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Abstract. Databases of 3D paleoclimate model simulations
are increasingly used within global biogeochemical models
for the Phanerozoic Eon. This improves the accuracy of the
surface processes within the biogeochemical models, but the
approach is limited by the availability of large numbers of pa-
leoclimate simulations at different pCO2 levels and for dif-
ferent continental configurations. In this paper we apply the
Frame Interpolation for Large Motion (FILM) deep learning
method to a set of Phanerozoic paleoclimate model simu-
lations to upscale their time resolution from one model run
every ∼ 25 million years to one model run every 1 million
years (Myr).

Testing the method on a 5 Myr time-resolution set of con-
tinental configurations and paleoclimates confirms the ac-
curacy of our approach when reconstructing intermediate
frames from configurations separated by up to 40 Myr. We
then apply the method to upscale the paleoclimate data struc-
ture in the SCION climate-biogeochemical model. The in-
terpolated surface temperature and runoff are reasonable
and present a logical progression between the original key
frames.

When updated to use the high-time-resolution climate data
structure, the SCION model predicts climate shifts that were
not present in the original model outputs due to its previous

use of widely spaced datasets and simple linear interpolation.
We conclude that a time resolution of ∼ 10 Myr in Phanero-
zoic paleoclimate simulations is likely sufficient for inves-
tigating the long-term carbon cycle and that deep learning
methods may be critical in attaining this time resolution at
reasonable computational expense, as well as for developing
new fully continuous methods in which 3D continental pro-
cesses are able to translate over a moving continental surface
in deep time. However, the efficacy of deep learning methods
in interpolating runoff data, compared to that of paleogeogra-
phy and temperature, is diminished by the heterogeneous dis-
tribution of runoff. Consequently, interpolated climates must
be confirmed by running a paleoclimate model if scientific
conclusions are to be based directly on them.

1 Introduction

To simulate global environmental change over Phanerozoic
time, it is important to understand how continental surface
processes operate. For example, the weathering of silicate
minerals controls the removal of atmospheric CO2, and phos-
phorus input from weathering plays a major role in the long-
term oxygenation of the Earth (Walker et al., 1981; Lenton
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and Watson, 2004). Weathering rates are largely controlled
by local erosion rates, temperature, and hydrology (West,
2012; Maher and Chamberlain, 2014), and the latest gen-
eration of Phanerozoic global biogeochemical models aim
to represent these factors at the local scale using data from
3D general circulation model (GCM) simulations (Goddéris
et al., 2023). Due to the long computational timescales of
GCMs (typically weeks to months per ∼ 5000-year simula-
tion for a fully coupled ocean–atmosphere model), they can-
not be run interactively with long-term biogeochemical cy-
cles over millions of years. Therefore, the “spatialized” deep-
time biogeochemical models such as GEOCLIM (Donnadieu
et al., 2006; Goddéris et al., 2014) and SCION (Mills et al.,
2021; Longman et al., 2022) rely on either discrete time inter-
vals or linear interpolation between times set by previously
computed climate model simulations.

Currently both the GEOCLIM and the SCION models use
a set of 22 continental configurations (including the present
day) whose climate has been simulated by the Fast Ocean
Atmosphere Model (FOAM) at a range of different CO2 lev-
els. This equates to one set of model runs every ∼ 25 million
years on average, although some gaps are up to 55 million
years. This coarse time resolution has likely impacted the ac-
curacy of the biogeochemical model results. For example,
through plate tectonic motion, a mountain range may pass
through the tropics, an event expected to cause a spike in con-
tinental weathering due to high rainfall, but this may be un-
detected by SCION or GEOCLIM if the time span at which
the mountain range crossed the Equator was not represented
in the time points chosen for the paleoclimate simulations. A
further issue is that when these models are focused on single
events, such as mass extinctions, they may not be able to in-
corporate the relevant continental configurations and climate
fields for that time in Earth history, instead using boundary
conditions for up to 20 million years before or after the event.

Deep learning has received significant attention in the field
of geosciences due to its impressive capabilities in handling
tasks such as regression, classification, time-series analysis,
and image processing (Reichstein et al., 2019; Chen et al.,
2022; Zheng et al., 2022, 2024). One notable application of
deep learning is in video frame interpolation, where it synthe-
sizes intermediate frames between two input frames (Niklaus
et al., 2017; Shi et al., 2022). Such a process can be highly
beneficial in creating higher-time-resolution input variables
for biogeochemical models by interpolation from the origi-
nal climate model runs.

In this paper, we first performed a numerical and visual
validation of the deep learning interpolation of a paleo-digital
elevation model (paleoDEM) topographic elevation dataset
(Scotese and Wright, 2018), as well as surface air tempera-
ture generated from these maps using the HadCM3L GCM
(Scotese et al., 2021; Valdes et al., 2021). The validation
results suggest that the deep learning method is capable
of adequately detecting plate motions and changes to sur-
face air temperature. We then use deep learning to fill the

gaps between the paleoclimate simulation set used in the
SCION model, increasing the time resolution around 25-fold
to 1 million years. We focus on the SCION model because
it runs continuously over the Phanerozoic and has previously
published outputs for long-term atmospheric CO2, O2, and
global average temperature, but our results could also be used
to produce new runs of the GEOCLIM model, as well as
other Phanerozoic models that require spatial surface process
information.

2 Data and methodology

2.1 Model forcings at 22 distinct time intervals

The SCION model employs a series of 2D model forc-
ing fields taken from annual means of the climate model
FOAM, which were initially developed for the GEOCLIM
model (Goddéris et al., 2014). These fields are paleogeogra-
phy (a composite of works by Ronald C. Blakey, Jean Besse,
Frédéric Fluteau, and Jacob O. Sewall – see Goddéris et al.,
2014, for details), surface air temperature, continental runoff,
and topographic slope (Fig. 1). These 2D fields are 40× 48
cells (4.5° latitude× 7.5° longitude) and are available for 22
distinct time points (time intervals shown in Fig. 6) roughly
evenly spaced between the Cambrian and present day. These
22 time points represent the grid-data stack times in the con-
text of climate modelling. They are also run for a large range
of different CO2 levels and are extrapolated beyond these
for a total of 26 different levels by applying a linear inter-
polation; the FOAM surface air temperature and continental
runoff are adjusted according to a linear change in the loga-
rithm of CO2 concentrations. During the SCION model run,
2D linear interpolation is used to estimate these fields for the
current model CO2 level, and a weighted mean is used to
produce a final estimate of bulk weathering fluxes using the
distance between the current model time step and the avail-
able climate model runs. Wide spacing in time between some
of these climate model datasets means that this weighted
mean technique will likely miss many important features of
Phanerozoic climate change. To improve on this, we adopt
a frame interpolation technique (Reda et al., 2022), widely
utilized to synthesize intermediate frames between two input
frames in video sources, which increases the time resolution
(e.g. increases frames per second). This technique typically
finds applications in amplifying refresh rates or generating
slow-motion videos (Wu et al., 2023).

2.2 The deep learning interpolation algorithm

Deep learning models are complex neural networks with typ-
ically > 106 parameters. Such models emulate the learning
process of humans by updating the parameters in the neu-
ral networks to produce optimal results. The principal idea
of using deep learning in frame (e.g. image) interpolation is
to estimate the optical flow, which symbolizes the changes
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between two consecutive frames, followed by a pixel syn-
thesis process that restores the intermediate images based on
the estimated optical flows. The deep learning model aims
to minimize the differences between model-predicted inter-
mediate frames and the actual intermediate frames in a train-
ing dataset. This approach enables the model to accurately
extrapolate the visual transformation from one frame to the
next and synthesize a plausible intermediate frame that main-
tains temporal consistency with the surrounding frames. The
inputs of the deep learning model are two endpoint image
frames, with the target being the intermediate frames. By un-
derstanding how intermediate frames evolve from previous
and future frames across a broad spectrum of video datasets,
the deep learning model can discern rotation, scaling, colour
changes, and more intricate deformations, making it fit for
creating interpolation images for new tasks.

In our study, we employ a complex convolution neural net-
work (CNN), called Frame Interpolation for Large Motion
(FILM; Reda et al., 2022), to generate image interpolations
for the FOAM dataset. FILM, when contrasted with tradi-
tional interpolation algorithms and other deep learning tech-
niques, exhibits superior proficiency in dealing with abrupt
changes in brightness, and substantial motion. Such sudden
shifts are frequent in the FOAM dataset due to the signifi-
cant reorganizations that the paleogeographic and paleocli-
matic conditions underwent throughout the Phanerozoic Eon
(Royer et al., 2004; Goddéris et al., 2014; Scotese, 2021).
We represent the FOAM dataset directly from the native R15
climate grid as a set of 40× 48-sized images, each depict-
ing the entire Earth surface. The FILM technique is then
deployed to generate intermediate images between two con-
secutive model forcing frames from a specific dataset. This
method enables the creation of an atlas of 1-million-year
model forcing frames through several iterations of interpo-
lation (see Fig. 1). By converting these interpolated frames
back to numerical values, this atlas can be used to generate
a million-year-resolution “DeepFOAM” dataset, which can
then be used in the place of the original SCION model forc-
ing set to run the SCION model. Nothing is altered for the
SCION model runtime – it still uses weighted averages to
interpolate bulk continental fluxes in time – however now it
will interpolate them between a maximum gap of 1 million
years, where variations in the continental configurations are
very small.

FILM is a U-shaped CNN encompassing both encoders
and decoders (Fig. 1). Convolution, the fundamental oper-
ation in any CNN, involves multiplication between the im-
age matrix and the filters, which are typically smaller matri-
ces. This convolutional operation yields a summarized rep-
resentation of the original images. Deep CNNs employ hun-
dreds or thousands of such filters to discern features in im-
ages such as shape, brightness and patterns (Hinton et al.,
2006; Goodfellow et al., 2016). The encoder module in FILM
serves to extract high-level feature representations from in-
put images. This is accomplished via its specialized pyra-

midal architecture that encompasses seven levels of feature
extractors. These range from a fine level (high resolution)
to a coarse level (low resolution), effectively allowing FILM
to detect both fine and coarse changes in the images, with
each successive extractor operating on an input frame with
half the resolution of the previous level’s inputs. These input
frames then undergo several layers of convolution blocks to
extract high-level feature representations and bi-directional
motion between the input and interpolated frames. The fea-
ture representations, coupled with the bi-directional motion,
synthesize the high-level representations of the intermediate
frame. The decoder module of FILM then uses these high-
level representations to reconstruct the intermediate images.
During the training process, the weights in the convolution
blocks within both the encoder and the decoder are continu-
ally adjusted to minimize the differences between the model-
predicted images and the training images. Having undergone
training with over 100 000 unique videos, the pre-trained
FILM model exhibits the capability to discern rotation, scal-
ing, colour changes, movements, and more intricate defor-
mations, making it ideally suited for creating interpolation
images for novel tasks.

We use the pre-trained FILM model to create interpolated
images without conducting additional training. By running
the FILM model with our image dataset (comprising 22 im-
ages for a given CO2 concentration at each time interval, n),
it yields 21, n− 1, interpolation images. During the second
round of prediction, both the original and the interpolated
images are used to generate further interpolation images be-
tween the original images and the first-round interpolation
images. By iterating this operation k times, (2k−1)× (n− 1)
interpolation images are generated in total, and 2k−1 images
are formed between each of the two original images. Given
that the maximum age gap between the original model forc-
ing is 55 Myr, we executed six iterations of prediction to pro-
duce 63 interpolation images between each pair of original
images and selected at most 54 out of the 63 images to rep-
resent the dataset for each million-year time point. These se-
lections were made evenly across the 63 images to ensure
a uniform and representative sampling for each million-year
interval in the dataset.

3 Validating the method and interpolated datasets

3.1 Validation of interpolation using a paleoDEM
dataset

While the FILM model has demonstrated a robust ability to
interpolate complex changes between input and intermedi-
ate frames, largely due to extensive training on over 100 000
videos, its performance has not yet been scrutinized in the
context of paleogeographic and paleoclimate datasets. To test
this application, we first apply the FILM model to a high-
time-resolution paleo-digital elevation model (paleoDEM)
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Figure 1. Deep learning interpolation workflow for the FOAM dataset and simplified overview of FILM. Numerical annotations represent
the dataset dimensions; e.g. for original air temperature, 40 and 48 refer to the horizontal and vertical geographic spans, 22 represents the
time intervals, 26 represents the different CO2 concentration levels. I(t−1) and I(t+1) represent the two input frames; It is the intermediate
frame. The convolution step is the matrix operation to obtain high-level feature representations; motion estimation is the change estimation
achieved by the convolution operation; concatenation means the unification of two matrices of the same dimension to amalgamate features
from different levels in the input pyramids; bi-linear up sampling is the technique used to reconstruct a frame from the high-level feature
representation. The FILM overview is simplified based on Fig. 2 in Reda et al. (2022); we refer the reader to Reda et al. (2022) and
Goodfellow et al. (2016) for further details of these techniques.

dataset (Scotese and Wright, 2018) that delineates the evolv-
ing distributions of land and oceans over the past 540 million
years in 5-million-year intervals. By partitioning the paleo-
DEM dataset into input and intermediate frames, we could
contrast the FILM-predicted frames with the actual interme-
diate frames, quantifying their disparities. The similarity be-
tween the predicted and actual frames serves as a testament
to FILM’s efficacy in capturing plate movements and trans-
formations.

The paleoDEM dataset comprises 109 files, and each file
includes estimations of land surface elevation and ocean
depth, measured in metres, at a resolution of 1× 1°. Hence,
the paleoDEM dataset is a 361× 181-dimensional dataset
where 361 represents longitude (ranging from −180 to 180)
and 181 denotes latitude (ranging from −90 to 90). To
make the paleoDEM dataset comparable with our 48× 40-
dimensional dataset, we applied nearest-neighbour interpo-
lation, a downsampling algorithm, to downscale the paleo-
DEM resolution to 48× 40 by assigning the values of the
closest pixel to the new pixel locations. Moreover, any loca-

tion with elevation values greater than zero was characterized
as land (denoted by 255 in pixel values), with the remainder
classified as oceans (denoted by 0 in pixel values).

The paleoDEM dataset was partitioned into distinct in-
put and output datasets using temporal intervals of 10, 20,
and 40 Myr. This strategy facilitated three separate validation
procedures. In the first validation approach, we use a 10 Myr
interval. The paleoDEM sequences from 540 Ma, 530 Ma,
etc., up to 0 Ma, were designated as the input dataset. Cor-
respondingly, the sequences from 535, 525 Ma, and so forth,
until 5 Ma, were selected as the output dataset for the FILM
model outputs to be compared against. For the second val-
idation process, we adopted a 20 Myr interval. This time,
the input dataset comprised paleoDEM sequences from 540,
520 Ma, etc., down to 0 Ma. The sequences from 535, 530,
525 Ma, etc., to 5 Ma served as the output dataset. An iden-
tical procedure was executed for the third validation scheme
but with a 40 Myr interval. In each case we use the input
dataset to make interpolation frames using FILM, and by
comparing the predicted frames with the real frames in the
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output dataset, the model’s predictive accuracy can be as-
sessed.

For a systematic and comprehensive investigation of the
FILM model performance, we calculate the structural simi-
larity index (SSIM), peak signal-to-noise ratio (PSNR), two-
dimensional correlation, and normalized root square of the
mean square error (NRMSE), which are the most widely
utilized performance measurements for frame interpolation
(Wang et al., 2004; Dong et al., 2023). These widely accepted
metrics can help us gauge differences between the actual in-
termediate frames and the predicted frames. SSIM is a met-
ric to detect perceived changes that takes into account lu-
minance, contrast, and structural information of the image.
Given the real intermediate frame IR(xy) and the FILM-
predicted frame Î (xy), the SSIM is defined as

SSIM=

(
2µ
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µIR + c1

)
×
(
2σ
Î IR
+ c2

)(
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Î
+µ2
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)
×

(
σ 2
Î
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IR

are the variance of Î and IR , σ
Î IR

is the covariance between
Î and IR , and c1 and c2 are constants to avoid instability
when the denominator is close to zero. Values of SSIM range
from −1 to 1, representing inversely identical and identical
images, respectively.

The PSNR is a ratio between the maximum possible power
of the image and the power of corrupting noise that affects
the fidelity of the image’s representation; it is defined as

PSNR= 10× log10×

 L2

1
N

∑N
x,y

(
IR (x,y)− Î (x,y)

)2

, (2)

where L is the maximum pixel value (255 for our images)
and N is the number of pixels in the image. The greater the
value of PSNR, the better the performance of the frame in-
terpolation.

The two-dimensional correlation is defined as the Pearson
correlation coefficient calculated over the two dimensions
of IR(xy) and Î (xy). Values of two-dimensional correla-
tion are between −1 and 1, where 1 indicates the two im-
ages are identical, 0 means the images are uncorrelated, and
−1 means the images are inversely identical. The NRMSE
measures the differences in pixel values between IR(xy) and
Î (xy). In contrast to the other metrics, lower NRMSE values
indicate better performance (range between 0 and 1).

NRMSE=

√
1
N

∑N
x,y

(
IR (x,y)− Î (x,y)

)2

IR(x,y)max− I
R(x,y)min

(3)

Figure 2 and Table 1 detail the quantitative assessments de-
rived from our implemented numerical metrics, indicating
the performance of the FILM technique when applied to
the paleoDEM dataset. During the validation phase, using

a 10 Myr interval, the frames predicted by FILM demon-
strated remarkable congruity with the actual frames. This
is evidenced by the high values of SSIM, PSNR, and two-
dimensional correlation and a low value of NRMSE. The
SSIM and 2D correlation maintain consistently high values
throughout the entire time span from 540 to 0 Ma. This high-
lights the consistent performance of FILM and its capacity to
capture the paleogeographic reorganization in the paleoDEM
dataset across Phanerozoic timescales.

Despite good performance in general, the PSNR and
NRMSE depict a trend over time, with PSNR values decreas-
ing and NRMSE values increasing over time – both suggest-
ing a poorer fit to the real intermediate frames at time points
closer to the present day. The observed trend is somewhat
expected as the maps that become closer to the present day
– and can draw on larger geological evidence bases – tend
to exhibit more fine-scale features, such as land patches de-
picted as only 1 pixel or a few pixels in the frames (Fig. 3).
During frame interpolation, fine-scale features such as mi-
nor land patches are more easily overlooked. Consequently,
metrics like PSNR and NRMSE, which quantify the pixel
discrepancies between the predicted and actual frames, un-
derscore this pattern of detail loss.

For the comparison at 10 and 20 Myr intervals, a high de-
gree of similarity between the predicted and actual frames
was discernible, as evidenced by the mean values of SSIM
exceeding 0.8, 2D correlation over 0.9, PSNR above 32, and
NRMSE less than 0.025. For the 40 Myr interval validation,
the mean values of SSIM were greater than 0.7, the mean
values of 2D correlation were above 0.80, the mean values
of PSNR were over 31, and the mean values of NRMSE
remained below 0.03. As anticipated, the performance de-
teriorates when the time interval is increased (Argaw and
Kweon, 2022), which can be attributed to the more signif-
icant changes between the two input frames. Interestingly,
the SSIM and 2D correlation show a particular decrease in
performance at around 220 and 420 Ma. This may be due to
more complex plate movements around these times which
the algorithm finds more difficult to predict.

In addition to the numerical evaluation, we also performed
visual inspections to detect obvious discrepancies between
the original frames and the predicted frames. Across differ-
ent time periods, predicted frames were generally visually
comparable to original ones (see Fig. 2 for numerical estima-
tions). The major deviations between the predicted and origi-
nal frames were attributable to missing pixels or mismatched
pixel values, and there were no changes in the placements
of major landmasses (Fig. 4). Given that the mean temporal
interval for SCION model forcings is approximately 25 Myr,
our numerical assessments and visual evaluations in compar-
ing the FILM-predicted frames with the actual frames from
the paleoDEM dataset suggest that FILM possesses the ca-
pability to discern plate movements and transformations on
a timescale appropriate to building interpolation frames for
the SCION model forcings. Nevertheless, the FILM method
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Figure 2. Comparative evaluation of performance utilizing (a) 10 Myr, (b) 20 Myr, and (c) 40 yr intervals within the paleoDEM dataset.
The blue line represents the LOWESS (locally weighted scatterplot smoothing) fitting curve with a fraction of 0.4, serving as an indicator
of the central trend. The light-blue-shaded bands illustrate the confidence interval, derived from a 1000-resampling bootstrap method and
providing a measure of the precision of and uncertainty in the estimated fit. The normalized root square of the mean square error (NRMSE)
is represented in a red colour because it signifies error; thus its trend is converse to those of the three other metrics. The green arrows indicate
the direction of better performance. See the main text for detailed discussions.
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Table 1. Numerical evaluation using the paleoDEM dataset.

10 Myr 20 Myr 40 Myr

Mean Median SD Mean Median SD Mean Median SD

SSIM 0.96 0.97 0.03 0.91 0.94 0.06 0.80 0.81 0.11
PSNR 35.12 35.25 1.50 34.17 34.50 1.47 33.46 33.49 1.38
2D correlation 0.98 0.99 0.01 0.96 0.97 0.03 0.90 0.93 0.07
NRMSE 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.00

SD: standard deviation. See Sect. 3.1 for other abbreviations.

Figure 3. Temporal evolution of land patch density using paleoDEM from 540 Ma to the present. This figure indicates an overall increase
in land patch density in the paleoDEM dataset, attributed to the inclusions of more details in the more recent frames. This increasing trend
may account for the patterns observed in PSNR and NRMSE. A land patch is defined as a contiguous grouping of land pixels. The density is
calculated by dividing the number of land patches by the total frame size (40×48). The dark-blue crosses indicate the 22 time intervals used
in the FOAM dataset.

creates a significant number of unmatched pixels compared
to the original frames, which would alter climatic outputs
of GCMs and linked biogeochemical calculations, especially
as small introduced islands would be expected to have high
runoff and chemical weathering rates (Park et al., 2020).

3.2 Validation of interpolation using a GCM dataset

We now apply the FILM model to a high-time-resolution
dataset of Phanerozoic surface air temperature (SAT; Scotese
et al., 2021). This dataset is based on GCM simulations
(HadCM3L; Valdes et al., 2021), with the CO2 level in the
simulation inferred from global temperature proxies such as
biogenic calcite and apatite δ18O and lithological climate in-
dicators. The Phanerozoic SAT dataset shares the same spa-
tial resolution as the paleoDEM dataset, with a resolution of
1×1°, and comprises a 361×181 data array. The SAT dataset
features a 10 Myr temporal resolution from 540–450 Ma and
a 5 Myr resolution from 450 Ma to the present. We selected

the SAT dataset from 450 Ma onward to ensure consistent
validation.

During validation, we used the SAT dataset without down-
scaling and conducted the same numerical validation con-
sidering temporal intervals of 10, 20, and 40 Myr. Similarly
to the results for the paleoDEM dataset, interpolations us-
ing a 10 Myr interval demonstrated close congruence with
the actual frames, as evidenced by high values of SSIM,
2D correlation, and PSNR, along with low values of NRMSE
from 450 Ma to the present (see Fig. 5; Table 2). Moreover,
compared to the paleoDEM dataset, the interpolation perfor-
mance of SAT across different time intervals exhibited more
consistent results, as indicated by closer evaluation metrics
(Table 2). This is likely because the temperature fields did
not contain such sharp transitions between land and ocean.
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Figure 4. Comparative visualization of actual paleoDEM and model-predicted frames at selected time intervals. This figure illustrates the
comparative visualizations at (a) 535 Ma, (b) 315 Ma, (c) 105 Ma, and (d) 25 Ma. The grey pixels represent areas impacted by nearest-
neighbour downsampling in the paleogeographic maps. The missing pixels indicate areas present in the original frames but absent in the
model-predicted frames; the fabricated pixels show areas absent in the original frames but present in the model-predicted frames.

Table 2. Numerical evaluation using the Phanerozoic SAT dataset.

10 Myr 20 Myr 40 Myr

Mean Median SD Mean Median SD Mean Median SD

SSIM 0.95 0.95 0.02 0.93 0.93 0.03 0.89 0.89 0.04
PSNR 32.66 32.82 2.53 31.14 30.80 2.40 29.72 29.16 2.19
2D correlation 0.99 0.95 0.02 0.99 0.99 0.01 0.98 0.99 0.02
NRMSE 0.02 0.02 0.00 0.03 0.03 0.00 0.03 0.03 0.00

3.3 Output and validation of intermediate FOAM
temperature and runoff datasets

We now focus on the temperature and runoff data in our in-
terpolated DeepFOAM dataset. Given the established corre-
lation between increased CO2 levels and a rise in global aver-
age temperature and total runoff, we anticipated that our in-
terpolated data should mirror this trend if FILM is effectively
applied to our dataset. Consequently, we test the alignment of
interpolated temperature and runoff trends with those of the
original model forcings. The SCION model forcing dataset is
constructed with 26 distinct CO2 levels, encompassing an ex-

tensive range of CO2 concentrations, from 10 to 112 000 ppm
(Mills et al., 2021). This dataset has been extrapolated and
in-filled from an average of five runs of FOAM per conti-
nental configuration, which was made possible because of a
predictable logarithmic response of temperature and runoff to
CO2 change in the model. Such a wide range of CO2 levels is
required to aid in model spinup where the model conditions
can be far from equilibrium. Typically, Phanerozoic runs of
the SCION model do not stray beyond the range of the ini-
tial dataset from FOAM. Figure 6 plots the global average
temperature and runoff over these 26 CO2 levels, with each
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Figure 5. Comparative evaluation of performance utilizing (a) 10 Myr, (b) 20 Myr, and (c) 40 Myr intervals within the surface air temperature
(SAT) dataset. See Fig. 2 for detailed explanations of the image symbols.
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Figure 6. Global average surface air temperature and average continental runoff over CO2 levels in the FOAM dataset. The representation
is colour-coded with a descending blue gradient, where light blue represents more ancient conditions and dark blue denotes more recent
scenarios. Note that the 0 Ma curve is built from only one CO2 level (preindustrial), with an arbitrary increase in temperature and runoff
applied when CO2 levels change.

Figure 7. Trends in global temperature changes corresponding to varying CO2 levels. Each subplot features 1 of the 21 distinct time intervals
between members of the FOAM dataset. Within each subplot, the red lines delineate the key frame average temperature variations and the
blue lines show the deep-learning-interpolated average temperature for each 1 Myr interval. See Fig. A1 for all 21 subplots.

of the 22 lines representing a unique time interval (i.e. con-
tinental configuration) in FOAM. It exhibits an overall up-
ward trend in temperature and runoff as CO2 concentrations
ascend, and the relationship between CO2 and climate is de-
pendent on the continental configuration (e.g. Wong Hearing

et al., 2021) and solar constant. It should be briefly noted that
the 0 Ma climate ensemble is computed from only one run
of FOAM at preindustrial CO2 levels, adding a generalized
trend for higher and lower CO2 levels. This is because the
SCION model is not designed to perform variable-CO2 sim-
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Figure 8. Trends in runoff changes corresponding to varying CO2 levels. As with Fig. 7, the subplots represent the runoff changes between
the original runoff outputs from the FOAM dataset. The red lines are the original average runoff in the FOAM dataset, and blue lines are
deep-learning-interpolated data. See Fig. A2 for all 21 subplots.

ulations in present-day conditions and only uses this state for
spinup and parameter tuning.

Given the known behaviour of the climate model FOAM,
our FILM-interpolated temperature and runoff grids should
exhibit similar patterns and serve as a method to evaluate
the effectiveness of the FILM interpolation technique for this
purpose. Figure 7 plots global average temperature changes
in response to varying CO2 levels for each of the intermedi-
ate frames produced by FILM. The FOAM dataset contains
values across 22 time intervals, leading to the 21 subplots
(all subplots in the Appendix) that show the average tem-
perature changes for all intermediate frames between these
22 time intervals. The interpolated temperature values are
well-aligned with the original dataset, displaying a consis-
tent trend for escalating CO2 concentrations. Figure 8 shows
the runoff trends in response to varying CO2 levels. Similar
to the temperature trends, they exhibit patterns with respect
to CO2 that are analogous to those of the original runoff data.
Given the more scattered distributions and more substantial
changes in runoff between continental configurations, the in-
terpolated average runoff exhibits a more varied pattern be-
tween the key frame images, with interpolated intermediate
runoff averages that can be both higher and lower than the
end-members from which they are derived. Capturing runoff
changes on small land patches remains a particularly chal-
lenging task for the deep learning methods, unlike the case
with homogeneous variables like temperature, where FILM
is more adept.

4 The 1-million-year-forcing outputs of the SCION
model and comparisons to the original model

We now run the SCION model (version 1.1.6; http://github.
com/bjwmills/SCION, last access: 10 April 2023) subject
to the new DeepFOAM dataset, which directly replaces the
FOAM dataset used in the standard model. This update re-
quires no additional modification of the SCION model. The
key model predictions for atmospheric CO2, atmospheric O2,
and global average surface temperature are shown in Fig. 9.
These new model predictions follow the original model
closely at the defined time points for the FOAM dataset, but
they have a more detailed structure between these points and
show several interesting deviations from the previous model,
which are due to the new FILM-interpolated climate fields
which, in turn, have replaced linear interpolation between the
widely spaced previous fields.

Most notably, the SCION–DeepFOAM output for atmo-
spheric CO2 shows a warming spike around the Permian–
Triassic boundary and a cooling spike in the Early Juras-
sic. These results are in line with geological evidence
for extreme warmth during the Permian–Triassic extinction
(Berner, 2002; Fielding et al., 2019; Yang et al., 2021; Wu et
al., 2024) and a cool Early Jurassic (Scotese et al., 2021). To
investigate these outputs, Fig. 10 plots variations in runoff
and chemical weathering rates spanning 260–245 Ma. The
original FOAM dataset contains runoff values at 260 and
245 Ma, both of which indicate high runoff in the low lat-
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Figure 9. Phanerozoic output comparisons between SCION–
FOAM and SCION–DeepFOAM. (a) Atmospheric CO2 concentra-
tion (proxy data represented by circles; sources: Foster et al., 2017;
Witkowski et al., 2018), (b) atmospheric O2 concentration (proxy
data represented by vertical lines; sources: Glasspool and Scott,
2010; Lenton et al., 2016), and (c) global average surface tempera-
ture (proxy data represented in grey; source: Scotese et al., 2021).
The red stars represent the time intervals of 20 Myr or less in the
FOAM dataset. The dashed box in panel (a) marks the significant
CO2 increase at 253 Ma.

itudes (marked by grey arrows in Fig. 10) surrounding the
Paleo-Tethys Ocean. As a consequence, chemical weathering
rates in these zones are comparably high, being influenced
by both runoff and temperature (Maffre et al., 2018; Mills
et al., 2021). Contrastingly, for the 253 Ma interval, pre-
dicted via deep learning, the South China Plate exhibits di-
minished runoff values and correspondingly lower chemical
weathering rates (marked by red arrows in Fig. 10). The ob-
served decrease in weathering aligns with geological records
which highlight significant aridity in China at the time of the
Permian–Triassic boundary (Cui and Cao, 2021; Xu et al.,
2023), and it is this reduced chemical weathering that leads
to elevated atmospheric CO2 predictions for this time in the
SCION model. However, this result requires further scrutiny,
as while the deep learning approach affords a continuous

dataset, there are no specific physical mechanisms underpin-
ning the results. In reality, aridity here may have been due to
extreme warming following the emplacement of the Siberian
Traps, which is not included in our model. Moreover, varia-
tions in different paleogeographic map versions (e.g. south-
ern China is smaller in Marcilly et al., 2021, than in Scotese
and Wright, 2018) or image processing techniques such as
downscaling or upscaling, as well as the large time intervals
(> 10 Myr) between the original frames, may further compli-
cate the results. Testing this hypothesis still requires a climate
model run for the period of interest. Notably, the deep learn-
ing interpolation can produce intervals of climatic changes
in climate-biogeochemical models, but it does not allow for
the resolution of climate events that were previously unde-
tectable. For example, the Hirnantian ice age cannot be repre-
sented in the SCION model using the DeepFOAM dataset be-
cause various suggested mechanisms for Hirnantian cooling,
such as rapid weathering and a decrease in degassing due to
arc–continent collision (Macdonald et al., 2019) and weath-
ering amplification due to land plant evolution (Lenton et al.,
2012), are not incorporated in the current SCION model used
in this study (Mills et al., 2021).

5 Conclusions and future work

We show that deep learning can produce realistic continuous
plate geographical motions, as well as associated paleocli-
mates, from snapshots up to 40 Myr apart. The FILM deep
learning technique can be applied to the forcing set for the
SCION climate-biogeochemical model, which reduces the
need for the model to interpolate linearly between time points
and thus allows a greater degree of climate variability, as well
as making the model easier to use for testing specific events
at known times that are not within its original forcing set.
This alteration produces new intervals of climatic change in
the climate-biogeochemical model, but it does not allow it
to resolve any climate events that it previously could not,
such as the Hirnantian ice age. It should also be noted that
variations in different paleogeographic map versions, varia-
tions in image processing techniques, and the large time in-
tervals (> 10 Myr) and relatively coarse resolution of origi-
nal frames can affect the accuracy of the interpolation. Partic-
ularly, the efficacy of interpolating runoff data, compared to
those of paleogeography and temperature, is diminished by
their heterogeneous distribution. The new forcing set creates
important differences in the model output, demonstrating the
utility of deep learning for rapid preliminary analysis, but
further conclusions on these differences rely on performing
new climate model runs at these specific times. It is intu-
itively understood that these interpolation results can be en-
hanced with a higher-resolution original dataset, a presump-
tion corroborated by the paleoDEM validation and the SAT
validation. In the paleoDEM and the SAT validation pro-
cesses, interpolation results derived from a 10 Myr interval
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Figure 10. Runoff (a) and chemical weathering rates (b) for 260, 253, and 249 Ma. During the 260–245 Ma period, the low-latitude regions
surrounding the Paleo-Tethys Ocean exhibit high runoff and corresponding high weathering (highlighted by grey arrows). These charac-
teristics are derived from the FOAM dataset. However, during the 253 Ma interval, the deep learning method predicts reduced runoff and
corresponding decreased weathering. This reduction is primarily attributed to the lowered runoff in eastern low-latitude plates, such as
northern and/or southern China (marked by the red arrow).

exhibited superior accuracy compared to those from 20 and
40 Myr intervals. Thus, future work to link paleoclimate and
biogeochemistry should aim to run climate models at least
every 10 Myr. Combing the deep learning interpolation to up-
scale this to 1 Myr or finer time resolutions would allow more
precise investigation of the paleoclimate and fossil record for
specific events, and may also permit new approaches where
modelled surface processes (e.g. vegetation) are able to be
distributed in space from one time step to the next.
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Appendix A: Additional figures

Figure A1. All the subplots of the trends in global temperature changes corresponding to varying CO2 levels. Each subplot features 1 of
the 21 distinct time intervals between members of the FOAM dataset. Within each subplot, the red lines delineate the key frame average
temperature variations and the blue lines show the deep-learning-interpolated average temperature for each 1 Myr interval.
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Figure A2. All the subplots of the trends in global runoff changes corresponding to varying CO2 levels. Each subplot features 1 of the 21
distinct time intervals between members of the FOAM dataset. Within each subplot, the red lines delineate the key frame average runoff
variations and the blue lines show the deep-learning-interpolated average runoff for each 1 Myr interval.

https://doi.org/10.5194/gmd-17-5413-2024 Geosci. Model Dev., 17, 5413–5429, 2024



5428 D. Zheng et al.: Using deep learning to upscale paleoclimate model time resolution

Code and data availability. The FILM code is available at
https://github.com/google-research/frame-interpolation (last
access: 10 April 2023) and a Zenodo repository (Reda
et al., 2024, https://doi.org/10.5281/zenodo.10602810) un-
der the Apache License 2.0. SCION v1.1.6 code is avail-
able at https://github.com/bjwmills/SCION (last access:
10 April 2023) and is permanently archived on Zenodo
(Mills, 2023, https://doi.org/10.5281/zenodo.7790169); codes
for figure creation are archived on Zenodo (Zheng, 2024,
https://doi.org/10.5281/zenodo.10578608).
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