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Abstract

Background: COVID-19 led governments worldwide to enact a variety of containment and closure policies. Substantial attention
has been directed toward the idea that these public health measures may have unanticipated negative side effects. One proposed
effect relates to video games. There is a nascent evidence base suggesting that individuals played video games for longer and in
a more disordered manner during lockdowns and school closures specifically. These increases are commonly framed as a potential
health concern in relation to disordered gaming. However, the evidence base regarding changes in gaming during the COVID-19
pandemic is based on self-report and, thus, is susceptible to bias. Therefore, it is unclear what the true consequences of lockdowns
were for gaming behavior worldwide.

Objective: The primary objective of this study was to estimate whether any specific lockdown policy led to meaningful increases
in the amount of time individuals spent playing video games.

Methods: Rather than relying on self-report, we used >251 billion hours of raw gameplay telemetry data from 184 separate
countries to assess the behavioral correlates of COVID-19–related policy decisions. A multilevel model estimated the impact of
varying enforcement levels of 8 containment and closure policies on the amount of time that individual users spent in-game.
Similar models estimated the impact of policy on overall playtime and the number of users within a country.

Results: No lockdown policy can explain substantial variance in playtime per gamer. School closures were uniquely associated

with meaningful increases in total playtime within a country (r2=0.048). However, this was associated with increases in the

number of unique individuals playing games (r2=0.057) rather than increases in playtime per gamer (r2<0.001).

Conclusions: Previous work using self-report data has suggested that important increases in heavy gaming may occur during
pandemics because of containment and closure (“lockdown”) procedures. This study contrasts with the previous evidence base
and finds no evidence of such a relationship. It suggests that significant further work is needed before increases in disordered or
heavy gaming are considered when planning public health policies for pandemic preparedness.

(J Med Internet Res 2023;25:e40190) doi: 10.2196/40190
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Introduction

Background

The emergence of COVID-19 led governments worldwide to
enact a variety of policy decisions in an attempt to both slow
the pandemic’s spread and mitigate its impact. These measures
ranged from the requirement that masks be worn in specific
areas to policies related to vaccination and testing, as well as
fiscal measures and debt relief policies [1-4]. A key theme
within policy-making concerns what are referred to as
“containment and closure policies” or “lockdown policies.”
These refer to governmental interventions that attempt to control
the spread of SARS-CoV-2 through activity-limiting
interventions that include stay-at-home orders, restrictions on
gatherings, and other societal restrictions such as the closure of
schools [5].

The primary aim of containment and closure policies has been
to minimize the transmission of COVID-19 and, hence, its
impact on population health. Substantial epidemiological
attention has been paid to assessing their effectiveness in this
regard [6-9]. However, substantial attention has also been paid
to the idea that these policies may have important unintended
or unanticipated social and behavioral consequences. Particular
attention has been paid to the idea that the behaviors engendered
by lockdowns may lead to significant detriment to human health
and well-being, with some even suggesting that such impacts
may outweigh the benefits of lockdowns [10]. Candidate effects
are diverse and include the potential impact of containment and
closure policies on screen time, education, alcohol consumption,
diurnal rhythms, eating habits, and physical activity [11-16].

Heavy Gaming and Lockdowns

One particularly widely discussed potential effect concerns
video gaming. The primary issue concerns the amount of time
that individuals spend playing video games. The idea that
excessive levels of playtime may have negative consequences
for individuals is common in the literature, with several studies
suggesting a relationship between COVID-19 policy-making
and increases in disordered or addictionlike gaming [17-21].
Particular attention has been paid to the impact of school
closures in this context. Some have suggested that the
confinement of young people to their homes may lead to
increases in the volume of playtime among this group and that
these increases may be so extreme that playtime becomes
problematic [18,19]. What constitutes a problematic volume of
personal playtime is not well understood in the literature [22].
Increases in playtime may not always be considered harmful,
and what constitutes excessive or problematic gaming will
change depending on the person involved.

The broader literature also deals with alternative changes that
may have occurred to video gaming during the pandemic. On
the one hand, some researchers have suggested that
work-from-home mandates and other similar restrictions may
lead to increased free time and decreased options for nongaming
leisure pursuits, with consequent increases in playtime within
a territory [17,23,24]. However, on the other hand, some
academics have proposed that the impact of containment and
closure policies may be driven by social needs—as policies

recommend or require restrictions on social gatherings,
individuals may turn to multiplayer video games as a social
medium through which to mitigate potential loneliness [25-27].

Evidence regarding any of the behavioral impacts outlined
previously is sparse. The analysis of large-scale public data
collected from the gaming platform Steam has suggested that
the first year of the pandemic saw an overall upturn worldwide
in terms of the number of concurrent gaming sessions taking
place on desktop games [28]. However, empirical studies that
aim to assess the impact of policy on video game play have
typically focused on samples drawn from a single country
measured at 1 or 2 time points during the pandemic using
self-report measures [17,18,20,29,30]. Therefore, they lack the
ability to generate knowledge regarding the relative impact of
the different containment and closure policies that were
implemented worldwide during the COVID-19 pandemic.
Furthermore, these studies are based almost universally based
on self-reports of technology use rather than its measurement
via objective logs, which may lead to measurement error [31].
Therefore, the overall impacts of containment and closure
policies on playtime are unclear.

Video Games and Well-Being

Although the nature of changes in playtime may be unclear,
academic opinion is generally united in the belief that changes
in video game play are societally important. However, as
outlined previously, opinions are divided in terms of the valence
of this importance. Some prior work has argued that increased
levels of gaming during the pandemic may lead to increased
levels of disordered gaming and, hence, lower levels of
well-being [18,20,29,32]. However, other researchers have
suggested that increased levels of gaming may perform a socially
beneficial function as a means to socialize and deal with
pandemic-related stress [30,33-35]. Indeed, some sources have
even put forward the idea that commercial video games may be
used as an alternative solution to traditional mental health
treatment during COVID-19 containment and closure restrictions
[26]. Under this approach to gaming impact, alarmist attitudes
regarding the interconnection between increased gaming and
disordered gaming may be detrimental to overall public health
[36].

Ultimately, the emerging academic literature on the impact of
policy on video game play lacks the ability to accurately
estimate the differential impact of specific policy decisions on
playtime worldwide because of a lack of global behavioral data
regarding playtime. Overall, containment and closure policies
may meaningfully be divided into 8 separate categories: school
closures, workplace closures, the cancellation of public events,
restrictions on gatherings, closure of public transport,
stay-at-home requirements, restrictions on internal movement,
and international travel controls [5]. To understand the impact
of each of these policy categories, research must assess their
comparative and combined global impact using large-scale and
globally distributed data on playtime.

This Research

The literature on how gaming may have affected human
flourishing during the pandemic rests on behavioral
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foundations—the impacts on well-being proposed in the
literature require substantial changes to first occur in terms of
the volume of video game play per individual. If policy decisions
are able to explain substantial variance in these outcomes, then
such interventions are theoretically capable of causing the
psychological and health impacts proposed in the literature.
However, if no such effect on behavior exists, then holistic
impacts on human well-being become implausible. For example,
if school closures are not associated with important increases
in the amount of time that individuals spend in-game, then their
ability to systemically affect the health of young gamers by
encouraging unhealthily extreme levels of gaming becomes
significantly less plausible.

Therefore, in this study, we assessed the evidence for changes
in playtime during the enforcement of a variety of lockdown
policies worldwide. More formally, we investigated whether
the different geographical scopes and enforcement levels of 8
separate containment and closure policies (including the closure
of schools) were able to explain variance in playtime per user
within a territory. We also measured the impact of policy on
both total playtime within a territory and the number of players
within that territory.

For this study, we used an unprecedentedly large data set
provided by Unity Technologies. Unity Technologies are the
makers of one of the world’s most popular game engines—the
software that is used to develop and build games themselves
[37]. Their data for the period under analysis cover 251.88
billion hours of playtime recorded in 184 countries worldwide
and across tens of thousands of separate games. This represents
all playtime in desktop and mobile games that implement Unity
Analytics. Thus, although it does not represent all the playtime
in all the games worldwide and does not include any console
games, it is orders of magnitude larger and more geographically
diverse than any playtime data ever analyzed before this point
[38-40]. These data are able to measure the sum total of hours
spent in all games that implement Unity Analytics worldwide.
They may be decomposed by territory and date.

We combined this with data drawn from the Oxford COVID-19
Government Response Tracker (OxCGRT) database, a data set
that measures day-by-day changes to the enforcement level and
geographical scope of 8 containment and closure policy
categories within the 184 countries in the Unity data [5]. By
doing so, we were able to estimate the relative changes in
playtime that were associated with the tightening or loosening
of various containment and closure policies during the first 2
years of the COVID-19 pandemic.

To investigate the impact of specific policy decisions on
playtime, we fitted a series of 3 separate multilevel models to
data on playtime from the 184 countries in our data set. Our
first model estimated the ability of policy decisions to explain
the variance in the total amount of playtime occurring within a
country; our second and third models decomposed this
relationship by estimating the ability of policy decisions to
explain the variance in the number of daily unique users within
a country and the amount of playtime per user within that
country.

Apart from their outcome variables (total playtime, number of
users, and playtime per user), our models were otherwise
identical—each contained fixed effects that allowed for
modeling of the impact of differing enforcement levels and
geographical scopes of the 8 containment and closure policy
categories within the OxCGRT database [5]. An additional fixed
effect allowed each model to account for any overall global
linear trends in playtime. To account for potentially different
linear trends in playtime within each individual country in our
data set, each model incorporated random effects in the form
of country-level slopes over time. The policy categories were
school closures, workplace closures, the cancellation of public
events, restrictions on gatherings, closure of public transport,
stay-at-home requirements, restrictions on internal movement,
and international travel controls. Each model estimated the
impact of these policy categories on the total amount of playtime
within a territory, the daily number of users playing video
games, and the average amount of time that each of these users
spent in-game. These analyses accounted for both the
geographical scope of a policy (targeted to a specific area or
generally enforced within a territory) and the enforcement
severity of that policy (on an ordinal scale ranging from 1 to
4). More information on the modeling approach that was taken
is provided in the Methods section.

Methods

Ethical Considerations

Unity Technologies collects a substantial amount of data from
players using the Unity Analytics toolkit, which is an extension
that needs to be enabled by developers using the Unity engine
to operate. This means that not all games using the Unity engine
enable analytics, but those that do prompt a short consent
agreement when installing the game that explains the collection
and use of these data to the player. Unity Technologies has a
set of documents that explains the requirements for the
collection, storage, and use of analytics data [41]. One of the
uses explained in the collection agreement is for research
purposes, which is the purpose under which these data have
been shared with the researchers. The specific data analyzed in
this study are not personally identifiable information, and the
research team does not have access to personally identifiable
information from Unity Analytics. The data presented in this
paper are aggregated from a collection that is pseudonymized
by way of a token unique to each player of each individual
game—no players are traceable across games, only within a
specific game. Therefore, we consider this use of data within
reasonable ethical use under research ethics norms and
expectations. The research has also received clearance from the
University of York’s Physical Sciences Ethics Committee
(approval identifier: Zendle20211021). This study consisted of
the analysis of previously collected anonymized and aggregated
playtime data. As such, there were no formal participants in this
study.

Data

Access to the playtime data used in this study was provided by
Unity Technologies. Although it is unknown exactly how large
a fraction of the video game market relies on the Unity game
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engine, according to Unity Technologies’ own 2021 estimates,
there are approximately 5 billion downloads per month of apps
(including games and nongame apps) developed using Unity,
2.8 billion monthly active end users who consume Unity-created
or operated content, and Unity “remains the game engine of
choice” for 61% of developers [42].

Products made using Unity’s game engine may implement Unity
Analytics—a toolkit for tracking and understanding in-game
engagement. Although it is theoretically possible for a Unity
game to not have Unity Analytics enabled, in practice, this is
thought to only occur infrequently; a substantial number of basic
game functionalities cannot operate without data collection
about user behavior—and Unity Analytics provides such
functionality. If a user does not have an internet connection, a
buffer system stores data locally on the device until the
connection is re-established. Furthermore, for Unity Analytics,
if a user should leave an active game running but not interact
with it, a timer (20 minutes) sets in that stops collecting data
for the active session. Games running in the background are not
integrated into the session time.

Unity Analytics integration allows developers to understand
factors such as the daily playtime associated with individual
users or the frequency of a user’s in-game interactions. Although
Unity does not store analytics data for Unity products that are
launched on any console, it does deidentify the data that are
collected by desktop and mobile games implementing Unity
Analytics and stores these data internally in an aggregated and
anonymous form. These data are capable of describing the total
amount of playtime taking place in each product that implements
Unity Analytics for each day of the year within each of the 250
territories worldwide. The raw data, consisting of day-by-day
playtime logs, contained the following variables (data features):
(1) a unique but anonymized identifier for a user, (2) an
identifier for the country in which a user’s play took place, and
(3) the total duration of playtime on that day for that user. These
data were aggregated by us at a country level; in essence, for
every day from January 1, 2020, to December 5, 2021, we
summed the total duration of play for every player within
Unity’s data grouped within each individual country. These
dates were selected for analysis as January 1, 2020, is the first
date on which any containment or closure policies were recorded
for any country within the OxCGRT database, and this research
was conducted soon after December 5, 2021, so this was the
most recent date for which Unity Technologies had data stored
in their warehouses at the time of analysis.

Data describing the containment and closure policies used by
governments worldwide were taken from the publicly available
data sets provided by the OxCGRT [5]. The OxCGRT provides
daily estimates of containment and closure policies for 185
individual countries during each of the dates spanning January
1, 2020, onward; as our playtime data covered January 1, 2020,
to December 5, 2021, we used the same range of dates in the
OxCGRT data for this study. The OxCGRT tracks the
enforcement level and geographic scope of 8 separate
containment and closure policies in each of the countries in its
database via the use of an ordinal scale. These individual policies
are as follows:

1. School closures: the degree to which policy requires schools
and universities to be closed within a territory. This policy
category ranges from 0 (no measures in place) to 3 (requires
closing all levels of schools). Intermediate enforcement
levels are 1 (recommendation that schools close or schools
are open but with significant alterations) and 2 (some subset
of schools is required to be closed).

2. Workplace closures: the degree to which policy requires
workplaces to be closed within a territory. This policy
category ranges from 0 (no measures in place) to 3
(workplace closure or work from home is required for
all-but-essential workplaces). Intermediate enforcement
levels are 1 (workplace closure is recommended or all
businesses are open with significant alterations) and 2
(workplaces are required to be closed for some sectors or
categories of workers).

3. Cancellation of public events: the degree to which policy
requires public events to be cancelled. This policy category
ranges from 0 (no measures in place) to 2 (requires
cancelling public events). An intermediate enforcement
level is recorded as 1 (recommends cancelling public
events).

4. Restrictions on gatherings: the degree to which policy
requires gatherings with specific numbers of people to be
limited in some way. This policy category ranges from 0
(no measures in place) to 4 (restrictions on gatherings of
≤10 people). Intermediate enforcement levels are as follows:
1 (restrictions on gatherings of >1000 people), 2 (restrictions
on gatherings of 101-1000 people), and 3 (restrictions on
gatherings of 11-100 people).

5. Closure of public transport: the degree to which public
transport closures are required or recommended by policy.
This policy category ranges from 0 (no measures in place)
to 2 (requires the closure of public transport or prohibits
the use of public transport for most citizens). Intermediate
level (1) denotes a situation in which the government
recommends the closure of public transport or significantly
reduces the volume or routes or means of public transport
that are available.

6. Stay-at-home requirements: the degree to which policy
requires individuals to be confined to their homes or “shelter
in place” requirements are in force. This policy category
ranges from 0 (no measures in place) to 3 (a situation in
which individuals are required not to leave the house with
minimal exceptions). Intermediate enforcement categories
are as follows: 1 (recommendations not to leave the house)
and 2 (a requirement not to leave the house with exceptions
for exercise, grocery shopping, and “essential” activities).

7. Restrictions on internal movement: the degree to which
policy restricts movement between cities or regions within
a territory. This policy category ranges from 0 (no measures
in place) to 2 (some form of restriction on internal
movements in place). An intermediate category of 1
represents a situation in which a recommendation not to
travel between regions or cities is made.

8. International travel controls: the degree to which policy
restricts movement from or to outside a territory. This policy
category ranges from 0 (no restrictions) to 4 (ban on travel
to or from all regions or total border closure). The
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intermediate enforcement categories consist of 1 (screening
arrivals), 2 (quarantining arrivals from some or all regions),
and 3 (banning arrivals from some or all regions).

Raw data from the OxCGRT database comprised daily estimates
of the enforcement level of the aforementioned containment
and closure policies for 185 individual countries during each
of the dates spanning January 1, 2020, to December 5, 2021. In
addition, each enforcement level for each containment or closure
policy was annotated with a flag describing its geographical
scope: whether a policy was applied generally within a territory
or whether it was enforced at a targeted level. To make as few
assumptions as possible regarding the differences between these
enforcement levels, in all our analyses, each policy was treated
as a nominal variable with 2n – 1 levels, where n is the number
of enforcement categories within that variable. For example,
cancellation of public events was treated as a nominal variable
with 5 levels (1: no restrictions; 2: recommendation to cancel
public events, targeted at the regional level; 3: general
recommendation to cancel public events within a country; 4:
requirement to cancel public events, targeted at the regional
level; and 5: general requirement to cancel public events within
a country). As another example, in Japan, on August 5, 2021,
some regions of the country recommended cancelling public
events (level 2 of the aforementioned nominal variable); on
August 6, 2021, such recommendations became nationwide
(level 3 of the aforementioned nominal variable).

The data used in this study were obtained from the following
territories: Afghanistan, Albania, Algeria, Andorra, Angola,
Argentina, Aruba, Australia, Austria, Azerbaijan, Bahamas,
Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize,
Benin, Bermuda, Bhutan, Bolivia, Bosnia and Herzegovina,
Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi,
Cambodia, Cameroon, Canada, Cape Verde, Central African
Republic, Chad, Chile, China, Colombia, Comoros, Congo,
Costa Rica, Côte d'Ivoire, Croatia, Cyprus, Czech Republic,
Democratic Republic of Congo, Denmark, Djibouti, Dominica,
Dominican Republic, Ecuador, Egypt, El Salvador, Eritrea,
Estonia, Eswatini, Ethiopia, Faeroe Islands, Fiji, Finland, France,
Gabon, Gambia, Georgia, Germany, Ghana, Greece, Greenland,
Guam, Guatemala, Guinea, Guyana, Haiti, Honduras, Hong
Kong, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland,
Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya,
Kiribati, Kosovo, Kuwait, Kyrgyz Republic, Laos, Latvia,
Lebanon, Lesotho, Liberia, Libya, Liechtenstein, Lithuania,
Luxembourg, Macao, Madagascar, Malawi, Malaysia, Mali,
Malta, Mauritania, Mauritius, Mexico, Moldova, Monaco,
Mongolia, Morocco, Mozambique, Myanmar, Nepal,
Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway,
Oman, Pakistan, Palestine, Panama, Papua New Guinea,
Paraguay, Peru, Philippines, Poland, Portugal, Puerto Rico,
Qatar, Romania, Russia, Rwanda, San Marino, Saudi Arabia,
Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovak
Republic, Slovenia, Solomon Islands, Somalia, South Africa,
South Korea, South Sudan, Spain, Sri Lanka, Sudan, Suriname,
Sweden, Switzerland, Syria, Taiwan, Tajikistan, Tanzania,
Thailand, Timor-Leste, Togo, Tonga, Trinidad and Tobago,
Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United Arab
Emirates, United Kingdom, United States, United States Virgin

Islands, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam,
Yemen, Zambia, and Zimbabwe.

Data Limitations

The work presented in this paper relies on the analysis of data
from video games created with or using components of the
Unity game engine, where Unity Analytics is enabled. Although
there is no obvious reason why games made using the Unity
engine would not be representative, there is no direct way to
verify such an assumption. In addition, the user accounts in the
data under analysis are specific to individual products made
using Unity Analytics; for example, if one human being were
to play 2 different games, they would be represented in our data
as 2 separate user accounts. Thus, our data are unable to model
phenomena in which individuals cycle between multiple separate
games.

Data Transformation

The countries in our data set varied widely in terms of playtime.
China, for example, had a total of 36,538,076,867 hours of
playtime during the period in question, whereas Yemen had
>421 times less (86,703,378 hours in total). Therefore, to
measure the relative impact of containment and closure policies
within a country, daily averages of playtime were scaled within
each country’s data such that each country’s overall playtime
per day had an SD of 1 (and a mean of 0), and random intercepts
dropped from each model as within-group means were centered
at 0. This is in line with recommendations for interpreting
within-group variation in multilevel modeling [43]. No other
transformations were applied to our data.

Modeling Approach

To investigate the impact of specific policy decisions on
playtime, we fitted a series of 3 separate multilevel models to
data on playtime from the 184 countries in our data set. Our
first model estimated the ability of policy decisions to explain
the variance in playtime per user (ie, how many hours individual
gamers tend to play a game each day). Our second and third
models expanded on this relationship by estimating the ability
of policy decisions to explain the variance in the number of
daily unique users within a country and the total amount of
playtime within that country. To render the analyses tractable,
the data were first aggregated at weekly levels before analysis.

Apart from their outcome variables (playtime per user, number
of users, and total playtime), our models were otherwise
identical—each contained fixed effects that allowed for
modeling of the impact of the differing enforcement levels and
geographical scopes of the 8 containment and closure policy
categories within the OxCGRT database [5]. The policy
categories were school closures, workplace closures, the
cancellation of public events, restrictions on gatherings, closure
of public transport, stay-at-home requirements, restrictions on
internal movement, and international travel controls. These
analyses accounted for both the geographical scope of a policy
(targeted to a specific area or generally enforced within a
territory) and the enforcement severity of that policy (on an
ordinal scale ranging from 1 to 4).
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To account for subnational linear temporal trends in playtime,
we also included random intercepts and random country × week
slopes within our models. To account for temporal dependency
in model residuals, we corrected for any
autoregressive–moving-average (ARMA) process that may
appear within these residuals [44,45]. An uncorrected multilevel
model was initially produced for each of our outcome variables.
The order of any (p,q) ARMA structure within the residuals of
these 3 separate models was algorithmically estimated using
the Hyndman-Khandakar procedure [46]. This suggested that

an ARMA(1) process would be able to account for
autocorrelation in the residuals of the model that dealt with total
playtime, an ARMA(2,3) process would be able to account for
autocorrelation in the residuals of the model that dealt with the
daily number of users, and an ARMA(1,5) process would be
able to account for autocorrelation in the residuals of the
playtime per user model. The models were then rebuilt with
ARMA errors of the orders described previously, resulting in
substantially reduced autocorrelation in error terms (Figure 1).

Figure 1. Autocorrelation function (ACF) plots. The top row represents the ACF of residuals in uncorrected models (left to right: total playtime,
playtime per user, and number of users). The bottom row represents the ACF of corrected models (left to right: total playtime, playtime per user, and
number of users). The dotted lines represent significance bounds.

Multicollinearity within all models was assessed via inspection
of variance inflation factor statistics. No variance inflation factor
was >5, suggesting an absence of evidence for significant
multicollinearity issues within each model. Random slopes in

all models appeared approximately normally distributed; a Q-Q
plot suggested that the residuals associated with each overall
model were also approximately normal, albeit with a slightly
heavy upper tail (Figure 2).

Figure 2. Q-Q plots of model residuals. The top row represents overall residuals (from left to right: total playtime, number of users, and playtime per
user). The bottom row represents the residuals associated with the random slopes.
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Results

Overview

Overall, a sum total of 251.88 billion hours of playtime were
recorded during the period under analysis (January 1, 2020, to

December 5, 2021), equating to an average global daily playtime
of 357.28 million hours. Global playtime varied significantly
during the time under analysis (Figure 3). Figure 4 summarizes
the outcomes of multilevel modeling, which are described in
the following sections.

Figure 3. Total global daily playtime from January 1, 2020, to December 5, 2021. The solid blue line represents a weekly simple moving average. The
dotted line represents the World Health Organization declaration of the pandemic on March 11, 2020.

Figure 4. All associations between containment and closure policies and outcomes for the 3 models. The error bars represent the 95% CIs of the effect
size associated with each policy decision. The letters G and T in a policy’s annotation refer to whether that policy’s geographical scope was general or
targeted. The numbers (1-4) represent the enforcement level of that policy (see the Methods section for more details).

Multilevel Modeling

The entirety of each of our 3 multilevel models, including the
estimated relationship between each enforcement level and the

geographical scope of each policy decision, is reported in Tables
1-3.

J Med Internet Res 2023 | vol. 25 | e40190 | p. 7https://www.jmir.org/2023/1/e40190
(page number not for citation purposes)

Zendle et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX



Table 1. Daily playtime per user—the impact of each enforcement level and geographical scope of the 8 containment and closure policies. Unstandardized
coefficients are given, along with t statistics and an effect size estimate. Transformation before analysis means that each β coefficient equates to the
increase or decrease in daily playtime per user associated with a specific enforcement level of a specific policy within an average country, measured in
SDs.

Effect size (95% CI)t test (df)β (95% CI)Policy, scope, and level

School closures

Targeted

<0.001 (<0.001 to <0.001)−0.857−.061 (−.201 to .079)1

<0.001 (<0.001 to <0.001)0.639.025 (−.051 to .100)2

<0.001 (<0.001 to <0.001)−0.054−.002 (−.076 to .072)3

General

<0.001 (<0.001 to <0.001)0.618.018 (−.038 to .074)1

<0.001 (<0.001 to <0.001)0.329.010 (−.051 to .071)2

<0.001 (<0.001 to 0.002)1.705.051 (−.008 to .109)3

Workplace closures

Targeted

<0.001 (<0.001 to <0.001)0.064.003 (−.099 to .106)1

<0.001 (<0.001 to 0.002)1.366.051 (−.022 to .125)2

0.002 (<0.001 to 0.004)3.205a.137 (.053 to .221)3

General

<0.001 (<0.001 to 0.002)1.343.040 (−.018 to .099)1

0.003 (0.002 to 0.006)3.295b.099 (.040 to .157)2

0.010 (0.007 to 0.013)6.396b.244 (.169 to .319)3

Cancellation of public events

Targeted

<0.001 (<0.001 to <0.001)−0.733−.042 (−.154 to .070)1

<0.001 (<0.001 to <0.001)−0.948−.038 (−.116 to .040)2

General

<0.001 (<0.001 to <0.001)−0.725−.023 (−.085 to .039)1

<0.001 (<0.001 to <0.001)−0.3−.010 (−.073 to .053)2

Restrictions on gatherings

Targeted

<0.001 (<0.001 to <0.001)−1.023−.146 (−.427 to .134)1

<0.001 (<0.001 to <0.001)−0.958−.066 (−.201 to .069)2

<0.001 (<0.001 to <0.001)0.891.041 (−.049 to .130)3

<0.001 (<0.001 to 0.002)1.444.062 (−.022 to .146)4

General

<0.001 (<0.001 to <0.001)−0.214−.011 (−.110 to .088)1

<0.001 (<0.001 to 0.001)−0.97−.036 (−.108 to .036)2

<0.001 (<0.001 to <0.001)−0.133−.004 (−.069 to .060)3

0.001 (<0.001 to 0.002)1.775.062 (−.006 to .130)4

Closure of public transport

Targeted

<0.001 (<0.001 to <0.001)−0.236−.010 (−.090 to .070)1
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Effect size (95% CI)t test (df)β (95% CI)Policy, scope, and level

0.002 (<0.001 to 0.003)2.391c.091 (.016 to .165)2

General

<0.001 (<0.001 to <0.001)0.074.002 (−.042 to .045)1

<0.001 (<0.001 to 0.002)1.876.065 (−.003 to .133)2

Stay-at-home requirements

Targeted

<0.001 (<0.001 to 0.001)1.361.060 (−.026 to .147)1

<0.001 (<0.001 to 0.002)1.491.046 (−.014 to .106)2

<0.001 (<0.001 to 0.002)1.847.095 (−.006 to .195)3

General

0.001 (<0.001 to 0.003)1.93.047 (<−.001 to .095)1

0.013 (0.010 to 0.017)6.103b.169 (.115 to .223)2

0.003 (0.002 to 0.006)4.231b.254 (.137 to .372)3

Restrictions on internal movement

Targeted

<0.001 (<0.001 to 0.001)1.126.047 (−.035 to .130)1

0.001 (<0.001 to 0.003)2.022c.053 (.002 to .105)2

General

<0.001 (<0.001 to <0.001)0.241.006 (−.043 to .054)1

0.005 (0.003 to 0.008)4.382b.117 (.065 to .169)2

International travel controls

General

0.002 (<0.001 to 0.003)2.280c.084 (.012 to .157)1

0.003 (0.002 to 0.005)3.266a.122 (.049 to .196)2

0.005 (0.003 to 0.007)3.795b.141 (.068 to .214)3

0.017 (0.013 to 0.022)7.045b.283 (.204 to .362)4

0.022 (0.018 to 0.027)−3.709b.085 (−.130 to −.040)Week (scaled 0-1)

a
P<.01.

b
P<.001.

c
P<.05.
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Table 2. Daily number of users—impact of each enforcement level and geographical scope of the 8 containment and closure policies. Unstandardized
coefficients are given, along with t statistics and an effect size estimate. Transformation before analysis means that each β coefficient equates to the
increase or decrease in daily number of users associated with a specific enforcement level of a specific policy within an average country, measured in
SDs.

Effect size (95% CI)t test (df)β (95% CI)Policy, scope, and level

School closures

Targeted

0.003 (0.001 to 0.005)3.416a.190 (.081 to .299)1

0.005 (0.003 to 0.008)4.381a.132 (.073 to .192)2

0.012 (0.009 to 0.016)7.187a.210 (.153 to .267)3

General

0.002 (<0.001 to 0.003)2.027b.046 (.002 to .090)1

0.011 (0.007 to 0.014)5.831a.142 (.095 to .190)2

0.057 (0.050 to 0.065)14.760a.343 (.297 to .388)3

Workplace closures

Targeted

<0.001 (<0.001 to 0.002)1.802.073 (−.006 to .152)1

0.002 (<0.001 to 0.003)2.420b.071 (.014 to .129)2

<0.001 (<0.001 to 0.002)1.888.063 (−.002 to .128)3

General

0.002 (<0.001 to 0.004)2.416b.057 (.011 to .103)1

0.003 (0.001 to 0.004)2.794c.066 (.020 to .112)2

0.012 (0.009 to 0.016)7.222a.214 (.156 to .273)3

Cancellation of public events

Targeted

<0.001 (<0.001 to <0.001)−1.001−.044 (−.132 to .043)1

<0.001 (<0.001 to 0.002)1.664.052 (−.009 to .113)2

General

0.001 (<0.001 to 0.003)2.013b.050 (.001 to .099)1

0.004 (0.002 to 0.006)4.001a.100 (.051 to .149)2

Restrictions on gatherings

Targeted

<0.001 (<0.001 to <0.001)1.161.128 (−.088 to .345)1

<0.001 (<0.001 to <0.001)0.819.044 (−.061 to .148)2

0.003 (0.001 to 0.005)3.263c.116 (.046 to .186)3

0.001 (<0.001 to 0.003)2.201b.074 (.008 to .139)4

General

<0.001 (<0.001 to <0.001)0.08.003 (−.074 to .080)1

0.002 (<0.001 to 0.004)2.395b.069 (.013 to .126)2

0.004 (0.002 to 0.006)3.495a.090 (.040 to .141)3

0.002 (<0.001 to 0.004)2.401b.066 (.012 to .119)4

Closure of public transport
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Effect size (95% CI)t test (df)β (95% CI)Policy, scope, and level

Targeted

<0.001 (<0.001 to 0.001)0.799.026 (−.038 to .089)1

<0.001 (<0.001 to 0.002)1.774.053 (−.006 to .111)2

General

0.002 (0.001 to 0.004)2.448b.043 (.009 to .078)1

<0.001 (<0.001 to 0.001)1.346.036 (−.017 to .089)2

Stay-at-home requirements

Targeted

<0.001 (<0.001 to <0.001)0.886.031 (−.037 to .098)1

<0.001 (<0.001 to 0.001)0.987.024 (−.024 to .071)2

<0.001 (<0.001 to 0.002)1.496.060 (−.019 to .138)3

General

<0.001 (<0.001 to 0.002)1.666.032 (−.006 to .069)1

0.002 (<0.001 to 0.003)2.056b.045 (.002 to .088)2

0.001 (<0.001 to 0.003)2.575b.119 (.029 to .210)3

Restrictions on internal movement

Targeted

<0.001 (<0.001 to 0.001)1.156.038 (−.027 to .103)1

0.004 (0.002 to 0.006)3.639a.075 (.035 to .115)2

General

<0.001 (<0.001 to 0.002)1.747.034 (−.004 to .072)1

0.008 (0.005 to 0.011)5.218a.109 (.068 to .150)2

International travel controls

General

0.003 (0.002 to 0.006)3.418a.099 (.042 to .156)1

0.005 (0.003 to 0.008)4.140a.122 (.064 to .180)2

0.007 (0.005 to 0.011)4.819a.141 (.084 to .199)3

0.010 (0.007 to 0.013)5.210a.166 (.103 to .228)4

0.340 (0.328 to 0.352)12.738a.314 (.265 to .362)Week (scaled 0-1)

a
P<.001.

b
P<.05.

c
P<.01.
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Table 3. Total playtime—impact of each enforcement level and geographical scope of the 8 containment and closure policies. Unstandardized coefficients
are given, along with t statistics and an effect size estimate. Transformation before analysis means that each β coefficient equates to increase or decrease
in total playtime associated with a specific enforcement level of a specific policy within an average country, measured in SDs.

Effect size (95% CI)t test (df)β (95% CI)Policy, scope, and level

School closures

Targeted

0.002 (<0.001 to 0.003)2.569a.141 (.033 to .248)1

0.005 (0.003 to 0.007)4.152b.124 (.065 to .182)2

0.009 (0.006 to 0.013)6.263b.181 (.124 to .237)3

General

0.001 (<0.001 to 0.003)1.934.043 (<−.001 to .087)1

0.009 (0.006 to 0.012)5.241b.126 (.079 to .174)2

0.048 (0.042 to 0.056)13.494b.309 (.264 to .354)3

Workplace closures

Targeted

<0.001 (<0.001 to 0.001)1.152.046 (−.032 to .125)1

0.001 (<0.001 to 0.002)1.943.056 (<−.001 to .113)2

0.002 (<0.001 to 0.003)2.766c.091 (.026 to .155)3

General

0.002 (<0.001 to 0.004)2.574a.060 (.014 to .105)1

0.004 (0.002 to 0.006)3.436b.080 (.034 to .125)2

0.019 (0.014 to 0.023)8.978b.263 (.206 to .321)3

Cancellation of public events

Targeted

<0.001 (<0.001 to <0.001)−0.993−.044 (−.130 to .042)1

<0.001 (<0.001 to <0.001)0.886.027 (−.033 to .087)2

General

<0.001 (<0.001 to 0.001)1.195.029 (−.019 to .077)1

0.002 (0.001 to 0.004)3.080c.076 (.028 to .125)2

Restrictions on gatherings

Targeted

<0.001 (<0.001 to <0.001)0.221.024 (−.190 to .239)1

<0.001 (<0.001 to <0.001)0.488.026 (−.077 to .128)2

0.002 (<0.001 to 0.004)2.760c.097 (.028 to .166)3

0.002 (<0.001 to 0.004)2.526a.083 (.019 to .148)4

General

<0.001 (<0.001 to <0.001)−0.055−.002 (−.078 to .074)1

<0.001 (<0.001 to 0.002)1.504.043 (−.013 to .099)2

0.003 (0.001 to 0.005)2.983c.076 (.026 to .126)3

0.002 (<0.001 to 0.004)2.504a.068 (.015 to .121)4

Closure of public transport

Targeted
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Effect size (95% CI)t test (df)β (95% CI)Policy, scope, and level

<0.001 (<0.001 to 0.001)1.042.033 (−.029 to .096)1

0.003 (0.001 to 0.004)2.931c.086 (.029 to .144)2

General

0.004 (0.002 to 0.006)3.152c.055 (.021 to .089)1

0.002 (<0.001 to 0.004)2.610c.070 (.017 to .122)2

Stay-at-home requirements

Targeted

<0.001 (<0.001 to 0.001)1.321.045 (−.022 to .112)1

<0.001 (<0.001 to 0.002)1.447.035 (−.012 to .081)2

0.001 (<0.001 to 0.003)2.392a.094 (.017 to .172)3

General

0.001 (<0.001 to 0.003)2.077a.039 (.002 to .076)1

0.008 (0.006 to 0.012)4.766b.103 (.061 to .145)2

0.004 (0.002 to 0.006)4.484b.206 (.116 to .295)3

Restrictions on internal movement

Targeted

0.001 (<0.001 to 0.002)1.898.062 (−.002 to .126)1

0.005 (0.003 to 0.008)4.234b.086 (.046 to .126)2

General

<0.001 (<0.001 to 0.002)1.634.031 (−.006 to .069)1

0.014 (0.010 to 0.018)6.972b.144 (.103 to .184)2

International travel controls

General

0.002 (<0.001 to 0.004)2.711c.078 (.022 to .134)1

0.004 (0.002 to 0.007)3.718b.108 (.051 to .165)2

0.007 (0.004 to 0.010)4.552b.132 (.075 to .189)3

0.015 (0.011 to 0.019)6.418b.201 (.140 to .263)4

0.281 (0.269 to 0.293)10.983b.269 (.221 to .317)Week (scaled 0-1)

a
P<.05.

b
P<.001.

c
P<.01.

First, we investigated the ability of containment and closure
policies to explain variations in playtime per user. This analysis
was of particular importance in the context of the literature,
which frequently deals with the idea that lockdown policies
may lead to individual gamers tending to spend substantially
longer in-game. Our overall model was able to explain 24.9%

(r2: 95% CI 0.239-0.263) of the variance in playtime per user.
Crucially, no policy decision was able to explain variance in

excess of an r2 of 0.04 in mean duration of play per user; widely
used guidelines for practically meaningful effect sizes in media
effects and behavioral science research place the smallest effect

size of importance at r2≥0.04 [47]. Only 2 policy decisions were

able to explain >1% of variance in playtime per user. These
were the general requirement that a country’s borders close

(r2=0.017, 95% CI 0.013-0.022) and the general requirement
that people not leave their houses except for groceries, exercise,

and essential activities (r2=0.013, 95% CI 0.010-0.013). Notedly,
no degree of school closure was able to explain a practically
meaningful amount of variation in the average amount of

playtime per user (r2 values for each of these variables were
measured as <0.001). The full model is presented in Table 1.

We then analyzed the total amount of playtime within a territory.

Fixed effects were able to explain 61.3% (r2: 95% CI
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0.604-0.621) of the variance in total playtime within the
territories under analysis. The only policy decision able to
explain variance in playtime of plausibly meaningful magnitude
using this guideline was the general requirement that all schools
within a territory close. This policy decision was associated

with significantly higher amounts of playtime (r2=0.048, 95%
CI 0.042-0.056; P<.001). The full model is presented in Table
2.

Finally, we attempted to understand the roots of this change in
playtime by investigating whether containment and closure
policies were associated with increased numbers of unique game
users. A multilevel model again was able to explain most of the
variance in daily numbers of users within the territories under

analysis (r2=0.628, 95% CI 0.620-0.636). However, again, the

only policy decision able to explain a variance of r2≥0.04 was
the general requirement that all schools within a territory close,
which led to significantly higher numbers of video game users

(r2=0.057, 95% CI 0.050-0.065; P<.001). Apart from this, only
3 other policy decisions were able to explain >1% of variance
in the number of daily unique users playing games. Notably,
all these policy decisions were related to the closure of schools
or workplaces. They comprised the requirement that a targeted

subset of schools within a territory close (r2=0.012, 95% CI
0.009-0.016), the general requirement that all nonessential

workplaces within a territory close (r2=0.012, 95% CI
0.009-0.016; P<.001), and the recommendation (rather than

requirement) that all schools within a territory close (r2=0.011,
95% CI 0.007-0.014). The full model is presented in Table 3.

The impacts of all the aforementioned policies were
positive—they were associated with increases in the outcome
measure of each individual model, and no policies were
associated with statistically significant decreases in any
outcome. Random slopes had very small SDs (<0.001),
indicating minimal differences in temporal trends in gaming
when other (fixed) factors were accounted for.

Discussion

Principal Findings

Substantial attention has been paid to the idea that lockdown
policies may have created socially meaningful changes in
gaming. Theory in this domain ranges from speculation that
gamers may play more during the enforcement of social
restrictions to fulfill their relatedness needs to concerns that the
closure of schools may lead to heavy and excessive gaming
among young people [17,29,34,35].

However, our findings do not support either of these theoretical
positions. All levels of the 8 containment and closure policies
measured in this study had little impact on the average duration
of playtime per game per gamer. Notably, restrictions on social
gatherings failed to explain even a small amount of variance

(r2<0.01 in all cases) in either the number of players or the
amount of time that gamers spent in-game. This contrasts with
speculation that increases in gaming during the pandemic may
have been driven primarily by a need to socialize.

Indeed, by far the largest association between policy and gaming
observed in this study involved the complete closure of schools
within a territory. This was associated with an increase in the
number of individuals playing games and an increase in total
playtime within a territory (Tables 2 and 3). However, crucially,
school closures were not related to increases in the average
amount of time that each observed user tended to spend in-game
(Table 1). Thus, our work fails to substantiate concerns that
lockdowns caused children and adolescents to play games more
heavily while simultaneously aligning with industry reports that
playtime increased during the pandemic. Indeed, all geographical
scopes and enforcement levels of school closures were unable
to explain even 0.01% of the variance in duration of play per
user. This observation—that global playtime may have increased
during lockdowns whereas play per player did not—provides
an important novel addition to the debate over the impact of the
pandemic on gaming.

Indeed, it is interesting to note that these results contrast sharply
with the results of several self-report studies within the field;
previous studies investigating the impact of lockdowns on
gaming have found that young people report playing games
more heavily during lockdowns, which would stand in stark
contrast to our results [17,29]. However, it is important to note
the differing perspective that our telemetry data afford in this
case—those studies were forced to rely on single-country
convenience samples and self-report of recollected playtime;
the discrepancy between the results reported in this paper and
prior work may be due to our use of global behavioral data.
Another explanation is that individuals who played for longer
tended to play outside Unity Analytics–enabled mobile and
desktop games. This play may have happened, for example,
exclusively in console games, which were not tracked in this
study.

Thus, a primary contribution of this study is negative in nature.
In contrast to arguments that lockdowns may commonly lead
to important upticks in excessive play, only 2 policy decisions
were able to explain even small amounts of variance in daily
playtime per user. The largest of these was associated with the
complete closure of a country’s borders—when countries
completely closed their borders, individuals tended to play for
longer periods. This association has not been speculated about
in the academic literature. In addition to international travel
controls, it is important to note that some implementations of
workplace closures, stay-at-home requirements, and restrictions
on internal movement were also associated with modest
increases in playtime per user. What might have underpinned
each of these changes? A plausible explanation for this is the
use of games as a substitution activity taking the place of, for
example, a foreign vacation when that vacation becomes
inaccessible. One could also imagine stay-at-home requirements,
the sudden implementation of widespread working from home,
and strict restrictions on travel within a country bearing similar
effects. However, it is important to note that, in each of these
cases, the effects are small in magnitude and may not bear any
practical significance; the only observed effects that exceeded

common cutoffs (r2≥0.04) in the social science literature for
statistically important effects were those associated with the
complete closure of schools within a territory [47]. What might
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have led to these increases? As hinted at throughout the
Introduction section, there is a host of social factors that may
explain these associations. For example, a lack of oversight
associated with being physically present in schools may have
afforded young people additional opportunities to take part in
their hobbies, parents may have made use of games as a “digital
babysitter” to cope with the pressures associated with having
children at home, or young people may simply have used video
games as a form of stress relief to deal with the turbulent times
associated with their schools being closed down. Unpicking
exactly why the associations observed in this study actually
occurred should be a target for significant future work.

Finally, it is important to consider that, although the mean
duration of play per user may be unaffected by lockdown
policies, other socially important changes in the distribution of
play may nonetheless be associated with these decisions. For
example, it is plausible that school closures led to the influx of
a large group of casual players with low daily playtime at the
same time as a small group of gamers began to engage very
heavily in-game and developed a very high daily average
playtime. This kind of distributional shift is beyond the scope
of this work but should be an important focus for future research.

Limitations

A limitation of the approach taken in this study is its generalized
nature. In this study, we sought to examine whether the
implementation of various containment and closure policies
was associated in general with changes in 3 crucial
playtime-related variables. However, by doing so, we naturally
overlooked the potential for local effects. It may be the case
that containment and closure policies within specific countries

or regions were associated with reductions in playtime variables
even if overall there was no global effect. Although misaligned
with the core research questions that we were investigating
(which were about the effects of policies in general), these are
nonetheless interesting from both a theoretical and a public
health perspective. If specific policies afford differential impacts
in different parts of the world, the evidence base must
incorporate this knowledge, for example, for maximal pandemic
preparedness. However, it is important to point out that this
represents the first time that behavioral data have been used to
model the impact of different policies on gaming during the
COVID-19 pandemic. Thus, it is reasonable to suggest that not
all possible analyses will have been undertaken in this
study—some, such as those regarding the issues outlined in this
paragraph, must remain priorities for future research.

Thus, this study’s use of behavioral data affords unique insights
into how gaming changed during the COVID-19 pandemic.
However, it is important to contextualize these findings within
several key limitations regarding the data source used in this
study.

To begin with, this study exclusively used data from mobile
and desktop games and did not contain any data from the console
market. When one considers potential differences in interaction
styles between these domains, it becomes plausible that an effect
of lockdowns may exist in the console domain but not in the
desktop or mobile markets. For example, one can imagine that
increases in very heavy play may occur primarily in console
games, where individuals primarily interact using ergonomically
designed gamepads, and not in desktop or mobile games, where
this is not the case. However, such differences may be
overstated. Research, for example, has found little difference
in player reports of comfort between keyboard-based setups
and gamepads [48]. It is unclear from the current evidence base
whether excessive play primarily takes place on desktop,
console, or any other device.

Furthermore, as noted elsewhere, console gaming may not
occupy a large market share of playtime when it comes to
specific demographics such as young people [29]. Second, the
individual identifiers used in this study operated on an account
level rather than a platform level. Therefore, they could not
identify situations in which one individual migrated between
games. Thus, changes in the total number of users cannot truly
differentiate between a scenario in which many new gamers
entered the market and one in which extant users began
switching rapidly between multiple different games. It is our
opinion that the former explanation is more plausible—we have
no previous theory that informs us of why schools locking down
would cause gamers to start rapidly switching between games,
but we do have a previous theory that informs us of why schools
locking down would lead to more individuals engaging in
gaming. However, this limitation must be the target of
significant future research.

Finally, the data used in this study were drawn from one
stakeholder, Unity Technologies. Unity’s analytical solutions
underpin a large proportion of the gaming market. They have
afforded us access to an unprecedentedly large sample of player
behavior—>250 billion hours of playtime. However, they do
not allow us to measure playtime in every single game in

existence. Thus, it is possible that some effect may exist in a
specific product or set of products for which we did not have
access to data—Fortnite, for example, was not developed using
Unity.

Conclusions

In conclusion, although there were significant concerns about
the public health implications of increased video game playtime
during lockdowns, this research has failed to corroborate these
concerns. This will be of interest for future pandemic modeling,
which may consider potential harms such as disordered gaming.
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