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The effects of threat on complex 
decision-making: evidence from a 
virtual environment
Aaron Laycock 1, Guy Schofield2 & Cade McCall1

Individuals living and working in dangerous settings (e.g., first responders and military personnel) 
make complex decisions amidst serious threats. However, controlled studies on decision-making 
under threat are limited given obvious ethical concerns. Here, we embed a complex decision-
making task within a threatening, immersive virtual environment. Based on the Iowa Gambling Task 
(IGT), a paradigm widely used to study complex decision-making, the task requires participants to 
make a series of choices to escape a collapsing building. In Study 1 we demonstrate that, as with 
the traditional IGT, participants learn to make advantageous decisions over time and that their 
behavioural data can be described by reinforcement-learning based computational models. In 
Study 2 we created threatening and neutral versions of the environment. In the threat condition, 
participants performed worse, taking longer to improve from baseline and scoring lower through the 
final trials. Computational modelling further revealed that participants in the threat condition were 
more responsive to short term rewards and less likely to perseverate on a given choice. These findings 
suggest that when threat is integral to decision-making, individuals make more erratic choices and 
focus on short term gains. They furthermore demonstrate the utility of virtual environments for 
making threat integral to cognitive tasks.

Keywords Threat, Virtual reality, Complex decision-making, Computational modelling, Iowa gambling task, 
Choice perseveration, Reward sensitivity

Some of life’s most difficult decisions are made within dangerous environments. Indeed, individuals such 
as first responders or military personnel make critical, complex decisions amidst threats to life and limb1–4. 
Nevertheless, many questions remain regarding the effects of threat on complex decision-making5. Research in 
this area furthermore presents considerable methodological challenges in terms of both manipulating threat and 
measuring decision-making’s underlying processes.

Complex decisions are characterized by uncertainty and the need to balance multiple competing goals6. 
This combination presents a significant cognitive challenge that is likely amplified in the presence of threats. 
In the most basic sense, complex decisions require attention, which itself is shaped by threat in many ways7. 
Furthermore, optimal decision-making frequently requires an individual to apply their existing knowledge 
and to learn about the given situation. These processes are also likely influenced by threat, given its effects on 
memory8 and learning9.

More specifically, complex decision-making often involves reinforcement learning; optimal choices depend 
upon accommodating for feedback from the environment10 and from the outcomes from one’s choices11. Threat 
may disrupt this ability to flexibly respond to changes in rewards and losses over time. For example, research 
demonstrates that under threat of shock, participants are slower to switch away from disadvantageous choices 
following negative feedback12. Other work suggests that threatened individuals are less likely to explore their 
options when problem-solving13 and instead employ simple heuristics14.

Despite these clues that threat negatively affects many of the cognitive processes underlying complex 
decision-making, research directly examining the effects of threat is limited and the findings are mixed15. This 
inconsistency may in part be due to fundamental differences in decision-making paradigms. Some work focuses 
on decisions from description, where participants respond to hypothetical questions (e.g., participants are 
asked, “If X happened, how would you respond?”), while other work focuses more directly on decisions from 
experience (e.g., participants are put in X situation and must make an actual decision). These different approaches 
sometimes yield different conclusions16. For example, research using decisions from description supports the 
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idea that individuals overweigh low probability events when making risky decisions17, while research using 
decisions from experience suggests that individuals actually underweigh them in those circumstances18.

Research on decisions from experience has frequently used multi-armed bandit tasks19, tasks in which 
participants’ decisions incur costs and benefits. The Iowa Gambling task (IGT20), for example, requires 
individuals to select cards from four separate decks over a sequence of trials. Each selection leads to losses 
and gains, usually in financial terms. Initially, individuals have no information about the probability of payoff 
from the decks. Instead, they gain information from sampling the decks across trials. Maximising net reward 
depends on an individual’s ability to learn which decks are most profitable over time and to adapt their choices 
accordingly. Performance on the this task is ostensibly representative of real-world decision-making and its 
underlying cognitive processes20,21. When it comes to the effects of threat on multi-armed bandit tasks, findings 
are mixed. Some studies find that threat or acute stress decreases overall performance22, while others find it can 
improve aspects of decision-making23. Still others find no effect at all24.

This diversity in results is perhaps not surprising given the variety of methods used across studies5. Critically, 
threat is manipulated in different ways, often via a task that is incidental to the decision-making task itself. For 
example, some studies have examined the effect of threat on IGT performance by manipulating anticipatory 
stress; participants complete the decision-making task while knowing that afterwards they will be asked to 
complete a public speaking task22,25–27. Other studies have participants complete a decision-making task after a 
stressful experience, such as a cold pressor task28.

The manipulations in these examples are indeed effective, eliciting both subjective and physiological responses 
and oftentimes affecting decision-making performance22,25–27. Nevertheless, the relationship between the threat 
and the decision-making task in these paradigms is incidental; the outcome of decisions is not directly related 
to the outcome of the threat. While these incidental manipulations of threat can elicit a threat response, they 
may only tell us about situations where threat is a distractor (i.e., situations in which optimal performance might 
rely upon ignoring the threat). But they may not tell us about situations when threat is integral to the decision-
making task (i.e., when optimal performance determines success in dealing with the threat). This distinction 
is likely critical in the “real world”. For example. threat might act as a distractor for a military medic making 
decisions about how to deliver care to a patient in the midst of a hostile environment. On the other hand, threat 
is integral to decision-making when that medic is choosing the safest route out of hostile environment. In this 
sense, real world threats might play a very different role depending on whether they are incidental or integral to 
the decision at hand.

Virtual reality provides one means of creating paradigms where threat is integral to decision-making. Virtual 
environments can elicit subjective and physiological responses via simulations of threats such as being perched 
precariously on the edge of a cliff or being surrounded by dangerous animals29–31. They can also immerse 
individuals in ambiguously threatening environments which create a prolonged experience of anxiety and 
unpredictability32. As such, they potentially allow researchers to create decision-making tasks in which one’s 
decisions are integrally connected to threats in the surrounding environment.

Another potential cause for the diversity of results in the threat and decision-making literature is the disparity 
in decision-making measures. Multi-armed bandits have been used to examine learning from feedback, loss 
aversion, risk taking, and other features of complex decision-making that are potentially affected by threat. 
Even within a given paradigm, approaches differ. With regards to the IGT, measures have evolved over time. 
Performance was initially quantified by simply calculating the ratio of advantageous over disadvantageous 
choices20,33. More recent research has shifted the focus to the cognitive processes underlying those choices via 
computational modelling of the behavioural data34–36. Depending on the nature of the model, these methods 
derive a range of parameters that reflect learning and decision-making mechanisms such as reward sensitivity, 
loss aversion, and choice perseveration.

Recent work along these lines suggests that threatened individuals may be less responsive to feedback from 
their choices in the IGT37. Although the detrimental effect of threat on overall IGT score reported in previous 
studies22,27 was not replicated in Ben Hassen and colleagues’ study37, their computational modelling suggests 
that threatened participants were less sensitive to feedback. However, the particular computational model used 
in their study did not distinguish between loss aversion and sensitivity for reward, which might be critical in our 
understanding of the general effects of threat23,38. The novel Outcome-Representation Learning model (ORL)34 
addresses this concern. Developed to reflect the cognitive strategies that underpin performance on the IGT, the 
ORL has separate parameters for loss sensitivity, reward sensitivity, and reward frequency sensitivity. Moreover, 
the ORL also has parameters for memory and choice perseveration, key features of complex decision-making 
that the abovementioned research suggests could be influenced by threat.

In the studies presented here, we sought to address open questions regarding the effects of threat on complex 
decision-making. Specifically, we sought to test if a threat that is integral to the decision-making process would 
lead to decrements in decision-making performance. We also sought to test if, as the literature suggests, threat 
would lead to a change in reward or loss sensitivity37 as well as a reduced tendency to explore the range of 
options12–14. To do so, we developed a VR-based complex decision-making task structured like the IGT, in which 
decisions were tied directly to threats in the environment. We furthermore used the ORL computational model 
to explore the effects of integral threat on cognitive underpinnings of complex decision-making.

Study 1
The aim of Study 1 was to pilot a virtual world for observing complex decision-making in a naturalistic and 
potentially threatening environment. We embedded a task based on the IGT within a virtual reality environment 
(the VRIGT). We then tested whether performance would improve over the course of trials, in line with the 
traditional IGT20. We also tested whether the ORL computational model used to fit IGT data would also work 
with VRIGT data.
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Method
Participants
Seventy-one (71) participants were recruited to take part in Study 1. One participant was excluded due to 
medical concerns. Of the full sample (70), 58 participants (34 females, 24 males) completed all measures without 
technical difficulties. All participants were over 18 years old. Participants were given the opportunity to receive 
either course credit or a six-pound gift card as reimbursement for their time. Approval for the data collection was 
granted by the ethics committee of the Psychology Department at the University of York, and all experiments 
were performed in accordance with relevant guidelines and regulations.

VRIGT
We developed the VRIGT on the gaming development platform Unity (version 2020.3.15f2) using the SteamVR 
plugin (version 2.7.3). Some materials were imported from the Underwood Project32. The VRIGT was constructed 
around three scenes: a pre-scene (for practice and instructions), a test-scene (task) and an end-scene (end task).

The VRIGT test-scene was based on the Iowa Gambling Task20. In each trial of the classic IGT, participants 
select a card from one of 4 decks (A, B, C or D). Each turn of a card results in losses and or rewards. While 
the amount returned from any given deck changes between trials, some decks offer greater rewards over time. 
Success on this task relies on the ability to identify the pattern of reward and adapt choice accordingly39.

In Study 1’s version of the VRIGT, participants are told that they are in a building that is slowly collapsing, 
and their goal is to maximise distance from a danger zone. On each trial they enter a new room. Their task is to 
choose which door they will use to exit that room. These doors (4 doors = A, B, C and D) replace the decks of the 
IGT; the financial rewards of the IGT are replaced with meters from the danger zone. In other words, each door 
selection changes the participant’s distance from the danger zone. Participants see their current distance via a 
display located within their view (see Fig. 1c).

Scoring starts at a distance of 2000 m from the danger zone (as opposed to $2000 facsimile US bills in the 
traditional IGT)20. The specifics of each selection, e.g., “You gained 100 m from the danger zone, but you lost 
250 m”, are also played via an audible recording. This recording is paired with a 4-s visual fade to darkness, 
which alerts the participants that a selection has been made. As with the classic IGT, the VRIGT measures the 
participant’s ability to identify the pattern of rewards and losses (e.g., the door that statistically offers the largest 
distance increase from the danger zone) and to adapt choice accordingly. In study 1, the VRIGT test-scene 
consisted of 80 trials (as in40). We chose the 80 trial version of the IGT instead of the original 100 trial version 
to avoid any fatigue that might arise from wearing the HMD. These 80 trials were subdivided into four 20-trial 
blocks for analysis.

Doors in the VRIGT were colour-coded to ensure that participants recognized them from trial to trial (see 
Fig. 1b). Two versions of the VRIGT were created to counterbalance door colour. As with IGT decks A and 
B, VRIGT doors A and B are low-scoring in the long run. Although selecting these doors offers the highest 
maximum per-trial reward (100 m gained from the danger zone), choosing these doors leads to greater losses 
over time. Doors A and B are identical in sum of losses but differ in frequency of loss. Door A has a series of 
regular small losses, whereas Door B is associated with rare but large losses. As with decks C and D in the IGT, 

Fig. 1. Illustrations of the VRIGT Test Scene. (a) During the VRIGT test-scene, participants are orientated in 
the centre of a single room and have 360° freedom to rotate. Colour-coded doors are presented at the centre 
of each of the surrounding walls. The red dot represents the players’ location. (b) Door choices are made by 
placing the raycaster (green laser graphic) over the appropriate door and selecting using the trigger button. (c) 
At all stages during the test-scene, participants can view their current distance from the danger zone (index 
of reward) on a visible graphic. (d) At the end of the test-scene (i.e., after 80 trials), participants are instructed 
that they have safely escaped the building (end-scene).
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doors C and D return a low reward initially (50 m gained), yet the loss over time is less. The frequency of loss 
received from selecting doors C and D are matched to doors A and B, respectively. The scoring matrix used in 
the VRIGT is based on the original IGT (as used in41).

Study 1’s version of the VRIGT was made to be ambiguously threatening following the approach of McCall et 
al.32. Following every door selection, the volume of a background audio clip (of a building demolition) increased 
by a small amount. Lighting was dim, the air appeared dusty (via a particle system), and participants used a torch 
to illuminate the room.

Hardware
Participants experienced the immersive virtual environment via a VIVE head-mounted display (HMD) with an 
integrated Dual AMOLED 3.6’’ diagonal screen, a resolution of 1080 × 1200 pixels per eye (2160 × 1200 pixels 
combined), refresh rate of 90 Hz, and a 110 degrees field of view. Participants also used a wireless VIVE controller 
with dual-stage trigger and integrated HD haptic feedback. For audio, participants wore wireless headphones set 
to a maximum volume of 80%.

Questionnaires
In the pre-task questionnaire, participants were asked about their age, gender, and video game experience. 
For exploratory purposes, participants also completed individual difference scales related to intolerance of 
uncertainty; these are not reported here. In the post-task questionnaire, participants completed a series of 
questionnaires about their experience in the VRIGT. To rate subjective experience of affect, participants 
used a slider (ranging from “not at all = 0” to “a great deal = 100”) to rate the extent to which the VRIGT was: 
“frightening”, “creepy”, “unpredictable”, “amusing”, “funny”, “engaging”, “confusing”, “disgusting”, “interesting”, 
“surprising”, “frustrating”, “sad”, “boring”, and “enjoyable”32. Participants also completed user engagement42, and 
tension43 scales (see Supplementary Materials for details).

Procedure
After providing informed consent and completing the pre-task questionnaire. Participants were then told what 
to expect over the course of the task. This included information regarding the VRIGT layout and how to make 
selections with the controller. Participants were then helped into the HMD and were introduced to the virtual 
world. We counterbalanced the starting orientation between conditions across four possible orientations. This 
was done to control for any bias resulting from the spatial start location.

The initial VRIGT pre-scene provided participants with instructions and an opportunity to practice using 
the controller. Participants were instructed to identify all four doors in the visual display, confirm that the audio 
level was sufficient, and make a door selection using the appropriate trigger located on the controller. At the end 
of the pre-scene, participants listened to a set of instructions presented within the virtual world that provided 
the task narrative, aims, and rules (see Supplementary Materials). Participants then completed the task itself for 
80 trials (door selections).

After the trials were completed the task ended and participants were told that they had successfully escaped 
the building. Participants then completed the post-task questionnaire. Participants were then debriefed and 
given information about payment or course credit.

Analysis
Performance during the VRIGT
As with the traditional IGT20, performance was calculated as a difference between advantageous and 
disadvantageous selections (C + D) − (A + B). Positive scores (> 0) demonstrate an overall trend of selecting 
doors that minimise net loss. We calculated an overall score (all 80 trials) as well as a score for each 20-trial 
block, as is the convention44. In the traditional IGT, participant performance improves over the blocks45 with 
improvement expected after about 40 trials in non-clinical populations 46. This increase reflects participants 
learning to discriminate between advantageous and disadvantageous choices over consecutive trials20.

Computational modelling
We also tested whether the ORL computational model used to successfully model IGT data in prior research 
would also fit our VRIGT data. Prior research34 tested the ORL’s model performance (e.g., short- and long-term 
prediction accuracy and parameter recovery) using data from multiple IGT studies with diverse samples. The 
ORL showed comparable or better performance than other models used to analyse IGT data.

Moreover, the ORL provides parameters that are theoretically important for understanding the influence 
of threat on complex decision-making. (1) Reward sensitivity (Arew), where higher values represent a greater 
influence of reward on learning (from 0 to 1); (2) loss sensitivity (Apun), where higher values represent a greater 
influence of punishment on learning (from 0 to 1); forgetfulness (K), which represents how quickly decision 
makers forget their past choices (from 0 to 242), with greater values representing shorter retention; reward 
frequency sensitivity (betaF), in which selections are based on win frequency (from—∞ to + ∞) and positive 
values demonstrate a preference for options with a high win frequency; 5) choice perseveration (betaP), where 
higher values reflect a tendency to repeatedly select from the same option (from—∞ to + ∞).

To confirm that the ORL had at least equivalent fit for VRIGT data as other IGT-related computational 
models, we also tested the Prospect-Learning Valence Delta model47, the Prospect-Learning Valence Decay 
model48, the Value-Plus-Perseverance model49, and the Outcome Representation Learning model34.

Modelling was run using the “hBayesDM” in R50, following Haines et al.34. All models were sampled for 4000 
iterations, with the first 1500 as warmup (i.e., burn-in) across four sampling chains (10,000 posterior samples for 
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each parameter total). Model convergence was judged visually by inspection of trace-plots and assessment using 
the Gelman–Rubin test51, R̂ values < 1.1 suggest adequate model convergence.

Software
All analyses were done in RStudio 4.2.1 [64]52, using R basic or the “lme4” 1.1-26 package53. For all LMMs, 
p values were calculated using the “lmerTest” package 3.1-354 and the ANOVA function using Satterthwaite’s 
method for F tests. Pairwise post hoc comparisons were calculated using the “emmeans” package 1.6.355. All 
pairwise post hoc comparisons used a Tukey correction for p-values. A MVT correction was applied when 
adjusting for multivariate comparisons. The “bayesplot” package was used visualise posterior predictive checks56. 
Finally, univariate outliers were identified using the median absolute deviation (MAD) using the “routliers” 
package57.

Results
Regarding previous gaming experience, the sample was generally balanced: none = 19 (26.76%), some = 31 
(45.07%), and lots = 20 (28.16%). See Supplementary Materials for details of reported user engagement, tension, 
and subject experience (see Supplementary Fig. 3) during the VRIGT.

Performance during the VRIGT
Performance scores (M = − 1.79, SD = 16.72, 95% CIs: − 6.19, 2.60) were normally distributed. Using the 
threshold of 3* MAD (+/− median), no outliers were identified. To model the effect of performance over time, we 
used a linear mixed-effects model (LMM) using block as a fixed factor and performance score as the dependent 
variable. Block 1 was used as the reference level. Intercepts were allowed to vary as a random factor at the level 
of the individual. Results demonstrate (see Supplementary Table 2) that the effect of block on performance was 
significant (F(3, 171) = 9.26, p > 0.001). Performance improved as blocks progressed. Performance in blocks 3 
(t.ratio (171) = 4.65, p < 0.001) and 4 (t.ratio (171) = 4.09, p < 0.001) was significantly better than block 1 (see 
Fig.  2). Post hoc comparisons between sequential blocks show that the performance significantly improved 
between blocks 2 and 3 (t.ratio (171) = − 2.90, p = 0.022, all other p’s > 0.05). As with the traditional IGT44,46, these 
results demonstrate that at group level, the ability to discriminate between advantageous and disadvantageous 
choices improved after approximately the 40th trial.

Computational modelling
As with prior research on the IGT, each of the computational models we tested had adequate model convergence 
with all R̂ values < 1.1. The best model fit (see Supplementary Table 1), however, was with the Outcome 
Representation Learning model34 (see Supplementary Figs. 1 and 2 for posterior distributions of the hyper 
(group) parameters and posterior predictive checks).

Study 2
Building on the findings of Study 1, we developed threatening and nonthreatening versions of the VRIGT. This 
allowed us to test if integral threat affects learning and overall performance in a complex decision-making task. 
We also used the ORL computational model to test for any effects of threat on key parameters in the decision-
making process (e.g., reward sensitivity, loss sensitivity, choice perseveration, and etc.). The research questions 
and analyses for this study were preregistered [As predicted: 130526].

Fig. 2. Performance over time. Error bars represent −/+ standard error. *Indicates differences from baseline 
with a significant p value * < 0.050, ** < 0.01, *** < .001.
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Methods
Participants
One-hundred (100) participants (male = 46, female = 51, non-binary = 3) with an average age of 20 (M = 20.84, 
SD = 4.23) participated in Study 2. This sample size was chosen based on power analyses using the “smir” package 
in R58; see Supplementary Materials for details. Participants reported a range of gaming experience, none = 13%, 
some = 53%, and a great deal = 34%. Participants were randomly allocated into either the threatening (n = 50) 
or nonthreatening (n = 50) experimental conditions. Approval for data collection was granted by the ethics 
committee of the Psychology Department at the University of York and all experiments were performed in 
accordance with relevant guidelines and regulations.

Materials
The materials used in Study 2 were similar to those of Study 1 with a few changes. Study 2 used two versions of 
the VRIGT, a threatening version and a nonthreatening version. In the threatening version, participants were 
told that their task was to escape a collapsing building. In the nonthreatening version, participants were simply 
told that their task was to exit an office building; there was no mention of any threats (transcripts available in the 
Supplementary Materials). We used these two versions in a between-subjects design which we chose to avoid 
practice effects from repeating the IGT59.

In terms of the virtual world’s content, both VRIGT versions used in Study 2 included a prime-scene before 
the task (150 s). This prime-scene differed between conditions (see Fig. 3). In the threat condition, participants 
entered an elevator that gradually descended 8 floors. The elevator had transparent doors and on each floor 
the doors opened. Over the course of the descent, participants encountered threats that gradually increased in 
intensity. First, an audible warning instructed participants not to enter the lift (although they had no control in 
doing so). This was followed by an exploding light fitting, fire in the hallway opposite the elevator, cracking lift 
windows, further encroaching fire, and finally, smoke which filled the lift compartment (video in Supplementary 
Materials). The nonthreatening condition included a different prime-scene (also 150 s); participants still rode 
the elevator for 8 floors, but there were no threatening stimuli, they simply travelled past floors of a mundane 
office building.

We also changed the content of the task rooms slightly in Study 2. To give a sense of moving through a series 
of different rooms (as stated in the narrative), the appearance of the task room changed between trials for both 
conditions. These changes included subtle adaptations to the walls, floor, and lighting. In between trials, the 
time of the fade was extended to 4.8 s. There were also minor differences between conditions in the task scenes. 
Capitalizing on the threatening effects of darkness60, lighting in the threat condition was the same as Study 1 
(i.e., dim with a torch), while rooms were more brightly lit in the nonthreatening condition. The threat condition 
also included ambient red lighting to signal danger61 and some aversive sound effects. These effects were taken 
from sounds already experienced by the participants during the prime-scene but were not paired with any visual 
effects. Because participants did not report fatigue in the 80 trial version from Study 1, we increased the number 
of trials during the task to 100, meaning that the test-scene did not end until these trials had been completed.

To measure differences in physiological arousal between conditions, skin conductance level (SCL) and heart 
rate (via ECG) were recorded using AcqKnowledge 5.0 software (Biopac Systems Inc., Santa Barbara, CA) and 

Fig. 3. Screenshots of Study 2 prime-scenes for the two conditions.

 

Scientific Reports |        (2024) 14:22637 6| https://doi.org/10.1038/s41598-024-72812-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the Biopac MP160 acquisition system. SCL was recorded using a wireless Biopac BioNomadix amplifier (BN-
PPGED). The electrodes were attached to the middle phalanges of the left middle and index fingers. Heart 
rate was recorded using a wireless Biopac BioNomadix ECG (BN-RSPEC) amplifier with a three-lead set. 
Electrodes were placed on the sternal end of the right clavicle, left mid-clavicle, and lower left rib cage. These 
physiological data were collected during a 5-min baseline before the task, during the prime scene, and during 
the task itself. Heart rate data were averaged over these blocks. For skin conductance data, we took the average 
skin conductance minus baseline over the given block. Due to a technical fault during recording, we excluded 
two participants’ SCL data from this analysis.

To test for differences in timing between conditions, we also recorded trial time length.

Results
Manipulation checks
To test differences in subjective experience between the two conditions, we tested for group differences in the 
post-task questionnaire (see Supplementary Figs. 4 and 5). For the affect variables, we used a LMM to predict 
rating, with fixed factors for affective category (e.g., “unpredictable”), condition, and their interaction. Intercepts 
were allowed to vary as a random factor at the level of the individual. A significant effect of condition (F(1, 
98) = 23.31, p > 0.001), and its interaction with affective category (F(13, 1274) = 7.44, p > 0.001) was found on 
rating (see Supplementary Table 3). Post hoc comparisons of affective terms suggested that between conditions, 
only ratings that the VRIGT was “frightening” (t.ratio (1179) =− 7.46, p < 0.001), “creepy” (t.ratio (1179) =− 6.51, 
p > 0.001), and “surprising” (t.ratio (1179) =− 3.42, p = 0.009, all other p’s > 0.05) were significantly different, 
with those in the threat condition reporting higher ratings in all instances (see Supplementary Table 4). The 
MVT correction was applied to adjust for multivariate comparisons.

We compared mean heart rate between conditions for the baseline, prime-scene, and task-scene. At 
baseline there was no significant difference in heart rate between the threatening (M = 89.77, SD = 15.62) 
and nonthreatening (M = 86.94, SD = 12.20) conditions, t (98) = − 1.01, p = 0.314. During the prime-scene, 
average heart rate was significantly higher in the threatening (M = 98.85, SD = 17.08) versus nonthreatening 
(M = 92.76, SD = 13.28) conditions, t (98) = − 1.99, p = 0.049. During the task-scenes, heart rate was also higher 
in the threatening (M = 101.29, SD = 17.04) versus the nonthreatening (M = 94.93, SD = 11.95) conditions, t 
(98) = − 2.16, p = 0.033.

We found no effect of condition on average SCL at baseline. There was also no difference between conditions 
in the baseline corrected averages for the prime or task scenes (all p’s > 0.050).

The average trial time taken (in seconds) on each trial during the task-scene was not significantly different 
between the threatening (M = 5.85, SD = 2.02) and nonthreatening (M = 5.47, SD = 1.33) conditions, t 
(98) = − 1.10, p = 0.273.

Performance
Performance scores were normally distributed, and no outliers were identified. A t test (two-tailed) comparing 
performance between threatening (M = − 13.04, SD = 29.13) and nonthreatening (M = − 0.92, SD = 22.22) 
conditions showed a significant difference, t (98) = − 2.15, p = 0.034. Participants performed worse in the threat 
condition.

To assess performance over time, we ran an LMM with block, condition, and their interaction as fixed 
factors. Block 1 was used as the reference level. Intercepts were allowed to vary as a random factor at the level 
of the individual. Results demonstrate (see Supplementary Table 5) that the effect of condition (F(1, 98) = 4.62, 
p = 0.034), and its interaction with block (F(4, 392) = 2.47, p = 0.045) on performance was significant. A 
significant block by condition interaction on performance (see Fig. 4) was seen at block 3 (t.ratio (392) =− 2.87, 
p = 0.004) and block 5 (t.ratio (392) =− 2.47, p = 0.014, all other p’s > 0.05). This suggests that the differences 
in performance between the threatening and nonthreatening conditions first emerged at the point when non-
clinical individuals in traditional IGT studies begin to migrate toward the more advantageous decks (i.e., around 
the 50th trial46) and the point at which meaningful individual differences tend to emerge44. While participants 
in the threat condition seem to close the gap by block 4, their learning is apparently limited. As a consequence, 
participants in the nonthreatening condition have a higher score in the final block when the benefits of learning 
peak46.

Breaking this down for participants in the nonthreatening condition only, we ran an LMM to assess the effect 
of block as a fixed factor on performance, with intercepts being allowed to vary as a random factor at the level of 
the individual. Results demonstrated a significant effect of block on performance (F(4,196) = 12.87, p > 0.001). 
Blocks two (t.ratio (196) = 3.84, p < 0.001), three (t.ratio (196) = 4.50, p < 0.001), four (t.ratio (196) = 5.94, 
p < 0.001), and five (t.ratio (196) = 6.40, p < 0.001) were significantly higher than block one (see Supplementary 
Fig. 6 and Table 6). Post hoc comparisons between successive blocks confirmed that performance significantly 
improved between blocks 1 and 2 (t.ratio (196) =− 3.84, p = 0.002, all other p’s > 0.05).

A different pattern of results emerged in the threatening condition. Here again we used an LMM to assess 
the effect of block as a fixed factor on performance, with intercepts being allowed to vary as a random factor at 
the level of the individual. Results demonstrated a significant effect of block on performance (F(4, 196) = 5.37, 
p > 0.001). Yet, only blocks four (t.ratio (196) = 3.87, p < 0.001) and five (t.ratio (196) = 3.09, p = 0.002) were 
significantly higher than block one (see Supplementary Fig.  7 and Table 7). Post hoc comparisons between 
blocks confirmed that performance only significantly improved between blocks 3 and 4 (t.ratio (196) =− 3.33, 
p = 0.009, all other p’s > 0.05).
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Computational model
We applied the ORL, to the data from Study 2 for a more fine-grained analysis of behaviour across conditions 
(as in34). All R̂ values < 1.1 suggest adequate model convergence (see Supplementary Figs. 9 and 11 for posterior 
predictive checks). Here, the posterior distributions from components of the ORL model were compared 
between the threat and nonthreat conditions of the VRIGT. This approach allowed for comparison between 
groups on model components, given that comparisons that do not include 0 (no change) within the 95% highest 
density interval (HDI) can be considered strong evidence in support of a difference62.

This approach revealed differences in reward sensitivity and choice perseveration between participants in 
the threat and nonthreat conditions of the VRIGT (see Table1). Participants in the threat condition (on average) 
had a greater tendency to update expectations after experiencing reward. They also switched between options 
(doors) more frequently than participants in the nonthreat condition. We found no robust support for differences 
between conditions in terms of loss sensitivity, frequency sensitivity, or forgetfulness.

Discussion
Here we used a virtual reality-based version of the Iowa Gambling Task (IGT) to test the effects of threat on 
complex decision-making. We made threat integral to decision outcomes and tested its effects using both 
traditional measures of performance and computational modelling. In doing so, we show that threat reduces 
decision-making performance, likely by increasing focus on short-term rewards and decreasing meaningful 
choice perseveration.

In Study 1, we piloted our virtual reality version of the IGT (VRIGT). As with the traditional IGT, performance 
improved over the course of the task as participants learned to make more optimal choices. We were furthermore 
able to fit the data using computational models that have been useful for modelling IGT data in prior research34. 
Together, these findings are in line with previous work which shows that playing the IGT in a VR environment, 
when compared to a computerised desktop display, does not disrupt performance41. Moreover, participants’ 
subjective reports from Study 1 also suggest that the VRIGT provided a challenging and complex task.

Threat Nonthreat 95% HDI of comparison

Reward sensitivity 0.28 (0.05) 0.08 (0.01) 0.107, 0.299

Loss sensitivity 0.05 (0.01) 0.03 (0.01) − 0.018, 0.041

Forgetfulness 0.87 (0.34) 1.51 (0.26) − 1.487, 0.175

Frequency sensitivity 1.24 (0.21) 1.22 (0.18) − 0.540, 0.578

Choice perseveration 0.27 (0.66) 1.97 (0.57) − 3.481, − 0.046

Table 1. ORL group level comparisons. Means and SDs (in brackets) of the ORL model components. 95% HDI 
based on the posterior distributions for the mean differences between groups. Bold indicates strong evidence of 
a difference between conditions.

 

Fig. 4. Performance over time between conditions. Conditions (red = threat, grey = nonthreat). Error bars 
represent −/+ standard error. *Indicates differences between conditions with a significant p value * < 0.050, 
** < 0.01, *** < 0.001.
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In Study 2, we tested the effects of threat on complex decision-making performance and learning. We created 
two versions of the VRIGT, one threatening and one nonthreatening. The biggest differences between these 
conditions emerged before the task itself (i.e., in the prime-task scene), during which participants in the threat 
condition were immersed in a virtual building that was slowly collapsing. Participants in the nonthreatening 
condition were in a similar building but without the threatening details. This manipulation appears to have 
been effective, as participants rated the threatening environment as more frightening than the nonthreatening 
environment. Participants in the threatening condition also exhibited higher average heart rates throughout the 
experience (although we found no difference in skin conductance).

More importantly, the manipulation of threat negatively affected task performance overall and over time, 
with participants requiring more trials to significantly improve performance from baseline and scoring lower in 
the final block when compared with those in the nonthreatening condition. In general, these findings replicate 
previous work that demonstrated a negative impact of incidental threat on IGT performance and learning22,26,27. 
Our data add to this literature by showing these detrimental effects when threat is integral (and not incidental) 
to the decision-making task. Whereas prior work created situations where threat emerged as part of a separate 
task, divorced from the decision-making process itself, decisions in the VRIGT have direct relevance to threat 
imminence (i.e., on how far the participant is from danger).

To more closely investigate differences between conditions, we used the ORL computational model. These 
findings reveal that individuals in the threat condition were more driven by reward and displayed less choice 
perseveration (i.e., a greater tendency to switch between choices) over the course of the task. Indeed, these 
tendencies may be at the root of the poorer performance in the threat condition. Prior research has connected 
greater reward sensitivity with poor performance on the IGT63,64. The aim during the IGT (as is often the case 
in real-world situations) is to maximise net reward over time, which sometimes requires individuals to sacrifice 
immediate gain (e.g., the magnitude of a single trial) in favour of longer-term goals. Moreover, these findings 
support suggestions by Wemm and Wulfert22 that acute stress enhances the salience of reward-associated 
behaviours. Here, a bias to only focus on the metaphorical “carrot” and neglect the “stick” leads to sub-optimal 
performance.

These data are also roughly in line with Ben Hassen et al.37, who suggest that threat reduces loss aversion in 
the IGT, as evidenced by a lower index of the loss aversion parameter of the VPP computational model following 
threat manipulations. However, as noted by the authors, the VPP models loss aversion and sensitivity for reward 
as a single parameter (e.g., losses relative to gains). Therefore, the reported changes in this parameter in their 
study could be interpreted either as higher sensitivity to gains or as lower sensitivity to losses. We provide a 
degree of clarity here. We used the ORL model, which separates sensitivity for reward and loss34, and found that 
threat did not disrupt loss sensitivity, but did affect reward sensitivity.

The way individuals sample information via choice switching also tells us something about how they deal 
with complex decisions10. Some previous research suggests that when making decisions from experience, 
individuals in threat-related states sample more information before making a choice65. Yet these findings are 
at clear odds with suggestions elsewhere in the literature that incidental threat promotes premature closure, 
whereby an individual perseverates on a given choice before sufficiently exploring their options13,66. Here, using 
a task in which threat is integral to decision-making, we find that threat increased individuals’ tendency to switch 
between choices. That is, rather than early choice perseveration and limited exploration, threatened participants 
continued sampling from the different options. However, this greater exploration did not lead to improved 
performance. Instead, participants in the threatening condition performed worse than controls. With this in 
mind, the threatened group’s switching between options may have been more impulsive than strategic37. Future 
research could more directly test this claim with paradigms that evaluate impulsivity (e.g.,67). Moreover, future 
research could also directly test the effects of integral versus incidental threat on complex decision-making. 
Factors such as choice perseveration may be different when threat is an incidental distractor versus when an 
individual’s decisions have direct implications for the level of threat.

The findings presented here demonstrate the utility of combining existing decision-making paradigms with 
VR’s ability to effectively make threat an integral part of a task. Here, we used the IGT as our starting point. 
Future work could take a similar approach with other multi-armed bandit paradigms. Further work could also 
look at variability in the effects of threat on performance based on individual differences. Indeed, decision-
making is shaped by many factors including other forms of affect68,69, working memory70, and intolerance for 
uncertainty71.

Regardless, the current findings suggest that when threat is an integral part of complex decision-making, it 
can disrupt learning from feedback, focus attention on short term rewards, and reduce perseveration on adaptive 
choices. This pattern of effects may have real world implications for individuals living and working in threatening 
environments. Threat biases the decision-making process; knowing the nature of those biases might help people 
in dangerous settings keep themselves and others safe.

Data and code availability
Data, analysis code, and supplementary materials are available on the OSF repository, https://osf.io/jg2qv/?view_
only=0d42f9fce5d0466685e205fde92354d2.
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