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A B S T R A C T

The history of rail transport can offer valuable insights for future energy transitions due to its importance in
promoting clean mobility. There is a complex interplay between the evolution of the railway network, fuel
consumption, efficiency, energy service, and CO2 emissions that requires further exploration. We developed a
dataset that covers energy use in all stages of rail transportation, as well as the length of track, energy service,
and CO2 emissions at the world scale. To deal with missing data we utilized machine learning techniques for
the first time in a historical energy reconstruction study. Our analysis reveals that for world rail transport
(1) the final-to-useful efficiency has increased by 30-fold from 1840 to 2020, mainly due to the replacement
of steam trains with diesel and electric ones, (2) the peak in final energy use occurred in the 1940s, while
useful energy use and transport service continue to grow, (3) there was a reduction in the energy (carbon)
intensity from approximately 20 to 0.2 MJ/tkm (2 to 0.02 kg CO2/tkm) between 1840 and 2010, due not
only to the increase in final-to-useful efficiency but also to rising occupancy, better operating conditions, and
reduced losses by the passive system.
1. Introduction

1.1. Railways: past, present, and future

Rail transport has been promoted by the International Energy
Agency (IEA) as the backbone of sustainable mobility due to its high ef-
ficiency and low environmental impacts. According to the IEA, moving
one passenger along one kilometer by rail releases one-sixth and one-
eight of the CO2 emitted by air travel and car travel, respectively [1].
High-speed train routes have the potential to replace medium-distance
airplane flights, which would reduce the environmental footprint of
travelers. Furthermore, railways play a major role in sustainable city
planning, providing reliable, affordable, and high-quality public trans-
port. As cities grow and people are forced to live further away from the
center, greater demand for transport is expected. Fulfilling this demand
by individual vehicles means increases in air pollution, traffic, and CO2
emissions. Rail transport provides a cleaner alternative.
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However, trains were not always the most environmentally friendly
transport mode, as enormous amounts of coal were once consumed
by steam engines with engine efficiencies of around 2.5% [2]. The
UK was the first country to develop a railway system, beginning in
1821 with the Stockton-Darlington line [3]. The expansion of railways
in the UK was extremely fast, tripling its length of track between
1850 and 1900 [4]. France, Germany, Russia, and the USA, following
the UK’s lead, developed their rail network later in the 19th century,
consolidating train travel as the most relevant transport mode of the
time [4,5]. Most of the 20th century would still be dominated by steam
trains until electric and diesel-electric locomotives replaced them. Even
though both technologies implied a great increase in engine efficiency,
environmental impacts did not necessarily decline. The evolution of
railway network, passenger and freight traffic, fuel consumption, en-
ergy efficiency, and environmental impacts are complexly intertwined
and yet to be explored.
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1.2. Literature background

Other authors have partially studied the historical evolution of en-
ergy use in railways, however, the lack of data is a main challenge that
is still to be overcome. Bond et al. [6] estimated the world fuel (coal
and diesel) consumption in railways between 1850 and 2000, focusing
on black and organic carbon aerosol emissions, based on passenger
and freight service (measured in passenger-km and ton-km). Energy
intensity (fuel consumption per unit of energy service) was assumed to
be equal across different countries. Neither electricity consumption in
railways nor the useful stage (i.e. the physical work done at the draw-
bar) were explored. Moreover, the fuel consumption dataset developed
by Bond et al. [6] was not made available. De Stercke [7] also built a
worldwide database from 1900 to 2014 of final energy consumption, by
modeling solid fuel consumption as a linear combination of passenger
and freight service using exclusively data for the UK before 1940. After
that year, the trend was adjusted to fit IEA data in 1960 or 1971
(depending on data availability). De Stercke’s [7] method assumes that
before 1940 energy intensities were constant and homogeneous across
different countries. The primary, final, and useful stages were included
in this study, although energy efficiencies were estimated based solely
on GDP. De Stercke’s database is publicly available, however, transport
is reported as a single end-use, not divided into different modes. Pinto
et al. [8] built a database of world electricity consumption from 1900
to 2017 by end-use, including transport, at primary, final, and useful
stages. On the country level, Serrenho et al. [2] estimated the primary,
final, and useful energy use by rail transport in Portugal between 1856
and 2016 based on the growth rate of the length of track, which might
not be related to the actual fuel consumption.

World historical energy transitions in railways remains an under-
studied topic, as previous studies have struggled with incomplete tem-
poral and spatial data coverage. A way to cover partial datasets is by
utilizing machine learning techniques. In supervised machine learning,
the process begins with selecting one or more types of models, along
with the input variables that will be used to predict the desired out-
puts. The next step involves using a dataset that contains both inputs
(features) and known outputs to train the model. This training adjusts
the model’s parameters by minimizing the error between the predicted
values and known outputs. Once trained, the final model can then
be applied to estimate unknown outputs. Machine learning applica-
tions have been increasing significantly over recent years, providing
a consistent method for solving many problems, including sparse data
issues.

None of the studies on long-term historical energy reconstruction
previously mentioned used machine learning algorithms, apart from
simple linear regression. Previous studies that rely on expert-based
knowledge are highly dependent on author bias. Machine learning has
the potential to improve the accuracy of estimations, avoid repetitive
manual work, incorporate different types of data (e.g., numerical and
categorical), and standardize a consistent method for both estimation
and validation, a critical missing step in previous studies. Past historical
energy reconstruction problems did not estimate confidence intervals or
error metrics; therefore, it is difficult to assess their uncertainty.

Other fields used machine learning to predict time-dependent data.
Dudek [9] estimated short-term electricity load using a random for-
est, obtaining high accuracy results. Wu et al. [10] used a random
forest regressor to forecast influenza-like illness rates using historical
observations, first-order differences, and weather conditions as inputs.
Furthermore, Herrera et al. [11] compared traditional econometric
methods with random forests and neural networks for long-term fore-
casting of energy commodities prices, concluding that random forests
had the best performance. All in all, research across various fields has
increasingly employed machine learning techniques, particularly the
random forest regressor, to handle variables that change over time in
2

complex, non-trivial patterns. This approach facilitates the generation
of estimates using datasets comprising diverse types of data. A descrip-
tion of the random forest regressor, the choice of the algorithm, and
model training are more deeply explored in Section 2.3.2.

In this work we aim to address two research gaps: (1) the first
time to our knowledge use of machine learning in historical energy
reconstruction problems, accompanied by the quantification of uncer-
tainty, and (2) the analysis of rail primary energy to service, on a large
timescale, which is an opportunity to obtain insights not previously
seen in studies focused on a single energy stage or in shorter timespans.

1.3. Aim, contribution, and structure

The aim of this study is to gain a deeper understanding of the
historical evolution of rail transport, focusing on the efficiency of
energy use and the energy and carbon intensities of freight and passen-
ger service. The key contributions of this research are: (a) a publicly
available long-term database of rail energy use, (b) the application of
machine learning techniques to the relatively unexplored domain of
reconstructing historical energy data, and (c) insights regarding the
transitions in rail energy use over time. The long-term dataset on
energy usage offers a comprehensive overview of primary, final, and
useful energy, along with data on CO2 emissions, energy efficiencies,
energy services, and carbon and energy intensities. It was developed
using an extensive array of public but incomplete data on final en-
ergy (fuel consumption) and energy service demand. This study adds
value by pre-processing existing datasets, estimating missing data, and
estimating other variables (e.g., energy intensity, useful energy).

This paper is divided into 5 sections: Section 2 describes the meth-
ods used to build the database, including the description of the machine
learning approach to estimate final energy use. Section 3 presents the
main results, followed by their discussion in Section 4, and Section 5
concludes.

2. Methods and data

In this section, we present the main data sources used, describe the
methods used to estimate variables not addressed in previous studies
(e.g., carbon and energy intensities), and describe the methods used
to improve estimations from previous works. We begin with a brief
overview of the framework used, followed by a description of our
reconstruction.

2.1. Overview

The starting point of the database construction was identifying the
most relevant stages in the energy conversion chain regarding rail
transportation. Primary-to-final efficiency measures how much of the
natural resources extracted from nature reach the final consumer. The
final energy consumed by the engine is transformed into mechanical
work by spinning a shaft, which will then spin the wheels, pulling the
drawbar. The useful energy stage is defined as the closest to delivering
the energy service. In rail transport, one locomotive (typically) pulls
the cars behind it, connected by a drawbar, exerting a force through
a certain displacement. Energy efficiency in trains is measured from
the fuel consumed (final stage) to either (a) immediately after the
engine, defined as engine efficiency, or (b) to the drawbar, defined as
drawbar efficiency. The drawbar efficiency takes into account the trans-
formation of chemical energy into heat and from heat into mechanical
work, first at the driveshaft and then at the drawbar. The final-to-useful
efficiency may be estimated by multiplying the engine efficiency by
the engine-to-drawbar efficiency. Energy intensity is usually defined as
the final energy consumption per unit of service. Rail energy service
is divided into freight and passenger, accounted as ton-km (tkm) and
passenger-km (pkm). In other words, energy intensity directly links fuel
consumption to service, bypassing the useful stage. On the other hand,

useful energy intensity measures how much useful energy is consumed
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Fig. 1. Energy stages, CO2 emissions, length of track, and their relations: primary-to-useful efficiency (𝜂𝑃−𝑈 ), primary-to-final efficiency (𝜂𝑃−𝐹 ), final-to-useful efficiency (𝜂𝐹−𝑈 ),
useful energy intensity (𝐸𝐼𝑢), final energy intensity (𝐸𝐼𝑓 ), carbon intensity (𝐶𝐼), and carbon (emission) factor (𝐶𝐹 ).
Table 1
Variables quantified in this work, their units, time span they were quantified, and their description.

Variable Units Time span Description

Primary energy Energy units (e.g., PJ) 1840–2016 Energy content of the natural resources extracted
Final energy Energy units (e.g., PJ) 1840–2020 Energy content delivered to the final consumer
Useful energy Energy units (e.g., PJ) 1840–2020 Mechanical work at the drawbar
Energy service Transportation units (passenger-km, ton-km) 1840–2010 Passenger or freight movements
CO2 emissions Mass units (e.g., kg) 1840–2016 Mass of CO2 released
Final energy intensity Energy per unit of transportation (e.g., MJ/passenger-km) 1840–2010 Final energy required to deliver one unit of energy service
Useful energy intensity Energy per unit of transportation (e.g., MJ/passenger-km) 1840–2010 Useful energy required to deliver one unit of energy service
Carbon intensity Mass per unit of transportation (e.g., kg CO2/passenger-km) 1840–2010 CO2 emissions per unit of energy service
Primary-to-final efficiency Unitless 1840–2016 Efficiency of the conversion of primary into final energy
Final-to-useful efficiency Unitless 1840–2020 Efficiency of the conversion of final into useful energy
Primary-to-useful efficiency Unitless 1840–2016 Efficiency of the conversion of primary into useful energy
per unit of service, which is not directly influenced by the drawbar
efficiency. Instead, useful energy intensity depends mainly on operation
conditions, such as occupancy, velocity, and comfort demanded by
passengers. Fig. 1 summarizes the main energy stages described above
and their connections. In the subsections below, we delve deeper into
the specific methods used to quantify each energy stage, as well as
explore other essential factors in rail transport, including track length,
and CO2 emissions (see Table 1).

2.2. Energy service

Data for energy service in railways was found in Mitchell “Inter-
national Historical Statistics” [4,5,12] for 94 countries from 1840 to
2010. A few gaps were filled with estimations from other authors.
Fouquet [13] provides estimations for both UK’s freight and passen-
ger service before 1920 and 1938 respectively, a period for which
Mitchell [4] does not have data. Fishlow [14] estimated energy service
for the USA between 1839 and 1880, which was added to complement
Mitchell’s [5] database. A few errors were manually spotted (e.g., val-
ues that suddenly changed in order of magnitude) and substituted by
missing values, which were filled with linear interpolation. Since no
comparable dataset for rail energy service was available for the period
2010–2020, the analysis of energy service is limited to data up until
2010. Passenger and freight service per capita were calculated for
the world and selected countries by dividing service per population
data [15,16].

World energy service in railways was calculated per year by sum-
ming the data from all countries listed by Mitchell. The most relevant
countries were identified so that together they represent at least 90%
and 85% of world freight and passenger service respectively, from 1840
3

until 1970. These countries are the USA, Canada, the UK, Germany,
France, Italy, Austria, Belgium, Hungary, Czechoslovakia (until 1992,
then Czech Republic), Poland, the USSR (until 1991, then Russia),
Spain, China, Japan, and India.

2.3. Final energy

2.3.1. Data sources
After 1971, the IEA [1] provides final energy use data per energy

carrier and end-use, including rail transport. Before 1971, there are
not many records for final energy use, which has been a difficulty in
previous studies [6,7].

Wood was the main fuel in the USA when steam trains were de-
veloping, however, it was gradually replaced by coal. Fishlow [14]
estimated the consumption of wood in railways in the USA for selected
years before 1910 and the United States Bureau of the Census [17]
provides wood consumption after 1920. Missing values were filled by
linear interpolation.

A few data points were found for coal combusted by steam trains
in the USA [14,17], UK [13], France [18,19], China [20], and Ger-
many [21,22] as shown in Fig. 2. For the USA, until 1920 we only found
data every ten years. The USA after 1920 and the UK have each year
covered. A few irregularly spaced observations were found for France
and Germany. We found for China the average coal consumption in
railways at selected year intervals. Because many values are missing
from the world coal consumption in railways, we developed a machine
learning model to estimate final energy consumption across different
countries, as explained in Section 2.3.2.

The transition from steam to diesel trains began in the USA around
the 1930s, followed by the USSR in the 1940s and the UK in the
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Fig. 2. Raw data for coal consumption by steam trains for several countries between 1840 and 1960.
Table 2
Summary of the data sources for wood (W), coal (C), diesel (D), and electricity (E)
consumption in railways.

Wood Coal Diesel Electricity Reference Time span Region covered

✓ ✓ [14] 1839–1910 USA
✓ ✓ ✓ [17] 1920–1970 USA

✓ ✓ [13] 1840–2018 UK
✓ [18] 1847–1938 France
✓ ✓ [19] 1954–1959 France
✓ [21,22] 1934–1959 Germany
✓ [20] 1915–1936 China

✓ ✓ ✓ ✓ [1] 1960–1970 OECD
✓ ✓ ✓ ✓ [1] 1971–2020 World

✓ [8] 1900–2018 World

1950s [13,23,24]. China and India took longer to replace coal-fired lo-
comotives, starting in the 1960s, whereas in the USA the transition was
already complete [1,25]. Data for diesel consumption in railways from
the beginning of the steam-to-diesel transition to 1971 was found only
for the USA and the UK [13,17]. For this reason, diesel consumption
was also estimated by our machine learning model.

Pinto et al. [8] estimated world electricity consumption for dif-
ferent end-uses between 1900 and 1971. Some countries which used
hydropower and had no coal reserves (e.g., Switzerland, Sweden, and
Italy) had very early electrification of their train lines. During that
period, we assumed that 100% of the electricity consumption allocated
to transport was used in railways. Before 1900, electricity consump-
tion was extremely low, consequently, there was no need to estimate
electricity consumption in the 19th century. As a result, there are no
missing values for electricity consumption for rail transport. Table 2
summarizes the data sources for final energy consumption in railways.

2.3.2. Machine learning estimations: 1840–1970
A random forest regressor was used to estimate the final energy use

in railways across different countries, accompanied by an uncertainty
quantification. A random forest regressor consists of training several
regression trees, each with a bootstrap sample of the original dataset
and a subset of features (inputs) chosen randomly [9]. A regression tree
is a non-parametric model that approximates an unknown nonlinear
function with local predictions by partitioning the feature space [26,
27]. The predictions from individual trees are then aggregated by
averaging their results. The random forest algorithm was chosen for
its robustness against outliers and its capability to combine numerical
and categorical features effectively. This approach generally yields
higher accuracy compared to a single regression tree. Additionally, it
4

is particularly suited for datasets like historical energy consumption,
which tend to exhibit significant fluctuations in short time frames,
which are expected to be captured by the random forest algorithm.

To train any supervised machine learning model it is necessary to
have a training set with both inputs and their respective outputs, that is,
coal and diesel consumption. Wood was not estimated by this method,
as we assumed its use for rail transport to be restricted to the USA.
The known values of final energy consumption were taken from the
sources cited in Section 2.3.1. The features selected to train the model
were: the year, the freight and passenger energy service, the country’s
coal consumption in that year, and a country identifier. The total
coal consumption in each country was found in the IEA [1], Etemad
et al. [28], and the United Nations Statistical Division [29]. The total
diesel consumption was not included as a feature, as the percentage
of these energy carriers allocated to rail transport is expected to be
significantly smaller when compared to coal. The country identifier was
introduced with one-hot encoding. In other words, 6 binary features
were created, one per country, taking the value 1 for the country they
correspond to and 0 otherwise. All European countries were aggregated
in one feature, as well as Canada and USA. Japan, Russia (then USSR),
China, and India are the remaining 4 features.

The number of regression trees to be used can be determined
experimentally by adding trees until the mean squared error (MSE) in
the validation set stabilizes [9]. MSE may be calculated by

𝑀𝑆𝐸 =
𝑛
∑

𝑖=1

(𝑦𝑖 − �̂�𝑖)2

𝑛
, (1)

where 𝑛 is the number of samples in the validation set, 𝑦𝑖 is the true
value, and �̂�𝑖 is the predicted value of observation 𝑖. The original dataset
was randomly split into a training and validation set. The first was
used to train several random forests with different numbers of trees,
and the second was to compute the 𝑀𝑆𝐸. After 𝑛𝑡𝑟𝑒𝑒𝑠 = 350, the
𝑀𝑆𝐸 stabilized, so it was selected as the model parameter. Tree size
was not controlled. Fig. 3 summarizes the machine learning estimation
procedure.

Predictions were made for the most relevant countries identified in
Section 2.2, obtaining a complete time series for each country’s coal and
diesel consumption in railways. These values were summed to obtain
final energy use for the world.

As the training set is scarce, taking observations for a test set would
imply wasting around 20% of the observations, significantly influencing
the results. Therefore, the model validation was done with K-fold cross-
validation, which consists of randomly splitting the training set into
different blocks and using one at a time for testing. This method assures
that every data point is eventually used for training and testing. Even
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Fig. 3. Machine learning method for coal and diesel final energy estimations.
though cross-validation methods are more common for independent
data, there is still no consensus on which method to use in spatiotem-
poral datasets [30]. Most of the cross-validation methods developed
for time-dependent data are for forecasting short periods in the future,
which is a different problem. K-fold cross-validation was repeated 10
times using 5 splits. The metrics computed for evaluating the model
were the root-mean-squared error (RMSE) and the median absolute
error (MedAE), described by the following equations:

𝑅𝑀𝑆𝐸 =

√

√

√

√

𝑛
∑

𝑖=1

(𝑦𝑖 − �̂�𝑖)2

𝑛
, (2)

𝑀𝑒𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦1 − �̂�1|,… , |𝑦𝑛 − �̂�𝑛|). (3)

As mentioned in Section 1.2, previous historical energy recon-
struction studies rely on expert-based knowledge to estimate missing
values [2,6–8]. We estimated final energy use based on the methods
of previous studies to compare the random forest results with the
more traditional approach to this problem. The description of the
method used for our expert-based knowledge approach is in Appendix
B (Supplementary Information I).

In addition, an uncertainty estimate for the random forest model
was obtained based on the method proposed by Coulston et al. [31].
The uncertainty estimation addresses a missing gap in previous studies
that rely on expert-based knowledge methods. The method used to esti-
mate the confidence interval is described in Supplementary Information
I.

The model was implemented using the Scikit-Learn library [32] in
Python.

2.4. From final to primary energy

Primary energy, that is, the amount of energy extracted from nature
for the purpose of running the world’s rail system, was calculated based
on the final energy results. Both wood and coal were directly used as
fuel in locomotives. For these two energy carriers, the primary-to-final
efficiency was assumed to be 100%.

As for diesel, the petroleum extracted from nature is submitted to
a refining process which results in different products, such as gasoline,
fuel oil, and kerosene. Oil refining has typically a high efficiency and
there is not much information available on the evolution of this process.
For this reason, primary-to-final efficiency was assumed to be constant
through time at 100%. By assuming 100% we are introducing an up-
ward bias in the primary-to-final efficiency, resulting in the estimated
value of primary energy being lower than the expected true value.
5

Electricity’s primary-to-final efficiency should not be assumed con-
stant over time. The world energy mix changes every year, which highly
impacts the efficiency of electricity production. Moreover, power plants
increased their efficiency due to improvements in technology. Pinto
et al. [8] estimated the world’s primary-to-final efficiency evolution
since 1900 using the resource content method (RCM), physical content
method (PCM), and partial substitution method (PSM) for renewables.
The efficiencies calculated by the PCM were used in this work, as it
is the method adopted by the IEA [33]. It was assumed that electricity
consumption in railways has the same generation mix as the total world
electricity consumption.

2.5. From final to useful energy

As steam, diesel, and electric engines work very differently, their
final-to-useful efficiencies were estimated separately. In addition, as
technologies improved with time, it was necessary to model the evo-
lution of final-to-useful efficiencies. Technologies were assumed to be
homogeneous across countries in the same year.

Serrenho et al. [2] estimated the engine efficiency of steam trains
powered by coal in Portugal based on Ayres et al. [23] between 1855
and 1975, beginning at 2.5% and reaching 9% in the 1970s. On the
other hand, several authors [34,35] indicate that engine efficiency
reached at most 8%. Bond et al. [6] points to a significant increase
in engine efficiency at the beginning of the 20th century due to the
way coal was introduced in the firebox and improvements in the boiler.
Taking into account the above information, we modeled engine effi-
ciency as a linear function beginning at 2.5% in 1840 and reaching 8%
in 1930. From 1930 onward, we assumed a constant engine efficiency
at 8%, based on the increasing significance of diesel locomotives,
suggesting a likely halt in the improvement of engine efficiency for
steam locomotives. The stagnation in 1930 also coincides with the
plateauing of average locomotive weight, indicating a mature stage
of technology (Appendix A, Fig. A.1). We estimated that engine-to-
drawbar efficiency was 75%, assuming that the drawbar and engine
efficiencies stagnated respectively at 6% and 8% [34–36]. The engine-
to-drawbar efficiency was assumed to be constant through time as no
more values were found.

Marshall et al. [36] estimated the final-to-useful (drawbar) effi-
ciency of diesel trains between 1960 and 2020. Values range from
23% (1960) to around 37% (2020). These values are in agreement
with efficiency values presented by other authors [24,34,35] referred
in Table 3. Before 1960 no values for the efficiency of diesel trains were
found. Thus, it was assumed that the efficiency of diesel trains had the
same growth rate as electric trains.
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Table 3
Summary of the different engine (Eg), final-to-useful (F-U), and engine-to-drawbar
(Eg-D) efficiencies from previous studies.

Locomotive Reference Efficiency Year Value

Steam

[35] Eg Unspecified 5%–8%
[34] Eg Unspecified 8%
[2] Eg 1855–1975 2.5%–9%
[36] F-U 1960–2018 6%

Diesel

[23] Eg 1950 35%
[35] Eg Unspecified 20%–25%
[34] Eg 2019 40%
[24] Eg 1933 22%–31%
[23] F-U 1950 28%
[36] F-U 1960–2018 22.5-36.5%
[39] F-U 2007 30%

Electric

[23] Eg 1900–2000 60%–85%
[8] Eg 2000–2017 85%–89%
[38] Eg-D 2014 88%
[39] Eg-D 2006 91.2%

As for electric trains, Ayres et al. [37] estimated the evolution of the
ngine efficiency of electric motors for transport use from 1900 to 2000
nd Pinto et al. [8] from 2000 to 2017. Even though no time series of
he engine to drawbar efficiency was found, recently different authors
ave studied it for modern electric trains [38,39]. For this reason,
ngine-to-drawbar efficiency was also assumed to be constant through
ime, equal to 90% based on an average of the data obtained. This
alue was multiplied by the time series provided by Ayres et al. [37]
nd Pinto et al. [8] to determine the final-to-useful efficiency. Table 3
ummarizes the efficiencies from previous studies.

The useful energy obtained use per final energy carrier was calcu-
ated by multiplying the final-to-useful efficiency by the final energy
se estimations. Finally, a time series of aggregated rail final-to-useful
fficiency was computed by dividing useful by final energy use.

.6. Energy intensity

Energy intensity is the amount of either final or useful energy
equired to deliver one unit of service, both passenger and freight.
ur results for final energy use in railways are not divided into freight
r passenger use, so it was necessary to aggregate both services. We
onverted passenger into freight service based on a turnover volume
quivalent (𝑉𝑒) to obtain the total service. Liu et al. [40] suggest that
he turnover volume equivalent between passenger and freight is 1 for
hina in 2012 (i.e., 1 unit of freight service in tkm consumes the same
mount of energy as 1 unit of passenger service in pkm). The UK’s
ffice of Rail and Road [41] provides data for the final energy use
f passenger and freight separately between 2005 and 2020, which
nabled the calculation of the passenger and freight energy intensity
n MJ/pkm and MJ/tkm. By dividing both intensities we obtained a
onversion factor which varied between 0.8 and 0.96. Since there is
imited data available on the 𝑉𝑒 coefficient, it was assumed to remain
onstant throughout time with a value of 1. For 𝑉𝑒 = 1, the energy
ntensity of freight and passenger service are numerically equal. Energy
ntensity (𝐸𝐼) was calculated by

𝐼(𝑡) =
𝐹𝐸𝑤𝑜𝑜𝑑 (𝑡) + 𝐹𝐸𝑐𝑜𝑎𝑙(𝑡) + 𝐹𝐸𝑑𝑖𝑒𝑠𝑒𝑙(𝑡) + 𝐹𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦(𝑡)

𝑝𝑘𝑚(𝑡) × 𝑉𝑒 + 𝑡𝑘𝑚(𝑡)
, (4)

where 𝐹𝐸 is the final energy use, 𝑡𝑘𝑚 and 𝑝𝑘𝑚 are the freight and
passenger energy service, and 𝑡 is the year. The useful energy intensity
was calculated by multiplying the world final energy intensity by the
final-to-useful efficiency.

2.7. CO2 emissions and intensity

Carbon dioxide emissions were calculated by multiplying the final
energy use by the respective carbon emission factor. The IPCC [42]
6

Table 4
Emission factors in ton CO2/TJ of each energy carrier. For electricity, the maximum
(1900) and minimum (2017) values are presented.

Wood Coal Diesel Electricity

Emission factor 0 96.1 74.1 136.3–1453

provides emission factors for coal and diesel-fueled trains, which were
assumed to be constant through time. For wood-fueled steam trains, it
was assumed that the carbon emitted by wood combustion would be
captured by biomass growing elsewhere, resulting in a zero-emission
factor. Emissions from biomass could also be accounted for, as there is
no guarantee that this carbon was captured by growing biomass. Never-
theless, coal consumption was much higher than wood, so disregarding
CO2 emissions from wood does not impact our results significantly.
Emissions from electric trains were estimated using a time series of
emission factors for the world electricity mix since 1900 from Pinto
et al. [8] (Fig. 4), making the same assumption discussed in Section 2.4
about the mix of electricity consumed in railways. Emission factors for
wood, coal, and diesel are presented in Table 4.

We divided the emission factors in Table 4 by the final-to-useful ef-
ficiency to calculate the emissions per useful energy consumed. Carbon
intensity, expressed kilograms of CO2 per unit of service, was calculated
by multiplying the emission factors in Table 4 by the energy intensity
estimations described in Section 2.6.

2.8. Length of track

The rail track is crucial infrastructure for rail transport since trains
can move only on tracks. There is a wealth of data available on
the length of train tracks. In Fig. 1, length of track is disconnected
from the energy stages, as it is not directly related to them. Even
though the length of the railway may not directly relate to energy
consumption, observing its evolution can enhance our comprehension
of rail transport. Mitchell [4,5,12] has a dataset for the length of rail
track for 114 countries from 1840 to 2010, which were summed to
obtain the world length of track. Moreover, we calculated the length of
track per capita for the world and selected countries with population
data [15,16].

Fig. 5 summarizes the existing data sources used and the method
flow in this study.

3. Results

In this section, we will present our main results. The validation of
the estimations of coal and diesel consumption using machine learning
is assessed in Section 3.2.

3.1. World energy service

Fig. 6 shows a time series of the world freight and passenger ser-
vice. Both freight and passenger energy service increased significantly
since 1840, except for a brief period between 1989 and 1998. Global
economic crises such as The Great Depression in 1929 and the 2008
Global Financial Crisis also negatively influenced service, especially
freight (Figs. A.2 and A.3). Even so, both freight and passenger traffic
increased around 25-fold between 1900 and 2010.

Figs. 7 and 8 show the contribution of the most relevant countries
for the total freight and passenger service, respectively. In the 19th
century very few countries, mainly the USA, Germany, France, the UK,
and Russia, contributed to almost 100% of the total service. In Fig. 7,
from 1882 to 1883 there is a discontinuity due to the way Mitchell [5]
accounted for the freight service in the USA. Recently, India and China
have a significant percentage of the world passenger energy service,
while the UK and France decreased their share. Moreover, countries
that are extremely relevant in passenger service, might not have such a
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Fig. 4. World carbon emission factors of electricity production between 1900 and 2020.
Source: Adapted from Pinto et al. [8].
Fig. 5. Flow chart summarizing the method flow, main data sources, and variables estimated in this study. The relationship between variables is shown in more detail in Fig. 1.
representative share in freight and vice-versa. For example, since 1921,
Japan contributed at least 5% of the world’s passenger service, although
it never exceeded 2.5% in terms of freight.

Fig. 9 shows the rail passenger service per capita for selected
countries and the world (freight service per capita is shown in Fig. A.4).
Passenger service per capita grew for most countries and the world
until the 1920s when it started decreasing in France, the USA, and
the UK. During the Second World War, there was a significant increase
in passenger service per capita in Japan, the USA, and the UK. After
that, Japan and the USSR kept investing in rail transport for passenger
purposes. In 2010, Japan was still by far the country that provides more
passenger service per inhabitant. China and India have been growing
their service per capita steadily since the 1960s and are already above
the world average.

3.2. World final energy use

Fig. 10 shows the wood, coal, diesel, and electricity consumption
in railways, as well as the time periods that are explored in Section 4.
The contribution of wood to the fuel consumption by trains is shown
7

in more detail in Fig. A.5. Coal was the most dominant energy carrier
between the 19th until the middle of the 20th, peaking in the 1940s.
After that, steam trains were rapidly replaced by diesel and electric
ones. Currently, these two technologies co-exist, though the share of
electricity use has been increasing over recent years. Electric trams
have been a reality since 1900, nevertheless, it was only in 1960 that
electricity consumption rose above 5% of total final energy use in
railways.

Figs. 11 and 12 show the results for the world coal and diesel con-
sumption in railways obtained with machine learning and the estimated
95% confidence interval. Before 1910, the confidence interval is narrow
because there is data for UK and USA, which were the main countries
consuming coal in railways, for which there is known data. From 1910
to 1971, several countries with limited available data experienced an
increase in their share, resulting in higher uncertainty surrounding
these estimates. After 1971, the uncertainty is zero for both coal and
diesel, as IEA [1] data were used. The description of the method
used to estimate the confidence interval is detailed in Supplementary
Information I.

Fig. 11 also shows expert-based estimations. Most of the expert-
based knowledge estimations are within the 95% confidence interval,
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Fig. 6. World freight and passenger energy service evolution in billion ton-km and passenger-km.

Fig. 7. Contribution of the most relevant countries for world freight energy service.

Fig. 8. Contribution of the most relevant countries for world passenger energy service.
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Fig. 9. Passenger service per capita for selected countries and the world.

Fig. 10. World final energy use in railways by energy carrier and the ages defined.

Fig. 11. World coal consumption in railways estimations by the random forest approach (black line), the respective confidence interval, and the estimations by the expert-based
knowledge approach (blue line).
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Fig. 12. World diesel consumption in railways estimations and the estimated 95% confidence interval.
Table 5
Results for the error metrics computed with K-fold cross-validation.

Metric Mean Standard deviation

Coal RMSE 71.385 31.840
MedAE 1.875 0.523

Diesel RMSE 23.196 6.232
MedAE 1.292 0.309

which increases our confidence in the results obtained with machine
learning. Since the expert-based knowledge approach does not provide
an uncertainty measure, any values outside the confidence interval
should not be considered unreliable but rather as a discrepancy be-
tween the results obtained with the expert-based knowledge and ma-
chine learning approach. The two methods differ more significantly
during the Second World War and the transition from coal to diesel,
which are periods when limited data is available for both approaches.
The diesel consumption was not estimated by expert-based knowledge,
as diesel use is more recent and there is more data available on it.

Table 5 shows the results for the RMSE and MedAE, calculated with
cross-validation. These metrics attribute an overall score for the model,
allowing the comparison between different trials.

3.3. World primary energy use

Fig. 13 presents the primary energy use in railways from 1840 to
2016. The evolution of the primary energy follows the trend observed
in Fig. 10 until around 1960. After that, the share of electricity in-
creased significantly, and primary energy deviates from the final energy
results, as electricity presents a much lower primary-to-final efficiency.
Over the last few years, primary energy use has been growing sharply,
as the share of electricity increases.

3.4. World useful energy use

The left side of Fig. 14 presents the curves for the final-to-useful
efficiency of steam, diesel, and electric locomotives, as well as the
aggregated efficiency. Electric locomotives are by far the most efficient,
as the energy conversion is from electrical energy into mechanical
work, followed by diesel and then steam locomotives. Aggregated final-
to-useful efficiency was approximately 30 times higher in 2016 when
compared to 1840.

Nevertheless, the final-to-useful efficiency does not consider the effi-
ciency of electricity generation, which does not allow a fair comparison
in terms of natural resource use. On the right side of Fig. 14, where the
primary-to-useful efficiencies are represented, electric and diesel curves
are much closer.
10
Fig. 15 shows the evolution of useful energy use in railways. Useful
energy use has been growing since 1840, except for three periods: the
Great Depression (1930–1935) the transition from steam to diesel and
electric trains (1945–1970), and the dissolution of the USSR (1991).

The reduction in useful energy use in 1991 is explained either by the
reduction in both passenger and freight service in the ex-USSR countries
or by an error in accounting due to its dissolution. The service reduction
shown in Figs. 7 and 8 appears less abrupt compared to Fig. 15, as
linear interpolation was employed to estimate the missing data for
USSR/Russia between 1990 and 1998. The GDP of former USSR coun-
tries dropped by nearly 10% between 1989 and 1991, which indicates
that the economic impact was abrupt when the USSR dissolved [43].

3.5. World energy intensity

Fig. 16 shows the time series of both final and useful energy
intensity. Final energy intensity decreased by a factor of 100 between
1840 and 2010. Useful energy intensity presents a different trend
from the final energy intensity between 1900 and 1942 when useful
energy intensity increased, while final energy intensity remained fairly
constant.

In order to highlight the gains in final energy intensity due to the
development of energy conversion devices (increases in final-to-useful
efficiency) or improvements in the conversion from useful energy to
service (reduction in useful energy intensity), we drew two hypothetical
scenarios: one at constant 1840 final-to-useful efficiency (scenario 1)
and another at constant 1840 useful energy intensity (scenario 2).
Fig. 17 shows both scenarios and the actual final energy intensity.
From this graph, we observe that increases in final-to-useful efficiency
contributed greatly to the decrease in final energy intensity, however,
the reduction in useful energy intensity was essential to further reduce
final energy intensity.

3.6. World CO2 emissions and intensity

Fig. 18 shows the CO2 emissions and intensity in railways. Even
though carbon intensity decreased by 64% from 1840 to 1900, CO2
emissions have increased 260-fold. Carbon emissions followed the car-
bon intensity’s decrease after the 1940s, when diesel and electricity
were replacing coal as the main energy carriers in rail transport. Sub-
sequent reductions in the carbon emission factor of electricity enabled
a continued decline in emissions until the early 2000s. After that,
emissions started rising but at a lower rate than in the 19th and first
half of 20th century.

Fig. 19 shows the CO2 emissions per useful energy for steam, diesel,
and electric locomotives. Surprisingly, in 1910, electric trains emitted
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Fig. 13. World primary energy use in railways estimations.

Fig. 14. Final-to-useful (left) and primary-to-useful (right) energy efficiencies per type of locomotive and aggregated efficiency.

Fig. 15. World useful energy consumption in railways by energy carrier.



Applied Energy 367 (2024) 123344

12

B. Tostes et al.

Fig. 16. World final and useful energy intensity in railways (log scale).

Fig. 17. Scenarios for world final energy intensity in railways at (1) constant final-to-useful efficiency, (2) constant useful energy intensity, and the actual intensity (log scale).

Fig. 18. World CO2 emissions (left axis) and carbon intensity (right axis) in railways.
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Fig. 19. World CO2 emissions per useful energy for the different types of locomotive.
Fig. 20. World length of track (left axis) in million kilometers and the respective growth rate (right axis).
more CO2 per useful energy compared to steam trains, despite operating
at a significantly lower final-to-useful efficiency. It was not until the
1950s that electric trains matched diesel trains in achieving lower
emissions per useful energy, a trend that has persisted ever since.

3.7. World length of track

Fig. 20 shows the length of track evolution and the respective
growth rate. Length of track per capita is shown in Fig. A.6. Between
1840 and 1930, significant efforts were made to expand the railway
infrastructure, resulting in a remarkable 170-fold increase in the length
of railway track. However, after 1930, the length of track stabilized for
roughly three decades. From the 1960s onwards, the length of railway
track began to decline gradually, eventually reaching in 2010 the same
length as it was in 1912.

4. Discussion

In this Section, results are analyzed in an integrated way from a
historical perspective to get insights for future transitions. This histor-
ical analysis is divided into 3 time periods: the steam age: 1840–1930
(Section 4.1), the transition age: 1930–1970 (Section 4.2), and the
diesel-electric age: 1970–2020 (Section 4.3) shown in Fig. 10, fol-
lowed by a section dedicated to future implications. Finally, the main
limitations of this study are assessed.
13
4.1. Steam age: 1840–1930

The steam age was marked on one hand by large amounts of coal
burned in very inefficient steam engines, but also as a period of great
innovation in the transport sector. As coal prices were dropping around
the world, freight and passenger traffic, fuel consumption, and length
of track grew rapidly (Figs. 6, 10, 20). The expansion of railways was
motivated by the goal of increasing speed and improving reliability
when compared to animal and canal transport. For example, in 1830, a
journey from Liverpool to Manchester would take around 3 h by horse
coach at the cost of 12 shillings. Railways reduced that time to 2 h, at
the price of 7 shillings for first class and 5 shillings for second class [3].

In the USA, wood and coal competed until 1890 when coal became
the most dominant fuel. Around 1860, advancements in coal-burning
locomotives shifted the energy carrier choice towards price considera-
tions. Wood was highly valued, in addition to its limited supply, both of
which favored the transition to inexpensive coal, particularly abundant
in the Eastern regions [14].

In 1922, global final energy use in the rail sector reached its first
peak, when automobiles were revealed to be a more flexible mode of
transportation (Fig. 10). The crisis in the rail sector was consolidated
by the period of trade protectionism that followed the Great War,
aggravated by the Great Depression of 1929, when freight traffic, final,
and useful energy use dropped in many countries, such as the USA,
Canada, France, and the UK, marking the beginning of the transition

age.
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4.2. Transition age: 1930–1970

As publically appealing as steam trains were, and still are, the tran-
sition to more efficient technologies was inevitable. Around 1930, the
price of coal in the USA was increasing rapidly, which was an oppor-
tunity for the rail sector to invest in diesel-electric trains. In the steam
age, only small amounts of diesel and electricity were utilized, while
in the transition period, these two energy sources gained dominance
(Fig. 10). In 1930, the final-to-useful efficiency of diesel locomotives
was almost 5 times greater than steam locomotives (Fig. 14). While
electric trains’ final-to-useful efficiency was 15 times more efficient
than coal-burning trains, their primary-to-useful efficiency was only 1.7
times greater (Fig. 14). At that time, the efficiency of thermo-electricity
was still low, decreasing the overall primary-to-useful efficiency [8].

Another mark of the transition age is the interruption in the length
of track expansion, not only in absolute value but also in per capita
terms (Figs. 20 and A.6). This trend is observed at the individual
country level, as well as the world scale. Curiously, both freight and
passenger service continued to grow steadily, indicating an increased
utilization of the existing infrastructure (Fig. 6). Furthermore, auto-
mobiles, trucks, and buses started to compete with trains, beginning
a crisis in the rail sector in many countries, such as the USA and the
UK.

Around 1935 the world was recovering from the Great Depression
so both final and useful energy use by rail transport increased. During
the Second World War, oil rationing policies in the USA were in place,
delaying the inevitable end of steam trains. The revival of the rail sector
in the USA and the growth of the USSR were the main contributors to
the world peak of final energy use and CO2 emissions for railways in
1944 (Figs. 10 and 18). This period also shows a significant increase in
useful energy use, highlighting the continued importance of railways
during wartime (Fig. 15). After the war, large oil reserves in the Middle
East were discovered, dropping oil prices across the globe, which was
an important driver for the replacement of coal-fueled by diesel and
electric-fueled trains (Fig. 10).

4.3. Diesel-electric age: 1970–2020

After 1970, most countries had already significantly reduced their
coal consumption for rail purposes, although India and China would
still take around 25 years. The diesel-electric age is characterized by
the dual use of diesel-electric and electric trains. When steam trains
were replaced, some countries such as the USA heavily invested in
diesel-electric trains, while other countries, namely Japan, focused on
electrifying their lines. Railway electricity consumption has not yet
surpassed diesel consumption, but it is expected to do so within a few
years (Fig. 10).

Useful energy from electricity has been higher than useful energy
from diesel since 1993, therefore nowadays electricity provides more
power than diesel for moving people and freight in railways (Fig. 15).
The useful energy use shows no sign of declining, while the final
energy peak was reached in the transition age. With the improvement
of primary-to-useful efficiency in diesel and electric trains, coupled
with the growing adoption of renewables in the electricity generation
mix and the steady growth of both passenger and freight services, the
CO2 and energy intensities (final and useful) of rail transport have
reached their lowest levels in history (Figs. 6, 14, 16, and 18). Another
important indicator for decarbonization is the CO2 per unit of useful
energy. In 2016, electric trains emitted 16% less CO2 per useful energy
than diesel, while in 1910 electric trains emitted 5 times more CO2 than
iesel (Fig. 19).

Table 6 summarizes the key characteristics, technological develop-
ents, and economic, social, and environmental impacts of the rail

ransport eras previously identified.
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4.4. Learning from the past

Rail transport went through many technological changes in the
past, nevertheless, the development of new technologies did not fully
dictate energy transitions. In the 1930s, when diesel trains were already
known to be a more efficient alternative to steam trains, the 20-year
delay in the reduction of coal consumption was not expected. The rail
sector quickly adapted to World War II, increasing fuel consumption to
meet the demand for transport. Moreover, although electric trams had
already been in use since 1900, initially they were not meant to scale
to electric trains, capable of replacing steam or diesel trains. New fuels
that might provide more sustainable alternatives such as hydrogen and
advanced biofuels are now in a similar unpredictability phase, where
sudden technological advances and other societal matters might change
completely the course of their future use.

The historical analysis of our results showed that the cost of energy
service and travel speed were the main factors associated with past
transitions. Cost is a common driver in most transitions, especially in
the development of railways and in the transition from wood to coal-
fueled steam trains in the USA. Cost reduction due to an increase in
the final-to-useful efficiency was the main driver for the end of steam
trains, which could not compete with the 5 times more efficient diesel
trains. While speed was crucial to the development of railways, it also
contributed to their decreased competitiveness against air and road
travel. For future transitions, mainly driven by environmental concerns,
speed and cost of service should be considered as priorities to impulse
low-carbon technologies.

The evolution of electricity usage in railways highlights the fact
that electrification is an opportunity for the rail sector to reduce its
carbon intensity, but only if electricity is generated from low-carbon
resources. With the current global electricity generation mix, electricity
emits around 16% less CO2 per useful energy than diesel, however
in 1910 electric trains emitted 42 times more CO2 per useful energy.
Moreover, the final-to-useful efficiency of electric trains is 2.2 times
higher than diesel trains, though historically diesel presents a higher
primary-to-useful efficiency. If electric trains are indeed the future of
clean mobility, their effectiveness at reducing CO2 intensity is highly
dependent on the success of renewables in the power sector.

Regarding final energy intensity, its 100-fold decrease from 1840
to 2010 cannot be explained exclusively by the 30-fold increase in
final-to-useful efficiency, but rather as a combination with occupancy,
operating conditions, and lower losses by the passive system. At the
beginning of the 20th century, despite the increase in final-to-useful
efficiency, final energy intensity did not decrease as expected, which
could be explained by heavier and faster locomotives (see Fig. A.1),
leading to an increase in useful energy intensity. The transition from
steam to diesel locomotives saw a decrease in useful energy intensity,
attributed to factors such as the reduced weight per unit of power
in diesel locomotives (approximately 12% lower than steam locomo-
tives [44]). Additionally, the rise of trucks for short-distance travel,
evidenced by a 60% increase in truck numbers in the USA between
1940 and 1960 [45] and advancements in train aerodynamics con-
tributed to this trend [46]. Future policies to further reduce final energy
intensity should focus on improving occupancy, traffic optimization,
and reducing losses by the passive system, especially since gains in
efficiency are expected to be limited in the future.

4.5. Limitations

Before 1971, only a few countries reported their rail fuel consump-
tion, posing a challenge for the estimation at the world scale and the
quantification of uncertainty. This paper gives a way forward, intro-
ducing machine learning, and creating an opportunity to determine a
confidence interval. As with most data-driven models, there is always
room for improvement. We suggest the use of random forest, however,
other machine learning algorithms might outperform our model.
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Table 6
Overview of the key characteristics, technological developments, and economic, social, and environmental impacts of the rail transport eras identified.

Era Key characteristics Technological developments Economic, social, and environmental
impacts

Steam age (1840–1930) Rapid growth in freight and passenger
traffic and coal consumption. Final and
useful energy intensities decreased until
1900 while final-to-useful energy
efficiency increased.

Inefficient steam trains. Replacement of
wood by coal. Construction of smoother
tracks and improvements in train speed
and comfort.

Optimization of schedules. Increase in
occupancy. Rapid growth in track
length. Decrease in travel cost and time.

Transition age (1930–1970) Increase in final energy use during
WWII, followed by an abrupt decline.
Significant decrease in useful and final
energy intensity.

Transition to diesel-electric and electric
trains. Improvements in aerodynamics
and lighter locomotives per unit of
power.

Oil rationing and significant use of
steam trains during WWII. Interruption
in track expansion. Increased
competition from road vehicles.

Diesel-electric age (1970–2020) Dual use of diesel and electric trains.
Lowest energy and carbon intensities in
history.

Advancements in primary-to-useful
efficiency in diesel and electric trains.
Growing adoption of renewables in
electricity generation.

Economic impact of USSR dissolution.
Electric trains emitting less CO2 per unit
of useful energy compared to steam and
diesel trains. Increasing efforts for
decarbonization.
I
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Autoregressive models are often used for time series forecasting.
hese models use the 𝑁 previous values of the outcome variable,
eferred to as lag variables, as features. This approach is effective in
apturing time patterns and producing accurate predictions. However,
utoregressive models are dependent on many consecutive observa-
ions, and this can be problematic when working with a limited dataset.
n this particular case, many observations from the 19th century and
he early 20th century are either isolated or spaced over long intervals,
endering them unusable. Furthermore, autoregressive models rely on
he assumption that the behavior of the phenomenon being studied is
onsistent across both known and forecasted values. For the present
tudy, consecutive observations mainly come from after 1971, a pe-
iod in which the behavior of coal consumption changed significantly.
or these reasons, autoregressive models are not appropriate for this
roblem. If more data are found, forecasting methods might be an
pportunity to generate more accurate estimations.

One of the limitations of this work is assuming the primary-to-final
fficiency of oil products to be constant at 100%. This value was used
o be consistent with Pinto et al. [8], since we utilized their estima-
ions of primary-to-final efficiency of electricity production. Moreover,
stimating the evolution of the world’s primary-to-final efficiency since
900 is out of the scope of this work. Brockway et al. [47] estimated the
volution of the average world energy return on investment (EROI) of
inal oil products between 1995 and 2011, however, for the early 20th
entury very little data is available. Their suggested values would result
n primary-to-final efficiencies of around 87%–88%, which would only
nfluence the diesel directly used as fuel and the oil used in electricity
roduction, particularly around the 1950s. However, overall trends
hould remain largely unaffected. Future work could be to explore the
rimary-to-final efficiency of oil products to enhance the accuracy of
ur estimations.

The final-to-useful efficiencies are another source of uncertainty.
hese efficiencies were estimated under the assumption that technol-
gy is homogeneous across different countries in the same year. This
ssumption is reasonable, as trains are produced by very few companies
hat export to the rest of the world. Nevertheless, some countries might
xhibit an efficiency lag, operating with outdated technology. As there
s no information available on it, it was not possible to consider this
echnology lag in this study. Furthermore, our final-to-useful efficien-
ies were determined with expert-based knowledge, therefore it is not
ossible to provide a precise estimate of uncertainty.

Regarding CO2 emissions, the emission factors listed in Table 4
ssume that coal burned in locomotives is exclusively sub-bituminous
oal, although other types of coal were used. The emission factors of
he different types of coal range from 94,600–101,000 kg CO2/TJ [42].

We assumed the emission factor of sub-bituminous coal is equal to
96,100 kg CO2/TJ, so we expect a maximum upper and lower bias in
15

emission factors of 0.5% and 1.5%. As for diesel, other types of oil,
such as fuel oil, were used in smaller amounts, adding uncertainty.
In addition, emissions associated with the extraction, transport, and
refining of fossil fuels were not accounted for as there is little data
available, leading to an expected underestimation of CO2 emissions.
n 2000, upstream emissions in Western Europe were responsible for
2.4% and 13.3% of the emissions associated with coal and diesel
urning, respectively [48].

. Conclusion

This work produced a long-run dataset (1840–2020) of energy
se for rail transport that embraces primary, final, and useful stages,
ncluding energy service, CO2 emissions, length of track, and their
nterconnections. The main conclusions achieved from this work are:

1. Final energy and carbon intensities decreased 100-fold from
1840 to 2010, while final-to-useful efficiency increased 30-fold;

2. The highest level of final energy use in rail transport was
recorded in the 1940s, reaching 10,536 PJ, while useful energy
use continues to grow;

3. Currently, the carbon intensity of useful energy in electric trains
is 16% lower than that of diesel trains. This marks a significant
change from 1910, when it was five times higher;

4. There are three distinct periods in the overall progression of the
world’s final energy use in rail transport: the Steam Age (1840–
1930), characterized by coal as the primary energy source with
an annual increase in final energy use of 8%; the Transition Age
(1930–1970), marked by the peak and subsequent rapid decline
of coal usage in the 1940s; and the Diesel-Electric Age (1970–
2020), during which diesel and electricity became the dominant
energy carriers, with an annual 2% decrease in final energy use.

This work also shows that machine learning is an opportunity to fill
gaps in available datasets, reveal hidden patterns in data, and improve
the validation step in historical studies by estimating confidence inter-
vals. Future work in this area should consider using a machine learning
approach to similar problems and explore other algorithms apart from
the random forest regressor. Moreover, the dataset produced from this
work allows researchers from several fields to further investigate the
role of railways in economic development and strategies to achieve
clean mobility.

Insights gained from this study provide valuable knowledge and
understanding of transitions in rail transport. Are we on the right
track? Regarding technology, yes. Carbon and final energy intensities
of railways reached their lowest levels in history. However, when
looking at overall transport demand, not necessarily. While railways
experienced great technology improvements and have been expanding
their transportation services, their overall share in the transportation
demand has been declining, giving way to CO2 intensive transport

modes such as cars, trucks, and airplanes.
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Fig. A.1. Average weight (in tons) of several steam locomotives.
Source: Adapted from Hayward [49].

Fig. A.2. Growth rate of freight service for selected countries during the Great Depression.

Fig. A.3. Growth rate of freight service for selected countries during the Global Financial Crisis.
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Fig. A.4. Freight service per capita for selected counties and the world.

Fig. A.5. Fraction of the different final energy carriers used to move locomotives.

Fig. A.6. Length of track per capita for selected counties and the world.
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