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Abstract

A number of approaches has been proposed to investigate and mitigate un-

fairness in machine learning algorithms. However, as the deőnition and un-

derstanding of fairness may vary in different situations, the study of ethical

disparities remains an open area of research. Besides the importance of

analyzing ethical disparities, explainability in machine learning is also a rel-

evant issue in Trustworthy Artiőcial Intelligence. Usually, both fairness and

explainability analysis are based on a őxed decision threshold, which differ-

entiates the positive cases from the negative ones according to the predicted

probabilities. In this paper, we investigate how changes in this threshold can

impact the fairness of predictions between protected and other groups and

how features contribute towards such a measure. We propose a novel Shapley

value-based approach as a tool to investigate how changes in the threshold

values change the contribution of each feature towards unfairness. This gives
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us an ability to evaluate how fairness measures vary for different threshold

values and which features have the higher (or lower) impact on creating eth-

ical disparities. We demonstrate this using three different case studies that

are carefully chosen to highlight different unfairness scenarios and features

contributions. We also applied our proposal as a feature selection strategy,

which contributed to decrease unfair results substantially.

Keywords:

Interpretable Machine Learning, Shapley value, Fairness, Feature

contribution

1. Introduction1

It is often argued that decision making by people contain several psycho-2

logical biases [1, 2] and that may be avoided if we rely on machine-based3

intelligence. Based on the level of human involvement, the authors in [3]4

explained and structured operations into different types. On one hand, they5

deőne the fully automated tasks as łout of the loopž meaning that humans6

are not involved, while on the other hand, the łon the loopž tasks were de-7

őned as those where decisions are solely depending on humans. Although8

it appears that excluding humans from decision process should remove the9

issues and biases related to humans, it is not that simple as machines are10

often trained with the data that contain biases in itself [4]. The issue of11

unfairness in Machine Learning (ML) algorithms has been widely debated12

in recent years and a number of approaches has been proposed to mitigate13

unfairness [5, 6]. One may cite, for instance, works that exploit the concepts14

of equal opportunity [7] and accuracy parity [8]. However, as the concept15
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and deőnition of fairness may vary in different context, this remains an open16

area of research. Regardless of its deőnition, fairness is closely related to the17

explainability of algorithms. This is because to investigate fairness, there18

should be a way to explain the results and performance of machine learning19

algorithms.20

One can deőne the term explainability as the ability of an algorithm to21

provide information that can help evaluate causalities, similarities, and/or22

uncertainties which in turn helps decision makers towards understanding the23

model outcomes [9, 10]. Miller [11] described this őeld as the intersection24

of ML with the subject areas of human-computer interaction and social sci-25

ences. Some of the explainability tools focus on improving the interpretability26

of data, for example, by reducing the dimension of feature space [12]. Others27

focus on the machine learning models, for example, by explaining the out-28

comes generated by ML algorithms [13]. Among such approaches, one may29

cite the well-known method proposed by [14], called SHAP, which has been30

addressed in several recent works [15, 16, 17].31

The term explainable AI, or XAI in short, can be used at two very dif-32

ferent levels: the global and the local ones [13, 10]. The global level inter-33

pretations are important to assess and audit the explainability of algorithms34

overall, for example, which feature contributes more towards explaining the35

outcomes [18]. The local level interpretations, however, are more suited to36

explain results (or predictions) provided for local samples [14], for example,37

why a loan has been refused to a certain applicant. While both levels of38

explainability can be useful in different situations, a single instance of local39

explainability might not be sufficient for evaluating fairness. The notion of40
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group fairness demands investigation of multiple cases in order to compare41

the algorithm’s performance for different groups (for example, male group42

versus female group). Although some of the explainability strategies are only43

applicable to speciőc algorithms [19], our focus remains on model-agnostic al-44

gorithms that can be applied to different machine learning techniques equally.45

In this context, the use of Shapley value-based approaches has gained more46

attention due to its algorithm-agnostic characteristic [14], versatility [20, 21]47

and other useful properties [22, 23].48

The issue of fairness in machine learning has also gained attention in49

recent years [24, 25]. For example, this has been proposed as a constrained50

optimization problem where the objective is to minimize the mis-classiőcation51

probability whilst imposing an upper bound on an unfairness measure [26].52

Fair solutions have also been exploited by means of multi-objective approaches [27,53

28]. In this case, both algorithm performance and fairness concerns are op-54

timized simultaneously. Although mitigation of unfairness in ML algorithms55

has been investigated, there is a little done in the őeld of explaining the con-56

tribution of features towards unfair results generated by these algorithms.57

Usually explainability for ML classiőers is done considering a single (pre-58

assigned/őxed) value of threshold that is used to differentiate the positive59

cases from the negative ones. Changing this threshold might not only im-60

pact the performance of classiőers but can also affect fairness for a protected61

group against the other groups. [15] proposed the use of Shapley values to62

investigate fairness in machine learning models and to explain the trade-off63

between accuracy and fairness. However, they did not investigate thresholds64

used for classiőcation and their impact on fairness, whether using equalized65
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odds [7] or any other method of quantifying fairness.66

A recent work [29] involved generating various different decision thresh-67

olds to estimate the contributions of features towards the quality of predic-68

tions, measured in terms of Receiver-operating Characteristics (ROC) curve69

and the Area under the ROC curve (AUC). Although the explanation of these70

curves can help analysts in feature engineering, it may also help investigate71

the issues of fairness, for example, by explaining the contribution of features72

towards disparities in quality of predictions between the protected and the73

privileged groups. Therefore, we see a gap in the literature in providing74

a mechanism to evaluate features contributions toward unfair results along75

with thresholds1. Instead of an analysis for a single (and predeőned) thresh-76

old, it is of interest to verify how fairness and features contributions varies77

for different threshold values. Aiming at overcoming this gap, in this paper,78

we investigate the range of decision thresholds to identify different levels of79

fairness along with the performance of classiőers. Our proposal is based on80

the Shapley value, which indicates features contributions towards both per-81

formance (for protected and privileged groups) and fairness measures. From82

the experimental results, we attest that our proposal can be useful to (i) eval-83

uate which features impact disparate results, (ii) investigate the presence of84

features acting as proxies and (iii) observe how features contribute differently85

towards different sensitive groups. Moreover, we also apply our proposal as86

1Indeed, most of the explainable AI techniques, such as LIME [30] or SHAP [14], deal
with local interpretability, i.e., with the purpose of explaining the outcome of a sample
of interest. Although SHAP can be extended to global interpretability, it provides the
contributions toward the predicted classes, instead of group fairness measures along with
thresholds.
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a tool to assist feature selection. Indeed, by removing features with relevant87

contributions toward unfairness, we are able to mitigate ethical disparities.88

The next section describes the background with related literature, fol-89

lowed by the proposed technique (Section 3). The numerical experiments are90

presented in Section 4, and then, Section 5 concludes the discussion.91

2. Background92

This section discusses the theoretical background used in our proposal.93

Firstly, we present the adopted notations and, thereafter, we discuss some94

performance and fairness metrics frequently used to evaluate machine learn-95

ing models. Finally, we deőne the Shapley value and how it has been used96

as a feature attribution method for ML explainability.97

2.1. Setup and Notations98

Assume a binary classiőcation setting where X ∈ R
n×m represents the99

m-dimensional dataset with n samples and y ∈ {0, 1}n is the associated100

vector of labels. Generally, class 1 (the łpositivež class) indicates a beneőt.101

Consider d ∈ [0, 1]n as the vector of predicted probabilities which indicate102

the likelihood of belonging to class 1. Given an instance x(i) and a predeőned103

threshold t, x(i) is classiőed as class 1 if d(i) ≥ t. The vector of all predicted104

labels is represented by ŷ, i.e., for a given instance x(i), if d(i) ≥ t, ŷ(i) = 1.105

Suppose a classiőcation task whose samples can be split into sensitive106

groups deőned by G ∈ {a, b} (e.g., blacks and whites or men and women).107

Without loss of generality, consider that a and b are the protected and the108

privileged groups, respectively. By splitting X into these groups, one may109

deőne X = [Xa;Xb], where Xa ∈ R
na×m and Xb ∈ R

nb×m are m-dimensional110
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datasets with na and nb samples, respectively. The vector of labels, predicted111

probabilities and predicted labels can also be split similarly.112

2.2. Performance metrics113

In order to evaluate the performance of a classiőer, one generally considers114

metrics used to construct the confusion matrix. They are deőned as follows:115

• True positive (TP ): Number of instances correctly classiőed as class 1.116

• True negative (TN): Number of instances correctly classiőed as class117

0.118

• False positive (FP ): Number of instances wrongly classiőed as class 1.119

• False positive (FN): Number of instances wrongly classiőed as class 0.120

Based on these metrics, the classiőer’s performance is evaluated by means121

of the following rates:122

• Positive predictive value (PPV = TP
TP+FP

): ratio between the number123

of class 1 correctly classiőed as class 1 and the total number of instances124

classiőed as class 1. This ratio is also called Precision.125

• Negative predictive value (NPV = TN
TN+FN

): ratio between the number126

of class 0 correctly classiőed as class 0 and the total number of instances127

classiőed as class 0.128

• True positive rate (TPR = TP
TP+FN

): percentage of class 1 correctly129

classiőed as class 1. It is also called Sensitivity or Recall.130
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• False positive rate (FPR = FP
FP+TN

): percentage of class 0 wrongly131

classiőed as class 1.132

All the aforementioned metrics can also be deőned by conditioning on133

the sensitive groups. For example, TPa means the number of instances in134

group a correctly classiőed as class 1 and FPRb is the percentage of class 0135

wrongly classiőed as class 1 for the individuals belonging to group b.136

2.3. Measures of fairness137

Besides the performance metrics presented in the previous subsection,138

machine learning models have been evaluated in terms of disparate results139

against protected groups. We present in the sequel a brief description of140

some fairness metrics used in our analysis (see [31, 24] for further details and141

other metrics).142

2.3.1. Statistical parity (or Demographic parity)143

A classiőer satisőes statistical parity (SP ) [32] if both groups have the144

same probability of being classiőed as the positive class, i.e., TPG+FPG

nG

must145

be the same regardless group G. Therefore, the SP strategy is associated146

with the minimization of the following cost function:147

fSP =

∣

∣

∣

∣

TPa + FPa

na

−
TPb + FPb

nb

∣

∣

∣

∣

. (1)

The idea supported by this deőnition is that equivalent positive outcomes148

(such as receiving a credit) should be similar for individuals, regardless if its149

group.150
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2.3.2. Predictive equality151

A classiőer satisőes predictive equality (PE) if both groups have equal152

FPR. In other words, P (Ŷ = 1∥Y = 0, G = 1) = P (Ŷ = 1∥Y = 0, G = 0).153

One here attempts to minimize154

fPE =

∣

∣

∣

∣

FP1

FP1 + TN1

−
FP0

FP0 + TN0

∣

∣

∣

∣

. (2)

In this metric, the aim is to assign the same amount of positive outcomes to155

individuals of different groups that actually belong to the negative class.156

2.3.3. Equalized odds157

A classiőer satisőes equalized odds (EO) if both groups have equal TPR158

and FPR. In other words, P (Ŷ = 1∥Y = 1, G = 1) = P (Ŷ = 1∥Y = 1, G =159

0) and P (Ŷ = 1∥Y = 0, G = 1) = P (Ŷ = 1∥Y = 0, G = 0). The deőnition160

of equalized odds was proposed by [7] to remedy previously noted ŕaws with161

demographic parity [32]. The goal is to minimize162

fEO =

∣

∣

∣

∣

TP1

TP1 + FN1

−
TP0

TP0 + FN0

∣

∣

∣

∣

+

∣

∣

∣

∣

FP1

FP1 + TN1

−
FP0

FP0 + TN0

∣

∣

∣

∣

. (3)

2.4. Shapley values in machine learning interpretability163

The Shapley value [33] is a classical solution concept in game theory.164

Consider a scenario in which a set M = {1, 2, . . . ,m} of m players join a165

coalition in order to achieve a common goal. For example, energy storage166

systems owners could join coalitions in order to save individual costs [34].167

In such a scenario, the Shapley value ϕj associated with each player j will168

indicate how much he/she should receive when sharing the whole beneőt169
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achieved by the coalition of all players. Mathematically, it is deőned as170

follows:171

ϕj =
∑

A⊆M\{j}

(m− |A| − 1)! |A|!

m!
[υ(A ∪ {j})− υ(A)] , (4)

where |A| indicates the cardinality of subset A and υ(A) is the game payoff172

(or beneőt) when only players in A join the coalition. For the coalition of all173

players, υ(M) indicates the total beneőt.174

Among the several properties satisőed by the Shapley value (see [35] for175

further details), one is of interest in machine learning interpretability: effi-176

ciency. This property states that the payoff of the grand coalition υ(M) can177

be decomposed into the sum of the individuals Shapley values. Mathemati-178

cally, efficiency means
∑m

j=1 ϕj = υ(M)− υ(∅) = υ(M) (in game theory, one179

generally assumes υ(∅) = 0). In machine learning, this property allows us to180

explain the contributions of features from a predeőned baseline (υ(∅)) to an181

achieved goal (υ(M)). Therefore, how to deőned both baseline and goal is182

an important task when adopting the Shapley value for ML interpretability183

(see [29] for further details).184

One associates both baseline and goal in machine learning to the game185

payoff υ(·) in game theory. Clearly, the deőnition of both elements depends186

on what one would like to explain. For instance, [36] used the Shapley value to187

evaluate the contribution of features towards the coefficient of determination188

in linear regression models. In this case, the payoff υ(A) is the coefficient of189

determination when features in A are available in the linear regression model.190

When no feature is available, υ(∅) = 0, and when all feature is available,191
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the coefficient of determination υ(M) is maximal. In the well-know SHAP192

method [14], the authors adopted the Shapley value as a model-agnostic fea-193

ture attribution approach to explain local predictions. In this case, given194

a sample of interest x∗, one may interpret how much the associated char-195

acteristics (features values x∗
1, x

∗
2, . . . , x

∗
m) contributes towards the obtained196

prediction or classiőcation. Then, υ(∅) represents the expected prediction197

when all features values in x∗ are unknown and υ(M) is the actual predic-198

tion assigned to x∗.199

Most of the work in explainable machine learning uses the Shapley value200

to interpret features contributions toward performance metrics such as accu-201

racy. However, only few works attempt to explain such contributions towards202

unfair results. An example is the work conducted by Begley et al. [15], where203

the authors aggregate local Shapley values in order to globally explain both204

performance and fairness measures. Moreover, most of the explainable ap-205

proaches only focus on results achieved by assuming a single threshold (and,206

therefore, performance or fairness metrics in a single scenario). In this pa-207

per, we borrowed the idea proposed by Pelegrina and Siraj [29] to explain the208

overall performance of classiőers based on ROC curve and on the area un-209

der the ROC curve. As for such analysis where the authors investigated the210

classiőer performance along with thresholds, our proposal in this work is to211

evaluate the impact of each feature in biased results for different predeőned212

thresholds. We detail our proposal in the next section.213
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3. Explaining unfair results through Shapley values214

In this section, we discuss the use of the Shapley values in our proposal215

to assign contributions of features towards both performance and fairness216

measures.217

3.1. Features contributions towards performance measures218

Generally, fairness implies equal performance measures for the considered219

groups of individuals. For instance, to ensure the fairness of a model in220

terms of predictive equality, it is imperative that both groups of individuals221

exhibit equal false positive rates. Nevertheless, disparate model performances222

among diverse groups of individuals are a common occurrence in numerous223

applications. In this context, a crucial aspect involves interpreting how each224

feature contributes to the observed unfair result. Such an interpretation is225

vital for the redesign of the machine learning model, enabling the mitigation226

of inherent inequalities.227

In Section 1, we highlighted some existing approaches that are used to228

evaluate features contributions towards performance measures. Typically,229

these approaches calculate the impact of features on model performance us-230

ing a single predeőned threshold. However, in this paper, as delineated in [29],231

we extend our analysis to incorporate contributions across varying thresh-232

olds. Assume pt,G(A) as the model performance for group G and predeőned233

threshold t when a set of features, expressed by the set A, is considered in234

the training step. We deőne the payoff as follows:235

υPERF
t,G (A) = pt,G(A)− pt,G(∅), (5)
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where pt,G(∅) represents the performance of a random classiőer (i.e., when236

no features is available in training step). Note that, in accordance with237

the deőnition of a game, υPERF
t,G (∅) = pPERF

t,G (∅) − pPERF
t,G (∅) = 0. Based on238

υPERF
t,G (A) for all A ∈ P(M), where P(M) is the power set of M , it is possible239

to calculate the Shapley value of feature j as240

ϕ
PERF,t,G
j =

∑

A⊆M\{j}

(m− |A| − 1)! |A|!

m!

[

υPERF
t,G (A ∪ {j})− υPERF

t,G (A)
]

.

(6)

Due to the efficiency property,
∑m

j=1 ϕ
PERF,t,G
j = υPERF

t,G (M) − υPERF
t,G (∅) =241

υPERF
t,G (M), i.e., the model performance for group G when all features are242

available (υt(M)) can be decomposed by the sum of the marginal contri-243

butions of each feature. Note that, depending on the adopted performance244

measure, ϕPERF,t,G
j may be either positive or negative. For instance, if we245

are evaluating overall accuracy and by assuming that the inclusion of a fea-246

ture into the model training would not decrease its performance, we would247

expect 0 ≤ ϕ
PERF,t,G
j ≤ υt(M). In this scenario, we have clear bounds, as the248

game is non-decreasing and normalized by the accuracy based on all features249

(see [37] for more details about such a game, usually called capacity). How-250

ever, if we are looking at the area under the Precision-Recall curve (see [29]251

for further details), ϕPERF,t,G
j could be negative and, therefore, it is difficult252

to deőne bound conditions for such a value.253

In a biased scenario, the performances υPERF
t,G (M) as well as the features254

contributions ϕ
PERF,t,G
j for G = {a, b} may be different and, therefore, we255

may interpret which features are creating disparate results. Figure 1 illus-256

trates the process of interpreting the disparate results by comparing the257
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performance measures of different groups of individuals. In summary, the258

process involves calculating performance measures and features contributions259

for all coalitions of features A ∈ P(M), thresholds t0, t1, . . . , ts and groups260

a and b. Let us recall that groups a and b as the protected and the privi-261

leged groups, respectively. As in this process one calculates pPERF
t,a (M) and262

pPERF
t,b (M), one can compare the performance measure for both groups and263

visualize disparities along with thresholds. One illustrates this result on the264

center right plot of Figure 1, which assumes the true positive rate as the per-265

formance measure2. Moreover, in the bottom right plot in Figure 1, one also266

illustrates a comparison between features contributions towards the TPR for267

groups a and b along with thresholds. Note that, for a őxed threshold t, the268

sum of the Shapley values is equal to the difference between the actual TPR269

(by using all features) and the random classiőer performance which, in this270

case, is given by 1− t. It is worth mentioning that the shaded area in both271

őgures indicate the standard deviation from the averaged value by taking272

into account the k-fold cross-validation strategy.273

So far, we discussed how to use the Shapley values in order to compare274

performance measures for different groups of individuals and interpret dis-275

parities in features contributions. However, unfair results in machine learning276

are frequently evaluated by means of fairness measures. Therefore, one may277

also interpret features contributions directly on fairness measures. We elab-278

orate this in the sequel.279

2It is worth highlighting that the overall TPRs are close to the TPRs from the privileged
group due to an imbalance in the dataset used to create this illustrating example. Indeed,
there are more instances from the privileged group in comparison with the protected group.
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Training

data

Test

data

Define the set of thresholds 𝑡0, 𝑡1, … , 𝑡𝑠
Select any𝐴 ∈ 𝒫 𝑀 \{∅}

Set 𝑡′ = 0 Testing with threshold 𝑡𝑡′
Reduced

training data

Reduced

test data

Training

Set = 𝑡′ ← 𝑡′ + 1
For 𝐺 = 𝑎, 𝑏 , calculate the 

performance measures 𝑝𝑡′,𝐺(𝐴)
and the payoffs𝜐𝑡′,𝐺𝑃𝐸𝑅𝐹 𝐴 = 𝑝𝑡′,𝐺 𝐴 − 𝑝𝑡′,𝐺(∅)

𝑡′ = 𝑠?
No

All 𝑝𝑡′,𝐺 𝐴 and  𝜐𝑡′,𝐺𝑃𝐸𝑅𝐹 𝐴 calculated?

Yes

Select another𝐴 ∈ 𝒫 𝑀 \{∅}
that has not 

been taken yet

No

Calculate 𝜙𝑗𝑃𝐸𝑅𝐹,𝑡,𝐺
for all 𝑗 = 1,… ,𝑚, 𝑡 ∈ 𝑡0, 𝑡1, … , 𝑡𝑠 and 𝐺 ∈ 𝑎, 𝑏

Yes
Illustrate the performance 

measures for groups 𝑎 and 𝑏

Interpret features

contributions 

along with

thresholds

Set 𝐴 = ∅
(random

classifier)

Define 𝑝𝑡,𝐺 ∅
for all 𝑡 ∈𝑡0, 𝑡1, … , 𝑡𝑠

Define𝜐𝑡,𝐺𝑃𝐸𝑅𝐹 ∅ = 0
for all 𝑡 ∈𝑡0, 𝑡1, … , 𝑡𝑠

Figure 1: The proposed scheme to evaluate features contributions towards disparities in
performance measures.

3.2. Features contributions towards fairness measures280

Besides evaluating features contributions towards the model performance,281

one may also interpret their impacts on fairness measures. Assume ft,p(A)282

as the fairness measure associated with performance measures pPERF
t,a (A) and283

pPERF
t,b (A), for a predeőned threshold t when only features in A are available284
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in training step. The payoff is deőned by285

υFAIR
t (A) = ft,p(A)− ft,p(∅), (7)

where ft,p(∅) represents the fairness measure of a random classiőer3. One286

may also note that υFAIR
t (∅) = fFAIR

t,p (∅)− fFAIR
t,p (∅) = 0, i.e., in accordance287

with the deőnition of a game. Based on υFAIR
t (A) for all A ∈ P(M), we may288

calculate the Shapley value of feature j as289

ϕ
FAIR,t
j =

∑

A⊆M\{j}

(m− |A| − 1)! |A|!

m!

[

υFAIR
t (A ∪ {j})− υFAIR

t (A)
]

. (8)

The interpretation in the considered fairness measure is given by the sum of290

the marginal contribution of each feature. Indeed, given the efficient property291

of Shapley values,
∑m

j=1 ϕ
FAIR,t
j = υFAIR

t (M) − υFAIR
t (∅) = υFAIR(M) =292

ft,p(M)−ft,p(∅). In the fairest scenario, we normally expects ft,p(M) = ft,p(∅)293

and therefore, υFAIR(M) = 0. However, if υFAIR(M) > 0, there is a disparity294

between groups a and b. The marginal contributions of features given by295

ϕ
FAIR,t
j will then highlight which features are creating disparate results and296

can be seen as a source of bias. As in the case of the performance measure,297

ϕ
FAIR,t
j can be either positive (feature j entail disparate results) or negative298

(feature j contributes to improve fairness).299

We illustrate in Figure 2 the steps to interpret the contributions of fea-300

3Although several fairness measure should be zero when considering a random classiőer,
we decided to keep ft,p(∅) in our proposal in order to generalize the idea for any fairness
measure.
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tures on fairness measures. As in the Subsection 3.14, the process here also301

involves calculations on all coalitions of features A ∈ P(M) and thresholds302

t0, t1, . . . , ts. As a őrst interpretation, one may visualize the fairness measure303

along with the thresholds. This result is presented on the center right plot of304

Figure 2, which assumes the statistical parity as the fairness measure. The305

fairness measure along with the thresholds can be decomposed on individual306

contributions of features. The bottom right plots in Figure 2 illustrates the307

marginal contribution of each feature towards the fairness measure. Note308

that the sum of these marginal contributions is equal to the curve presented309

in the center right plot of Figure 2. Moreover, if there is an interest in analyz-310

ing the Shapley values for a single threshold t, one may use a waterfall plot311

as illustrated in the bottom left plot of Figure 2. As in Figure 1, the shaded312

area in both center and bottom right plots and the whiskers in the waterfall313

plot indicate the standard deviation from the averaged value by taking into314

account the k-fold cross-validation strategy.315

4. Experiments316

This section outlines the experiments conducted to validate the efficacy of317

our proposed method in interpreting feature contributions toward disparate318

outcomes in machine learning. While our experiments utilized the Random319

Forest classiőer [38] with 5-fold cross-validation, it is essential to note that our320

approach is model-agnostic, as discussed in Section 3. Consequently, other321

4Clearly, in a computational point of view and in order to avoid double calculating the
performance measures, the schemes presented in Figures 1 and 2 could be merged into a
single one. However, aiming at providing an easier visualization of both proposals, prefer
to split both of them into two processes.
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classiőer can be employed. The explanations derived from our approach322

reveal the contributions of features towards the unfair outcomes produced323

by the trained classiőer.324

In order to evaluate our proposal, we examined three real datasets: COM-325

PAS [39], Law School Admission Council (LSAC) [40] and Adult income [41].326

For each dataset, we computed disparities related to a sensitive feature and327

interpreted the individual contributions of each feature towards such dispar-328

ities. For this purpose, we only consider the sensitive feature to split the329

dataset into two groups when calculating the performance/fairness measures330

(i.e., we do not use such a feature in training step). The remaining features331

will, then, explain the achieved disparity for each threshold. We also con-332

ducted a preprocessing step in all datasets in order to ensure that the two333

classes are balanced. In this case, we used a re-sampling strategy that ran-334

domly eliminates samples from the over-represented class until balancing the335

dataset.336

Subsequently, we delve into the results obtained for each dataset. All337

codes and datasets are openly accessible at the following URL: https://338

github.com/shaprob/FairShap.339

4.1. COMPAS dataset340

As a őrst experiment, we considered the COMPAS dataset [39], released341

by ProPublica5 in 2016. In this dataset, one assigns recidivism risk scores342

to defendants based on a set of numerical and categorical features describ-343

ing them. We considered seven input features, namely sex (male or female),344

5https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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age_cat (age intervals - less than 25, greater than 45 and between 25 and345

45 years old), juv_fel_count (number of juvenile felonies), juv_misd_count346

(number of juvenile misdemeanors), juv_other_count (number of other prior347

juvenile convictions), priors_count (number of prior crimes) and c_charge_degree348

(crime degree - misdemeanor or felony). As the COMPAS dataset also pro-349

vides the race of each defendant, we used this information as the sensible350

feature. For the purpose of evaluating unfair results between blacks and351

whites, we only considered African-American (protected group) or Caucasian352

(privileged group) defendants. After under-sampling the data by removing353

defendants from other races, we achieved 5048 samples.354

It is known from the literature [39] that in this dataset one has disparities355

in false positive rates when comparing blacks and whites defendants. In356

other terms, the rate that blacks are wrongly classiőed as recidivists is higher357

than this rate for Caucasians. In order to investigate this unfair result, we358

provide in Figure 3 some interpretations with respect to the false positive359

rates and Predictive Equality, along with thresholds. One may clearly see360

from Figure 3a that, regardless the adopted threshold, blacks achieved higher361

FPRs in comparison with whites. An interesting result was achieved in terms362

of the feature contributions. As can be seen in Figure 3c, age_cat led to the363

highest contributions toward the unfair results. This őnding can be explained364

by the data distribution with respect to the age categories, race and classes.365

For instance, among the defendants under 25 years old, 66% are considered366

recidivists. Moreover, within this age category, 70% are blacks. On the367

other hand, for those greater than 45 years old, only 24% are considered368

recidivists and 42% are blacks. Although race was removed from the training369
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step, the data distribution of age category and recidivism risk scores carries370

information from race and, therefore, the age category can be seen as a source371

of bias towards race.372

The unfair scenario can also be interpreted directly from the fairness373

measure. As showed in Figures 3e and 3d, age category is the feature highly374

associated with disparate outcomes. It is interesting to remark here that375

there are a lot of dispersion around the averaged Shapley values for pri-376

ors_count and c_charge_degree (see the shaded are in Figures 3b and 3d).377

Therefore, there are uncertainties in the Shapley values estimation for these378

two feature. However, there are less uncertainties for age category, with pos-379

itive contributions regardless the adopted threshold. Moreover, note that380

the disparity decreases as the threshold value increases. For instance, for381

t = 0.8, one practically achieved fairness for predictive equality. However,382

for this threshold we possibly pay the price of decreasing the TPR. Another383

choice could be t ≈ 0.35, which signiőcantly reduces the disparity on FPRs384

(around 50%) in comparison with the default choice of t = 0.5.385

4.2. LSAC dataset386

In this second application of our proposal, we deal with interpretability387

in unfair results associated with the LSAC (Law School Admission Council)388

dataset [40] (see [42] for further details). The goal is to predict whether a389

student will pass the bar exam on the őrst try. For this purpose, the students390

are described by the following features: decile1b (decile based on the grades391

in the őrst year), decile3 (decile based on the grades in the thrid year),392

lsat (score), ugpa (undergraduate GPA), zfygpa (őrst year law school GPA),393

zgpa (cumulative law school GPA), fulltime (full-time or part-time work) and394
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fam_inc (family income bracket). Besides these features, male (whether the395

student is male or female) and race (white or non-white) is also provided. In396

our analysis, both of them are assumed as sensible features. However, when397

evaluating disparities with respect to race (resp., gender), we considered male398

(resp., race) as an input feature in model training. This dataset is highly399

unbalanced and, after under-sampling, we obtained 3672 samples (originally,400

there were more than 45k samples).401

Unfair results in the LSAC dataset are frequently associated with race.402

We provide in Figures 4 and 5 the interpretations on the probability of success403

in the bar exam and on the Statistical Parity, respectively. One may see404

that, when evaluating fairness in race, there is a huge disparity between the405

two groups (see Figure 4a). The probability of positive outcome (i.e., being406

classiőed as success in the exam) for non-whites is much lower than for whites.407

This disparate result can be explained by the features contributions presented408

in Figure 4c, where most of them (specially lsat) contribute more to classify409

whites as the positive class than non-whites. On the other hand, as can be410

seen from Figure 4b, the probability of favorable outcomes is practically the411

same regardless the gender and the adopted threshold. Moreover, in this412

scenario, all features contribute equally to classify as successfully passing the413

bar exam both males and females (see Figure 4d). Therefore, we could note414

that features have different impacts when evaluating disparities for different415

sensitive features. Moreover, the performance and fairness measures have416

different shapes, which indicate that, in a threshold analysis, the choice of an417

appropriate threshold to enhance fairness should be conducted individually.418

However, in a scenario where two or more sensitive features are considered419
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simultaneously (what we generally refer as to intersectional fairness), a trade-420

off analysis should be conducted.421

The aforementioned őndings can also be seen in Figure 5. The statisti-422

cal parity presented in Figures 5a and 5b attests the existence of disparities423

between races and the absence of unfair outcomes related to gender, respec-424

tively. With respect to the contributions of features (see Figures 5c and 5d),425

while there are contributions towards unfair results for race, they are almost426

zero for gender. Finally Figure 5e presents the contributions of features427

along with thresholds, where lsat appears as the most relevant information428

that leads to the disparate results.429

4.3. Adult income dataset430

In this last scenario, we considered the Adult income dataset. The goal in431

this dataset is to predict whether a person makes over 50K per year. As gen-432

der is one of the available information, disparities can be noted when compar-433

ing males and females. Therefore, we assumed gender as the sensible feature434

in our analysis, with female and male being the protected and the privileged435

groups, respectively. The remaining features used to train the model are6 age436

(intervals - less than 25, greater than 60 and between 25 and 60 years old),437

workclass (Private or Non-private), educational-num (numerical value associ-438

ated with the education degree - the greater the better), marital-status (mar-439

ried, never-married or other), relationship (Wife, Own-child, Husband, Not-440

in-family, Other-relative or Unmarried), race (White, Asian-Pac-Islander,441

6We preprocessed this dataset in order to group categories of some features. Moreover,
we also removed categorical features with high number of categories. Most of these changes
have already been discussed in [42].
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Amer-Indian-Eskimo, Black or Other), capital-gain, capital-loss, hours-per-442

week (hours of work per week) and native-country (US or non-US). The total443

number of samples are 22416.444

As in this dataset one observes less females being classiőed as making445

over 50k per year (in comparison with males), we investigated such a dis-446

parity by means of the Equalized Odds. Recall that in Equalized Odds one447

considers true positive and false positive rates. Figures 6a and 6b present448

a comparison between sensitive groups with respect to FPRs and TPRs, re-449

spectively. Both őgures attest that there are less females classiőed as making450

over 50k per year than males, either if the classiőcation is correct (the TPRs)451

or incorrect (the FPRs). The interpretations in terms of equalized odds are452

presented in Figure 6c. The unfair outcomes can be explained by the features453

contributions provided in Figures 6e and 6d. It is interesting to note that454

both marital-status and relationship are the features that contribute the most455

toward the unfair result. Indeed, as some categories in relationship describe456

marital status, such features are somehow redundant. This explains the sim-457

ilar results in terms of contribution towards the equalized odds. Moreover,458

relationship is a feature that can be seen as a proxy for gender. For instance,459

the indication that a person is a Wife or a Husband is practically the same460

that saying the this person is a woman or a man, respectively. Therefore,461

even if gender is removed from training step, the use of proxy features such462

as relationship is a source of bias that can lead to disparate results.463

4.3.1. Conducting feature selection464

Although the main goal of this paper is to propose an approach to evalu-465

ate features contributions toward unfair results along with threshold values,466
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our method could be helpful in feature engineering. As we detect features467

with high impact on disparate results, this information can be useful to con-468

duct feature selection aiming at improving fairness. Indeed, by removing469

features that contribute to increase unfairness, one expects to mitigate ethi-470

cal disparities.471

In this subsection, we attest our proposal as a feature selection strategy on472

the Adult income dataset. As achieved in the previous section, both marital-473

status and relationship have high impact towards unfair results. Therefore,474

aiming at improving fairness, we could remove both features from the anal-475

ysis7. By adopting the remaining features into the classiőer, the obtained476

FPRs, TPRs and Equalized Odds are presented in Figure 7. As can be477

seen in Figures 7a and 7b, the performance of both protected and privileged478

groups are much closer in comparison with the model with features marital-479

status and relationship (see, for instance, Figures 6a and 6b. Therefore, we480

can attest the reduction of disparate results when features with high impact481

on unfairness are removed from the dataset. This őnding can also be veriőed482

in Figure 7c, where the equalized odds decreased along with thresholds.483

5. Conclusions484

In this paper, we propose to investigate performance and disparity across485

various decision threshold(s) and quantifying the contribution of different486

features towards these two objectives. We have demonstrated the usefulness487

of our proposed approach with the help of three different case studies in-488

7For the scope of this paper, we only consider improving fairness. Therefore, we do not
further evaluate the impact on the performance measure by removing both features.
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volving real datasets. For example, in the recidivism dataset, we showed the489

disparity decreased with the increasing value of threshold. In the adult in-490

come dataset, our proposed approach identiőed that the use of proxy features491

such as relationship is a source of bias that can lead to disparate results, even492

if the gender attributes is excluded whilst training the model. In the LSAC493

dataset, we noted that features may have different contributions towards494

different sensitive features. Indeed, in this dataset, some features impacted495

the statistical parity associated with race, however, they do not contribute496

towards disparity associated with gender.497

In summary, this provided us a tool to identify the trade-offs between the498

quality of prediction and the disparities between protected and other groups.499

Moreover, one may identify which features contribute the most for both mea-500

sures. This highlights an imminent use of our proposal. As illustrated in the501

Adult income dataset, the user may adopt our proposal to help conducting502

feature engineering by selecting features that do not entail disparate out-503

comes. As a result, one may improve fairness. However, it is important504

to see this feature selection impact into the model performance. Therefore,505

we see as a future perspective a trade-off analysis looking performance and506

fairness when conducting feature selection based on features contributions.507

As another future perspective, we believe that it will be useful to validate508

the practical usefulness of our proposal through experimental studies, for509

example, to assess its impact in real world problems by doing survey-based510

studies and collecting feedback from stakeholders. Another important area511

of work will be to develop an interactive software tool for stakeholders that512

can help visualize the trade-off between performance and disparity in machine513
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learning classiőer; and therefore, enabling them to choose a decision threshold514

based on their preferences. Finally, we would like to extend our approach515

to deal with multi-class classiőcation problems. In this case, once we adapt516

both performance and fairness measures to have a single measure for each517

coalition of features, we are able to calculate the payoff are, therefore, the518

Shapley value and feature contributions.519
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(random
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Define 𝑝𝑡,𝐺 ∅
for all 𝑡 ∈𝑡0, 𝑡1, … , 𝑡𝑠

𝑡′ = 𝑠?
No

All 𝑝𝑡,𝐺 𝐴 and  𝜐𝑡,𝐺𝑃𝐸𝑅𝐹 𝐴 calculated?

Yes

Select another𝐴 ∈ 𝒫 𝑀 \{∅}
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No

Calculate 𝜙𝑗𝑃𝐸𝑅𝐹,𝑡,𝐺
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Interpret features
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with thresholds
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for a single threshold 𝑡

Figure 2: The proposed scheme to evaluate features contributions towards fairness mea-
sures.
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(a) FPRs along with thresholds. (b) Predictive Equality along with thresholds.

(c) Contributions of features towards FPRs
(split).

(d) Contributions of features towards Predic-
tive Equality (split).

(e) Contributions of features towards Predictive Equality.

Figure 3: Interpreting disparate results towards FPRs and Predictive Equality - COMPAS
dataset.

34



(a) Disparities between whites and non-
whites.

(b) Disparities between males and females.

(c) Contributions of features (split) - Whites
and non-whites.

(d) Contributions of features (split) - Males
and females.

Figure 4: Interpreting disparate results towards the probability of success in the bar exam
- LSAC dataset.
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(a) Disparities between whites and non-
whites.

(b) Disparities between males and females.

(c) Contributions of features (split) - Whites
and non-whites.

(d) Contributions of features (split) - Males
and females.

(e) Contributions of features - Whites and non-
whites.

(f) Contributions of features - Males and females.

Figure 5: Interpreting disparate results towards the Statistical Parity - LSAC dataset.
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(a) FPRs along with thresholds. (b) TPRs along with thresholds.

(c) Equalized Odds along with thresh-
olds.

(d) Contributions of features towards
Equalized Odds (split).

(e) Contributions of features towards Equalized Odds.

Figure 6: Interpreting disparate results towards FPRs, TRPs and Equalized Odds - Adult
income dataset.
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(a) FPRs along with thresholds. (b) TPRs along with thresholds.

(c) Equalized Odds along with thresh-
olds.

Figure 7: textcolorredVisualizing FPRs, TRPs and Equalized Odds after feature selection
- Adult income dataset.
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