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Prostate cancer is a disease which poses an interesting clinical question: Should it be treated? Only 
a small subset of prostate cancers are aggressive and require removal and treatment to prevent 
metastatic spread. However, conventional diagnostics remain challenged to risk-stratify such patients; 
hence, new methods of approach to biomolecularly sub-classify the disease are needed. Here we use 
an unsupervised self-organising map approach to analyse live-cell Raman spectroscopy data obtained 
from prostate cell-lines; our aim is to exemplify this method to sub-stratify, at the single-cell-level, 
the cancer disease state using high-dimensional datasets with minimal preprocessing. The results 
demonstrate a new sub-clustering of the prostate cancer cell-line into two groups—protein-rich 
and lipid-rich sub-cellular components—which we believe to be mechanistically linked. This finding 
shows the potential for unsupervised machine learning to discover distinct disease-state features 
for more accurate characterisation of highly heterogeneous prostate cancer. Applications may lead 
to more targeted diagnoses, prognoses and clinical treatment decisions via molecularly-informed 
stratification that would benefit patients. A method that could discover distinct disease-state features 
that are mechanistically linked could also assist in the development of more effective broad-spectrum 
treatments that simultaneously target linked disease-state processes.

Cancer is one of the leading causes of death worldwide, with prostate cancer being the second-leading cause 
of cancer deaths in males1. The incidence of prostate cancer is high with one-in-eight males being diagnosed 
during their lifetime and the number of new cases set to double in the next twenty years from 1.4M in 20201,2. 
Prostate cancer is a challenging disease of complex molecular structure and high heterogeneity across all length 
scales, both within a single patient and between patients3. Its molecular heterogeneity is difficult to assess and 
quantify in solid tumours, thereby limiting an individual’s classification of risk for aggressive disease and their 
targeted treatment options4. This work looks at prostate cancer as a model disease, both because it is common 
and because it poses an unusual clinical question amongst cancers: Should it be treated? Many forms of prostate 
cancer are relatively indolent, and only a small subset are highly malignant and aggressive5. Benign growth of 
normal prostate tissue can also cause similar symptoms (e.g.,6). The clinical pathway to diagnosis is therefore 
complex and lengthy. Given the large variation in how the disease presents and progresses, conventional methods 
involving imaging and histology are limited in capturing the full breath of disease heterogeneity. Multiparametric 
MRI has good negative predictive outcome (>  90%)7, but is poor at detecting clinically significant disease 
(positive predictive rate of approx.  35%)8. Histopathology provides optical classification of tumour grade 
(Gleason scale), but is limited by interpretation variability and inability to discern certain forms of prostate 
cancer (e.g., cribriform and and intraductal carcinoma of the prostate)9,10. Both methods remain restricted at 
their points of resolution. Significant variability also exists in clinical pathways and disease stability. For example, 
only 15% of patients require immediate treatment intervention11, yet 27% of those deemed “indolent” progress 
within five years post diagnosis12. An urgent question to address from the molecular scale is why?

The significance of molecular heterogeneity in understanding prostate-cancer disease and its translation to 
precision diagnostics, risk stratification and more effective personalised treatments cannot be underestimated13. 
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Recent evidence shows heterogeneity in tumour-patterns sub-stratified in histopathology with distinct 
prognostic outcomes beyond the Gleason score14–16. Woodcock et al.  have also determined multiple “evo” 
subtypes of prostate cancer by classifying its genomic evolution17. Therefore, having a tractable means of 
quantifying molecular heterogeneity to the sub-cellular length scale is essential. To assist with molecular disease 
characterisation and heterogeneity assessment, spectroscopic methods, such as Raman spectroscopy, can also be 
used for non-destructive and label-free testing of cells, and the environmental impact on cellular behaviour18. 
Raman spectroscopy is a physical process that involves inelastic photon-molecule scattering for “fingerprinting” 
at the molecular length scale19. Its advantage is in holistic sampling of biological systems with capture of 
complete and intact cellular information. Applied to cellular studies of prostate cancer, Raman spectroscopy has 
uncovered specific protein, lipid and DNA/RNA changes that stratify malignant-state characteristics and has 
revealed mechanistic differences of the disease state20–25.

In this paper, we apply unsupervised machine learning using self-organising maps (SOMs) to assess the 
capability for molecular stratification of live-cell Raman spectroscopy data acquired from a metastatic 
prostate cancer cell line (LNCaP)26,27 and normal prostate cell line (PNT2-C2)28–30. Within the context of an 
unsupervised classification scheme, the datasets are unlabelled, thereby allowing the method to determine its 
own set of classification rules. Kohonen introduced SOMs in the 1980s as a new means of classification that 
use topological network organisation to map high-dimensional data onto a two-dimensional array31,32. Hence, 
SOMs provide a convenient visualisation of cluster stratification that is not otherwise apparent. The application 
of SOMs to Raman spectroscopy and unsupervised machine-learning, in general, is still in its infancy with most 
research focused on supervised classification methods, such as PCA-LDA33. To the best of our knowledge, there 
are only a few publications that have applied SOMs to biological-systems research, namely, to animal tissue34,35 
and human cell lines36,37. In cell-line studies, Harris et al.36 analysed Raman spectra from thyroid cancer and 
normal thyroid cells with >90% accuracy in SOM classification of the disease state. Majumdar et al. used a SOM 
to distinguish Raman results of the differentiation stages of a monocytic (macrophage) cell line37. Both studies 
applied supervised learning and, as such, did not explore the full capability of the method.

Of particular interest in this work is the unsupervised learning within SOMs, which allows for the discovery 
of molecular stratification. In testing the SOM for this purpose, the choice of Raman data from LNCaP (cancer) 
and PNT2-C2 (normal) prostate cell lines provides an important challenge for sub-classification, as standard 
cell lines are considered inherently homogeneous38. To benchmark the SOM’s capability, we have also compared 
the results to standard PCA-LDA classification. Further, we test the SOM on the region of Raman spectra from 
2700 to 3600 cm−1, the so-called high-wavenumber region, which in prostate cells encapsulates important 
mechanistic information pertaining to the cancer state23,24. This region informs about the unsaturated-to-total 
fatty-acid ratio, cholesterol/cholesterol-ester use, and lipid-droplet formation; all key factors in how prostate 
cancer reroutes its energy formation and uses it to its advantage39,40. The use of Raman spectroscopy within this 
context could also provide an easy and complimentary means to acquire state-level discernment of molecular 
heterogeneity in cancer at the single-cell level. In the field of cancer research, such a tractable means of 
determining molecular sub-classification could lead to the discovery of new stratified disease states, and hence, 
more targeted and risk-stratified treatment decisions could ensue. The visual SOM also has benefit for clinicians: 
It is a readily interpretable and understandable illustration by which patients could see the position of their own 
cellular signatures within the complex domain of benign and malignant patterns.

Results
Univariate analyses, multivariate PCA, and PCA-LDA classify the high-wavenumber 
component of the LNCaP disease state
The average, high-wavenumber fingerprints of the PNT2-C2 (normal-prostate) and LNCaP (metastatic 
prostate-cancer) cell lines obtained using live-cell Raman spectroscopy are shown in Fig. 1a. The total dataset 
comprises 154 single-cell point spectra for PNT2-C2 and 130 single-cell point spectra for LNCaP, with each 
spectrum containing N = 1056 wavenumber points. The spectral datasets are statistically converged (SI Section 
A), thereby ensuring that the converged spectral averages faithfully represent the population-level sampling. The 
molecular heterogeneity across these cell lines is represented by the converged standard-error (SE) envelopes, 
which are displayed over the spectral averages (Fig. 1a). A spectral-difference plot (black line) was also obtained 
by subtracting the average spectrum of PNT2-C2 (normal) from the LNCaP (cancer) cell line thereby defining 
the relative disease state.

Gaussian peak-fitting to the average spectra was performed to determine the de-convolved peak positions 
and peak-intensity differences resolved to these bands (Fig. 1a). Table 1 shows the quantitative values associated 
with the peak-intensity differences together with the fitted standard-error uncertainties and peak assignments. 
The up-regulation (↑) and down-regulation (↓) of the LNCaP cancer state relative to the PNT2-C2 normal 
baseline (column 4, Table 1) shows favourable comparison with results from the literature23,24. Key differences 
from these results are found at 2852, 2894, 2933, 2966 and 3015 cm−1 (Table 1). A statistical comparison between 
LNCaP and PNT2-C2 was also performed using PCA, where PC1 captures the maximum proportion of the 
total variance at 49%, followed by PC2 at 13%, PC3 at 6%, and PC4 at 5% total-variance weightings. The plot 
of the percentage variance per PC shows PC7 at 0.9% of the total variance captured to be just past the elbow of 
the plot (Fig. 1b). This result confirms 7 PCs to be a viable minimum number for the PCA-LDA classification 
(i.e., reduced dimension) versus the 1056 initial wavenumber variables per spectrum. Within LDA classification, 
the linear-discriminant function (LDF) separates group clusters in PCA space by maximising the between-group 
and minimising the within-group variances relative to the cluster centroids, such that LDF = w1PC1 + w2PC2 
... + wnPCn, where n = 7 in this specific example, and wi are the corresponding LDF coefficients, also referred 
to as weights. Graphical representation of this classification result with leave-one-out cross validation (LOOV) 
(Fig.  1c) shows separation of the PNT2-C2 and LNCaP groups via stacked histograms that encapsulate the 

Scientific Reports |          (2025) 15:773 2| https://doi.org/10.1038/s41598-024-83708-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 1.  (a) Spectral averages plus SE envelopes for LNCaP and PNT2-C2. (Lower) Spectral-subtraction plot 
(black), and Gaussian peak-fitted intensity differences plus propagated SE uncertainties (red). (b) Percentage 
variance captured versus PC number. The vertical line shows the maximum 7 PCs used in the LDA (total 
~ 77% variance captured). (c) LDA histogram (classification result). (d) Table showing the PC number, 
percentage variance captured, group-mean separations, ratio of the between- to within-group variances and 
LDF coefficients. (e) PCA scatterplot for high-wavenumber LNCaP versus PNT2-C2 (PC2×PC4). Loadings for 
(f) PC2, (g) PC4 and the (e) sum-weighted loadings. Key wavenumber positions are shown.
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action of the LDF on the group-separated PCA data. A stable 99.6% average accuracy was determined over 1000 
iterations in the LOOV-classification with the maximum number of 7 PCs included.

Inspection of the PCA-LDA result shows PC2 and PC4 to have the highest LDF weights in magnitude (Fig. 1d, 
column 4) and hence the greatest effect on the LDA classification (Fig. 1c). Indicatively, the PCA result for PC2 
and PC4 (Fig. 1e) shows LNCaP and PNT2-C2 to have very good separation along the PC2×PC4 axis, albeit 
with some outliers, which we will later address within the context of the SOM. PCA loadings corresponding to 
the PC2 and PC4 reduced dimensions (Fig. 1f,g), and a sum LDF-weighted loadings taken over all seven PCs 
are also shown (Fig. 1h). Quantitative analysis of the PCA result within the context of the PCA-LDA loadings 
demonstrates features that are commensurate with the spectral subtraction findings (cf. Fig. 1a,h).

The LNCaP cell line shows marked changes in the lipids as evidenced by C↑ for the predominant lipid 
markers in Table 1. The CH2 lipid band at 2852 cm−1 assigned to total fatty acids is increased in LNCaP relative 
to PNT2-C2 (δ = 5.1C↑). This result indicates that in the live-cell result there is a greater amount of lipids in 
LNCaP (cancer) relative to PNT2-C2 (normal). The relative increase in the 3015 cm−1 marker (δ = 1.39C↑) also 
shows an increase in unsaturated lipid content, and lipids in general, in live-cell LNCaP (2894 cm−1 increase). 
The exception is the reduction in the cholesterol and cholesterol-ester (CE) band at 2966 cm−1 in the LNCaP 
cancer state relative to PNT2-C2, which we interpret as indicating cholesterol synthesis from cholesterol-ester 
and cholesterol use, i.e., that the LNCaP cells have less requirement for cholesterol-ester storage41. The result also 
correlates with a key peak-intensity ratio marker, 3015/2966, which we measured as 0.100 ± 0.002 for LNCaP 
versus 0.065 ± 0.001 for PNT2-C2, with the relative up-regulation of this marker in LNCaP cancer (C↑) also 
being indicated in Hislop et al.24. Our findings (Table 1) show the live-cell results to have features in keeping 
with lipid-droplet analyses in other works, e.g., Refs.23,24. We conclude this finding to be a reasonable outcome 
within the statistics of our measurements as LNCaP cells have been measured to have more liquid droplets on 
average than PNT2-C224. In comparison, key protein-dominant markers (in particular at 2966 cm−1) are shown 
to be down regulated in LNCaP cancer (C↓) indicating increased protein metabolism in AR-positive LNCaP. 
This finding is also supported in the literature. For example, Ahmad et al.42 states “enhanced” protein uptake and 
metabolism in prostate cancer as key features correlated to AR-signalling.

Unsupervised self-organising map (SOM) classification reveals sub-stratification of the 
LNCaP (cancer) disease state
An unsupervised SOM was used to assess the potential for sub-classification of the spectral results. SOMs (also 
known as Kohonen maps) are a visual representation of network-connected units (nodes) that assume the 
topology of an input dataset31. With each round of training, the best matching unit (BMU) is defined as the node 
that best maps to an input observation pattern (in this case, a vectorially-defined spectrum) using a relative-
distance mapping process, i.e., via a competition that tests for the minimum relative distance to it. The BMU, in 
turn, then mathematically exerts an effect on neighbouring nodes to bring those that are relationally similar to it 
closer in relative distance, thereby uncovering clusters of patterns within the dataset. The process of competitive 

Band (cm−1) Proposed peak assignments for whole-cell, nucleus sampling δ [C−N] ± SE [E-4] C↑  or ↓

2727 Lipids: C−H stretches† 0.43 ± 0.08 C↑

2852* Lipids: CH2
† 5.1 ± 0.5 C↑a↑,c↑

2872 Lipids and Proteins: CH2  & CH3
† − 0.020 ± 0.001 C↓a↑,b↓

2894* Lipids and Proteins: CH, CH2  & CH3
† 2.83 ± 0.04 C↑a↑

2933* Proteins and Lipids: CH2  & CH3
† − 9.7 ± 0.2 C↓b↓

2941 Proteins and Lipids: C−H lipids & proteins; CH2  modes in lipids† − 0.75 ± 0.08 C↓a↓,b↓

2966* Lipids: CH3  asymmetric stretch; cholesterol & cholesterol ester† − 2.41 ± 0.06 C↓a↓,b↓

3015* Lipids: unsaturated =CH stretch in lipids† 1.39 ± 0.01 C↑a↑,b↓

3064 Proteins: C−H stretch; phenylalanine, tyrosine & tryptophan‡ − 0.54 ± 0.02 C↓

Table 1.  Peak-intensity differences between Gaussian peak-fitted bands in LNCaP (cancer C) relative to 
PNT2-C2 (normal N baseline) taken from the averaged spectral fingerprints in the high-wavenumber region. 
Column 1: Average peak positions. Column 2: Proposed peak assignments showing those bands, which 
are predominant in lipids (when listed first) and proteins (when listed first).  Column 3: Measured peak-
intensity difference (δ) in cancer minus normal [C−N] ± the propagated SE uncertainty. Column 4: Cancer 
(C) up-regulated (↑) or down-regulated (↓) against the normal baseline (this work). The superscripts denote 
the corresponding literature comparisons (see also the table footnotes below) with ↑ and ↓ indicating the 
comparative up-regulation and down-regulation of cancer in those works, respectively. Significant values are 
highlighted in bold. aLNCaP and PC3 metastatic cells lines. Untreated versus treated. Formaldehyde fixed23. 
LNCaP comparison shown. Lipid-droplet sampling. bPC3 and LNCaP versus PNT2 normal prostate cell line. 
Cells fixed with paraformaldehyde24. LNCaP comparison shown. Whole-cell sampling. cPC3 and LNCaP 
versus PNT2 normal prostate cell line. Cells fixed with paraformaldehyde24. LNCaP comparison shown. 
Liquid-droplet sampling. Peak-assignment references also include reference 19† and reference 25‡
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feedback when training with a dataset enables the nodes to recognise and establish unique relational patterns 
within the input data32. The algorithm for the SOM approach is described in the Methods section.

A rectangular map is used for the SOM as it is more easily interpretable. Figure 2a shows the classification 
result from the SOM determined from a randomised, blind dataset comprising both the LNCaP and PNT2-C2 
spectral data. Here, the distance from the neighbourhood nodes (right colour scale on the heat map) refers to the 
converged relative distances normalised to a scale from 0 to 1. The SOM shows an unsupervised classification result 
of a single cluster for PNT2-C2 (Cluster A: upper-left triangle of the SOM map), and two sub-stratified clusters in 
LNCaP (Cluster B: lower left, and Cluster C: lower right of the SOM), separated by a maximum-distance separator 
(i.e., white nodes) at (7,2), (7,3) and (7,4). The mapping of each spectrum to the SOM is shown as a single data 
point, with sub-clusters identified from regional areas of nodes that meet a distance score (DS) of ≤ 0.72 threshold 
distance, with this value corresponding to the minimum distance where clefts between clusters (i.e., cluster borders) 
occur. Due to open-boundary conditions, corner nodes are excluded in the SOM classification, as are edge nodes 
that have internal nearest-neighbour nodes with no observations. PCA points of interest due to their PC scores, 
hence distances from the PCA cluster centres, are highlighted in Fig. 2b and circled in the SOM map (Fig. 2a). L2 
(8,0), L4 (13,9), N1 (0,6) and N3 (0,8) meet these criteria. L4 (corner node) and N3 (edge node) also cross PC2 = 0, 
with PC2 being the highest-weighted component in the loadings (cf. Fig. 1d). PCA L3 (9,0) is included in the SOM 
classification as its neighbouring internal node (9,1) is populated as per our inclusion criteria (L3 = ~ 1% weighting 
in Cluster C; cf. Table 2). PCA N2 (5,6) and N4 (8,5) are included with DS ≤ 0.72 values (total ~ 2% weighting in 
Cluster A; cf. Table 2). PCA L1 (10,3) is a PCA outlier, which is borderline for inclusion at DS = 0.71 (L1 = ~ 1% 
weighting in Cluster C). Cf. also the SOM methods section and SI Section C. The discovery of the two sub-stratified 
clusters in LNCaP from the unsupervised SOM (Clusters B and C) is a new finding against the results from PCA. 
The low percentage weighting of possible PCA outliers in the cluster definitions confirm the unsupervised SOM 
classification to be statistically significant.

The full set of SOM-classified clusters and their percentage weightings within the full set of spectra (combined), 
and relative to the separate LNCaP and PNT2-C2 datasets, are shown in Table 2. The spectral average across the 
full set of spectra (LNCaP and PNT2-C2 combined) (Fig. 2c), relative distributions of the SOM-classified spectra 
in each cluster (A, B and C) (Fig. 2d), and the spectral average per cluster (Fig. 2e) can also be compared. Although 
Cluster A (79% PNT2-C2 spectra) exhibits a broad distribution, the LNCaP sub-stratified clusters B and C (total 
70% of the LNCaP spectra) are found to be statistically distinct and well separated (Fig. 2d). The high percentage 
weighting of spectra that have been classified indicate these results to be statistically significant. In this respect, the 
SOM faithfully finds through unsupervised classification, the naturally contained subclasses of complex patterns 
within the combined Raman data set. To determine the biomolecular differences between the SOM clusters, 
the average spectra in Fig. 2e were Gaussian peak-fitted, with the results of the disease-state clusters (B and C) 
defined relative to the normal-state cluster (A). Figure 2f shows the peak-intensity differences for the sub-stratified 
clusters B and C relative to A, with these results also compared to the peak-intensity profile for the LNCaP minus 
PNT2-C2 disease state obtained using the full set of spectra (Table 1 and Fig. 1a). Key differences occur at 2852 
(CH2 total fatty-acid), 2872 (CH2 and CH3 lipids and proteins), 2894 (CH, CH2, & CH3 primarily lipids), 2933 
(CH3 primarily proteins), 2966 (CH3, cholesterol and cholesterol ester), and 3015 cm−1 (=CH unsaturated lipids). 
Although the peak-intensity difference plot for Cluster C in the disease state follows the same trend as the full-
population study, Cluster B is shown to be opposite in trend.

The profile for Cluster C indicates a greater proportion of lipid-rich signatures relative to the full disease state 
with 2852 cm−1 ↑ (total lipids), 2894  cm−1 ↑ (lipid-predominant CH, CH2 and CH3 markers), and 3015  cm−1 ↑ 
(unsaturated lipids) (Fig. 2f). A relative decrease in cholesterol and cholesterol-ester signatures relating to the 2966  
cm−1 marker in Cluster C shows this subset (56% in Table 2) has even less cholesterol/cholesterol ester. Although 
Cluster B has a relatively modest weighting in the disease state at 14% within the full, statistically-converged LNCaP 
dataset (Table 2), it is shown to have a pronounced defining effect on the disease-state phenotype having an up-
regulation of protein-dominant signatures at 2933  cm−1 ↑ (CH3) and 2966  cm−1 ↑ (attributed also to the CH3
-related component). The designation of LNCaP components that are lipid-rich (Cluster C) or protein-rich (Cluster 
B) can be further substantiated from peak-intensity ratio analyses (Table 3). The marked down-regulation of the 
2852/2933 PIR in Cluster B (0.09) indicates a higher relative proportion of CH3 in this cluster (protein dominant), 
whereas this marker is markedly up-regulated in Cluster C (0.70) demonstrating more relative CH2 total lipids. The 
3015/2852 PIR indicates an up-regulation of unsaturated fatty acids in LNCaP cluster B against the total fatty-acid 
content relative to the other clusters. However, this PIR in Cluster C (0.205) is effectively equivalent to the value in 
LNCaP over all spectra (0.21). With these factors considered, the increase in Cluster C of the 3015/2966 PIR (ratio 
of unsaturated lipids to cholesterol/cholesterol ester) would therefore be predominantly related to a relative decrease 
in cholesterol and cholesterol-ester components. Supporting literature, which has used Raman spectroscopy to 
probe various spatially-resolved cell components albeit in the fixed state (i.e., lipid droplets, nucleoli, cytoplasm, 
etc.), also confirm that the relative increases in signatures for wavenumbers (ν̃) ≤ 2900  cm−1 and at ~  3015  cm−1 
are related to lipid-rich components (such as lipid droplets), and those with relative increases in signatures 2900  
cm−1 ≤ ν̃ ≤ 3000  cm−1 are related to protein-rich components (such as nucleoli)24,43.

Discussion
The discovery by unsupervised machine learning in this work of sub-stratified lipid-rich and protein-rich 
components having defining and distinct disease-related characteristics has implications in the mechanistic 
understanding of prostate-cancer disease. Increased fatty acid content in prostate-cancer cells, and storage of this 
within lipid droplets, are defining characteristics of the disease state39,40. Prostate cancer cells have significantly 
higher energy demands. They have adapted to this by using glycolysis to meet these demands either via synthesis 
of stored cholesterol ester as well as using stored lipids to best repair oxidative damage caused by increased 
energy usage44,45. This work shows LNCaP is more lipid-rich than PNT2-C2, and has a predominant lipid-rich 
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Fig. 2.  (a) Unsupervised SOM map of dimension 14×10 from the total data set of LNCaP and PNT2-C2 
spectra (originally blinded), with nodes (0,0) bottom left to (13,9) top right. Observations per node are shown 
with selected PCA points of interest (b) circled. Unsupervised classification of PNT2-C2 (Cluster A, upper-
left; yellow bordered) and the discovery of two sub-stratified LNCaP clusters (B: lower left, and C: lower right; 
green bordered) are indicated. Due to open-boundaries, corner nodes are excluded as are edge nodes with 
nearest-neighbours that have no observations. L2 (8,0), L4 (13,9), N1 (0,6) and N3 (0,8) meet these criteria. 
L4 and N1 also cross PC2 = 0 with PC2 being highly-weighted in the loadings. L3 (9,0) is included as (9,1) is 
populated (~ 1% Cluster C). Nodes with a distance score (DS) ≤ 0.72 (threshold distance) are included, e.g., 
N2 (5,6) and N4 (8,5) (~ 2% Cluster A). L1 (10,3) is a PCA outlier with borderline inclusion at DS = 0.71 
(~ 1% Cluster C). Cf. Methods section, Table 2 & SI Section C. (c) Average spectrum for the combined prostate 
cell-line dataset (LNCaP + PNT2-C2) with SE envelope. (d) Spectral distributions for each SOM-identified 
cluster. Cluster A (PNT2-C2) has a broad distribution. Clusters B and C (both LNCaP) have well-separated, 
distinct distributions. (e) Cluster separated, average spectra for SOM-identified Clusters A, B and C compared 
to the average spectrum for the full dataset. (f) Gaussian-fitted, peak-intensity differences from the average 
spectral profiles relative to the normal-baseline results, with Cluster B (sub-stratified as protein dominant) 
relative to Cluster A, and Cluster C (sub-stratified as lipid dominant) relative to Cluster A, versus the full 
dataset for LNCaP relative to PNT2-C2. These relative differences define the disease-state biomarkers in the 
sub-stratified B and C clusters, and in the full dataset result (see also Fig. 1a). Propagated SE uncertainties are 
shown.
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sub-component, which defines its disease state (Cluster C). We believe the predominance of this sub-cluster is 
directly linked to the LNCaP cell line containing lipid droplets that are greater in size and abundance compared 
to normal prostate cell lines46. Although storage of cholesterol ester within lipid droplets is integral to the disease 
state, LNCaP has reduced cholesterol-ester amount against other prostate-cancer cell lines, also relative to its 
own total fatty-acid content and in free-cell cholesterol content as determined in this work (see also supporting 
references24,41). Sorvena et al.  has also demonstrated down-regulation of cholesterol and cholesterol ester in 
LNCaP with up-regulation of other lipids against the normal prostate cell line PNT1 (in particular unsaturated 
fatty acids) using mass spectrometry46. The composition of these droplets has been assessed as being primarily 
unsaturated fatty acid (e.g., oleic acid via Raman47) with a greater ratio of unsaturated fatty acid to cholesterol/
cholesterol ester being also determined (this work, also Hislop et al.24).

There is a greater amount of lipids in LNCaP compared to the normal cell line as shown in this work, and 
in other works (e.g.,46,48). Prostate cancer cells have a high dependency on lipids for the production of cellular 
energy, membrane integrity and repair, hormone production, intracellular signalling as well as in other key 
mechanistic processes49,50. The increased availability of lipids via uptake and synthesis, and their accumulation 
in lipid droplets in prostate cancer, not only preserves lipid homoeostasis and prevents lipids from oxidative 
damage, it also provides a means of ATP and NADPH production during conditions of metabolic stress (i.e., via 
mitrochondrial beta-oxidation49), when glycolysis-ATP production may be challenged39. In this respect, LNCaP 
is less reliant on glycolysis and more dependent on mitochondrial metabolism, which principally acts to generate 
its ATP51—it has lower levels of glucose consumption and lactate production than other prostate cell lines52. 
LNCaP also has a higher dependency on direct cholesterol use from de novo and extracellular sources44,53, 
with this being linked to reduced cholesterol-ester synthesis. Mechanistically, the cholesterol ester amount in 
lipid-droplet storage in prostate-cancer cells has been positively linked to the PTEN/PI3K-AKT pathway, the 
up regulation of which is vital for prostate-cell proliferation and growth41. However, PTEN is not expressed 
by LNCaP54 and cholesterol ester is down; therefore, rerouting to induce AKT1 activation to support tumour 
growth occurs by other means in LNCaP cells, namely via direct cholesterol use55. Cholesterol use is an essential 
component in supporting LNCaP proliferation and maintaining cell-membrane integrity44. The unsupervised 
discovery of a sub-cluster in LNCaP in this work—integral to defining the disease state and having signatures 
of increased total lipids, reduced cholesterol and cholesterol ester—is therefore a key finding supported and 
explained by these mechanistic lines of evidence.

The Raman signature and biomarker profile from Cluster B in the LNCaP state indicate a distinct contribution 
from a protein-rich component within the cell nuclei, which is also a defining feature of the disease state. The 
highest concentrated component of proteins in the nucleus is the nucleolus56. Koh et al. showed multiple nucleoi 
in LNCaP cells with ~ 80% containing more than one nucleolus57. In spatially-resolved measurements on fixed 
LNCaP cells, Hislop et al. identified intra-nucleus rich regions attributed to nucleoli with higher relative CH3 
to CH2 via Raman spectroscopy24. The dysregulation of ribosomal proteins in nucleoli are implicated in the 
pathogenesis of prostate cancer58 as is its overexpression, also evidenced specifically in LNCaP59. The ribosomal 
pattern transcript correlates to the type of cancer, and in defining the disease state against normal tissue60. 
Biogenesis implicated by ribosomal differences arising from molecular-scale heterogeneity have been linked to 
metastatic potential and treatment resistance61. Although the precise mechanistic implications of these changes 
in cancer remain to be fully elucidated, there may be links with the lipogenesis pathway; for example, lack 
of PTEN results in the inability to suspend proliferation in the event of ribosome overproduction62. In the 
case of LNCaP, this work may therefore be an exemplar where unsupervised machine learning has uncovered 

PIR PNT2-C2All PNT2-C2A LNCaPAll LNCaPB LNCaPC

2852 / 2933 (CH2  / CH2  &CH3) 0.30 ± 0.02 0.33 ± 0.02 0.47 ± 0.03 0.09 ± 0.01 0.70 ± 0.03

3015 / 2852 (=CH / CH2) 0.19 ± 0.01 0.18 ± 0.01 0.21 ± 0.01 0.30 ± 0.02 0.205 ± 0.004

3015 / 2966 (=CH / CH3 ,Ch. &CE) 0.065 ± 0.001 0.072 ± 0.002 0.100 ± 0.002 0.041± 0.001 0.129 ± 0.002

Table 3.  Key, peak-intensity ratio (PIR) comparisons for the PNT2-C2 and LNCaP (all spectra), and the sub-
stratified clusters: A (PNT2-C2), B (LNCaP—protein dominant) and C (LNCaP—lipid dominant). Errors are 
from the propagated SEs.

 

Cluster Location PNT2-C2 LNCaP Subset (%) Total (%)

A Top half (mostly left) 121 0 79 43

B Lower left 0 18 14 6

C Lower right 0 73 56 26

Table 2.  Cluster distributions and their locations in the SOM (cf. Fig. 2a). Column 1: Cluster name. Column 
2: Cluster location in the SOM. Columns 3 and 4, respectively: Number of PNT2-C2 and LNCaP observations 
per cluster. Column 5: Percentage (%) proportion of observations relative to their respective subset number 
of spectra (PNT2-C2 = 154; LNCaP = 130). Spectra mapped to SOM nodes that are excluded from the 
cluster definitions comprise the remaining percentage of spectra. Column 6: Percentage (%) proportion of 
observations relative to the total number of spectra in the combined dataset across all spectra (n = 284).
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intracellular disease-state functions resulting in a lipid-rich component (sub-cluster C) and a protein-rich 
component (sub-cluster B) which may be synergistically and mechanistically linked.

Conclusion
We believe this to be the first time that an unsupervised self-organising map approach has been used to classify 
prostate-cancer at the single-cell level using live-cell Raman spectroscopy data. Using this approach, we have 
discovered two sub-stratified cancer disease-states in the metastatic LNCaP cell line relative to the normal 
prostate cell-line, PNT2-C2—a lipid-rich component commensurate with increased lipid-droplets, lipid storage 
and lipid use in LNCaP and a protein-rich component, which best relates to increased ribosome-density nucleoli. 
We have proposed that the SOM-classified sub-clusters that define the LNCaP disease state at the single-cell level 
are mechanistically linked for onward testing. The work demonstrates the unsupervised sub-classification by 
machine learning of intracellular features that define the disease state in live, intact cells with statistically-robust 
cell numbers, versus previous efforts that derive biomarkers from the statistical average only, use Raman spatial 
mapping over small cell numbers and in fixed cells. The method has application in the quantitative discovery 
of sub-stratified states in prostate cancer, which could better inform patient-specific diagnosis, prognosis and 
treatment decisions for this highly heterogeneous disease. The method could also inform the discovery of 
mechanistically-linked features in the disease state, an important application of which could be the design of 
more effective “broad-spectrum” treatments that can simultaneously target linked disease-state processes.

Methods
All methods were carried out in accordance with relevant guidelines and regulations under approval from the 
University of York’s Biology Ethics Committee ​(​​​h​​​​t​t​​p​s​​:​​/​​/​w​w​​w​.​y​o​​r​k​.​a​​​c​.​​u​k​/​​b​i​o​l​o​g​y​/​c​u​r​r​e​n​t​-​s​t​u​d​e​n​t​s​-​s​t​a​f​f​/​e​t​h​i​c​s​/​b​
e​c​/​​​​​) (biol-ethics@york.ac.uk). The cell lines used in this study are immortalised cell lines and not primary cell 
cultures.

Cell lines used in this study
LNCaP
Metastatic prostate cancer cell line of lymph-node origin (left supraclavicular lymph node) isolated by needle 
aspiration biopsy from a 50-year old male. Luminal-like. Exhibits AR expression (i.e., it is androgen dependent). 
Prostate specific markers, AR (androgen receptor protein marker), PSA (prostate specific antigen) and PAP 
(prostatic acid phosphatase), detected. Cell line obtained from ATCC. See Refs.26,27,30.

PNT2-C2
A well-differentiated, normal prostate epithelial cell line derived from prostate luminal secretory cells obtained 
from prostate tissue from a 33-year old male post mortem. The cell line was immortalised via transfection 
with simian virus 40 (SV40). Prostate specific markers, AR (androgen receptor protein marker), PSA (prostate 
specific antigen) and PAP (prostatic acid phosphatase), not detected. PNT2-C2 is a sub-clone developed from a 
parental clonal cell line (PNT). Its original purpose was as a means of establishing a consistent in vivo cell-line 
model of prostate disease states by using it to develop other sub-clonal lines via transfection. Cell line obtained 
from ECACC. See Refs.28–30.

Cell culturing
PNT2-C2 and LNCaP cell lines were cultured in T75 tissue culture-treated flasks. They were grown in RPMI 
(Roswell Park Memorial Institute-1640, Gibco) medium with 10% foetal calf serum (FCS) (R10 media) and 
2 mM L-glutamine. The cells were incubated at 37 ◦C in a humidified atmosphere containing 5% CO2. No 
antibiotics were used during standard culture conditions.

Sample preparation for Raman spectroscopy
Preparation of the cell samples for Raman spectroscopy analysis follows a three-day protocol. On day one, cells 
were prepared by washing in PBS followed by incubation in trypsin and re-suspension in R10 media to inactivate 
the trypsin. The cells were then centrifuged, resuspended in the appropriate media (as above) and counted using 
a haemocytometer. A CaF2 Raman grade 13 mm (D) × 1 mm (T) disc (Crystran Limited, Poole U.K.) was 
placed in a 35 mm tissue culture dish. 50,000 cells were plated onto the disc in 200 μl of media and left for 10 
min to adhere. Media was then added to a total volume of 2.5 ml, with antibiotic-antimycotic (ABM) solution 
(Thermo Fisher Scientific) since the discs are not sterile. The dishes were then placed in a 37 ◦C incubator. On 
the second day, media was changed to starvation media (as follows) to synchronise the cells so that they were 
not in the process of dividing, which would skew results. Starvation media comprised RPMI only, minus FCS 
and L-glutamine. On the third day for live-cell analysis, the cells were washed three times in HBSS buffer and 
then 2.5 ml of fresh HBSS buffer was added to the dish. The dish containing the disc (cell sample) was then 
immediately taken to the Raman microscope for analysis.

Raman spectroscopy measurements
Raman point spectra were collected using an HORIBA XploRA micro-Raman with in confocal setting (100 
μm pinhole), with 200 μm slit, 532 nm laser wavelength at 3.5 mW laser-power and 2400 lines/mm diffraction 
grating. A Zeiss Wplan Apochromat 63X (NA = 1.0) Ph3 dipping lens was used. The diffraction-limited, spatial 
resolution was ~ 1 μm with ± 3  cm−1 spectral resolution. Single spectra were collected from the nucleus of 
randomly selected cells across the population with one spectrum per cell nucleus to ensure minimum laser-
dose exposure. Each measurement session per cell sample was no longer than four hours, with up to five cell 
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samples measured per cell line to obtain the statistically-converged spectral numbers. We have shown these 
measurement parameters and conditions to be non-destructive to live cells with cell viability remaining fully 
intact via trypan-blue assay testing63,64. The cells were also monitored during real-time acquisition to ensure no 
spectral or optical changes occurred after each Raman measurement.

Raman datasets
The Raman spectra were minimally preprocessed using standard methods of baseline subtraction, total-area 
normalisation, and interpolation (see Ref.18 and methods detailed therein). Specifically, the spectra were first cut 
to the high-wavenumber (2700–3100  cm−1) range. The spectral cut, and follow-on baseline subtraction, total-
area normalisation, and spectral smoothing with 0.65 cubic spline were performed using the Raman tool set 
software, version 2.1.065. Due to the HBSS background in the high-wavenumber region of the live-cell spectra, 
an n = 3 polynomial background subtraction was required. The spectra had minimal background removal using 
the Raman Tool Set as the inclusion of spectral background has been shown to be beneficial in discriminating 
cell phenotypes (see for example, Ref.66). Each spectrum was also interpolated using code written in IGOR Pro 
Version 9.01 (WaveMetrics, Inc., Lake Oswego, OR, USA) to ensure the same wavenumber increments across the 
spectra for follow-on PCA analyses. Convergence of the average spectrum, twice the standard deviation (2xSD) 
and standard-error of the mean (SE) for increasing numbers of spectra ensured the data sets were statistically-
representative of population-level, live-cell and dried-cell states. Statistical convergence is shown for LNCaP 
with 130 live-cell spectra and PNT2-C2 with 154 live-cell spectra collected in the high-wavenumber region 
(cf. Supplementary Fig. S1). Strict convergence of the statistical quantities ensured experimental variability and 
molecular-scale heterogeneity were fully accounted for.

Peak intensity and peak-intensity ratio (PIR) analyses
Gaussian peak-fitting was performed on the statistically-converged, normalised average spectra per cell line 
across linear-baselined, local spectral windows using the Multipeak Fitting 2 function in IGOR Pro Version 
9.01 (WaveMetrics, Inc., Lake Oswego, OR, USA). The fitted peak-intensities were used to obtain disease-state 
biomarkers that differentiate the live and dried disease-states via peak-intensity subtractions. Robust biomarkers 
were determined under criteria where the magnitude of the disease-state marker needed to be significantly 
greater than the combined, fitted standard-error uncertainties corresponding to each de-convolved band per 
individual spectrum. Peak-intensity ratios between key bands were also calculated with the uncertainty of the 
PIR obtained from the propagated sum of the relative standard-error uncertainties of the composite bands.

Principal component and linear discriminant analyses
Principal component analysis (PCA) was performed with loadings and scatter plots produced using code written 
in R and executed in RStudio version 2022.07.2 + 57667. After PCA, linear discriminant analysis (LDA) was 
performed followed by leave-one-out cross-validation using code written in R and executed in RStudio version 
2022.07.2 + 57667. The optimal number of PCs for LDA inclusion was determined by assessing the stability of 
the leave-one-out cross validation result as a function of the number of PCs included about the Kaiser criterion 
point with respect to the proportional variance captured per principal component (PC), and cumulative variance 
captured as a function of increasing principal components (PCs). Leave-one-out cross validation (LOOV) was 
used to determine the classification accuracy, as well as to check the numerical stability of the PCA-LDA result. 
Histograms for the LDA classification result were then generated. An LDA-weighted, loadings summation over 
the included PCs (sum-weighted loadings) was obtained, as well as measures for the group-mean separations, 
within-group variance, and ratio of the within-to-between-group variances determined using in-house code 
written in R. Biomarkers from the loadings results were deemed viable if they were significantly prominent 
above the fluctuating loadings background.

SOM method

	 (i)	� MiniSom and MySom codes: MiniSom68 is an open source Python package used for the computational 
SOM analysis. The Python module MySom was developed as a subclass of MiniSom, which contains meth-
ods for normalisation of Raman spectral data and plotting SOM outputs69. The source code for MySom 
is available at github.com/thenakedcellist/prostate. The SOM is built using multiple input parameters: the 
map network comprising the x and y dimensions and number of n nodes, the starting neighbourhood 
radius, σ(0), the starting learning rate, α(0), and the number of iteration steps in the learning process.

	(ii)	� Raman input datasets: The dataset for SOM analysis contains spectral data from an unknown (blinded) 
number of PNT2-C2 (normal prostate) and LNCaP (prostate cancer) cell lines, total 284 observations. 
The unlabelled dataset is stored as two files, the first containing a one-dimensional array of length 1056, 
each column containing a value for the wavenumber (cm−1). The second file contains a two-dimensional 
array containing measured arbitrary intensity values that correspond to each wavenumber. The data for the 
samples therefore form a 284 × 1056 array.

	(iii)	� SOM algorithm: The following SOM algorithm is implemented using MiniSom and MySom. Its parameter-
isation is in sub-section (iv), which follows. 

	1.	� A rectangular SOM of x and y dimensions is defined, which has x × y = n nodes.
	2.	� A normalised weight array wk = [wk1, ..., wkN ] is created for each of the k SOM nodes. Here, wkj , are the 

weight elements, which are initialised with random values chosen from 0 to 1, and j is the element number, 
where j = {1, N = 1086} are the wavenumber measurements. Each spectrum i = 1 to 284 in the total data 
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set is also assigned to an array vi = [vi1, ..., viN ], which is normalised by its Frobenius norm. The iteration 
counter t is initialised at zero and runs to t = tmax.

	3.	� An input vector vi is randomly chosen from the data set, with the Euclidean distance calculated between it and 

the weight array wk = [wk1, ..., wkN ] for each node k in the SOM, such that Dviwk =
√∑N

j=1(vij − wkj)2. 

The node k with the closest Euclidean distance to the input vector is then defined as the “best-matching unit” 
(BMU).

	4.	� The weight arrays corresponding to the nodes are modified in the next t + 1 iteration using the function, 
wk(t + 1) = wk(t) + α(t)hk(t)(vi − wk(t)). Decay functions may be any function of t that allows σ(t) 
and α(t) to decrease with increasing t70. Here, α(t) = α(t−1)

a+ t
0.5tmax

 is the learning rate, which asymptotically 

decays, and hk(t) = e−d2/2σ(t)2
 is the neighbourhood function, which determines the size of the “neigh-

bourhood” radius around each BMU. Here, d is the Euclidean distance from the neighbouring nodes to the 
BMU and σ(t) = σ(0)

1+t∗C  where C = (σ(0)−1)
tmax

. The nature of the decay functions for α(t) and σ(t) allow for 
early coarse organisation and later fine organisation of the data70. That is, with each step, the neighbourhood 
radius and learning rate decay monotonically to achieve gross clustering of widely-spaced nodes early on in 
training, and fine tuning of clusters during later iteration steps by only acting on close neighbours.

	5.	� Steps 4 and 5 are iterated through until t = tmax is reached. 

	(iv)	� Parameterisation: The parameters for the SOM are not known a priori, rather Kohonen stated they could 
be determined via trial and error and visual inspection of the results, depending on the granularity of 
data clustering desired70. We used a two-dimensional lattice and rectangular topology, which is easier to 
interpret compared to other SOM representations (e.g., hexagonal geometry). As guidance and to aid com-
putational efficiency, most sources recommend using a map size of 5

√
n nodes, where n is the number of 

observations, following early work by Vesanto71. Kohonen also suggested that the x and y dimensions of the 
map could be configured using the ratio of the two highest eigenvalues of the autocorrelation matrix for the 
input data70. To ensure robust clustering with a rectangular lattice, the x and y dimensions should also not 
be the same; breaking symmetry of the map in this manner ensures faster learning72. In applying these rec-
ommendations, our initial testing resulted in an elongated SOM of dimensions 23 × 669 (see also Fig. S2(a) 
in the Supplementary). Further testing led to a map size of 10 × 14 = 140 nodes (this work) allowing for 
a greater map-area to side-length ratio given the open boundary conditions, and better visualisation of 
the results overall. Importantly, the change between the two geometries did not affect the outcome of the 
SOM findings (cf. Figs. S2(c), (d) and (e) in the Supplementary), showing robustness in the unsupervised 
classification result against the optimised parameter set as next described. The SOM training used 10×105 
iteration steps to achieve convergence, which corresponds to the value Kohonen used in his original SOM 
simulations32, with optimum parameters determined as σ(0) = 3.0, α(0) = 0.75 and random seed = 169. 
A threshold distance for cluster inclusion was determined as 0.72 corresponding to the SOM heat-map 
scale (see the scale bar on the right-hand side of the SOM in Fig. 2a). This value corresponds to the distance 
value whereby clefts between clusters (cluster borders) occur. The distance between neighbouring nodes 
is artificially low at the map edges and corners, as only three edge and two corner neighbours are used in 
weight calculations within the MiniSom code. This led to a perceived increase in nodal density as the code 
does not allow wraparound of the map in the data space. This aspect was accounted for in our method by 
not allowing observations mapping to edge and corner nodes to define borders between clusters (due to 
artificial increased density/clustering). Observations that map to edge nodes are still included for analysis 
if they have a nearest-neighbour internal node, which defines a cluster. Corner nodes, which have near-
est-neighbour nodes that are edge-nodes only, are fully excluded from cluster definitions in the SOM.

Data availibility
The datasets generated and/or analysed during this study are available by request from Y.H.
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