaller 𝜆 values leads to better segmentation
performances while reducing the constraints on features
imposed by 𝑅intra. However, to enhance the discriminability
of the model, and also consider that 𝛼 will further reduce
the weight of 𝑅intra, we selected 0.01 as the setting of 𝜆 in
this paper. Based on this setting, we further conduct several
experiments on the LiTS (17) and MSD8 (18) datasets to
evaluate the role of 𝛼. As shown in Table 9, our methods
achieve the best performances on both datasets when 𝛼 is
set to 0.1 or 0.3, with 0.1 selected as the 𝛼 setting for this
comparative study.

5.3. Limitations and Future Trends
Table 10 shows the time consumption of our complete

framework in inference, including liver segmentation, vessel
region extraction, and Couinaud segmentation. It can be
seen that Couinaud segmentation takes the longest time in
the whole process, mainly because our method involves
processing all individual points in the liver space. Therefore,
to improve the efficiency of our method in clinical practice,
we plan to design a fast point cloud segmentation and mask
reconstruction based on regional broadcasting in the future.

6. Conclusion

In this study, we introduced a novel multi-scale point-
voxel fusion framework for fully automated Couinaud seg-
mentation, a critical task for liver surgery planning. By in-
novatively leveraging the topological relationships of coor-
dinate points in 3D space and the rich semantic information
encoded in voxel grids, our method not only recognizes
but also intricately understands the spatial hierarchies and
relationships crucial for precise Couinaud segmentation.
Moreover, our approach is the integration of the dense
point sampling strategy, enriched with vessel priors, which
significantly enhances our model’s focus on critical areas.
This strategy facilitates a detailed understanding of the tra-
jectories of key vascular structures, thus paving the way
for safer surgical pathways that substantially minimize the
risk of damaging major blood vessels. Furthermore, our
framework introduces a feature fusion module utilizing local
attention mechanisms, coupled with a distance loss function
at the feature level. These innovations collectively enhance
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the model’s discriminative power, enabling the generation of
accurate and smooth boundary segmentations. Such smooth
segmentation surfaces are not only clinically interpretable
but also provide surgeons with clear and precise excision
guidelines, facilitating the meticulous planning of surgical
approaches. Extensive experiments conducted across three
publicly available datasets have demonstrated the superiority
of our proposed method, especially its strong generaliza-
tion capability on out-of-distribution (OOD) datasets, which
surpasses that of current state-of-the-art (SOTA) methods.
This significant generalization highlights the tremendous
potential of our framework for clinical application, particu-
larly in the preoperative phase of liver surgery, where it can
contribute to optimizing surgical outcomes and enhancing
patient safety.
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