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ABSTRACT

This study has developed a rigorous and efficient maximum likelihood method for estimating the param-

eters in stochastic energy balance models (with any k . 0 number of boxes) given time series of surface

temperature and top-of-the-atmosphere net downward radiative flux. The method works by finding a state-

space representation of the linear dynamic system and evaluating the likelihood recursively via the Kalman

filter. Confidence intervals for estimated parameters are straightforward to construct in the maximum likelihood

framework, and information criteria may be used to choose an optimal number of boxes for parsimonious k-box

emulation of atmosphere–ocean general circulation models (AOGCMs). In addition to estimating model pa-

rameters the method enables hidden state estimation for the unobservable boxes corresponding to the deep

ocean, and also enables noise filtering for observations of surface temperature. The feasibility, reliability, and

performance of the proposed method are demonstrated in a simulation study. To obtain a set of optimal k-box

emulators, models are fitted to the 43 CO2 step responses of 16 AOGCMs in CMIP5. It is found that for all 16

AOGCMs three boxes are required for optimal k-box emulation. The number of boxes k is found to influence,

sometimes strongly, the impulse responses of the fitted models.

1. Introduction

An energy balance model (EBM) is a simplified repre-

sentation of climate where changes in global temperature

are explained by imbalances in Earth’s energy budget.

Energy balance models are simpler than atmosphere–

ocean general circulation models (AOGCMs), which

explicitly describe the fluid dynamics of Earth’s atmo-

sphere and oceans. Their simplicity means that EBMs

are both analytically tractable and inexpensive to simu-

late. Compared with purely empirical statistical models,

EBMs have two distinct advantages: 1) the choice of

model structure is motivated by physical reasoning, and

2)model parameters have physical interpretability. Energy

balance models are therefore useful not only for climate

forecasting but for making physical inferences about the

climate system.

Energy balance models in the literature vary in com-

plexity. The class of EBM considered here is the k-box

model (sometimes called k-layer), which represents the

atmosphere and ocean as a set of vertically stacked

boxes. The simplest k-box model is the so-called one-

box model, which is obtained by a linearization of the

Budyko–Sellers model (Budyko 1969; Sellers 1969).

The one-box model is known to insufficiently capture

thermal inertia in the climate response and has been

superseded by the two-box model (Gregory 2000; Held

et al. 2010; Geoffroy et al. 2013a). Some recent studies

have employed three-boxmodels (Caldeira andMyhrvold

2013; Tsutsui (2016); Proistosescu and Huybers 2017;

Fredriksen and Rypdal 2017). By taking the limit as

k / ‘ it is possible to approximate continuous vertical

heat diffusion.

The k-box energy balance model (Fig. 1) used in this

study is defined by the system of k linear differential

equations:
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The first box represents the atmosphere and uppermost

layer of the ocean, while boxes 2 to k together represent

the deep ocean. Each box i has a temperature Ti and

heat capacity Ci and is coupled to adjacent boxes above

and below; T1 is defined to be global mean surface

temperature (GMST) anomaly relative to preindustrial.

Heat transfer coefficients ki . 0 determine the strength

of thermal coupling between boxes i and i 2 1. In the

literature k1 is often written as l and is referred to as the

climate feedback parameter (e.g., Geoffroy et al. 2013a).

We follow the convention of Fredriksen and Rypdal

(2017) and use the letter k for both climate feedback and

heat uptake by the deep ocean. The heat transfer coef-

ficient kk in the equation for box k2 1 is multiplied by a

so-called efficacy factor «. 0, introduced by Held et al.

(2010), to simulate variation in the effective strength of

k1 during periods of transient (nonequilibrium) warm-

ing. The term F(t) denotes radiative forcing measured at

the top of the atmosphere and j(t) is a stochastic dis-

turbance (see below). Table 1 contains physical units

and a brief description of each parameter.

Natural variability in GMST can be partially explained

within the EBM framework using a stochastic process in

the radiative forcing term (Hasselmann 1976). To enforce

continuity ofF in timewemodelF(t) as a red-noise process:

dF

dt
52g [F2F

det
(t)]1h(t) , (5)

where Fdet(t) and h(t) are the respective deterministic

and stochastic forcing components. Here we assume h(t)

to be a Gaussian white-noise (WN) process with mean

zero and standard deviation sh. In the limit as g/‘ the

stochastic forcing becomeswhite noise, whereas if g/ 0

we have a random walk. Interannual variation in radi-

ative forcing is insufficient to explain all of the natural

variability in surface temperature. Residual surface

temperature variability is explained here by a Gaussian

WN disturbance j(t) with mean zero and standard de-

viation sj. The term j(t) functions like an external

forcing but is not measurable at the top of the atmo-

sphere since it represents dynamic variability, which is

generated internally.

As parameters of the k-box EBM do not correspond

to well-defined physical quantities in the real world, it is

not possible to calculate realistic parameter values di-

rectly from first principles. Parameter values must in-

stead be estimated empirically from data. In this paper a

maximum likelihood method is presented for estimating

parameters of k-box models. The structure of the paper

is as follows: section 2 provides a summary and critique

of somemethods previously employed to fit box models;

FIG. 1. Vertical layout of the boxes in the k-box energy balance

model. The thickness of each box indicates its heat capacity, and

the arrows represent the flow of heat between adjacent boxes. The

top of the atmosphere has no heat capacity and so is represented by

a horizontal line. The dashed line in the middle is an abbreviation

of the intervening boxes.

TABLE 1. Parameters of k-box model with physical units and

description.

Parameter Unit Description

g Dimensionless Stochastic forcing continuous-time

autocorrelation parameter

Ci W yrm22 K21 Total heat capacity of box i

ki Wm22 K21 Heat transfer coefficient; controls

heat flux across upper boundary of

box i.

« Dimensionless Deep ocean heat uptake efficacy

factor

sh Wm22 Standard deviation of TOA stochastic

forcing component

sj Wm22 Standard deviation of stochastic

disturbance applied to surface box

F43CO2
Wm22 Effective radiative forcing after

quadrupling preindustrial

atmospheric CO2

ti Yr The ith characteristic time scale of the

k-box model

ai Dimensionless Weighting of ith exponential basis

function in step response of surface

temperature

ECS K Equilibrium climate sensitivity; final

temperature after doubling

atmospheric CO2

TCR K Transient climate response; surface

temperature after 70 years of

1%yr21 CO2 increase.
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section 3 describes data requirements for successful

parameter estimation and the specific data from phase 5

of the Coupled Model Intercomparison Project (CMIP5)

used in this study; section 4 outlines the proposed

maximum likelihood framework; section 5 describes a

software tool created for applying the method described

in this paper; section 6 evaluates the robustness of the

proposed method in a simulation study; section 7 ex-

plains how the method was applied to climate model

data from CMIP5 and presents an analysis of the results;

and the content of the paper is summarized in section 8.

2. Methods for fitting k-box energy balance models

Maximum likelihood estimation is simple for one-box

model parameters: given uniformly sampled data, esti-

mation reduces to an ordinary least squares problem

with a closed-form solution (Rypdal and Rypdal 2014).

When more boxes are added, latent variables appear

and the estimation problem becomes more difficult.

Several methods have been proposed in the literature

for estimating parameters of box models with k $ 2,

including least squares curve fitting (Geoffroy et al.

2013a; Caldeira and Myhrvold 2013), frequency-domain

regression (Fredriksen and Rypdal 2017), and Bayesian

estimation (Proistosescu and Huybers 2017; Jonko et al.

2018). Box models have previously been fitted to the

historical record, to paleoclimate reconstructions, and

to data from general circulation model experiments.

Three examples of existing methods are described be-

low. The first method described, proposed by Geoffroy

et al. (2013a), is compared in section 7 with the new

method proposed in this paper.

Geoffroy et al. (2013a) derived explicit time-dependent

solutions for the two-box model under purely determin-

istic forcing scenarios. They proposed a procedure for

estimating model parameters using measurements of

GMST and top-of-the-atmosphere (TOA) net down-

ward radiative flux (see section 3) from the step re-

sponses of AOGCMs in CMIP5. Their method uses

prior information about characteristic time scales to

estimate the model parameters in sequence, with the

sum of squared residuals as the criterion to be mini-

mized. The time-dependent solution of the two-box

model is a sum of saturating exponentials and so esti-

mating parameters in parallel by nonlinear least squares

can be a notoriously difficult problem (Kaufmann 2003),

which is avoided by estimating parameters sequentially.

In a companion paper Geoffroy et al. (2013b) added a

deep ocean heat uptake efficacy factor « to their model,

requiring the use of iteration in their fitting procedure.

Geoffroy et al. (2013a) did not specify an error model;

however, their least squares fitting criterion would

correspond to maximum likelihood estimation under

an assumption of errors which are independent and

identically distributed (i.i.d.) and Gaussian. We have

found this assumption to be inconsistent with time se-

ries of residuals obtained by subtracting fitted two-box

model trajectories from AOGCM step responses: such

residual time series exhibit strong autocorrelation.

Without specifying an error model it is also impossible to

correctly construct confidence intervals for parameter

estimates.

Fredriksen and Rypdal (2017) estimated parameters

of a three-box model with natural variability driven by a

Gaussian WN process in the forcing term. They pro-

posed an iterative least squares-based fitting algorithm

to estimate the model parameters. Their method alter-

nates between fitting the signal (expected temperature

series for the first box) in the time domain and fitting the

noise (time series of residuals) in the frequency domain.

Fredriksen and Rypdal (2017) estimated model pa-

rameters using estimates of GMST from HadCRUT4

(Morice et al. 2012) and the Moberg et al. (2005) paleo-

climate reconstructions, and forcing estimates from

Crowley (2000) and Hansen et al. (2011). Unlike the

other studies cited in this section, Fredriksen and Rypdal

(2017) estimated parameters of box models (k $ 2)

without access to measurements of TOA net down-

ward radiative flux, as they were fitting to historical

datasets. Only a subset of the model parameters was

estimated from data since, without radiative flux

measurements, a wide range of possible values for the

three characteristic time scales t1, t2, and t3 was found to

be equally compatible with the observations. In their

analysis three candidate time scale configurations were

chosen and the remaining parameters estimated. An

important result of Fredriksen and Rypdal (2017) is that

the stochastically forced three-box model produces

a similar noise spectrum to so-called scale-invariant

models, a related class of simple climate model.

Parameters of scale-invariant models have been esti-

mated by maximum likelihood (Rypdal and Rypdal

2014) and more recently using Bayesian inference

(Rypdal et al. 2018). The method of Rypdal et al. (2018)

is generally applicable to linear response models, in-

cluding box models, although the authors only present

results for the scale-invariant model.

Jonko et al. (2018) estimated parameters of the two-

box model using Bayesian hierarchical methods. In their

model likelihood the variability in observed tempera-

tures T1(t) and TOA net downward radiative flux N(t)

are jointly modeled as a vector autoregressive process

of order one [VAR(1)]. All VAR(1) correlations

are considered free parameters, not constrained by

the physical parameters of the EBM. Given prior
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distributions for parameters to be estimated, Markov

chain Monte Carlo (MCMC) is used to form an ap-

proximation to the posterior distribution. Jonko et al.

(2018) used their method to pool information from 24

AOGCM step responses and produce a joint posterior

for equilibrium climate sensitivity (ECS). They also in-

cluded time series of historical temperature observa-

tions in their model likelihood to further constrain

estimates of future warming. By opting not to include a

stochastic forcing term Jonko et al. (2018) increase the

number of parameters to estimate and lose physical

motivation for the natural temperature variability in

their model.

Of the approaches considered above, none can be

considered optimal in the sense of maximum likeli-

hood or sampling from the posterior distribution of

the full, stochastic k-box energy balance model. We

therefore propose to develop a maximum likelihood

method for estimating stochastic k-box models with

k $ 2. Maximum likelihood estimators are widely

used and have known asymptotic sampling properties

allowing for simple quantification of uncertainty.

Furthermore, optimal complexity of maximum like-

lihood models can be identified using information

criteria.

3. Step response and CMIP5 data

The k-box model is a linear time-invariant system and

is therefore completely characterized by its impulse re-

sponse or alternatively its step response (of which the

impulse response is the time derivative). The step re-

sponse contains information about model behavior on

all relevant time scales. The CMIP5 archive includes

experiments (Taylor et al. 2012) designed to elicit the

step response of AOGCMs by subjecting them to a step

forcing of the form

F(t)5

(
F
43CO2

if t$ 0,

0 otherwise.
(6)

The forcing is achieved by an instant quadrupling of

atmospheric carbon dioxide (CO2) concentration. The

reasoning behind this choice of forcing is that the am-

plitude should be large enough that the signal-to-noise

ratio is high, but small enough not to induce strongly

nonlinear behavior such as tipping points. Ideally the

step-forcing experiment would be long enough for the

system to stabilize at a new equilibrium temperature and

multiple ensemble runs would be available for each

AOGCM. However, since Earth systemmodels (ESMs)

are expensive to run, the step-forcing experiments

in CMIP5 are typically 150 years in length and consist

of a single ensemble member. These experiments

nevertheless constitute the most information-rich data-

sets from which to infer the parameters of k-box models

and simple climate models in general. The output of an

AOGCMstep-forcing experiment can even be used on its

own to make climate predictions by convolving it with a

forcing signal of interest (Good et al. 2011; Lucarini

et al. 2017).

The models in CMIP5 have equilibration times in the

thousands of years, meaning that a 150-yr time series of

temperatures contains insufficient information to identify

all model parameters. Attempting to fit to such datasets

results in massively correlated parameter estimates with

correspondingly large uncertainty. This difficulty can be

overcome by using measurements of net downward ra-

diative flux at the top of the atmosphere (TOA) to con-

strain k1. Using Eqs. (1) and (3) we extract the relation

N(t)5F(t)2k
1
T
1
(t)1 (12 «)k

k
[T

k21
(t)2T

k
(t)], (7)

where N(t) denotes the TOA net downward radiative

flux. If the system is in equilibrium at time t, that is,

Tk21(t) 5 Tk(t), and/or if « 5 1, Eq. (7) reduces to

the traditional Gregory relation N(t) 5 F(t) 2 k1T1(t)

(Gregory et al. 2004). Note that, since fitting to 43 CO2

experiments is essentially not feasiblewithoutmeasurements

of N(t), fitting to historical temperature observations

with all parameters free is unlikely to produce mean-

ingfully constrained estimates.

4. Maximum likelihood framework

Computing the likelihood function for the k-box

model is nontrivial. We typically observe the tempera-

ture of only the first box and hence for k$ 2 at least half

of the model state variables are unobserved (latent). In

this section we start by obtaining a rigorous state-space

formulation of the k-box model. We then show how the

likelihood of this state-space representation can be

evaluated recursively using theKalman filter. Numerical

maximization of the likelihood is briefly described and a

method for constructing confidence intervals given.

Finally, we explain how optimal model complexity

can be identified using information criteria.

a. Matrix representation

The purely deterministic, homogeneous (externally

and internally unforced) k-box model with «5 1 can be

written in matrix form:

_x
h
(t)5Ax

h
(t) , (8)

where

x
h
(t)5 [T

1
(t), . . . ,T

k
(t)]0, (9)
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and

A
i,j
5

8>>>>><
>>>>>:

2(k
i
1 k

i11
)/C

i
, if i5 j 6¼ k ,

k
j
/C

i
, if j5 i1 1,

k
i
/C

i
, if j5 i2 1,

2k
i
/C

i
, if i5 j5 k ,

0 , otherwise.

(10)

For « 6¼ 1 two entries in the penultimate row of A must

be changed to match Eq. (3). The matrix A is tridiagonal

because eachbox is coupledonly to its immediate neighbors

above and below. The ith eigenvalue of A is21/ti where ti
is the ith characteristic time scale of the linear system. An

analytical expression for ti is given inGeoffroy et al. (2013a)

for the case k 5 2. See appendix A for a proof that A has

real and nonpositive eigenvalues for any k when « 5 1.

Analysis of the full inhomogeneous, stochastic k-box

model is simplified by the inclusion of radiative forcing

F as a state variable. Defining the state vector

x(t)5 [F(t),T
1
(t), . . . ,T

k
(t)]0, (11)

we can write the full model

_x(t)5A1x(t)1bu(t)1w(t) , (12)

where A1 is simply matrix A augmented with one ad-

ditional row–column pair (above and to the left) to ac-

count for Eq. (5):

A1
1, 1 52g , (13)

A1
2, 1 5 1/C

1
; (14)

and where

b5 (g, 0, . . . , 0)0, (15)

u(t)5F
det
(t) , (16)

and

w(t);N(0,Q) (17)

with

Q
i,j
5

8>><
>>:

s2
h , if i5 j5 1,

(s
j
/C

1
)2 , if i5 j5 2,

0, otherwise.

(18)

b. Discretization scheme

The continuous-time model is a system of stochastic

differential equations and may be analyzed using the

tools of stochastic calculus. However if observations

consist of uniformly spaced discrete samples then it

makes sense to discretize the model (see section 7 for

details of sampled data used in this study). Assuming

constancy of the deterministic forcing input u(t) 5
Fdet(t) between samples, the model can be discretized

exactly (see appendix B)

x(t)5A
d
x(t2 1)1b

d
u(t2 1)1w

d
(t), (19)

where

A
d
5 eA

1

, (20)

b
d
5 (A1)

21
(A

d
2 I)b , (21)

w
d
(t);N(0,Q

d
), and (22)

Q
d
5

ð1
s50

eA
1sQeA

10
s ds , (23)

with subscript d denoting discretization. The integral in

Eq. (23) can be evaluated via the matrix exponential

method described in section 1 of Van Loan (1978).

c. State-space representation

As a linear time-invariant system the k-box model

is amenable to powerful numerical techniques from

FIG. 2. Example simulated dataset from a two-box model

with parameters: g 5 1.58; C1, C2 5 7.73, 89.3 W yr m22 K21;

k1, k2 5 0.632, 0.522Wm22 K21; « 5 1.52; sh, sj, F43CO2
5

0:428, 0:643, 6:86 W m22. (a) Increasing surface temperatures

during the first 150 years after CO2 quadrupling. (b) Values of TOA

net downward radiative flux in each year plotted against the corre-

sponding surface temperature.
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control theory, in particular the Kalman filter (Kalman

1960). By choosing a model for our observation process

y(t) we can write the k-box model in state-space form

x(t)5A
d
x(t2 1)1b

d
u(t2 1)1w

d
(t), (24)

y(t)5C
d
x(t)1 v

d
(t) , (25)

where matrix Cd is our observation operator and vd(t) is

an (optional) additive observation error. If we observe

TOA net downward radiative flux N(t) and surface

temperature T1(t) at each time t, both without er-

ror, then

y(t)5 [T
1
(t),N(t)]0 5C

d
x(t), (26)

where entries of Cd are determined by Eq. (7). In the

general case (e.g., the historical record) our obser-

vations might be contaminated by errors vd(t)

such that

FIG. 3. Pairs plot showing approximate sampling distribution of themaximum likelihood estimator. Each point represents amodel fitted

to a simulated dataset. Simulated datasets are from a two-boxmodel with parameters: g5 1.58;C1,C25 7.73, 89.3W yrm22 K21; k1, k25
0.632, 0.522Wm22 K21; « 5 1.52; sh, sj, F43CO2

5 0:428, 0:643, 6:86 W m22. Plot axes are logarithmic to increase visibility of pa-

rameter correlations.
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v
d
(t);N(0,S

t
), (27)

but for climate model experiments we assume vd(t) 5 0

for all t.

d. Kalman filter

The Kalman filter was originally developed as a min-

imum mean-square-error (MMSE) estimator of state

variables in a noisy linear dynamic system (Kalman

1960). It may also be used to recursively calculate the

likelihood of a time series of observations from this class

of model (Tusell 2011). The Kalman filter estimates the

system state at time t using the information contained in

all previous observations up to and including time t,

through a recursive procedure iterating over two steps:

a prediction step and an update step. For the k-box

model in state-space form we can write the Kalman

recursions as follows, using the hat/subscript notation

of Reid (2001).

1) PREDICTION STEP

Given x̂t21jt21, our best estimate of the system state at

time t2 1 given data, the predicted state x̂tjt21 at time t is

x̂
tjt21

5A
d
x̂
t21jt21

1 b
d
u
t21

. (28)

The predicted error covariance of this a priori esti-

mate is

P
tjt21

5A
d
P

t21jt21
A0

d 1Q
d
, (29)

where Pt21jt21 is the covariance of the estimated state at

time t 2 1.

2) UPDATE STEP

Having then observed yt we update our a priori esti-

mate of xt with this new information to obtain an a

posteriori state estimate x̂tjt with corresponding covari-

ance Ptjt. Our measurement prefit residual is

~y
t
5 y

t
2C

d
x̂
tjt21

(30)

which has covariance

S
t
5�t

1C
d
P
tjt21

C0
d . (31)

Our a posteriori state estimate is simply our a priori

estimate x̂tjt21 shrunk toward the observation yt

x̂
tjt 5 x̂

tjt21
1K

t
~y
t

(32)

where the shrinkage amplitude is the optimalKalman gain

K
t
5P

tjt21
C0

dS
21
t . (33)

The covariance of the a posteriori estimate is

P
tjt 5 (I2 K

t
C

d
)P

tjt21
(I2K

t
C

d
)0 1K

t
S

t
K 0

t . (34)

The measurement postfit residual is

~y
tjt 5 y

t
2C

d
x̂
tjt . (35)

In the complete absence of observational noise the re-

cursions may still be computed by setting St equal to a

diagonal matrix with each diagonal element a very

small number.

e. Model likelihood

Since the k-box model is a causal linear filter (i.e.,

system states depend on past states and past inputs but

not on future states and future inputs), we can factorize

the likelihood function of the temperature observations

TABLE 2. CMIP5 climate model expansions (Geoffroy et al. 2013a).

Model Expansion

BCC-CSM1.1 Beijing Climate Center, Climate System

Model, version 1.1

BNU-ESM Beijing Normal University–Earth

System Model

CanESM2 Canadian Earth System Model, version 2

CCSM4 Community Climate System Model,

version 4

CNRM-CM5 Centre National de Recherches

Météorologiques Coupled Global

Climate Model, version 5

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial

Research Organization Mark,

version 3.6.0

FGOALS-s2 Flexible Global Ocean-Atmosphere-

Land System Model gridpoint, second

spectral version

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory

Earth Science Model 2M

GISS-E2-R Goddard Institute for Space Studies

Model E, coupled with Russell

ocean model

HadGEM2-ES Hadley Centre Global Environmental

Model 2, Earth System

INM-CM4 Institute of Numerical Mathematics

Coupled Model, version 4.0

IPSL-CM5A-LR L’Institut Pierre-Simon Laplace Coupled

Model, version 5, coupled with NEMO,

low resolution

MIROC5 Model for Interdisciplinary Research on

Climate, version 5

MPI-ESM-LR Max Planck Institute Earth System

Model, low resolution

MRI-CGCM3 Meteorological Research Institute

Coupled General Circulation Model,

version 3

NorESM1-M Norwegian Earth System Model,

intermediate resolution
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L (y
1
, . . . , y

n
;u)5P

n

t51

L (y
t
jy

t21
, . . . , y

1
; u), (36)

where u denotes the vector of model parameters. For

numerical stability it is preferable to compute the log-

likelihood

‘(y
1
, . . . , y

n
; u)5�

n

t51

‘(y
t
jy

t21
, . . . , y

1
;u), (37)

which can be calculated recursively using the prefit re-

siduals and their corresponding covariances from the

Kalman filter

‘(y
1
, . . . , y

t
;u)5 ‘(y

1
, . . . , y

t21
;u)2

1

2
[2 log(2p)

1 log(jS
t
j)1 ~y0

t S
21
t ~y

t
] .

(38)

Evaluation of (38) requires the distribution of x0ju,
upon which y1 depends, to be known. If we assume that

at the beginning of a dataset the system is in a state of

preindustrial equilibrium then E(x0) 5 0 with some co-

variance matrix to be derived from the model parame-

ters (see appendix C). For an abrupt 4 3 CO2 climate

model experiment, the first element of x0 (corresponding

to radiative forcing) has an expected value, given the

model parameters, of F43CO2
.

TABLE 3. Estimated parameters for optimal k-box emulators of ESMs in CMIP5. In all cases k5 3. For physical units and descriptions

of parameters see Table 1. MMM refers to the k-box model fitted to the average of the datasets from all 16 ESMs.

Model g C1 C2 C3 k1 k2 k3 « sh sj F43CO2

BCC-CSM1.1 2.9 5.3 12.3 49 1.21 1.7 0.79 1.28 0.46 0.40 7.1

BNU-ESM 2.3 4.0 9.9 85 0.94 1.6 0.71 0.98 0.60 0.66 7.4

CanESM2 2.5 4.6 11.1 66 1.01 1.8 0.81 1.24 0.53 0.52 7.9

CCSM4 2.1 4.4 13.0 70 1.28 2.3 1.05 1.44 0.49 0.49 8.0

CNRM-CM5.1 11.5 4.0 9.6 90 1.14 2.4 0.60 0.90 0.83 0.41 7.2

CSIRO-Mk3.6.0 1.7 3.6 16.0 63 0.59 2.4 1.15 1.73 0.70 0.50 6.1

FGOALS-s2 2.3 4.3 8.1 135 0.86 2.2 1.11 1.19 0.82 0.66 7.9

GFDL-ESM2M 3.3 4.8 10.2 114 1.34 2.6 1.13 1.19 0.77 0.56 6.9

GISS-E2-R 1.6 4.9 31.6 107 1.82 1.7 4.66 1.46 0.32 0.30 8.3

HadGEM2-ES 1.7 3.6 9.5 99 0.54 2.4 0.63 1.59 0.43 0.32 6.4

INM-CM4 1.6 4.3 7.9 275 1.66 2.7 0.81 0.78 0.33 0.32 6.3

IPSL-CM5A-LR 1.9 2.7 16.7 101 0.73 2.4 0.63 1.21 0.50 0.38 6.5

MIROC5 1.8 4.7 17.9 139 1.55 1.7 1.33 1.18 0.54 0.89 8.7

MPI-ESM-LR 2.5 4.4 13.7 70 1.12 2.0 0.91 1.44 0.68 0.71 8.9

MRI-CGCM3 2.6 4.5 14.5 61 1.26 2.2 0.71 1.22 0.56 0.40 6.8

NorESM1-M 2.2 5.2 13.4 105 1.08 2.6 1.29 1.50 0.52 0.47 7.0

MMM 1.9 5.1 11.2 89 1.03 2.0 0.99 1.29 0.15 0.15 7.2

TABLE 4. Characteristic time scales ti, surface temperature response coefficients ai, equilibrium climate sensitivity (ECS), and transient

climate response (TCR) of optimal k-box emulators fitted to ESMs in CMIP5. ColumnDAIC shows the decrease in AICmoving from two

to three boxes. For physical units and descriptions of parameters see Table 1. MMM refers to the k-box model fitted to the average of the

datasets from all 16 ESMs.

Model t1 t2 t3 a1 a2 ECS TCR DAIC

BCC-CSM1.1 1.54 7.8 162 0.28 0.33 2.9 1.9 21.0

BNU-ESM 1.32 8.8 272 0.25 0.38 3.9 2.5 17.1

CanESM2 1.34 7.6 220 0.23 0.34 3.9 2.3 21.0

CCSM4 1.05 6.1 201 0.25 0.30 3.1 1.9 29.0

CNRM-CM5.1 0.91 8.6 259 0.21 0.49 3.2 2.1 40.2

CSIRO-Mk3.6.0 1.03 6.8 315 0.14 0.18 5.2 1.9 32.0

FGOALS-s2 1.03 5.5 393 0.14 0.36 4.6 2.3 8.9

GFDL-ESM2M 0.96 5.6 262 0.20 0.38 2.6 1.5 11.2

GISS-E2-R 1.34 3.7 235 0.46 0.10 2.3 1.4 21.3

HadGEM2-ES 0.95 8.2 532 0.10 0.31 5.9 2.4 43.1

INM-CM4 0.78 5.9 551 0.23 0.52 1.9 1.4 33.0

IPSL-CM5A-LR 0.78 13.2 394 0.19 0.33 4.4 2.2 75.7

MIROC5 1.31 7.8 321 0.39 0.24 2.8 1.8 5.5

MPI-ESM-LR 1.23 7.4 231 0.26 0.29 4.0 2.3 16.4

MRI-CGCM3 1.12 9.4 190 0.27 0.36 2.7 1.7 38.5

NorESM1-M 1.12 5.9 302 0.17 0.29 3.2 1.6 13.9

MMM 1.35 6.9 273 0.20 0.34 3.5 2.0 68.8
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The Kalman filter log-likelihood is essentially a

weighted least squares objective function which penalizes

squared one-step-ahead prediction errors (prefit resid-

uals). The weighting applied to each prediction error is

determined by its corresponding uncertainty (covariance).

f. Maximum likelihood estimation

The maximum likelihood estimator (MLE) of the model

parameters u is

û5 arg
u
min[2‘(y; u)], (39)

where ‘(y; u) denotes the k-box model log-likelihood

function. We minimize the negative log-likelihood

numerically: a modern derivative-free algorithm

such as BOBYQA (Powell 2009) is well suited to this

task. Standard errors and confidence intervals can be

obtained using asymptotic properties of the MLE. In

the limit as sample size tends to infinity the MLE û is

FIG. 4. Histograms showing approximate sampling distribution of the maximum likelihood estimator. The thick vertical lines indicate

the true value of each parameter. Simulated datasets are from a two-box model with parameters: g 5 1.58; C1, C2 5 7.73,

89.3W yrm22 K21; k1, k2 5 0.632, 0.522Wm22 K21; « 5 1.52; sh, sj, F43CO2
5 0:428, 0:643, 6:86 W m22.
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normally distributed with mean vector u and covari-

ance matrix I–1 where I denotes the Fisher information

matrix

I
jk
52E

"
›2‘(y; u)

›u
j
›u

k

#
. (40)

Although the Fisher information I depends on the values

of the true parameters u, we can obtain a consistent

estimator Î by plugging the MLE û into Eq. (40). We

calculate Î using a numerical estimate of the Hessian of

the negative log-likelihood at theMLE û. The estimated

asymptotic sampling distribution of theMLE is then used

to calculate standard errors and confidence intervals.

g. Optimal model complexity

The number of boxes k offers a natural parameteri-

zation of model complexity. When emulating an

AOGCM with an EBM it is desirable to fit the most

parsimonious model that does not significantly under-

perform compared to more complex models. Models

with different numbers of boxes k can be compared (e.g.,

Caldeira and Myhrvold 2013) using Akaike’s informa-

tion criterion (AIC). The AIC score for a fitted modelm

is defined as

AIC(m)522‘(m)1 2p(m), (41)

where ‘ is the log-likelihood and p is the number of

parameters (Akaike 1974). The k-box model mk has

FIG. 5. Observed and fitted three-box step responses of three ESMs fromCMIP5. (left) Temperature trajectories

for each box. (right) TOA net downward radiative fluxes against surface temperature. Gray dots are observations

while the black curves are expected box-model responses. Models are (a) GISS-E2-R, (b) MIROC5, and

(c) HadGEM2-ES.
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p(mk)5 2k1 5 since we have k heat capacitiesCi, k heat

transfer coefficients ki, a radiative forcing F43CO2
, two

standard deviations sh and sj, and two dimensionless

parameters g and «. We have

AIC(m
k
)522‘(m

k
)1 4k1 10: (42)

Competing models can be compared using the decision

rule whereby for a given AOGCMwe choose the number

of boxes k that minimizes AIC(mk).

5. Software implementation

This study has developed a package for the R software

environment (R Core Team 2019) for simulation, fitting,

filtering, and predicting with k-box EBMs. The package es-

timates parameters of k-box models from time series of

GMST and TOA net downward radiative flux by numeri-

cally maximizing the likelihood function. To evaluate the

model likelihood we use modern implementations of

the matrix exponential (Goulet et al. 2019) and the

Kalman filter (Luethi et al. 2018). The likelihood is

maximized using an implementation (Johnson 2014;

Ypma 2020) of the BOBYQA optimization algorithm

(Powell 2009). Confidence intervals for parameter esti-

mates are obtained using the Fisher information, as de-

scribed in section 4f, where the Hessian of the likelihood

function is evaluated numerically using an implementation

of Richardson’s extrapolation (Gilbert and Varadhan

2016). The R package, which includes the datasets used

in this paper, is available for download at https://

github.com/donaldcummins/EBM.

6. Simulation study

a. Methods

A simulation study was performed to investigate the

feasibility of fitting k-box models to AOGCM step re-

sponse data via the proposed maximum likelihood

method. The step response of HadGEM2-ES from

CMIP5 was used to fit a two-box model and a three-box

model (optimal under AIC). HadGEM2-ES was cho-

sen as this model has been used extensively for climate

change studies. Data from HadGEM2-ES consisted

of annually averaged values (see section 7 for details of

CMIP5 data used). Estimated two-box model param-

eters were g 5 1.58; C1, C2 5 7.73, 89.3Wyrm22K21;

k1, k2 5 0.632, 0.522Wm22K21; « 5 1.52; sh, sj,

and F43CO2
5 0:428, 0:643, 6:86 W m22. Estimated

parameters for the three-box model were: g 5 1.73;

C1, C2, C3 5 3.62, 9.47, 98.7Wyrm22 K21; k1, k2, k3 5
0.536, 2.39, 0.634Wm22 K21; «5 1.59; sh, sj F43CO2

5
0:434, 0:323, 6:35 W m22. Each of the two fitted

models was used to generate 1000 simulated step

responses (see Fig. 2). Parameters were then estimated

for each of the simulated datasets using the same max-

imum likelihood methodology. The resulting sets of pa-

rameter estimates form a Monte Carlo approximation to

the estimator sampling distributions (see Figs. 3 and 4).

b. Results

Estimator sampling distributions for the two-box and

three-box models were examined for excessive bias,

variance, and pairwise correlations. Results for the two-

box model simulations are discussed below. Analysis of

results for the three-box model leads to analogous

conclusions.

Pairwise parameter correlations are visible in the es-

timated sampling distribution of the two-box model es-

timator (see Fig. 3). The strongest correlation (positive)

is between the parameters controlling the stochastic

forcing, g andsh; that is, the whiter the noise, the greater

the disturbance needed at each time step to obtain the

same overall level of variability. The second strongest

correlation (negative) is between the climate feedback

parameter k1 and deep ocean heat capacityC2. The third

strongest correlation (positive) is between C1 and sj. A

natural explanation for this is that when the heat ca-

pacity of the first box C1 is increased the corresponding

temperature T1 has more inertia and hence requires a

stronger stochastic disturbance amplitude sj to main-

tain the same level of variability. The fourth strongest

correlation (negative) is between k2 and C2. This cor-

relation is related to the time taken for relaxation of the

system on the longer time scale t2. A longer relaxation

time can be achieved either by increasing the heat ca-

pacity of the second box C2 or by reducing the heat

transfer coefficient k2 between boxes one and two.

Model parameters can be divided, by correlation, into

two disjoint sets: set (i), stochastic forcing parameters

TABLE 5. Example approximate 95% confidence intervals for

parameters of k-box models fitted to HadGEM2-ES. For physical

units and descriptions of parameters see Table 1.

k 5 2 k 5 3

Parameter MLE 2.5% 97.5% MLE 2.5% 97.5%

g 1.58 1.04 2.41 1.73 1.15 2.60

C1 7.73 6.64 9.01 3.62 2.98 4.39

C2 89.29 73.02 109.18 9.47 7.61 11.80

C3 98.66 84.10 115.74

k1 0.63 0.56 0.71 0.54 0.46 0.63

k2 0.52 0.46 0.59 2.39 1.82 3.12

k3 0.63 0.57 0.71

« 1.52 1.30 1.77 1.59 1.38 1.83

sh 0.43 0.35 0.52 0.43 0.35 0.53

sj 0.64 0.53 0.77 0.32 0.27 0.39

F43CO2
6.86 6.46 7.28 6.35 6.03 6.70
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g and sh; and set (ii), all remaining parameters. Neither

g nor sh is correlated with any parameter in set (ii), nor

does either parameter appear well constrained by the

simulated datasets, the consequence being a mutual in-

flation of uncertainty. The correlations between pa-

rameters in set (ii) appear to act favorably: individual

parameter uncertainty in set (ii) is uniformly low with

coefficients of variation mostly less than 10%. If at least

one parameter in set (ii) is well constrained by obser-

vations, as appears to be the case, then uncertainty in the

other parameters decreases as a result.

Estimated marginal distributions of the two-box

model parameters resemble unimodal bell curves (see

Fig. 4), with the notable exception of g and sh. The pa-

rameter g appears poorly bounded from above (hard to

rule out very white stochastic forcing) and this uncertainty

propagates into sh. The maximum likelihood estimator is

asymptotically unbiased but in general has a finite sample

bias. Estimates of all two-box model parameters display

some bias. Parameters g and sh have positive relative

biases of 21% and 6% respectively, which is unsurprising

given the skewness of their marginal distributions. For

parameters in set (ii), and for both the two-box and three-

box models, the magnitude of the bias is in all cases less

than 5% of the parameter’s true value.

c. Conclusions

The simulation study demonstrates that the proposed

maximum likelihood method reliably estimates parameters

of two-box and three-box box models from the step re-

sponse of a typical AOGCM from CMIP5. Pairwise corre-

lation and estimator bias were found to influence estimates

FIG. 6. (a) Two-box and (b) three-box fits to the step response of IPSL-CM5A-LR. (left) Temperature trajec-

tories for each box. (right) TOA net downward radiative fluxes against surface temperature. Gray dots are ob-

servations while the black curves are expected box-model responses.
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of stochastic forcing parameters g and sh; however, other

model parameters were not adversely affected.

7. Fitting to CMIP5 climate model simulations

The R package was used to fit two-box and three-box

models to the step responses of 16 ESMs from CMIP5

(see Table 2), using the same data as Geoffroy et al.

(2013b). The step response data consist of values of

GMST T1 and TOA net downward radiative flux N av-

eraged over each of 150 years in the experiment.While it

is possible, in practice, to fit four-box models using the

methodology described in this paper, it was decided that

the upper limit in this study should be k5 3. It was found

that fitting a fourth box typically yields an estimated

characteristic time scale substantially shorter than one

year, which is beyond what might reasonably be

extracted from annually averaged data.

For each ESM the fitted box model with lower AIC

(see section 4g) was chosen as the optimal k-box em-

ulator. The same procedure was applied to the multi-

model mean (MMM) of the 16 step-response datasets.

Maximum likelihood parameter estimates are reported

for these optimal fits (see Table 3), with corresponding

estimates (see Table 4) of characteristic time scales ti,

surface temperature response coefficients ai, equilib-

rium climate sensitivity (ECS), and transient climate

response (TCR). It should be noted that, as the shortest

time scale of the three-box model is on the order of

one year, estimated parameters of the first box will

be affected by changes in radiative forcing due to

stratospheric and tropospheric ‘‘rapid adjustments’’

(Chung and Soden 2015). We refer to the fits chosen

using AIC as optimal k-box emulators for the re-

mainder of this paper.

From Table 4 it can be seen that, for all 16 fitted

ESMs, three boxes are required for optimal emulation

under AIC. According to AIC the multimodel mean

requires three boxes. Figure 5 shows three examples of

fitted step responses for optimal k-box emulators. In all

fitted models the heat capacities of the boxes increase

with depth while, with the exception of GISS-E2-R, the

heat transfer coefficients decrease with depth (excluding

the feedback parameter k1). The approximate signal-to-

noise ratio, calculated as F43CO2
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
h 1s2

j

q
for the step-

forcing experiment, ranges from 7.1 to 19 with a median

of 9.9. This high ratio allows us to fit models with many

parameters and without excessive parameter uncer-

tainty (see Table 5). The improved fit to the step re-

sponse moving from a two-box to a three-box model is

often clearly visible (e.g., Fig. 6).

The number of boxes k influences the impulse re-

sponses of the fitted box models, sometimes strongly

(see Fig. 7). The mathematical definition of the impulse

response is given in appendix D. For all 16 ESMs from

CMIP5 the impulse response of the optimal k-box em-

ulator runs hotter in the first few years than that of the

corresponding two-box model. Moving from two to

FIG. 7. Impulse responses of fitted k-box models. The curves are

the expected temperature trajectories of the first box of the fitted

models in response to a unit-impulse forcing. The solid and dashed

curves correspond to three-box and two-box fits respectively, fitted

usingmaximum likelihood.Models are (a)MIROC5 and (b) IPSL-

CM5A-LR.

TABLE 6. Instantaneous increase in surface temperature (K) under

a unit-impulse forcing scenario. Results are given for two-box and

three-box maximum likelihood fits. Also given is the percentage in-

crease moving from two to three boxes. MMM refers to the k-box

model fitted to the average of the datasets from all 16 ESMs.

Model

MLE

two-

box

MLE

three-

box

Percent

increase

BCC-CSM1.1 0.13 0.19 42

BNU-ESM 0.17 0.25 45

CanESM2 0.15 0.22 48

CCSM4 0.14 0.23 58

CNRM-CM5.1 0.12 0.25 106

CSIRO-Mk3.6.0 0.19 0.28 50

FGOALS-s2 0.16 0.23 42

GFDL-ESM2M 0.14 0.21 46

GISS-E2-R 0.17 0.20 17

HadGEM2-ES 0.13 0.28 114

INM-CM4 0.14 0.23 72

IPSL-CM5A-LR 0.14 0.37 174

MIROC5 0.18 0.21 22

MPI-ESM-LR 0.16 0.23 46

MRI-CGCM3 0.13 0.22 74

NorESM1-M 0.12 0.19 54

MMM 0.12 0.19 62
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three boxes increases the instantaneous sensitivity by

between 17%and 174% (see Table 6). This suggests that

when modeling the GMST response to impulse-like

forcing events such as volcanic eruptions the greater

flexibility of a three-box model might prove valuable.

Figure 8 compares two-box model parameter esti-

mates obtained using maximum likelihood with those

obtained by Geoffroy et al. (2013b). Maximum likeli-

hood typically yields lower estimates of the heat ca-

pacities C1 and C2 but higher estimates of the heat

transfer coefficient k2. This results in shorter estimated

characteristic time scales t1 and t2 when usingmaximum

likelihood. Estimates of the radiative parameters k1, «,

and F43CO2
appear insensitive to the choice of fitting

methodology in the case k 5 2.

Under the proposed observation model (see section 4c),

a fitted k-box model can be combined with temperature

and forcing data to filter the (possibly noisy) observa-

tions and estimate the temperatures of the unobserved

boxes (see Fig. 9). In this way we can see the attenu-

ation of natural variability in temperature with in-

creasing depth. The thermal inertia of the deep ocean

boxes with their large heat capacity means that in the

CO2 quadrupling experiment the noise in these boxes

is dwarfed by the signal. Filtering and hidden state

estimation with k-box models is not restricted to step

responses or AOGCM experiments, but rather is ap-

plicable to any combination of global temperature and

radiative forcing data, including the observational

record.

FIG. 8. Maximum likelihood parameter estimates for two-box models compared with corresponding estimates

from Geoffroy et al. (2013b). Each point is one of 16 ESMs from CMIP5. The solid lines have equation y 5 x and

show where estimates are the same for both fitting methodologies. Plot axes are logarithmic.
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8. Summary

The k-box energy balance model in this paper offers a

simple but flexible representation of the response of

global mean surface temperature to radiative forcing,

both deterministic and stochastic, over a range of time

scales. Parameter estimation for this class of model is

nontrivial: since we can typically observe the tempera-

ture of only the first box, we have a situation where for

k$ 2 at least half of the model state variables are latent.

We have shown how, by finding a state-space repre-

sentation of the linear dynamic system and evaluating

the likelihood recursively via the Kalman filter, maxi-

mum likelihood estimates of all model parameters may

be obtained.

The k-box model is a linear time-invariant system and

thus characterized by its response to a step forcing, a

forcing scenario that has been simulated in AOGCM

experiments. A simulation study has been carried out to

investigate the feasibility, reliability, and performance

of the proposed method when applied to step-response

data. The proposed method has been found to reliably

estimate the k-box model parameters.

An important advantage of maximum likelihood es-

timation is that optimal model complexity can be chosen

using information criteria. To demonstrate this, two-

box and three-box models were fitted to each of a set

of 16 Earth system models from CMIP5 with the opti-

mal number of boxes chosen by Akaike’s information

criterion. It was found that for all 16 AOGCMs three

boxes are required for optimal k-box emulation. Results

obtained via maximum likelihood estimation were com-

pared with equivalent results from the method of

Geoffroy et al. (2013b). It was found that estimates of

some model parameters differ systematically depending

on the choice of fitting method. The number of boxes, k,

was found to influence the impulse responses of the

fitted models, sometimes strongly. These results suggest

that, under impulse-like forcing scenarios, AOGCM re-

sponsesmight be better emulated using three-boxmodels.

Finally, an example has been presented showing

how a fitted k-box model can be combined with tem-

perature and forcing data to reconstruct the tempera-

tures of unobserved boxes corresponding to the deep

ocean. Noise filtering and hidden state estimation using

k-box AOGCM emulators are possible wherever we

have a combination of global temperature and radiative

forcing data, including the observational record.
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APPENDIX A

Proof that Eigenvalues of Matrix A are Real and
Non-Positive when e 5 1

Consider the k 3 k matrices Ay and D where

Ay
i,j 5

8>>>>><
>>>>>:

2(k
i
1 k

i11
)/C

i
, if i5 j ,

k
j

. ffiffiffiffiffiffiffiffiffiffi
C

i
C

j

q
, if j5 i1 1,

k
i

. ffiffiffiffiffiffiffiffiffiffi
C

j
C

i

q
, if j5 i2 1,

0, otherwise,

(A1)

and D is a diagonal matrix with leading diagonal

(1,
ffiffiffiffiffiffiffiffiffiffiffiffi
C2/C1

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2C3/C1C2

p
, . . . )0. If « 5 1 the matrix A is

similar to Ay by the similarity transform A 5 D–1AyD.

FIG. 9. Reconstructed three-box model state variables in the

MRI-CGCM3 step-forcing experiment. The dots are observed

surface temperatures T1(t) while the solid curves are reconstructed

time series of the latent variables in their respective units. Latent

variables are, from top to bottom, radiative forcing F(t) (inWm22)

and deep ocean box temperatures T2(t) and T3(t) (in K).
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Since matrix Ay is real and symmetric it must have all

real eigenvalues. By similarity, all eigenvalues of A are

therefore real. Applying the Ger�sgorin circle theorem

(Ger�sgorin 1931) to A it follows that the eigenvalues of

A are also non-positive.

APPENDIX B

Discretization of the Full k-Box Model

Equation (12) can be rearranged as follows:

_x(t)2A1x(t)5 bu(t)1w(t) . (B1)

Multiplying by the integrating factor e2A1t we have

d

dt
[e2A1tx(t)]5 e2A1tbu(t)1 e2A1tw(t) . (B2)

Integrating with respect to time,

e2A1tx(t)5

ðt
s52‘

e2A1sbu(s)1 e2A1sw(s) ds , (B3)

so that, multiplying by eA1t, we obtain

x(t)5

ðt
s52‘

eA
1(t2s)bu(s)1 eA

1(t2s)w(s) ds . (B4)

As a linear function of Gaussian random variables x(t) is

itself Gaussian and hence fully characterized by its mean

and covariance. Since E[w(t)] 5 0 for all t,

E[x(t)jx(t2 1)]5 eA
1

x(t2 1)1

ðt
s5t21

eA
1(t2s)bu(s) ds ,

(B5)

where, assuming u(s) 5 u(t 2 1) for s 2 [t 2 1, t),

ðt
s5t21

eA
1(t2s)bu(s) ds5

ðt
s5t21

eA
1(t2s)bu(t2 1) ds (B6)

5 [2(A1)
21
eA

1(t2s)bu(t2 1)]
t

s5t21 (B7)

52(A1)
21
(I2 eA

1

)bu(t2 1) (B8)

5 (A1)
21
(eA

1

2 I)bu(t2 1). (B9)

For the covariance we have

cov[x(t)jx(t2 1)]5 cov

�ðt
s5t21

eA
1(t2s)w(s) ds

�
(B10)

5 cov

�ð1
s50

eA
1(12s)w(s) ds

�
(B11)

5 cov

�ð1
s50

eA
1sw(s) ds

�
, (B12)

where, since w(t) is white noise and hence uncorrelated

in time,

cov

�ð1
s50

eA
1sw(s) ds

�
5

ð1
s50

cov[eA
1sw(s)] ds (B13)

5

ð1
s50

eA
1scov[w(s)]eA

10
s ds (B14)

5

ð1
s50

eA
1sQeA

10s ds . (B15)

For additional information on this type of discretization

scheme see section 4.3 of Ljung (1987).

APPENDIX C

Marginal Covariance of the Stochastic Response

The k-box model is a linear dynamic system. Therefore

the response to a linear combination of inputs is equal to

the sum of the responses to individual inputs. In this way

we can separate themodel responses to deterministic and

stochastic forcing components. The stochastic component

of the response is driven by a purely stochastic input and

may be written

x(t)5A
d
x(t2 1)1w

d
(t), (C1)

which is a vector autoregressive process of order one

[VAR(1)]. The matrix-valued auto-cross-covariance

function G(h) is defined as

G(h)5G(2h)5E[x(t)x(t1h)0], (C2)

where the lag h is an integer.We seek the marginal auto-

cross-covariance matrix G(0), which is the a priori co-

variance of x0 in the Kalman filter. Define the backshift

operator B such that

Bx(t)5 x(t2 1). (C3)

We can write

(I2A
d
B)x(t)5w

d
(t) (C4)

and
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x(t)5 (I2A
d
B)21w

d
(t) (C5)

5 (I1A
d
B1A2

dB
2 1 � � � )w

d
(t) . (C6)

The geometric series converges when the VAR(1) pro-

cess is stationary (i.e., all eigenvalues ofAd lie within the

unit circle in the complex plane).

G(0)5E[x(t)x(t)0] (C7)

5E[(I1A
d
B1 � � �)w

d
(t)w

d
(t)0(I1A0

dB1 � � �)] .
(C8)

Since

E[Biw
d
(t)w

d
(t)0Bj]5Q

d
d
ij
, (C9)

where dij denotes the Kronecker delta, we have

G(0)5Q
d
1A

d
Q

d
A0

d 1A2
dQd

A20
d 1 � � � : (C10)

The infinite series can be computed as follows using the vec

operator and the Kronecker product (Luetkepohl 1991).

vec[G(0)]5 vec(Q
d
)1 vec(A

d
Q

d
A0

d)

1 vec(A2
dQd

A20
d )1 � � � (C11)

5 vec(Q
d
)1 (A

d
5A

d
)vec(Q

d
)

1 (A2
d5A2

d)vec(Qd
)1 � � � (C12)

5 (I2A
d
5A

d
)21vec(Q

d
) . (C13)

Note (I 2 Ad 5 Ad) is invertible because eigenvalues of

Ad 5 Ad are products of eigenvalues of Ad and hence

have modulus, 1 when the VAR(1) process is stationary.

APPENDIX D

Analytical Responses under Idealized Forcing
Scenarios

a. Unit step forcing

The k-box model response under a unit step-forcing

scenario

F
step

(t)5

�
1, if t$ 0,

0, otherwise;
(D1)

can be written

x
step

(t)5
1

k
1

(12 eAt1) , (D2)

where 1 denotes the vector of ones (1, . . . , 1)0. The unit-
forced equilibrium temperature is 1/k1, which is obtained

by setting Eq. (7) equal to zero and solving for

T1 5 � � � 5Tk. As the k-box model is linear, transient

relaxation to the new equilibrium temperature is

exponential.

b. Unit impulse forcing

Differentiating xstep(x) with respect to time we obtain

the response to a unit-impulse forcing

F
imp

(t)5 d(t) , (D3)

where d(t) denotes the Dirac delta function:

x
imp

(t)52
1

k
1

AeAt1 . (D4)

This follows from the fact that an impulse is the time

derivative of a step forcing.

c. Transient climate response

Integrating xstep(x) with respect to time and scaling

appropriately we obtain the transient climate re-

sponse (TCR)

x
TCR

(t)5
log1:01

log4

ðt
s50

F
43CO2

k
1

(12 eAs1) ds (D5)

5
log1:01

log4

F
43CO2

k
1

[t2A21(eAt 2 I)1] , (D6)

which is the response to atmospheric CO2 concentration

increasing at a rate of 1%yr21 starting at time t5 0. This

follows from the fact that an exponentially increasing

CO2 input is equivalent to a sequence of superimposed

1.01 3 CO2 step-forcing inputs. By linearity, the k-box

model response to this superposition of forcing inputs is a

superposition of the corresponding temperature outputs.
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