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Abstract: We introduce the weighted average of sequential projections, or WASP, an algorithm

for ptychography. Using both simulations and real-world experiments, we test this new approach

and compare performance against several alternative algorithms. These tests indicate that

WASP effectively combines the benefits of its competitors, with a rapid initial convergence rate,

robustness to noise and poor initial conditions, a small memory footprint, easy tuning, and the

ability to reach a global minimum when provided with noiseless data. We also show how WASP

can be parallelised to split operation across several different computation nodes.
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1. Introduction

Over the past decade, ptychography has emerged as a breakthrough extension to Coherent

Diffractive Imaging (CDI), deployed as an effective tool at wavelengths ranging from the

picometre to the micron [1]. It has become widely practiced at X-ray synchrotrons [2], with

significant promise in reserve for fourth-generation X-ray sources, and super-fast 4DSTEM

detectors in the electron microscope have stoked considerable interest in this once-forgotten

electron technique [3–5]. Conventional CDI reconstructs an image of a sample from a recording

of a single interference pattern, generated by the sample’s diffraction of a coherent beam of

illumination; ptychography naturally extends this idea to use multiple patterns recorded at different

sample positions. Overlap between the illuminated regions of the sample introduces "useful

redundancy" into the data, conditioning the inverse problem of forming an image and making

it amenable to many different optimization approaches. A growing number of such schemes

have been proposed and tested. First was non-iterative, analytic inversion of ptychographic

data [6], which required a focused beam of illumination and a diffraction pattern recording for

every pixel in the reconstructed image. Interest in these analytic methods has returned in recent

years, especially for electron microscopy [7], but twenty years ago their data requirements were

prohibitive, leading Rodenburg and Faulkner to reimagine ptychography as a form of iterative

phase retrieval. The first iterative optimization algorithm, the ptychographical iterative engine

(PIE) [8], eliminated the need to record diffraction patterns for every reconstructed pixel. Instead,

a large patch, or probe, of illumination was used and the sample scanned through a coarse grid of

positions. This drastically reduced data requirements, but PIE suffered a key limitation: the need

for an accurate model of the illuminating probe wavefront. Without it image quality degraded

substantially, but determining the wavefront’s phase was difficult and prone to error. This changed

when Guizar-Sicairos and Fienup exploited the redundancy in the ptychographic data set to

simultaneously recover an image of both sample and probe using a conjugate gradient algorithm

[9], with work at the Swiss light source (SLS) soon showing that this process could spectacularly

improve image resolution and clarity [10]. The SLS used a set projection algorithm, a version

of the difference map [11], aligning ptychography with the broader CDI field. Shortly after,

PIE was also extended to recover the probe, resulting in the ePIE algorithm [12]. Many more
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methods have been demonstrated at X-ray synchrotrons since this early work, including various

set projection methods [13,14] (particularly Luke’s Relaxed Averaged Alternating Reflections

(RAAR) algorithm [15]), the Alternating Directions Method of Multipliers (ADMM) [16],

proximal algorithms [17,18], and maximum likelihood [19]. Meanwhile, Fourier ptychography at

optical wavelengths has brought new ideas [20–24], Machine Learning has appeared on the scene

– either as a source of optimisation algorithms and automatic differentiation routines [25,26] or

as a direct solution method [27] – and in electron ptychography a flexible least-squares optimizer

[28] was used recently to great effect to realise record-breaking picoscale resolutions [29].

Given this history, why another algorithm? Our work suggests the WASP approach described

in this paper moulds together the benefits of its various forerunners. Like ePIE, it has a small

memory footprint and a rapid initial rate of convergence; like RAAR or ADMM, it often converges

to a global minimum when given perfect data (although in common with these approaches there

are, as yet, no convergence guarantees); and importantly, it also parallelises in a natural way.

In this paper we detail the WASP algorithm, provide pseudocode for its implementation, and

assess its performance using simulated and real-world data. The paper is intended for those

familiar with the basic ideas of ptychography who are interested in implementing and running the

algorithms we describe on their own data, to which end we provide code and example datasets at

Ref. [30]. WASP is also available as an Engine in PtyPy [31].

2. Forward model for ptychography

A ptychographic experiment proceeds as follows:

1. A region of a transmissive sample is illuminated by a probe beam of coherent radiation.

2. The wavefront exiting the sample propagates some distance through free-space to form a

diffraction pattern, whose intensity is recorded by a pixelated detector.

3. The sample is translated laterally to illuminate a different region, and another diffraction

pattern is recorded. The newly-illuminated region should overlap with previous regions by

70% or more.

4. Step 3 is repeated to cover a region of interest on the sample with an overlapping grid of

illumination positions.

Figure 1 illustrates a forward model for this experiment. The probe is represented by the

complex-valued matrix Pr, of dimension [M, N] corresponding to the pixel dimensions of the

detector and indexed by the pair of integers r = [m, n]. The specimen is represented by a larger

object matrix Ox of dimension [X, Y], addressed by the index x = [x, y]. The j = 1 . . . J different

lateral positions of the sample during the experiment map to a set of J "top left" indices into the

object matrix, denoted Rtl
j
= [xtl

j
, ytl

j
].

To model the wavefront incident on the detector at the jth sample position, first an [M, N]

sub-region of the object matrix is extracted, beginning at entry Rtl
j

and ending at the bottom right

entry, Rbr
j
= Rtl

j
+ [M, N] − 1. We will refer to this region as the jth object box, ojr, where:

ojr = Or+Rtl
j
. (1)

For optically thin samples [32], the wavefront exiting the sample, ψjr, is well approximated by

a multiplication of this object box with the probe:

ψjr = Pr · ojr, (2)

where the dot notation indicates elementwise multiplication of two matrices. Propagation of

the exit wavefront to the detector plane produces Ψju, a model of the wavefront incident on the
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Fig. 1. An illustration of the variables used to model a ptychographic experiment. The jth

exit wave leaving the sample is modelled as an elementwise multiplication of Pr and ojr. A

Fourier transform propagates this exit wave to the plane of a (far-field) detector. Ultimately,

our goal is to find an object matrix and probe matrix such that the modulus of this modelled

wave is equal to the square-root of the measured data,
√︁

Iju, for every j (c.f. Eq. 7).

detector in the jth sample position:

Ψju = Fz

[︁
ψjr

]︁
. (3)

Here the index u = [u, v] addresses the pixels of the propagated wavefront, z is the distance

between the sample and detector, and free-space propagation over this distance is via the operator

Fz. For experiments where the detector is sufficiently distant from the sample to meet the

far-field condition Fz is a fast Fourier transform (FFT), otherwise an angular spectrum or Fresnel

propagator is used [33].

In the far-field the correct sample spacing for the model, relating entries of the probe and

object matrices to physical points in space, is:

δxy =

[︃
λz

Mδcam

,
λz

Nδcam

]︃
, (4)

where δcam is the pixel spacing of the detector. In the Fresnel or near-field region, the optical

geometry for ptychography usually has associated with it a magnification, M, so that the correct

sample spacing is simply δxy = δcam/M.

Once the appropriate pixel spacing is determined, Eq. (5) converts the grid of x/y positions

through which the sample is translated, Dj (in metres), to the corresponding offsets into the object

matrix:

Rtl
j =

Dj − min
(︁
Dj

)︁

δxy

. (5)

Here the raw offsets are either rounded to the nearest integer value or fractional pixel shifts are

incorporated through the Fourier shift theorem [34].
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Equations (1) to (4) fully describe the forward model for ptychography, but one further

modelling tool will prove useful in describing the various algorithms in the next Section. This is

an "embedding" operator that copies the entries of an [M, N] matrix into a larger [X, Y] matrix of

zeros, at the offset corresponding to the jth position in the scan grid, Rtl
j
. Taking the probe matrix

as an example, the jth embedded probe matrix is:

Pjx =

⎧⎪⎪⎨
⎪⎪
⎩

Px−Rtl
j

Rtl
j
≤ x ≤ Rbr

j

0 o.w.
(6)

An example usage of this operation is to calculate the accumulated illumination intensity

hitting each pixel of the object matrix, by summing up the probe intensities corresponding to

each sample position. Using the operator of Eq. (6) this is simply written as:
∑︁

j

|︁|︁Pjx

|︁|︁2.

3. Sequential projections and error reduction

In its most basic framing, the purpose of ptychographic algorithms is to find probe and object

matrices that when fed through the model described above produce wavefronts, Ψju, whose

amplitudes match the diffraction patterns recorded during the experiment:

|︁|︁Ψju

|︁|︁
=

√︁
Iju, ∀j, (7)

where Iju are the recorded data. Optimising in terms of the modulus rather than the intensity of

the data exploits the variance-stabilizing property of the square-root to better handle Gaussian-

distributed noise [35], and so in a great many cases solving this optimisation problem suffices to

reconstruct accurate, clean phase images from even quite noisy data – although for the lowest

dose experiments, the highest levels of noise, or to accommodate experimental conditions such

as partial coherence, the forward model and the framing of the optimisation can be adjusted

[19,36–38].

3.1. Sequential projections

Equation 7 is a set of J equality constraints, linked more or less strongly with each other through

the overlap between different probe positions. One way to find a probe and object that satisfy

these constraints is to step through them one-by-one, usually in a random order, and at each step

minimize the jth regularized cost functions in Eq. (8):

LO
j =

∑︂

u

(︂|︁|︁Fz

[︂
Pr · onew

jr

]︂ |︁|︁ −
√︁

Iju

)︂2

+

∑︂

r

Ar ·
(︂
onew

jr − ojr

)︂2

,

LP
j =

∑︂

u

(︂|︁|︁Fz

[︁
Pnew

r · ojr

]︁ |︁|︁ −
√︁

Iju

)︂2

+

∑︂

r

Bjr ·
(︁
Pnew

r − Pr

)︁2
,

(8)

where onew
jr

and Pnew
r are the improved estimates sought at each step. Equation 8 captures the

balance between the two priors that condition the ptychography problem: agreement with the

data (the first terms in each equation) and consistency of the probe and object at each sample

position (the second terms). The balance is fine-tuned by the regularization functions Ar and Bjr,

which dictate how strongly the revised object and probe estimates are anchored to their previous

values. More or less any function of probe intensity that is small relative to the brightest probe

pixels and large relative to the dimmer pixels can be used for Ar , and likewise any function of the

object transmission that is small relative to highly transmissive object regions and large relative
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to absorptive areas works for Bjr. For example, rPIE uses:

Ar = α

(︂
|Pr |

2
max − |Pr |

2
)︂

,

Bjr = β

(︂
|ojr |

2
max − |ojr |

2
)︂

,
(9)

where α and β are tuning constants, which when both set to unity result in ePIE; we will set out

an alternative pair of regularizers later. Minimising the jth cost functions in Eq. (8) can be thought

of as finding a regularized projection onto a constraint set that represents the corresponding

diffraction pattern data [17]. These projections can be found by taking Wirtinger derivatives of

the costs, setting the result to zero and rearranged to solve for onew
jr

and Pnew
r . For the jth cost

function this leads to the update rules of Eq. (10):

onew
jr = ojr +

P∗
r ·

(︂
ψnew

jr
− ψjr

)︂

|Pr |2 + Ar

,

Pnew
r = Pr +

o∗
jr
·
(︂
ψnew

jr
− ψjr

)︂

|ojr |2 + Bjr

,

(10)

where the ‘*’ superscript indicates the entrywise complex conjugate of a matrix and ψnew
jr

is the

result of the ubiquitous phase retrieval ’replace modulus’ operation, which employs the operator

F−z (simply an inverse FFT in the far-field geometry) to propagate a wavefront from the detector

back to the sample plane:

ψnew
jr = F−z

[︃
Ψju

|Ψju |
·
√︁

Iju

]︃
. (11)

To avoid zero-division in Eq. (11) a small constant can be added to its denominator.

For the object update, the final step of the projection is to paste the new object box back into

the larger object matrix, so that:

Or+Rj
= onew

jr . (12)

A single iteration of what we can call the sequential projections (SP) algorithm – of which

ePIE and rPIE are particular instances characterised by the form of Ar and Bjr – shuffles the cost

functions of Eq. (8) into a random order, then carries out the projections of Eq. (10) one-by-one,

with the output of one pair of object/probe updates feeding the next until all J projections have

been carried out. Although separate SP-type reconstructions can be tiled together [39], because

the individual projections feed into one another these algorithms do not naturally parallelise; we

will consider now an alternative framing that does.

3.2. Error reduction

Another way to solve Eq. (7) is to consider the entirety of the data in a single batch, by minimizing

the two cost functions in Eq. (13):

LO
=

∑︂

j

∑︂

u

(︂|︁|︁Fz

[︂
Pr · onew

jr

]︂ |︁|︁ −
√︁

Iju

)︂2

,

LP
=

∑︂

j

∑︂

u

(︂|︁|︁Fz

[︁
Pnew

r · ojr

]︁ |︁|︁ −
√︁

Iju

)︂2

.

(13)

Minimising these cost functions forms the basis of set-based algorithms such as DM and

RAAR, as well as implementations of conjugate gradient and maximum likelihood optimization
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for ptychography [19,28]. Setting to zero the derivatives of Eqs. (13) w.r.t the new object and

probe estimates results in Eq. (14):

Pnew
r =

∑︁
j o∗

jr
· ψnew

jr
∑︁

j |ojr |2
=

∑︁
j |ojr |

2 · (ψnew
jr

/ojr)
∑︁

j |ojr |2
,

Onew
x =

∑︁
j P∗

jx
· ψnew

jx

∑︁
j

|︁|︁Pjx

|︁|︁2
=

∑︁
j |Pjx |

2 · (ψnew
jx

/Pjx)

∑︁
j

|︁|︁Pjx

|︁|︁2
.

(14)

(Note the subscripts to the updated exit waves here: the jth updated exit wave, ψnew
jr

, is the result

of Eq. (11), whilst ψnew
jx

uses Eq. (6) to embed this revised exit wave within a larger matrix of

zeros at the offset corresponding to the jth sample position.)

The second equalities in Eq. (14) reveal some intuition behind the mathematics. The term

ψnew
jr

/Pjx in the object update is an estimate of the jth object box derived from the jth diffraction

pattern. The update equation is a weighted average of all J of these estimates, with a weighting

for each estimate equal to the probe intensity that illuminated the object in the corresponding

sample position. Bright areas of the probe contribute more to the sum than dark areas. Similarly,

the term ψnew
jr

/ojr in the probe update is an estimate of the probe derived from the jth diffraction

pattern, which is averaged with a weighting corresponding to the opacity of the corresponding

object box, so that transmissive areas of the object contribute more to the update than absorptive

areas. The "WA" part of the name WASP comes from this weighted average description of the

update functions.

The simplest way to deploy these equations as an iterative algorithm mirrors the error reduction

algorithms developed in early work on phase retrieval by Gerchberg and Saxton [40] and Fienup

[41], so we will refer to it as ptychographic error reduction, or ER. Ptychographic ER involves

first calculating a full set of revised exit waves, via application of Eq. (11) for every value of

j, feeding the result into Eqs. (14) to update the object and probe, then repeating. ER has the

considerable advantage over SP that each instance of Eq. (11) can be calculated in parallel, before

the resulting set of revised exit waves are fed into the probe and object update equations. It works

best, however, when the updated probe from the first row of Eq. (14) feeds into the object update

in the second row, meaning the probe and object updates should be carried out sequentially, not

in parallel.

4. WASP: combining error reduction and sequential projections

The principle behind WASP is to use the output of the SP algorithm to feed calculation of the

numerator and denominator sums in Eqs. (14), thereby accelerating convergence of the ER

algorithm. This hybrid nature is captured in the pseudocode of Algorithm 1, which encompasses

all three approaches. The pseudocode describes the full WASP algorithm, but by removing lines

9 to 12, 14 and 15 it becomes the SP algorithm, whilst by instead removing lines 7 and 8 it

becomes an inline version of the ER algorithm, where the object and probe updates are calculated

in parallel with the modulus projections.

In this pseudocode, the dot notation indicates elementwise multiplication of two matrices

or multiplication of every element in a matrix by a scalar. The slash is elementwise division.

abs()2 returns the elementwise square of the absolute values in a complex matrix, and conj()

returns the elementwise complex conjugate. Lines 4 to 7 implement Eqs. (1), (2) and the

ConstrainModulus function of Eq. (11); lines 7 and 8 implement Eqs. (10) and (12); and lines

14 and 15 calculate the sums in Eq. (14).

The SP part of WASP is regulated by the functions Ar and Bjr. The rPIE versions of these

functions from Eq. (9) work well, as do many others; tolerance to different regularizers is high

because the "WA" part of WASP has a damping effect on any divergent behaviour. Nevertheless,
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we have found the following constant values for Ar and Bjr both highly reliable and computationally

efficient:
Ar = α⟨|Pr |

2⟩,

Bjr = β,
(15)

where <.> denotes the average over all entries in a matrix. For the object update, the average

probe intensity is preferable to the maximum probe intensity, used in e- and rPIE, for two reasons:

first the average is computationally cheaper than the maximum and second the average probe

intensity remains fairly constant, whereas the maximum can vary widely and cause instability,

especially in early iterations. The probe update is regularized by a constant value, again avoiding

computation of the maximum. Normalisation of the constant is not required here since the

amplitude of the object is known a priori to lie between 0 and 1 and this is enforced by additional

constraints, as we will now briefly discuss.

Algorithm 1. WASP, the weighted average of sequential projections

Additional constraints further refine the object and probe estimates at the end of each WASP

iteration. Examples of such constraints include suppressing hot pixels in the object by thresholding

pixel amplitudes at some upper limit (whilst retaining the pixel phases) [10]; masking the probe

extremities, so pixels outside a support area are set to zero [42]; forcing the probe to agree with

a recording of an empty-space diffraction pattern (i.e. a diffraction pattern recorded without

the sample present) [43]; correcting the probe power to a known value [44]; and recentring the

probe and object to combat "probe wander", where the bright region of the probe appears to

slowly move across the reconstruction window over the course of several iterations [14]. In the

results we present next, recentering and hot pixel constraints are included. Although the more

stringent constraints listed above are perhaps useful when data is extremely noisy or when overlap
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redundancy is low due to a relatively large position grid step size, they have not been required in

the algorithm tests we present next.

5. Results

In this Section, we test WASP through simulation and optical bench experiments. We compare

it with the SP algorithms ePIE, rPIE, and a version of rPIE using Eqs. (15) instead of Eqs. (9)

to update the object and probe. We also compare against the batch algorithms DM [10] and

RAAR [13], and the ER algorithm as described in Section 3.2. rPIE and RAAR include tuning

parameters. rPIE has two parameters, αrPIE and βrPIE that govern the update speed of the object

and probe; we use values of αrPIE = 0.1, βrPIE = 1, which give good general performance and

align with the original paper [44]. RAAR has a single tuning parameter, βRAAR, variable between

0 − 1, with βRAAR = 1 corresponding to the original DM algorithm [10]. The literature [13] and

our own experience give a reasonable nominal value of βRAAR = 0.85, although we will see that

noisier data benefits from a lower value than this. For WASP (and the version of rPIE using

Eq. (15)) we always use α = 2, β = 1, which nicely balances convergence rate with robustness to

initial conditions and noise.

5.1. Performance with simulated data

Our simulation scenarios are shown in Fig. 2. The object in 2(a, b) is a [X, Y] = [920, 920] pixel

complex-valued image of red blood cells derived from a real-world optical bench ptychography

experiment. The [M, N] = [128, 128] pixel probe in Fig. 2(c) is a model of the focal spot from a

limited aperture lens, at a slight defocus so that the central bright region is ≈ 30 pixels in diameter.

The shaded box and circle in Fig. 2(b) indicate the extent of the probe relative to the object.

The scan pattern for this smaller probe comprises J = 6400 positions arranged in an 80 × 80

grid with an average step size of 6 pixels and ±20% random offsets from perfect uniformity, to

eliminate the possibility of periodic artefacts in the reconstructions [16]. The solid red boundary

trace in Fig. 2(b) indicates the extent of the scan pattern. The larger 512 × 512 pixel probe in

Fig. 2(d) is modelled using a larger convergence angle and defocus. The scan pattern for this

probe comprises J = 400 positions arranged in a 20 × 20 grid with an average step size of 36

pixels and ±20% random offsets, which covers the same region of interest (solid red boundary

trace) as the scan grid of the smaller probe. Algorithm performance is measured by comparison

of reconstructions with the known ground truth via a direct real-space simulation error metric,

Esim. This metric must account for the basic ambiguities that can affect the object reconstruction

in ptychography: a phase ramp, phase offset, amplitude scaling, and – when the propagator is a

Fourier transform – a global shift of both probe and object. We have described in previous work

how these ambiguities can be accounted for when calculating Esim [44]. To avoid any skewing of

the metric by edge effects, which can pollute the extremities of the reconstruction window when

using some algorithms, the error metric is calculated over the central region of the object matrix

shown by the dashed red trace in Fig. 2(b). It is of interest to note that the edge areas do still

influence the Esim calculation since they affect the extremities of the probe, which transmits any

resulting artefacts across the object. Regularization of Eq. (14) can be used to limit update speed

in edge regions, with a smoothing effect in these areas, for both batch-type algorithms and WASP

[16].

Our first simulations assessed raw convergence rate and the convergence floor for the seven

different algorithms described above. Diffraction patterns were computed to double precision,

without noise, using the smaller probe of Fig. 2. Reconstructions began with an initial object

matrix of 1s, modelling free-space, and an initial Airy disc probe matrix of approximately the

correct diameter, modelling a perfect focussed beam. Both probe recentering and hot pixel

limiting were enabled for all of the algorithms, with the hot-pixel limit resetting to 2 the amplitudes

of any object pixels whose amplitude exceeded 2 at the end of each iteration. Figure 3 shows the
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Fig. 2. The object and probes for the simulation scenarios. (a) and (b) show the object

phase and modulus, (c) shows the small, 128 × 128 pixel probe on a colorwheel scale and

(d) shows the larger, 512 × 512 pixel probe on the same scale. The solid red boundary in (b)

indicates the extent of the scan patterns in the simulations, the dashed red boundary indicates

the region of the reconstruction used in error calculations, and the black boundaries show

the extent of the probes relative to the object.

progress of Esim for the seven algorithms. All of the algorithms except ER reached a threshold of

Esim = 10−5, at which level the central region of the reconstructed object amplitude and phase

appear visually indistinguishable from the true object. WASP alone reached a global minimum at

the working precision of our computer, which was determined by seeding the algorithms with the

ground truth object and probe as initial estimates and measuring the resulting error after a few

iterations. Maximum absolute phase errors in the central regions of the object reconstructions

reached 13 mrad for DM, which had the highest final error of the convergent algorithms, and

9 × 10−11 mrad for WASP, corresponding to the lowest final error. To give an idea of how

errors manifest across the field of view, the images in Fig. 3(b) show the difference between the

amplitude of the ground truth object and the reconstructed amplitudes from ER, DM, ePIE and

WASP. Of interest here is that SP algorithms produced a more uniformly distributed, white-noise

error than did batch algorithms, which exhibited more systematic errors especially in the higher

spatial frequencies.

Our second simulation explored the robustness of the same seven algorithms to initial errors in

probe defocus. The object shown in Fig. 2 was reused, but this time with the larger 512 × 512

defocused probe and 400-point scan grid. The probe modelled the stopped-down beam from a

soft X-ray source of 515 eV with an 8 mrad convergence semi-angle and a defocus of 750µm. The

initial probe defocii in the reconstructions varied from 500 to 1000µm, equating to defocus errors

from −33 to 33%. The results from reconstructions seeded by probes with these different defocus

errors are shown in Fig. 4 with example initial probes shown for the defocii at 0 and ±33. The

chart shows the number of iterations required for each algorithm to converge to Esim<1 × 10−4,

for all instances where this level of error was reached; greyed-out entries denote instances where

the error did not reach the threshold within 2000 iterations. Notable here is the relative robustness

of the SP-type algorithms and WASP, relative to the batch algorithms, particularly RAAR and

DM. These algorithms rapidly diverged in the first few iterations when the initial defocus error

was larger than ≈ 10% and never fully recovered – although interestingly the basic ER approach

did converge eventually for quite a wide range of defocus errors. In general, positive defocus

errors (i.e. an initial probe that is too large) appear easier to recover from than cases where the

probe is too small – perhaps because the overlap between probe positions is increased in the
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Fig. 3. Results from reconstructions based on perfect, double-precision, noise-free data. (a)

The simulation error metric, Esim, over 5000 iterations of seven ptychographic algorithms.

The plots are shown on a log-log scale to highlight the initial convergence rate and the

final error level for the different algorithms. Below an error of Esim = 10−5 the images

reconstructed by the algorithms are visually very similar to the ground truth. (b) Examples

of noise in the final reconstructions from four of the algorithms: these cutouts show the

difference between the amplitude of the central 100 × 50 pixel regions of the reconstructions

vs the central region of the ground truth.

Fig. 4. A chart showing the convergence speed of different algorithms as a function of

defocus error in the initial probe estimate. Shown below the chart are three examples of

these probes that illustrate the extent of the initial error.
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former case, leading to a stronger constraint (conversely, a too-small initial probe could result in

zero overlap between probe positions, which would provide no constraint at all).

In a final simulation, Poisson-distributed noise was introduced into the data. Because

minimising the cost functions of Eq. (8) corresponds to the maximum likelihood probe and

object reconstructions for Gaussian-distributed noise, we can expect the algorithms to continue

performing reasonably well for all but the very lowest noise levels, when statistical forms of the

modulus constraint become more appropriate [19,45]. In our simulation, noise was calibrated

such that the diffraction pattern of the probe generated 500, 000 counts, resulting in diffraction

patterns having, on average, a 100 count maximum for any pixel. We used the larger probe

(and smaller 20 × 20 scan grid) of Fig. 2(d), beginning the reconstructions with an initial probe

that had a 7% defocus error. For noisy data, RAAR in particular benefits from a re-tuning of

the parameter βRAAR – noisier data appears to converge more reliably for lower values of this

parameter, at the expense of convergence speed. To test this we trialled three different values of

βRAAR = 0.85, 0.75, 0.6. Changing the WASP parameters has an impact on convergence only

with very large values of α and β, when WASP becomes, essentially, the inline version of ER

discussed earlier. Figure 5(a) shows the convergence of Esim over 1000 iterations of WASP,

rPIE, ER, and the differently tuned versions of RAAR. Extracts from the amplitudes of the final

reconstructions are shown in Fig. 5(b), where the border colour corresponds to the legend in

the accompanying graph. The amplitude is shown here as it inevitably suffers more from noisy

data than does the phase. Surprisingly, ER performed very well in this particular simulation,

and in very low-count experiments where the initial probe can be characterised accurately it is

worth considering ER for the reconstruction; alternatively the tuning parameters for WASP can

be increased as iterations proceed, so that it becomes, eventually, equivalent to ER.

5.2. Real-world results

Simulations are no substitute for experiments, but the huge range of wavelengths and sample types

with which ptychography is conducted make any absolute measure of real-world performance

difficult. With this caveat noted, our own limited experience does suggest WASP works very

well in practice across many different experimental scenarios. The image mosaic in Fig. 6 gives

three examples from experiments with far-field optical, near-field X-ray, and near-field optical

ptychography [46–48], demonstrating algorithm performance on a strong phase sample (the ant

in Fig. 6(a)), a noisy data set (the X-ray reconstruction in Fig. 6(b)) and a data set with a highly

structured and poorly characterised probe (Fig. 6(c)). The ant experiment was conducted in a

cone beam geometry [33] with a geometric magnification of 6.7×, using laser illumination at a

wavelength of 635 nm. The X-ray experiment also used a cone beam geometry, this time with a

magnification of 14× and at a beam energy of 9.6 keV. The far-field experiment used as a sample

a prepared microscope slide holding a plant leaf structure, with a data collection NA of 0.25, a

probe NA of 0.16 and laser illumination at a wavelength of 675 nm. All algorithm parameters

remained identical to those used for the noise-free simulations detailed above.

Of the algorithms tested, only WASP and RAAR converged after 500 iterations. ePIE and rPIE

both tended to excessively reduce the reconstructed object amplitude as iterations proceeded,

which gave rise to the dark splotching appearing in those algorithm’s results for the Siemens star

and plant data sets. (The original rPIE paper described this tendency and showed how it could be

combatted by periodically adjusting the probe power, something not included in these results.)

Although RAAR takes considerably longer than WASP to converge (on average 257 iterations in

these three examples vs an average of 42 iterations for WASP), both algorithms produce quite

similar results in these tests, with the notable exception of the Siemens Star, where resolution is

noticeably better in the WASP image.

Good performance on real-world data, such as that presented above, is clearly crucial to the

success of any ptychographic algorithm. As data sets grow ever larger, however, an increasingly
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Fig. 5. Results from simulations using noisy data. Poisson-distributed shot noise was added

to the forward model, such that the total counts of the probe was 500, 000. (a) convergence

of different algorithms over the course of 1000 iterations. (b) cutouts of the reconstructed

amplitudes from a selection of four algorithms, compared to the ground truth simulated

object (shown in the centre). The amplitude is displayed as it suffers more acutely the impact

of noisy data.

important additional consideration is efficient memory usage. Table 1 summarises the general

memory requirements of the different algorithms tested here and gives example absolute numbers

for the dataset and reconstruction of Fig. 6(c). Fully sequential algorithms are unbeatable in

terms of memory footprint and store very little beyond the bare minimum object and probe

matrices and diffraction data. WASP achieves a good balance between memory requirements

and scalability, since it adds to sequential methods a natural way to distribute the reconstruction

process over several nodes, as we will see in the next Section.

Table 1. The basic memory requirements for different algorithms, with example values
derived from the data used in Fig. 6(c).

Algorithm Number of stored
digits

Example values
(×106)

Total megabytes (double
precision, 8 bytes per
digit)

ePIE and rPIE 2XY + 2MN + JMN 5.58 + 0.52 + 104.9 888 MB

WASP 5XY + 5MN + JMN 13.9 + 1.31 + 104.9 961 MB

RAAR, DM and ER 2XY + 2MN + 3JMN 5.58 + 0.52 + 314.6 2565 MB
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Fig. 6. A comparison of algorithm performance on three real-world data sets. The top row

shows the full field of view from WASP reconstructions, with subsequent rows showing

zoom-ins from the highlighted regions for the algorithms listed on the left. (a) An ant,

reconstructed from cone beam near-field optical data [48]; (b) A Siemens Star, reconstructed

from near-field X-ray data [47]; (c) a plant structure, reconstructed from far-field data with a

diffuse probe [46]. Images are displayed on the colourwheel scale shown bottom right, scale

bars in a,b and c are 200 µm, 10 µm, 100 µm.
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6. WASP in parallel

Unlike batch algorithms such as DM and RAAR, SP algorithms cannot be fully parallelised,

since the revised object and probe from each projection must feed into the next. One solution to

this takes a leaf from neural network training algorithms and groups the cost functions of Eq. (8)

into mini-batches [28]. Each mini-batch has associated with it a sub-set of projections, which

are carried out in parallel using a version of Eq. (14) where the numerator sums are limited to

the mini-batch’s sub-set of indices. The mini-batches are processed in this way one by one, in a

random order, with the output of one mini-batch feeding the next: parallel computation of the

batches feed serially into the object and probe updates. Here we suggest an alternative where

serial feeds parallel. The full data is again divided into random mini-batches, but this time (serial)

sequential projections – running through the pseudo code of Algorithm 1 lines 3 to 13 – are

carried out in parallel on the mini-batches. The outputs from each of these calculations are four

partially-filled matrices: a numerator and denominator matrix for the object and the same for the

probe. Once all of these partially-filled matrices are returned, they are summed and divided to

implement Eq. (14), a process resembling the consensus algorithms discussed by Parikh and

Boyd in their influential chapter on proximal algorithms [49].

The two pieces of pseudo-code below illustrate how this idea is implemented. To stretch an

analogy too far, we will call the first piece of code, Algorithm 2, "the Hive" and the second

piece, Algorithm 3, the "worker WASP". The workers’ job is to feed the Hive with pieces of the

numerator and denominator sums, which the Hive combines into new object and probe estimates

that it then feeds back to the workers. Each worker can run for several iterations before returning

the partial numerator and denominator sums, and we will assess the effect of the number of such

sub-iterations and the number of workers in the Hive shortly.

Algorithm 2. The WASP hive, which coordinates the activities of the worker WASPs

The nomenclature here is as for Algorithm 1. The sums and divisions at lines 5 and 6 of

Algorithm 2 are elementwise, combining the worker numerators and denominators into single

matrices equal in size to the object and probe then dividing pixel-by-pixel to implement Eq. (14).

The additional constraints used in our tests are again suppression of hot pixels and probe/object

recentering. The workerWASP call at line 3 of Algorithm 2 initiates Algorithm 3. Each worker

is pre-loaded with a sub-set of the diffraction patterns, associated position data and update

parameters – only the object and probe must be passed to the worker at each iteration, and it only

need return the updated, partially-filled numerator and denominator matrices. The loop (lines 2

to 13) within each worker implements subIters iterations of the WASP algorithm on the worker’s

subset of data. Basic MATLAB code for the parallel version of WASP is included at Ref. [30]

and the parallelisation is fully implemented in PtyPy [31].
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Algorithm 3. A single worker WASP. Several workers run in parallel for a number of sub-iterations
before feeding back to the hive.

We demonstrate here some features of the parallel implementation of WASP and compare the

results to the full-batch version (Algorithm 1). Our tests used the blood cell object, smaller probe

and 6400 position grid of Fig. 2(a–c). The first simulation assessed the effect of different numbers

of worker WASPs on convergence, in terms of number of iterations, with a single sub-iteration

computed by each worker (subIters = 1). The actual time per iteration was not considered, as

we have not optimised the code sufficiently to make any test indicative. A second test fixed the

number of workers at 4 and examined performance with different numbers of sub-iterations

carried out within each worker.

Figure 7(a) shows the convergence of Esim over 2500 iterations of WASP with a single worker

and parallel versions with 2, 4, 8 and 16 workers. Convergence speed, measured as the point

where the error hits 1 × 10−5, dropped roughly linearly with the number of workers. For 16

workers, the convergence rate actually improved in later iterations compared to the 8-worker

test, indicating there may be some diffraction pattern orderings and allocations that work better

than others, something explored to some extent in Ref. [28] but worthy of further investigation.

Figure 7(b) shows how convergence is affected by the number of sub-iterations conducted by each

worker. As the number of sub-iterations increases, the number of full iterations needed to reach

an error of 1 × 10−5 falls by a somewhat less predictable amount: from 500 for 1 sub-iteration

through 370, 150, 50 and 30 for 2, 4, 8 and 16 sub-iterations. (We ascribe the odd behaviour at

the very lowest error levels for the 16 worker result to the extremely small values involved, which

were at the limits of the double precision accuracy of our machine.) To compare the different

variables, the dashed trace in Fig. 7(a) is a copy of the 4 worker, 4 sub-iteration trace in Fig. 7(b).

This shows that the increase in iterations required when splitting the data between several workers

can be compensated quite effectively by allowing each worker to run several sub-iterations – this
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is not a zero-sum game, since the sub-iterations are conducted in parallel on reduced-size data

sets within each worker and so provide a net gain in computation time, as well as a reduction in

overheads associated with transfer of data to and from each worker.

Fig. 7. Results from tests of the parallel version of WASP, both displayed on the Esim scale

shown on the left. (a) For a fixed number of sub-iterations (set to one here), the convergence

rate reduces with the number of workers, although the random allocation of workers does

influence this trend. (b) Conversely, the convergence rate improves with the number of

sub-iterations carried out by each worker, here with the number of workers fixed at 4. For

comparison, the dashed trace in (a) corresponds to the 4-worker, 4-sub-iteration trace in (b).

7. Conclusion

To date, ptychography has been implemented across wavelengths spanning approximately six

orders of magnitude. Experimental configurations, noise sources, sample scattering strength and

instrument instabilities are all similarly wide-ranging, and have led to algorithmic adaptations

such as multi-slice [36] and modal decomposition [37] that can be implemented within any of the

frameworks described above. This vast scope makes any definitive comparison of reconstruction

algorithms difficult. That being said, our experience, limited as it is to only a corner of the

possible implementations of ptychography, does suggest some general observations. First that

SP algorithms handle initial conditions (especially a poorly-characterised initial probe) with a

higher degree of robustness than batch algorithms; second, that SP algorithms converge more

quickly in the initial iterations; third, that batch algorithms often reach a lower final error level

and are less effected by high spatial frequency noise; and finally, of course, that the WASP

algorithm we present here does a reasonable job of combining the benefits of both flavours of

algorithm. Whether or not these observations are universal is difficult to say, but luckily the

recent emergence of open source ptychographic code means experimenters are free to carry out

further comparisons and to draw conclusions from their own data and analysis.

Whilst ptychographic data continues to present a unique and satisfying inverse problem, soluble

using many different approaches, as the method matures the beauty and cleverness of what is

"under the hood" matters less than practical considerations; ease of use and user experience still

constrain more wide-spread uptake of the technique. Key to fully unlocking ptychography’s

potential are therefore robust solutions that run quickly and do not require extensive parameter
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tuning or black-art algorithmic tricks. WASP goes some way toward meeting these criteria, and its

basic framework suggests several variants and extensions that may further improve performance

in the future.
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