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The rising entropy of English in the
attention economy
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Charlie Pilgrim 1,2,3,4 , Weisi Guo4,5 & Thomas T. Hills4,6

We present evidence that the word entropy of American English has been rising steadily since around
1900.Wealso finddifferences inword entropy betweenmedia categories,with short-formmedia such
as news and magazines having higher entropy than long-form media, and social media feeds having
higher entropy still. To explain these results we develop an ecological model of the attention economy
that combines ideas from Zipf’s law and information foraging. In this model, media consumers
maximize information utility rate taking into account the costs of information search, while media
producers adapt to technologies that reduce search costs, driving them to generate higher entropy
content in increasingly shorter formats.

Word entropy is a measure of the amount of repetition (low entropy) or
novelty (high entropy) in word distributions. Empirical word distributions
typically follow Zipf’s law, which describes a power law between a word’s
observed frequency and thatword’s rank in the frequencydistribution1. This
empirical power law is remarkably stable with an exponent around 12–4. The
stability of Zipf’s law suggests some underlying mechanism, and Zipf
himself hypothesised a principle of least effort between speakers and lis-
teners. More recently this principle has been expanded to show that power
laws in word distributions can emerge from a balance between maximising
the benefits of receiving highly informativemessages (preferred by listeners)
andminimising the costs of generating highword entropy text (preferred by
speakers)4.

In recent times this balancebetween the efforts of listeners and speakers
has changed. Modern communication systems have transformed the way
that we share and consume information, in particular by increasing the
accessibility of information5. In the words of Herbert Simon, this creates a
“poverty of attention”6, such that media producers must compete for the
limited resource of human attention7,8. This dynamic has been called the
attention economy, a combination of forces influencing the production and
consumption of information, with consequences including a shortening
collective attention span9. If information adapts to the balance between the
preferences ofmedia producers and consumers, then increased competition
for attention tips the balance toward the preferences of the consumers. That
is, informationmarkets (the distribution of available content) should rise in
information density. Specifically, we quantify increasing information den-
sity as higher entropy, reflecting more diverse and less predictable
information.

We can envision this adaptive process in terms of information
foraging10,11. Information foraging describes how people search for and

consume information in different environments, including web browsing12

software debugging13–15, and the design of information and social
environments12,15,16. The basic rationale of this approach is borrowed from
ecologicalmodels of foraging, which have been shown tobe appropriate to a
wide range of search problems ranging from spatial foraging to cultural
evolution17. Indeed, handling the exploration versus exploitation trade-off
that is common to all of these environments has been proposed to be a
defining selective force in the evolution of cognition18,19.

Inwhat follows, we first investigate the evolution of information across
awide variety ofmedia sources over the last two centuries, a timemarked by
increasing media competition. We show how this reveals a characteristic
patternof rising entropy that affects different categories ofmedia indifferent
ways (e.g., books versus news versus social media). We then create a model
of the attention economy that expands on existing models of information
foraging to incorporate competition for human attention between media
producers. This model explains both the general increase in word entropy
and the differences in word entropy across categories.

Methods
Text corpora
To investigate the recent history of information evolution we examine a
variety of text corpora. The Corpus of Historical American English
(COHA)20,21 has 116,614 texts spanning the 1810s to 2000s, balanced
between categories of fiction (n = 11,010), non-fiction (n = 2635), news
(n = 41,677) and magazines (n = 61,292). The Corpus of Contemporary
American English (COCA)22,23 has over 150,000 texts from between 1990 to
2008 split between fiction, popular magazines, newspapers, academic
journals and spoken word. For our analysis, we used a publicly available
sample of COCA with 2362 texts split between categories of fiction
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(n = 275), academic journals (n = 266), news (n = 872) and magazines
(n = 949). The British National Corpus (BNC)24 contains 8098 texts from
between 1960 and 1993 including written categories of fiction (n = 904),
academic prose (n = 994), newspapers (n = 972), non-academic prose and
biography, other published materials and unpublished materials. Fiction
andnewspapers are common categories across the corpora.Magazines are a
common category between COHA and COCA.We grouped as non-fiction
the categories of COHA non-fiction, COCA academic journals and BNC
academic prose.

The lexicalmeasures (details below) are all sensitive to sample size.We,
therefore, chose to truncate text samples to N = 2000 words, and discarded
text sampleswith lesswords. Thisword count strikes a goodbalanceof being
a large enough sample size to detect variation between texts, while being
small enough that we have a large number of surviving texts in the corpora.

The details of the text cleaning are described below. The cleaned
datasets had the following surviving sample counts with N = 2000 words:
• COHA total n = 22,233. Fiction n = 8162, non-fiction n = 2045, news

n = 720, magazines n = 11,306.
• COCA total n = 985. Fiction n = 167, non-fiction n = 166, news n = 39,

magazines n = 133.
• BNC totaln = 1319. Fictionn = 447, non-fictionn = 477, newsn = 395.

The COHA dataset was analysed as a time series, so requires a large
number of samples. The BNC and COCA, being corpora from much nar-
rower time ranges, were analysed as distributions and as such require less
samples.

Data cleaning. The text sample data was cleaned before analysis in a
standard way25. COHA and COCA are similar formats and so followed
the same procedure. For both:
• Stripped any headers not a part of the main text samples.
• Removed any XML text tags.
• Removed any sentences that contained “@” symbols. COHA and

COCA randomly replace words with @ symbol in groups of ten for
copyright reasons26.

• Removed apostrophes and extra whitespace.
• Usedpython’s natural language toolkit (nltk) package to convert text to

tokens27.
• Removed any non-text tokens (containing punctuation, numbers or

special symbols).
• Converted all tokens to lowercase.
• Filtered out any text samples with less than 2100 tokens (words).
• Selected themiddle 2000 tokens of the text sample for processing. This

avoids, as much as possible, anomalous text that sometimes appears at
the start or end of text samples such as a contents section or copyright
notices.

For the BNC data, python’s natural language toolkit package comes
with a BNC corpus reader27, which was used to extract tokens. The only
other treatment was to remove extra whitespace and apostrophes as with
COCA and COHA.

Social media data. We also investigated social media, considering
Twitter (now X) datasets from 2009 and 2020, and a Reddit dataset
from 2024.

The Twitter 2009 dataset consisted of 1.6 million tweets downloaded
from the Twitter API between April and June 200928 and available online at
https://www.kaggle.com/kazanova/sentiment140. To simulate a Twitter
feed the tweets were chronologically collated to create n = 9180 text samples
with N = 2000 words each.

The Twitter 2020 dataset contained 16million unique tweets collected
from the Twitter API between February 2020 and January 2021. This data
was originally downloaded and used in a study on political polarisation29,
with tweets selected from followers of well-known US news sources (full
details of data collection is in the original paper). We simulated a Twitter

feed by chronologically collating these tweets, generating n = 143,045 text
samples with N = 2000 words each.

For Reddit, we aimed to capture text samples that were representative
of the text a user would see when visiting the site. To achieve this we used
Reddit’s API to download posts from the Reddit homepage feed at https://
oauth.reddit.com/.json from 15th to 17th January 2024. We downloaded
14,892 unique English posts in JSON format in this way. We extracted the
text from the posts and combined them to create n = 222 text samples with
lengthN = 2000words each.Duringprocessing,we founda small numberof
non-English posts in the feed, which were removed.

The social media data was cleaned in the same way as the COHA and
COCA data. The processing steps act to remove any website and email
addresses, hashtags and site-specific usernames.

We chose text samples of N = 2000 words to match the text sample
sizes used when analysing other corpora, as the textual measures are sen-
sitive to sample size. Socialmedia statuses are bynature short and are usually
much smaller than N = 2000 words, and lexical measures of short text
samples have little meaning. Our analysis is on the level of the social media
feed andwe generated large text samples through the collation of posts. This
kind of collation will naturally create text samples with high entropy as a
result of the changing contexts of social media posts (as well as high type
token ratio and low Zipf exponent). This isn’t a flawed analysis—the high
information density of a social media feed is related to the collation of
statuses and how people actually consume social media.

Measures of information evolution. Information evolution is measured
using unigram word entropy. For robustness, we also analysed the type
token ratio and Zipf exponent, which are alternative measures of word
frequency distributions. See the Limitations section for a further dis-
cussion of the text measures used.

Empirical unigram word entropy, H1, is a function of the relative
frequencies of eachword, fi, summed over the set ofW unique words in the
text sample.

H1 ¼ �
XW

i¼1

f ilogf i : ð1Þ

Type token ratio (TTR) is the number of unique words (types) divided
by the total number of words (tokens) in a text sample.

TTR ¼ #types
#tokens

: ð2Þ

Words in natural language are typically approximately distributed as a
power law distribution between type frequency, fi, and type rank in that
frequency distribution, r(fi)

30. This power law is parameterised by the Zipf
exponent, α, which describes the steepness of the distribution in log space.
Maximum likelihood estimation was used to estimate the Zipf exponent30.
This estimator has the benefit of being well known and widely used.

f i / rðf iÞ�α : ð3Þ
Each of the measures were applied once to the same set of distinct text

samples.

Data exclusions. We removed outliers that had values of lexical mea-
sures that were more than 5 standard deviations from the mean of the
corpus (less than 0.1% of the data).

Time series breakpoint analysis. To explore changes in trends over
time we carried out a breakpoint analysis. The Corpus of Historical
American English (COHA) provides historical text samples across fic-
tion, non-fiction, news and magazines categories. The type token ratio,
word entropy and Zipf exponent were calculated for each text sample
following the text processing steps outlined above.
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For each media category and lexical measure, the results were binned
into years and the median taken each year. The median was used to reduce
the effect of outliers (similar results were found when using the mean). The
medians were plotted on a scatterplot.

Visually, the scatterplots are suggestive of some change in the gradient
of the lexical measure in time. In order to estimate the location of these
breakpoints, we used Python’s piecewise-regression package31 with default
settings. The regression fits and locations of breakpoints are shown in the
scatterplots in Supplementary Fig. 8.

We ran a similar analysis with the categories combined. In order to
combine the categories, we first took the means for each year and category
and then took themean across categories for each year. It is more natural to
use means than medians when combining categories. The scatterplot and
piecewise-regression fit for the combined word entropy is shown in Sup-
plementary Fig. 9.

Timeseries trendanalysis. For each category and lexicalmeasure, trend
analyses were carried out on the annual median values between the years
1900 and 2009 (the last year of data). Kwiatkowski–Phillips–Schmidt–Shi
(KPSS) andMann–Kendall (MK) tests were carried out for eachmeasure
and media category in COHA.

We carried out a total of 24 hypothesis tests for trends. To adjust for
multiple tests, we applied a Holm–Bonferroni correction to adjust the p-
values. The corrected p-values are reported.

TheKPSS test assumes thenull hypothesis of a stationary time series.p-
values below 0.05 (adjusted following the Holm–Bonferroni correction)
mean that we can reject this hypothesis at 5% significance and provide
evidence of a trend. The test was applied using Python’s statsmodels
package32. This is a one-sided test.

The KPSS test statistic follows a non-standard distribution, and in the
statsmodels package p-values are calculated by comparing the test statistic
against pre-calculated critical values up to α = 0.01 32,33. In order to calculate
p-values below p = 0.01 we used numerical methods through simulation of
the test distribution.

TheMK test is a non-parametric trend test34. The test assumesno serial
correlation i.e., errors in one observation do not predict errors in other
observations34. The text corpora are constructed from independent text
samples so this is a reasonable assumption. The null hypothesis is that the
data has no trend, and the p-value tells us the probability that the data was
observed under the null hypothesis. At 5% significance, we reject the null
hypothesis if p < 0.05 (adjusted following theHolm–Bonferroni correction).
The test was carried out using Python’s pymannkendall package34. This is a
two-sided test.

Time series visualisation. In the Results section we present the smoothed
time series forCOHAwith themedia categories combined aswell as for each
of the media categories separately. For each media category, data was only
included where there were at least 5 observations within the smoothing
average window. For the combined time series, for each year an average was
taken across the annual means of the media categories (only including the
media categories that had a mean value for that year).

The time series show confidence intervals, which were calculated as
1.96 times the standard error of the mean. For the combined categories, the
standard error of the mean was computed based on the delta method,

SE�X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 SE
2
i

p

m
; ð4Þ

withm depending on howmanymedia categories had values for the annual
mean each year.

Differences between media categories. In the Results section we
present distributions of the lexical measures within media categories in
COCA, the BNC and COHA (restricted to 2000–2007 to avoid the effect
of historical changes). To test for differences between the groups we

carried out ANOVA tests across categories within each corpus separately
for each of the lexical measures. At 5% significance, p < 0.05 provides
evidence that the media categories are drawn from different underlying
population distributions. The tests were carried out using python’s
statsmodels package32. We also applied a Holm–Bonferroni correction to
control for the family-wise type 1 error rate while carrying out multiple
hypothesis tests.

For visualisation, the distributions of word entropy for each media
category are shown as a kernel density estimate with the bandwidth
determined by the Silverman rule35. The Silverman rule is a relatively simple,
well-known and robust heuristic that performs well over mild assumptions
(data is unimodal, approximately symmetric and not heavy-tailed)36. We
also removed outliers that were more than 5 standard deviations from the
mean in each case (less than 0.1% of the data).

USmagazinecirculation. In order to explore connections betweenword
entropy and qualitative changes in media publishing, we explored a case
study of the US magazine industry in Supplementary Note 1: Historical
Analysis of US Magazine Publishing.

The data formagazine circulation numbers were those reported by the
Audit Bureau of Circulation37. This data source does not track all US
magazines, but does track well-known magazines. The data was plotted
without further treatment in Supplementary Fig. 1.

Ethics
We followed principles of fair use in relation to the large text corpora
(BNC24, COHA20, COCA22). The corpora are constructed specifically for
academic and non-commercial use, with small text samples presented in a
way to minimise the effect on copyright holders. In relation to social media
data, we followed the terms and conditions of the socialmedia companies at
the time of data collection. The study was not pre-registered.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
The rising entropy of American English
We analysed the Corpus of Historical American English (COHA), a
balanced corpus with text samples from the 1810s to the 2000s categorised
into news, magazines, fiction and non-fiction20. We found a clear trend of
rising word entropy since approximately 1900, and more generally a
broadening ofword frequency distributions asmeasured by type token ratio
and Zipf exponent (Fig. 1).

The trends in separate media categories follow the same pattern of
rising word entropy (Fig. 2), again supported by similar patterns in type
token ratio (Supplementary Fig. 2) and Zipf exponent (Supplementary
Fig. 3). We analysed the time series of annual averages since 1900 for each
media category (fiction, non-fiction, news, magazines) and lexical measure
(word entropy, type token ratio, Zipf exponent) using
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and Mann–Kendall (MK)
tests on the annual median values (using the annual mean gives similar
results). This gives a total of 4 × 3 × 2 = 24 trend tests. The results of these
trend tests, reported inTable 1, represent strong evidence for the broadening
of word distributions in all media categories between 1900 and 2010.

Higher entropy in short-form media
The historical trend (Fig. 2) suggests modern differences in entropy between
media categories. However, we also know that short-form media have
become especially prominent with the recent rise of online platforms for
media distribution, such as social media, RSS feeds, and news platforms that
present short headlines and snippets that link to long-form articles. To
investigate these different media categories, we examined the Corpus of
Contemporary American English (COCA) and the British National Corpus
(BNC), aswell as socialmediadata fromTwitter (nowX)andReddit. Figure 3
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Fig. 1 | American English shows a trend of broadening word distributions since
around 1900. Panels show timeseries of measures of (a) word entropy, (b) type
token ratio, (c) Zipf exponent, in text samples from the Corpus of Historical

American English (n = 22,233). Time series are smoothed with a moving average
window of ±5 years, and averaged over media categories, with a 95% confidence
interval in this average.

Fig. 2 | Trends of increasing word entropy across
media categories since around 1900. Time series of
word entropy in the Corpus of Historical American
English across media categories of magazines
(n = 11,306), news (n = 720), fiction (n = 8162) and
non-fiction (n = 2045). For eachmedia category, the
time series was smoothed using an average over a
window of ±5 years. The shaded regions are 95%
confidence intervals of this average. All media
categories show an upward trend in word entropy
from 1900.
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shows the distribution of word entropy across different media categories.
Within COHA (limited to 2000–2007), BNC, and COCA there were sig-
nificant differences in all lexical measures across media categories (see
Table 2). Overall, the short-form media categories of news and magazines
have higher entropy than long-formmedia, and social media feeds have the
highest entropy of all. We see similar patterns in distributions of type token
ratio (Supplementary Fig. 5) and Zipf exponent (Supplementary Fig. 6).

Our analysis involved collating posts to simulate social media feeds.
Combining posts will naturally lead to high entropy text, with fast switching
of contexts and high novelty. This mirrors how people actually consume
social media. Essentially, social media platforms generate high entropy
information environments in the form of feeds of short messages from
different users. This is not necessarily a linguistic change in how people
generate English; it is a change in how people consume English text.

Model
Information foraging in the attention economy
The previous results are suggestive of a link between competition for
attention andword entropy. To explain these results we generate amodel of
the attention economy based on information foraging. Foraging models
relate the consumption of information items with some utility gain to the
forager. To bridge utility rates to lexical measures, we borrow the idea of
information signal entropy from Shannon38: The entropy of a source of
information is a function of the probability of seeing each symbol. This
function is equivalent to the expected reduction in uncertainty when
receiving symbols, defined as a rate of information per symbol.While this is
a static measure, it also reflects the potential utility gain per unit of time
as foragers encounter and process information, with the assumption that
an increase in entropy, h, is associatedwith an increase in utility rate, r. This

Table 1 | Timeseries analysis across different categories and measures for text samples from COHA between 1900 and 2009

Measure Category KPSS MK

Word Entropy News Statistic = 1.475, p < 0.001 Tau = 0.508, p < 0.001, 95% CI [0.374, 0.642], N = 98

Word Entropy Magazine Statistic = 1.741, p < 0.001 Tau = 0.712, p < 0.001, 95% CI [0.585, 0.840], N = 108

Word Entropy Fiction Statistic = 1.305, p < 0.001 Tau = 0.522, p = 0.001, 95% CI [0.395, 0.649], N = 109

Word Entropy Non-Fiction Statistic = 1.402, p = 0.003 Tau = 0.378, p = 0.005, 95% CI [0.251, 0.505], N = 109

Type Token Ratio News Statistic = 1.179, p < 0.001 Tau = 0.359, p < 0.001, 95% CI [0.225, 0.494], N = 98

Type Token Ratio Magazine Statistic = 1.066, p < 0.001 Tau = 0.409, p < 0.001, 95% CI [0.281, 0.536], N = 108

Type Token Ratio Fiction Statistic = 0.962, p = 0.002 Tau = 0.423, p = 0.002, 95% CI [0.296, 0.550], N = 109

Type Token Ratio Non-Fiction Statistic = 0.674, p = 0.007 Tau = 0.156, p = 0.010, 95% CI [0.029, 0.283], N = 109

Zipf Exponent News Statistic = 1.509, p < 0.001 Tau =−0.535, p < 0.001, 95% CI [−0.670, −0.401], N = 98

Zipf Exponent Magazine Statistic = 1.753, p < 0.001 Tau =−0.749, p < 0.001, 95% CI [−0.877, −0.622], N = 108

Zipf Exponent Fiction Statistic = 1.390, p = 0.002 Tau =−0.528, p = 0.003, 95% CI [−0.656, −0.401], N = 109

Zipf Exponent Non-Fiction Statistic = 1.297, p = 0.029 Tau =−0.402, p = 0.016, 95% CI [−0.529, −0.275], N = 109

Each row shows the result of a Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and a Mann–Kendall (MK) trend test. The p-values are corrected for multiple hypothesis testing with a Holm–Bonferroni
correction. All of the hypothesis tests have p-values below 0.05, meaning that we can reject the null hypothesis of stationarity at 5% significance.

Fig. 3 | Short-form media has higher word
entropy. Word entropy of very short-form (social)
media, short-form (news and magazines) and long-
form (fiction and non-fiction) media. For each
media category, distributions are kernel density
estimates cut to the data range, with quartile posi-
tions shown. The COHA data was restricted to
2000–2007 to minimise the effect of historical
changes.

https://doi.org/10.1038/s44271-024-00117-1 Article

Communications Psychology |            (2024) 2:70 5



aligns with Zipf’s principle of least effort1,4.

h / r : ð5Þ

Animal foragersmodulate the selectivity of their diet in response to the
environment, becomingmore selective in times of abundance39.Why waste
energy hunting difficult prey when there are plenty of easy calories around?
Humans act in the samewaywhen selecting information to consume6,10.We
have all experienced situations where we do not have access to the internet,
for example on aplane or train journey, andwebecome less selective inwhat
we read or watch.

This characterisation of attention corresponds to the prey choice
model, which describes which types of prey are worth pursuing and
consuming39. This has been applied to information foraging before10. The
prey model that we describe and extend here is analogous to that found in
the prey choice model in the animal foraging literature39.

Assume an information forager searches a media environment and
encounters information of types, i, at Poisson rates λi. If consumed, infor-
mation provides a benefit ui in a handling time ti, during which time the
forager is not searching. Alternatively, the forager can choose to ignore
information of a certain type and keep searching. The forager’s choices to
consume or ignore information determine the expected total time spent
searching, Ts, and handling, Th, information, as well as the total utility gain,
U. Given these constraints, the forager aims to optimise the expected overall
rate of utility of foraging given by

Rmedia ¼
U

Ts þ Th
: ð6Þ

Heremedia describes the forager’s local environment, such as a media
platform. Media platforms are analogous to foraging patches in optimal
foraging theory. The forager’s choices of which information types to con-
sume can be described as an information diet,D. The total expected utility is
U =∑DλiuiTs. Similarly, the total expected handling time is Th =∑DλitiTs.
Substituting in and cancellingTs, we canwrite the expected utility rate given
a diet

Rmedia ¼
P

Dλiui
1þP

Dλiti
: ð7Þ

Consuming an information item carries an expected opportunity cost
of not spending that item’s handling time looking for other items, equal to
tiRmedia, andanexpectedutility gainofui. Tomaximise expectedutility rate a
forager should therefore consume the item if the item utility rate, ri ¼ ui

ti
, is

greater than the overall media platform utility rate, Rmedia,

ri ≥Rmedia : ð8Þ

This diet threshold condition is a familiar result from foraging
theory10,39,40. To find the optimal diet, item types can be ranked in order of ri
and added to the diet one by one until this inequality fails40. See the Sup-
plementary Note 2: Prey Choice Model Derivation for a more thorough
derivation.

We can now ask which information types a forager should include in
their diet,D, tomaximise their expected overall utility rate as a consequence
of rising information prevalence, here λi. For items with ri < Rmedia,
increasing prevalence has no effect as these items are still not included in the
diet. For items with ri ≥ Rmedia, increasing prevalence will mean more time
spent handling these items and less time spent searching, so the overall
media platform utility rate will increase,

∂Rmedia

∂λi
≥ 0 8i : ð9Þ

Combining this with the information diet criterion (Inequality 8), we
reach a general conclusion. Increasing information prevalence increases the
information utility rate required for inclusion in the diet: foragers become
more selective when prey (or information) becomes more abundant, analo-
gous to the prey model in optimal foraging theory39.

We now extend traditional foraging theory to information co-evolution
by asking how media producers respond to increasing selectivity among
information foragers. By assuming there is some cost to media of producing
more informative messages—a standard assumption underlying Zipf’s
principle of least effort1,41—we conclude that an abundance of information
creates an adaptive pressure that drives media producers to create informa-
tionwith ahigherutility rate.Aproxy for utility rate is informationdensity, or
word entropy. Figure 4 shows a simple simulation of this dynamic.

Competition between media platforms drives differences
between short- and long-form media
Information is distributed inmedia platforms (e.g., newspapers, magazines,
books, Twitter, Reddit). The forager has to choose not only which infor-
mation to consume within a media platform, but also which media plat-
forms to visit. Analogous to the information choicemodel (Equation (8)): an
optimal information foragerwill visit amediaplatform if the expectedmedia
utility rate is greater than the background utility rate from foraging in the
overall environment (see Supplementary Note 3: Patch Choice Model and
Non Constant Patches for the full model),

Rmedia ≥Renv : ð10Þ

Table 2 | Analysis of differences in word measures across media categories within each text corpus

Lexical Measure Corpus ANOVA Result

Word Entropy COHA F(3, 3586) = 83, p < 0.001, η2 = 0.065, 95% CI = [0.050, 0.086]

Word Entropy COCA F(3, 501) = 34, p < 0.001, η2 = 0.172, 95% CI = [0.121, 0.247]

Word Entropy BNC F(2, 1316) = 662, p < 0.001, η2 = 0.502, 95% CI = [0.469, 0.537]

Type Token Ratio COHA F(3, 3586) = 34, p < 0.001, η2 = 0.028, 95% CI = [0.019, 0.041]

Type Token Ratio COCA F(3, 501) = 17, p < 0.001, η2 = 0.094, 95% CI = [0.052, 0.157]

Type Token Ratio BNC F(2, 1316) = 416, p < 0.001, η2 = 0.388, 95% CI = [0.354, 0.426]

Zipf Exponent COHA F(3, 3586) = 89, p < 0.001, η2 = 0.070, 95% CI = [0.050, 0.096]

Zipf Exponent COCA F(3, 501) = 39, p < 0.001, η2 = 0.190, 95% CI = [0.138, 0.258]

Zipf Exponent BNC F(2, 1316) = 682, p < 0.001, η2 = 0.509, 95% CI = [0.472, 0.547]

One-way ANOVA tests are reportedwith the F-statistic (degrees of freedom), p-value, effect size (η2), and bootstrapped 95%confidence interval for the effect size. The reported p-values were adjusted for
multiple testing with a Holm–Bonferroni correction. All tests find p-values below 0.001, indicating that we can reject the null hypothesis of no difference across categories at a 0.1% significance level.
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The utility rate of a media platform, Rmedia, is a summation over
Poisson processes (Equation (7)). To simplify this, let �um be the average
utility of information items consumed in themedia platform,�tm the average
time spent consuming information items, and λm the rate of encounter of
any item in the diet. Equation (7) then becomes a variation of Holling’s disc
equation42 (full derivation in Supplementary Note 4: The Merged Poisson
Process for Patches).

Rmedia ¼
λm�um

1þ λm�tm
: ð11Þ

This equation is visualised in Fig. 5a.

The criteria for inclusion in an information forager’s diet is then

1
λm�um

þ 1
�rm

≤
1

Renv
: ð12Þ

The inclusion of a media platform in the information diet is therefore
determined by three properties: the average utility (i.e., size) of a item, �um;
the average itemutility rate,�rm; and theprevalence of itemswithin themedia
platform, λm.

Short-formmedia platforms suchas news andmagazines involvemore
time spent switching (and searching for) articles than long-form media
platforms such as books. In order to reach the same overall media platform
utility rate, Rmedia, short formmedia types need to have higher information
utility rates (Fig. 5c). This creates a differential selective pressure on short-

Fig. 5 | Themedia patchmodel. aThe expected utility rate of amedia patch (dashed
line) is determined by the time spent searching for (horizontal solid line) and
consuming (diagonal solid line) information items. b In a low prevalence envir-
onment long-formmedia has an advantage, although at low prevalence foragers are

not very selective. c At high prevalence less time is spent searching between item
acquisition. To reach the same overall patch utility rate (dotted grey line), short-
form media needs a higher information utility rate (gradient of the solid diagonal
red line) than long-form media (gradient of the solid diagonal blue line).

Fig. 4 | Simulation of information foraging in the
attention economy. Information items are gener-
ated with random utility rates in quantities pro-
portional to the information prevalence. Given the
information environment, foragers only consume
information items above a minimum information
density (blue markers) in order to maximise their
foraging rate. Information that is not consumed has
less chance of survival (grey markers). Overall the
surviving information types have higher utility rates
at higher information prevalence.
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and long-form media producers. Given some Renv, the short-form media
platformneeds higher average informationutility rates,�rm, to be accepted in
the forager’s diet than the long-form media. The long-form media experi-
ences a relaxedselective pressure on informationutility rates because there is
less time spent switching in these media platforms. This can describe the
differences in the observed information utility rates in short- and long-form
media as well as the trend towards increased information rates with
increasing media prevalence.

Social media
Inequality (12) includes a weaker condition for diet inclusion, 1

λm�um
≤ 1

Renv
.

This indicates that information prevalence directly limits the minimal
average size of information for diet inclusion. As information prevalence
increases, foragers will tolerate media platforms with smaller and smaller
information item sizes (Fig. 6). More intuitively, Twitter only works in a
world with instant messages—few people would go to a library to read a
single Tweet.

Finally, our model quantifies the selective forces acting to make media
platforms more accessible. If a media platform reduces the expected search
timebetween information encounters, 1

λm
, then they reduce the left hand side

of Inequality (12) and become more competitive. This asymmetrically
affects utility for short-form media, 1

λm�um
; for long-form media this term is

already small. This could be an explanation for innovations towards
minimising time spent searching in short-form media platforms such as
infinite scroll and autoplay videos.

Discussion
We provide evidence that the word entropy of American English has
increased over the 20th century. Furthermore, this change is marked by
differences across differentmedia categories, with the highest entropy levels
found in the shortestmedia forms. Using amodel of the attention economy
based on information foraging,we showhowa simplemodel of information
selection can drive the observed changes. The attention economy model
explains two results: a rise in entropy as information becomes more
abundant and a rise in preferences for information dense short-formmedia.

Ourmodel connects changes in language to social behaviour. Previous
work along these lines has shown language evolution to follow a number of
principles governed by human psychology. These principles have, for

example, included features of biological and cultural evolution43,44,
learning44–46, word formation and distribution41,47,48, and the decay of mor-
phological complexity46,49. We add to this list and claim that word entropy
rises in response to information abundance.

Our findings offer an interesting additional perspective on pressures
involved in linguistic evolution. For example, the Linguistic Niche
Hypothesis46 predicts a loss of complexmorphological forms in English due
to the influence of second language learners. Indeed, there is ample evidence
that English is undergoing morphological simplification49–51. If we can
summarise the effect of the Linguistic Niche Hypothesis as a pressure
towards learnability, then our study claims an additional pressure towards
expressivity. One might expect these two dynamics to be in opposition, as
simpler symbolic rules would a priori be less expressive per symbol and
therefore have lower entropy52. However, a more nuanced analysis can take
into account the fact that human language includes redundancy53, in which
case a pressure towards learnability through simplification by reduction of
this redundancy would simultaneously increase entropy. While we can
speculate about the interaction of these pressures (and other factors), we
encourage further work in this area.

An unexpected consequence of our model is that very short-form
media becomes viable when people are able to switch to new pieces of
information quickly, with a relationship between minimum average infor-
mation size and informationprevalence (Fig. 6). This is framed inourmodel
as increasing the platform information density by reducing information
search costs and simultaneously increasing entropy through rapid switching
of contexts between short information items. Social media further amplifies
the relevance of this information by using algorithms that serve highly
personalised feeds54–57, potentially interacting with feelings of social con-
nection and shared reality58. This in turn has an effect on what media is
produced, with creators and influencers tailoring their content to get picked
up by the algorithms54.

Considering people as information foragers, our model describes
observed empirical changes in word entropy of English over time and both
within and between media categories in response to a reduction in search
costs. Empirical findings support the idea that people’s attention is attracted
to high entropy and high complexity information59,60. Our analysis of his-
torical data shows the entropy of information markets respond predictably
to increased competition. The attention economy model offers a simple
explanation: humans are, within limits, information rate maximisers

Fig. 6 | Short-form media becomes more viable
when information prevalence is high. Minimum
average information size, umin, for media platform
diet inclusion for varying levels of information
prevalence, λm. Increasing average information uti-
lity rates, �rm , can increase this limit only to a point.
Very short-form media platforms like social media
can only capture attention in a world with high
information prevalence.
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responding to rising information abundance and media producers adapt
their content to compete for more limited attention.

Limitations
The model presented here is a simplification of the real-world dynamics,
which include complex interactions between human behaviour, economics,
technology, and culture. We highlight some of these limitations here.

Whenusing big data to analyse culture, a keyquestion to ask iswhether
we are detecting variation in the underlying population of interest (in our
case media expression of language) or variation in the data source (in our
case text corpora).While this is an inherent problemwhen studying changes
in language,we took steps to ameloriate the issue.This included the choiceof
COHA, which is a balanced corpus, with representative text samples across
media categories. In contrast, we investigated but did not choose to use
Google Ngrams due to questionmarks surrounding variation in the corpus
composition over time61. Given the use of COHA, there was a challenge in
balancing the benefits of large text samples with the number of text samples
available.We found that a target size ofN = 2000words gives a goodbalance
between sample length and quantity of samples. We also added robustness
checks when comparing text samples across media categories by using
multiple corpora.Moregenerally,wenote that bigdata corpus analysis is not
a replacement for traditional cultural sociology techniques, but a
complement62 and we encourage future work along more traditional qua-
litative lines63.

Ourfindings areprimarily concernedwithdifferences inword entropy,
which is a measure on word distributions. To give a fuller account of these
changes, we also analysed the type token ratio and Zipf exponent. It should
be noted that these are unidimensional measures of word frequency dis-
tributions and do not capture all of the information of those distributions.
As such, thesemeasures candiverge significantly in artificially generated text
samples64. At the other extreme, if word distributions are tightly constrained
(e.g., by being perfectly Zipfian) then the measures are all statistically suf-
ficient in that they capture the full information of the distribution (and
correlate perfectly with each other). In empirical samples of natural lan-
guages thesemeasures correlatewell (althoughnot perfectly), andhave been
grouped together as a measure of “lexical diversity”2. Overall we feel that
including analyses of the word entropy, type token ratio and Zipf exponent
give a rounded picture of changes in word distributions.

The textmeasures used are all sensitive to sample size.We investigated
a process of extrapolating themeasures to allow comparisons across varying
sample sizes. For example, unigram word entropy measures converge at
about N = 50,000 tokens and have relatively stable convergence curves as a
function of number of tokens65. And Zipf estimators have systematic
positive biases as functions of the exponent and sample size66. However, this
kind of extrapolation would bring in extra assumptions that may not apply
universally across time or text categories. To control for sample size sensi-
tivity we therefore chose to truncate text samples toN = 2000 words, which
is appropriate as we are interested in comparisons rather than absolute
estimations.

The measurement of entropy from a finite sequence is a difficult
problem, with many approaches of varying degrees of complexity. For
example, Lempel-Ziv compression ratios converge to entropy rates with
infinite sequences produced from an ergodic source67. However, language is
not ergodic and we do not have infinite sequences. We decided to use the
simplest and most well known form of entropy estimation with the max-
imum likelihood or plug-in estimator to find empirical unigram entropy.
Our choice is supported bywork that shows that thismeasure correlateswell
with more advanced estimators65. We extended the analysis to bigram
entropy using the maximum likelihood estimator, with broadly similar
timeseries trends (Supplementary Fig. 4) and differences across media
categories (Supplementary Fig. 7).We considered analysing the conditional
entropy, but were concerned that this involves the combination of estimates
of both unigram and bigram probabilities, which have varying potential
degrees of bias as a function of sample size and the underlying distribution.
Estimates of conditional entropy therefore include a mix of variation in (a)

the underlying distribution as well as (b) unigram probability biases and (c)
bigram probability biases. We are not able to control for these biases and as
suchwe feel that this is not a suitable formof analysis.Weconsideredusing a
Kneser–Ney language model68 to overcome this issue but we decided that
any accuracy benefits were outweighed by the obfuscation created by this
more complicated model. We support future work that investigates other
measures of entropy.

In the Supplementary Note 1: Historical Analysis of US Magazine
Publishing, wemore closely investigated the USmagazine industry, finding
that changes in word entropy tend to follow changes in the magazine
industry towards increasing competition for attention. As a part of this
analysis, we compared increasing word entropy to magazine circulation as
measured by the Audit Bureau of Circulation, which was created in
1914 specifically to verify magazine circulation data for the purposes of
advertisements69. There are some limitations to this data source as it does
not track allmagazine sales, only themost popularmagazines37, i.e., the data
is not a precise measure of all magazine circulation. However, the overall
trendof increasingmagazine circulation iswell supportedbyotherhistorical
analyses69.

The attention economy is a well established concept that recognises
that information producers must compete for attention6,70. This apparently
simplemechanismobscures the vastmachinery ofmodernmedia to capture
attentionas quantifiedby clicks and likes8. Inorder todecidewhat content to
serve, user behaviour data is fed into optimisation algorithms that range
fromA/B testing71 to machine learningmodels55. To add to the complexity,
salient topics rise and fall as the news cycle progresses. And there is evidence
that this cycle itself is speeding upwith shortening collective attention spans
linked to attention economy pressures9. In addition, an abundance of
information can lead to information overload where individuals are unable
to efficiently use the information available to them72. Overall the attention
economy is a complex and multi-faceted system. The full intricacies of this
system are beyond the scope of this study, and we urge caution when
interpreting and generalising the results that we present here.We hope that
our study inspires further research to investigate the interactions between
media and human behaviour.

Our study is limited to analysing text.Media is not limited in the same
way and competition for human attention is played out across amultimedia
landscape. There are well established differences in the way that people
process information across modalities73–75, which suggest partially inde-
pendent attention and processing mechanisms for audio and visual
information76–78. Notably, multimedia information (e.g., text and images)
can in some circumstances be processed more effectively than when pre-
sented in a single modality73,76,79. The idea of multimedia competition for
attention is particularly relevant to modern media with rapidly growing
audiovisual platforms such as TikTok54. While focusing solely on text is
limited, it does provide a useful framework for historical comparison, aswell
as the availability of well established data, tools and methodologies for
analysis. Beyond text we also see potential trends of increasing entropy in
video with historical declines in shot length (time between the camera
switching) [ref. 80, Chapter 11] in film81 and television82.

The attention economy also seems to be changing how people engage
with information. A review of studies between 2004 and 2021 found
shortening attention spans, in terms of time spent before switching media
[ref. 80,Chapter 4].Thismaybedue tobehavioural adaptations to efficiently
process information in amedia-richworld, or itmay represent fundamental
changes to cognitive systems. There are suggestions that screenmedia use in
childhood can influence development towards lower attention spans and
faster switching between media83, as well as rates of attention deficit
hyperactivitydisorder83,84.However, thenatureof any associations, and their
causality, is debated85. We hope that our model can contribute to this
important debate.

We explore the dynamics of the attention economy through the use of
information foraging models that are analogues of the diet choice model
from food foraging. The wide applicability of food foraging models across
varied taxa39 points to their generality. This generality can be understood in
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the context of the recurring and shared evolutionary challenge of the search
for food. In applying thesemodels to information foraging in humans10, the
claim is that this generality extends even beyond food and to the realm of
information, which is a similar search problem10,11, involving similar brain
mechanisms17,18, andwith similar observed empirical behaviour10,86,87.While
this argument is convincing, we recognise that human behaviour is in
generalmore complex than animal behaviour, withmore complicated goals
and strategies. In addition, individual heterogeneity in e.g., values and
motivations, can interact in complex ways with how people produce88 and
consume89 information. Humans also learn and are influenced by culture,
which is particularly relevant in the realm of information search. In light of
this, while information foraging models can be useful, we recognise the
limitationof using such simplemodels todescribehumanbehaviour. Future
studies could explore the influence of human biases, cultural norms and
learning, as well as heterogeneity in human behaviour associated with e.g.,
political beliefs, education, gender, and socio-economic background.A clear
step would be expanding these research questions to languages beyond
English.

Beyond informationdensity59,60, there is evidence that humanattention
is also attracted to information that is belief-consistent5,90,91, predictive5,
social5,92, negative5,92,93 and emotive94–96. Our model does not account for
these other dimensions, and insteadwemake the assumption that aggregate
behaviour can be usefully understood by considering the dimension of
information density in isolation. A similar assumption is made in food
foraging models, which usually focus on net calorie intake39 while omitting
other important factors such as macronutrient content97 and predation
risk98. However, just as food foraging models have their limitations in
capturing the multi-faceted nature of foraging, so does our model in cap-
turing the intricacies of information search. Future work could explore how
various factors, includingword entropy, attract humanattention.This could
extend to considering howdifferent factorsmight interact. For example, the
extremely attention grabbing utterance “FIRE!” is at once concise, pre-
dictive, negative and emotive.

There is much further work needed to understand how people choose
what information to consume, andhow that affects their behaviour.Modern
technology creates opportunities for new experiments. While eye-tracking
experiments59,60,99 are well established, we can also characterise andmeasure
attention in terms of cognitivemechanisms58,94,100. Beyond attention, we can
ask how beliefs are influenced through factors such as emotive101 or
narrative102 descriptions. An approach that is aligned with attention econ-
omy questions is to measure behavioural engagement while carrying out
tasks, either in researcher-designed websites103 or in naturalistic settings
[ref. 80, Chapter 4]. Beyond experiments, the use of up-to-date real-world
data from prominent social media sites represents a significant opportunity
for insights intowhatdrives engagement. Suchdatasets areundoubtedly rich
and offer many avenues for analysis including mixed methods approaches.
There is sometimes a challenge in terms of access to such datasets, as such
data can offer a competitive advantage to private social networks to improve
engagement through their own private research efforts.

Conclusion
We ask how the entropy of American English has changed over time, and
further investigate differences in word entropy across media categories. We
analyse an ecological model of information foraging in the attention
economy that aims to explain the observed trends as a market response to
increased competition for human attention.

Data availability
All data generated following analysis of text samples is available at https://
github.com/chasmani/PUBLIC-rising-entropy-of-english.The text corpora
data is not included in the public repository for copyright and size reasons.
They are available: •COHA21 andCOCA23 (https://www.corpusdata.org/). •
BNC24 (http://www.natcorp.ox.ac.uk/). • Twitter 2009 dataset28 (https://
www.kaggle.com/kazanova/sentiment140). •Twitter 2020 dataset. Thiswas
collected from Twitter’s API between February 2020 and January 2021.We

cannot provide the data for copyright reasons. • Reddit dataset. This was
collected from Reddit’s API between 5th to 17th January 2024. We cannot
provide the data for copyright reasons (https://www.reddit.com/.json).

Code availability
All code used to generate figures and analysis is available at the GitHub
repository https://github.com/chasmani/PUBLIC-rising-entropy-of-
english104. We used python (version 3.9.0) and the following packages and
versions (beautifulsoup4==4.12.2, nltk==3.7, pandas==1.5.3,
scipy==1.10.1, seaborn==0.12.2). We used code from project Gutenberg
https://github.com/c-w/gutenberg/(version 0.8.2). All code used to collect
data is available at the GitHub repository https://github.com/chasmani/
PUBLIC-rising-entropy-of-english104. For API access, we used Python
(version 3.9.0) and the requests library (version 2.28.0).
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