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In this article, we present a new scheme that approximates unknown sensorimotor

models of robots by using feedback signals only. The formulation of the uncalibrated

sensor-based regulation problem is first formulated, then, we develop a computational

method that distributes the model estimation problem amongst multiple adaptive

units that specialize in a local sensorimotor map. Different from traditional estimation

algorithms, the proposed method requires little data to train and constrain it (the

number of required data points can be analytically determined) and has rigorous stability

properties (the conditions to satisfy Lyapunov stability are derived). Numerical simulations

and experimental results are presented to validate the proposed method.

Keywords: robotics, sensorimotor models, adaptive systems, sensor-based control, servomechanisms, visual

servoing

1. INTRODUCTION

Robots are widely used in industry to perform a myriad of sensor-based applications ranging from
visually servoed pick-and-place tasks to force-regulated workpiece assemblies (Nof, 1999). Their
accurate operation is largely due to the fact that industrial robots rely on fixed settings that enable
the exact characterization of the tasks’ sensorimotor model. Although this full characterization
requirement is fairly acceptable in industrial environments, it is too stringent for many service
applications where the mechanical, perceptual and environment conditions are not exactly known
or might suddenly change (Navarro-Alarcon et al., 2019), e.g., in domestic robotics (where
environments are highly dynamic), field robotics (where variable morphologies are needed to
navigate complex workspaces), autonomous systems (where robots must adapt and operate after
malfunctions), to name a few cases.

In contrast to industrial robots, the human brain has a high degree of adaptability that allows
it to continuously learn sensorimotor relations. The brain can seemingly coordinate the body
(whose morphology persistently changes throughout life) under multiple circumstances: severe
injuries, amputations, manipulating tools, using prosthetics, etc. It can also recalibrate corrupted
or modified perceptual systems: a classical example is the manipulation experiment performed
in Kohler (1962) with image inverting goggles that altered a subject’s visual system. In infants,
motor babbling is used for obtaining (partly from scratch and partly innate) a coarse sensorimotor
model that is gradually refined with repetitions (Von Hofsten, 1982). Providing robots with similar
incremental and life-long adaptation capabilities is precisely our goal in this paper.

From an automatic control point of view, a sensorimotormodel is needed for coordinating input
motions of a mechanism with output sensor signals (Huang and Lin, 1994), e.g., controlling the
shape of a manipulated soft object based on vision (Navarro-Alarcon et al., 2016) or controlling
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the balance of a walking machine based on a gyroscope (Yu
et al., 2018). In the visual servoing literature, the model
is typically represented by the so-called interaction matrix
(Hutchinson et al., 1996; Cherubini et al., 2015), which is
computed based on kinematic relations between the robot’s
configuration and the camera’s image projections. In the general
case, sensorimotor models depend on the physics involved in
constructing the output sensory signal; If this information is
uncertain (e.g., due to bending of robot links, repositioning
of external sensors, deformation of objects), the robot may no
longer properly coordinate actions with perception. Therefore,
it is important to develop methods that can efficiently provide
robots with the capability to adapt to unforeseen changes of the
sensorimotor conditions.

Classical methods in robotics to compute this model (see
Sigaud et al., 2011 for a review) can be roughly classified into
structure-based and structure-free approaches (Navarro-Alarcon
et al., 2019). The former category represents “calibration-
like” techniques [e.g., off-line (Wei et al., 1986) or adaptive
(Wang et al., 2008; Liu et al., 2013; Navarro-Alarcon et al.,
2015)] that aim to identify the unknown model parameters.
These approaches are easy to implement, however, they
require exact knowledge of the analytical structure of the
sensory signal (which might not be available or subject to
large uncertainties). Also, since the resulting model is fixed
to the mechanical/perceptual/environmental setup that was
used for computing it, these methods are not robust to
unforeseen changes.

For the latter (structure-free) category, we can further
distinguish between two main types (Navarro-Alarcon et al.,
2019): instantaneous and distributed estimation. The first type
performs online numerical approximations of the unknown
model (whose structure does not need to be known); Some
common implementations include e.g., Broyden-like methods
(Hosoda and Asada, 1994; Jagersand et al., 1997; Alambeigi
et al., 2018) and iterative gradient descent rules (Navarro-Alarcon
et al., 2015; Yip et al., 2017). These methods are robust to
sudden configuration changes, yet, as the sensorimotor mappings
are continuously updated, they do not preserve knowledge of
previous estimations (i.e., it’s model is only valid for the current
local configuration). The second type distributes the estimation
problem amongst multiple computing units; The most common
implementation is based on (highly nonlinear) connectionists
architectures (Li and Cheah, 2014; Lyu and Cheah, 2018; Hu
et al., 2019). These approaches require very large amounts
of training data to properly constrain the learning algorithm,
which is impractical in many situations. Other distributed
implementations (based on SOM-like sensorimotor “patches,”
Kohonen, 2013) are reported e.g., in Zahra and Navarro-Alarcon
(2019), Pierris and Dahl (2017), and Escobar-Juarez et al.
(2016), yet, the stability properties of its algorithms are not
rigorously analyzed.

As a solution to these issues, in this paper we propose
a new approach that approximates unknown sensorimotor
models based on local data observations only. In contrast to
previous state-of-the-art methods, our adaptive algorithm has the
following original features:

• It requires few data observations to train and constrain the
algorithm (which allows to implement it in real-time).
• The number of minimum data points to train it can

be analytically obtained (which makes data collection
more effective).
• The stability of its update rule can be rigorously proved (which

enables to deterministically predict its performance).

The proposed method is general enough to be used with different
types of sensor signals and robot mechanisms.

The rest of the manuscript is organized as follows: section 2
presents preliminaries, section 3 describes the proposed method,
section 4 reports the conducted numerical study, and section 5
gives final conclusions.

2. PRELIMINARIES

2.1. Notation
Along this note we use very standard notation. Column vectors
are denoted with bold small letters m and matrices with bold
capital letters M. Time evolving variables are represented as
mt , where the subscript ∗t denotes the discrete time instant.
Gradients of functions b = β(m) :M 7→ B are denoted as
∇β(m) = (∂β/∂m)⊺.

2.2. Configuration Dependant Feedback
Consider a fully-actuated robotic system whose instantaneous
configuration vector (modeling e.g., end-effector positions in a
manipulator, orientation in a robot head, etc.) is denoted by
the vector xt ∈ R

n. Such model can only be used to represent
traditional rigid systems, thus, it excludes soft/continuum
mechanisms (Falkenhahn et al., 2015) or robots driven by elastic
actuators (Wang et al., 2016). Without loss of generality, we
assume that its coordinates are all represented using the same
unitless range1. To perform a task, the robot is equipped with
a sensing system that continuously measure a physical quantity
whose instantaneous values depend on xt . Some examples of
these types of configuration-dependent feedback signals are:
geometric features in an image (Tirindelli et al., 2020), forces
applied onto a compliant surface (Navarro-Alarcon et al., 2014;
Bouyarmane et al., 2019), proximity to an object (Cherubini
and Chaumette, 2013), intensity of an audio source (Magassouba
et al., 2016), attitude of a balancing body (Defoort andMurakami,
2009), shape of a manipulated object (Navarro-Alarcon and Liu,
2018), temperature from a heat source (Saponaro et al., 2015), etc.

Let yt ∈ R
m denote the vector of feedback features that

quantify the task; Its coordinates might be constructed with raw
measurements or be the result of some processing. We model the
instantaneous relation between this sensor signal and the robot’s
configuration as (Chaumette and Hutchinson, 2006):

yt = f (xt) :R
n 7→ R

m (1)

Remark 1. Along this paper, we assume that the feedback feature
functional f (xt) is smooth (at least twice differentiable) and its

1This can be easily obtained with constant kinematic transformations.
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Jacobian matrix has a full row/column rank (which guarantees the
existence of its (pseudo-)inverse).

2.3. Uncalibrated Sensorimotor Control
In our formulation of the problem, it is assumed that the robotic
system is controlled via a standard position/velocity interface
(as in e.g., Whitney, 1969; Siciliano, 1990), a situation that
closely models the majority of commercial robots. With position
interfaces, the motor action ut ∈ R

n represents the following
displacement difference:

xt+1 − xt = ut (2)

Such kinematic control interface renders the typical stiff behavior
present in industrial robots (for this model, external forces do
not affect the robot’s trajectories). The methods in this paper
are formulated using position commands, however, these can be
easily transformed into robot velocities vt ∈ R

n by dividing ut by
the servo controller’s time step dt as follows ut/ dt = vt .

The expression that describes how the motor actions result
in changes of feedback features is represented by the first-order
difference model2:

yt+1 = yt + A(xt)ut = yt + δt (3)

where the configuration-dependent matrix A(xt) = ∂f /∂xt ∈
R
m×n represents the traditional sensor Jacobian matrix of

the system (also known as the interaction matrix in the
visual servoing literature; Hutchinson et al., 1996). To simplify
notation, throughout this paper we shall omit its dependency on
xt and denote it as At = A(xt). The flow vector δt = Atut ∈ R

m

represents the sensor changes that result from the action ut .
Figure 1 conceptually depicts these quantities.

The sensorimotor control problem consists in computing
the necessary motor actions for the robot to achieve a desired
sensor configuration.Without loss of generality, in this note, such
configuration is characterized as the regulation of the feature
vector yt toward a constant target y

∗. The necessary motor action
to reach the target can be computed by minimizing the following
quadratic cost function:

J =
∥∥λ sat(yt − y∗)+ Atut

∥∥2 (4)

where λ > 0 is a gain and sat(·) a standard saturation function
(defined as in e.g., Chang et al., 2018). The rationale behind the
minimization of the cost (4) is to find an incremental motor
command ut that forward-projects into the sensory space (via the
interaction matrix At) as a vector pointing toward the target y∗.
By iteratively commanding these motions, the distance ‖yt − y∗‖

is expected to be asymptotically minimized.
To obtain ut , let us first compute the extremum ∇J(ut) = 0,

which yields the normal equation

A
⊺

t Atut = −λA
⊺

t sat(yt − y∗) (5)

2This difference equation represents the discrete-time model of the robot’s

differential sensor kinematics.

FIGURE 1 | Representation of a configuration trajectory xt, its associated

transformation matrices At and motor actions ut, that produce the

measurements yt and sensory changes δt.

Solving (5) for ut , gives rise to the motor command that
minimizes J:

ut = −λA#
t sat(yt − y∗) (6)

where A#
t ∈ R

n×m is a generalized pseudo-inverse matrix
satisfying AtA

#
tAt = At (Nakamura, 1991), whose existence

is guaranteed as At has a full column/row rank (depending on
whichever is larger n or m). Yet, note that for the case where
m > n, the cost function J can only be locally minimized.

Note that the computation of (6) requires exact knowledge of
At . To analytically calculate this matrix, we need to fully calibrate
the system, which is too restrictive for applications where the
sensorimotor model is unavailable or might suddenly change.
This situation may happen if the mechanical structure of the
robot is altered (e.g., due to bendings or damage of links), or the
configuration of the perceptual system is changed (e.g., due to
relocating external sensors), or the geometry of a manipulated
object changes (e.g., due to grasping forces deforming a soft
body), to name a few cases. Without this information, the robot
may not properly coordinate actions with perception. In the
following section, we describe our proposed solution.

3. METHODS

3.1. Discrete Configuration Space
Since the (generally non-linear) feature functional (1) is smooth,
the Jacobian matrix At = ∂f /∂xt is also expected to smoothly
change along the robot’s configuration space. This situation
means that a local estimation Â of the true matrix At around
a configuration point xi is also valid around the surrounding
neighborhood (Sang and Tao, 2012). We exploit this simple
yet powerful idea to develop a computational method that
distributes the model estimation problem amongst various units
that specialize in a local sensorimotor map.

It has been proved in the sensor-based control community
(Cheah et al., 2003) that rough estimations of At (combined
with the rectifying action of feedback) are sufficient for guiding
the robot with sensory signals. However, note that large
deviations from such configuration point xi may result in
model inaccuracies. Therefore, the local neighborhoods cannot
be too large.
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Consider a systemwithN computing units distributed around
the robot’s configuration space (see Figure 2). The location of
these units can be defined with many approaches, e.g., with self-
organization (Kohonen, 2001), random distributions, uniform
distributions, etc. (Haykin, 2009). To each unit, we associate the
following 3-tuple:

zl =
{
wl Âl

t D
l
}
, for l = 1, . . . ,N (7)

The weight vector wl ∈ R
n represents a configuration xt of the

robot where wl = xt . The matrix Âl
t ∈ R

n×m stands for a local
approximation of At(w

l) evaluated at the point wl. The purpose
of the structureDl is to store sensor andmotor observations dt =
{xt , ut , δt}, that are collected around the vicinity of wl through
babbling-like motions (Saegusa et al., 2009). The structure Dl is
constructed as follows:

D
l =

{
d1 d2 · · · dτ

}⊺
(8)

for τ > 0 as the total number of observations, which once
collected, they remain constant during the learning stage. Note
that xi and xi+1 are typically not consecutive time instances. The
total number τ of observations is assumed to satisfy τ > mn.

3.2. Initial Learning Stage
We propose an adaptive method to iteratively compute the
local transformation matrix from data observations. To this end,
consider the following quadratic cost function for the lth unit:

Ql =
1

2

τ∑

k=1

hlk
∥∥∥Âl

tuk − δk

∥∥∥
2

=
1

2

τ∑

k=1

hlk
∥∥∥F(uk)̂alt − δk

∥∥∥
2

(9)

for F(uk) ∈ R
m×mn as a regression-like matrix defined as

F(uk) =




u
⊺

k
0
⊺

n · · · 0
⊺

n

0
⊺

n u
⊺

k
· · · 0

⊺

n

...
...

. . .
...

0
⊺

n 0
⊺

n · · · u
⊺

k


 (10)

FIGURE 2 | Representation of the lth computing unit and the neighboring data

used to approximate the local sensorimotor model. The black and red dashed

depict the Gaussian and its square approximation.

and a vector of adaptive parameters âlt ∈ R
nm constructed as:

âlt =
[
âl11t âl12t · · · â

lmn
t

]⊺
(11)

where the scalar â
lij
t denotes the ith row jth column element of

the matrix Âl
t .

The scalar hlk represents a Gaussian neighborhood function
centered at the lth unit and computed as:

hlk = exp

(
−
‖wl − xk‖

2

2σ 2

)
(12)

where σ > 0 (representing the standard deviation) is used
to control the width of the neighborhood. By using hlk,
the observations’ contribution to the cost (9) proportionally
decreases with the distance to wl. The dimension of the
neighborhood is defined such that h ≈ 0 is never satisfied for any
of its observations xk. In practice, it is common to approximate
the Gaussian shape with a simple “square” region, which presents
the highest approximation error around its corners (see e.g.,
Figure 2 where the sampling point dτ+1 is within its boundary).

To compute an accurate sensorimotor model, the data points
in (8) should be as distinctive as possible (i.e., the motor
observations ut should not be collinear). This requirement can
be fairly achieved by covering the uncertain configuration with
curved/random motions.

The following gradient descent rule is used for approximating
the transformation matrix At at the lth unit:

âlt+1 = âlt − γ∇Ql (̂alt) (13)

= âlt − γ

τ∑

k=1

hlkF(uk)
⊺

(
Âl
tuk − δk

)

for γ > 0 as a positive learning gain. For ease of implementation,
the update rule (13) can be equivalently expressed in scalar
form as:

â
lij
t+1 = â

lij
t − γ

τ∑

k=1

hlku
j

k

{(
n∑

r=1

âlirt urk

)
− δik

}
(14)

where u
j

k
and δi

k
denote the jth and ith components of the vectors

uk and δk, respectively.

Remark 2. There are other estimation methods in the literature
that also make use of Gaussian functions, e.g., radial basis
functions (RBF) (Li and Cheah, 2014) to name an instance.
However, RBF (in its standard formulation) use configuration-
dependent Gaussians to modulate a set of weights (which provide
non-linear approximation capabilities), whereas in our case, the
Gaussians are used but within the weights’ adaptation law to
proportionally scale the contribution of the collected sensory-
motor data (our method provides a linear approximation within
the neighborhood). Our Gaussian weighted approach most closely
resembles the one used in self organizing maps (SOM) (Kohonen,
2013) to combine surrounding data observations.
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3.3. Lyapunov Stability
In this section, we analyse the stability properties of the proposed
update rule by using discrete-time Lyapunov theory (Bof et al.,
2018). To this end, let us first assume that the transformation
matrix satisfies:

A(wl) = ∂f /∂x(wl) ≈ A(xj) (15)

for any configuration xj around the neighborhood defined by Dl

(this situation implies that A(·) is constant around the vicinity
of wl). Therefore, we can locally express around wl the sensor
changes as:

δk = F(uk)a
l (16)

where al = [al11, al12, . . . , almn]⊺ ∈ R
mn denotes the vector of

constant parameters, for alij as the ith row jth column of the
unknown matrix A(wl). To simplify notation, we shall denote
Fk = F(uk).

Proposition 1. For a number mn of linearly independent vectors
uk, the adaptive update rule (13) asymptotically minimizes the
magnitude of the parameter estimation error ‖̂alt − al‖.

Proof: Consider the following quadratic (energy-like) function:

V l
t =

∥∥∥̂alt − al
∥∥∥
2

(17)

Computing the forward difference of V l
t yields:

V l
t+1 − V l

t =
∥∥∥̂alt+1 − al

∥∥∥
2
−
∥∥∥̂alt − al

∥∥∥
2

=

∥∥∥∥∥

[
I− γ

τ∑

k=1

hlkF
⊺

k
Fk

](
âlt − al

)∥∥∥∥∥

2

−
∥∥∥̂alt − al

∥∥∥
2
= −

(
âlt − al

)
⊺

�
(
âlt − al

)

for a symmetric matrix � ∈ R
mn×mn defined as follows:

� = I−

[
I− γ

τ∑

k=1

hlkF
⊺

k
Fk

]2

= 2γ

τ∑

k=1

hlkF
⊺

k
Fk − γ 2

[
τ∑

k=1

hlkF
⊺

k
Fk

]2

= γ8⊺
(
2H− γH88⊺H

)
︸ ︷︷ ︸

C

8 (18)

with H = diag(hl1Iτ , . . . , h
lτ Iτ ) ∈ R

mτ×mτ as a positive-definite
diagonal matrix, Iτ ∈ R

τ×τ as an identity matrix and 8 ∈

R
mτ×mn constructed with τ matrices Fk as follows:

8 =
[
F
⊺

1 F
⊺

2 · · · F
⊺

τ

]⊺
(19)

To prove the asymptotic stability of (13), we must first prove
the positive-definiteness of the dissipation-like matrix� (van der

Algorithm 1: Compute a suitable γ .

1: γ ← initial value < 1, µ← small step
2: repeat

3: γ ← γ − µ

4: until C > 0

Schaft, 2000). To this end, note that since the “tall” observations’
matrix 8 is exactly known andH is diagonal and positive (hence
full-rank), we can always find a gain γ > 0 to guarantee that the
symmetric matrix

C = 2H− γH88⊺H > 0, (20)

is also positive-definite, and therefore, full-rank. Next, let us re-
arrangemn linearly independent row vectors from 8 as follows:




u
⊺

1 0
⊺

n · · · 0
⊺

n

u
⊺

2 0
⊺

n · · · 0
⊺

n

...
...

...
...

u
⊺

n 0
⊺

n · · · 0
⊺

n

0
⊺

n u
⊺

n+1 · · · 0
⊺

n

0
⊺

n u
⊺

n+2 · · · 0
⊺

n

...
...

. . .
...

0
⊺

n 0
⊺

n · · · u
⊺

mn−1
0
⊺

n 0
⊺

n · · · u
⊺

mn




(21)

which shows that 8 has a full column rank, hence, the matrix
� = γ8⊺C8 > 0 is positive-definite. This condition implies
that V l

t+1 − V l
t < 0 for any ‖̂alt − al‖ 6= 0. Asymptotic stability

of the parameter’s estimation error directly follows by invoking
Lyapunov’s direct method (Bof et al., 2018).

Remark 3. There are two conditions that need to be satisfied to
ensure the algorithm’s stability. The first condition is related to the
magnitude of the learning gain γ . Large gain values may lead to
numerical instabilities, which is a common situation in discrete-
time adaptive systems. To find a “small enough” gain γ > 0, we can
conduct the simple 1D search shown in Algorithm 1. An eigenvalue
test on C can be used to verify (20). The second condition is related
to the linear independence (i.e., the non-collinearity) of the motor
actions ut . Such independent vectors are needed for providing a
sufficient number of constraints to the estimation algorithm (this
condition can be easily satisfied by performing random babbling-
like motions).

3.4. Localized Adaptation
Once the cost function (9) has been minimized, the computed
transformation matrix Ât locally approximates the robot’s
sensorimotor model around the lth unit. Note that the stability of
the total N units is analogous the analysis shown in the previous
section; A global analysis is out of the scope of this work.

The associated local training data (8) must then be released
from memory to allow for new relations to be learnt—if needed.
However, for the case where changes in the sensorimotor
conditions occur, the model may contain inaccuracies in some or
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all computing units, and thus, its transformation matrices cannot
be used for controlling the robot’s motion. To cope with this issue,
we need to first quantitatively assess such errors. For that, the
following weighted distortionmetric is introduced:

Ut = e
⊺

t Bet (22)

where B > 0 denotes a positive-definite diagonal weight matrix
to homogenize different scales in the approximation error et =
Âsut − δt ∈ R

m. The scalar index s is found by solving the
search problem:

s = argmin
j
‖wj − xt‖ (23)

To enable adaptation of problematic units, we evaluate the
magnitude of the metric Ut , and if found to be larger than an
arbitrary threshold Ut > |ε|, new motion and sensor data must
be collected around the sth computing unit to construct the
revised structure Ds by using a push approach:

d1 ←
{
xt ut δt

}
(24)

that updates the topmost observation and discards the oldest
(bottom) data, so as to keep a constant number τ of data
points. The transformation matrices are then computed with the
new data.

3.5. Motion Controller
The update rule (13) computes an adaptive transformation
matrix Âl

t for each of the N units in the system. To provide a
smooth transition between different units, let us introduce the
matrix Lt ∈ R

m×n which is updated as follows3:

Lt+1 = Lt − η
(
Lt − Âs

t

)
(25)

where η > 0 is a tuning gain. The above matrix represents a
filtered version of Âs

t , where s denotes the index of the active
unit, as defined in (23). With this approach, the transformation
matrix smoothly changes between adjacent neighborhoods,
while providing stable values in the vicinity of the active
unit; It can be seen as a continuous interpolation between
adjacent neighborhoods.

The motor command with adaptive model is implemented
as follows:

ut = −λL#t sat(yt − y∗) (26)

The stability of this kinematic control method can be analyzed
with its resulting closed-loop first-order system (a practice also
commonly adopted with visual servoing controllers; Chaumette
and Hutchinson, 2006). To this end, we use a small displacement
approach (motivated by the local target provided by the
saturation function), where we introduce the increment vector
i = − sat(yt − y∗) and define the local reference position
y = yt + i ∈ R

m. Let us consider the case when the N units
have minimized the cost functions (9). Note that the asymptotic

3For simplicity, we initialize L0 = 0n×n with a zero matrix.

minimization of ‖̂alt − al‖ implies that Âs
t inherits the rank

properties of At , hence, the existence of the pseudo-inverse in
(26) is guaranteed; A regularization term (see e.g., Tikhonov et al.,
2013) can further be used to robustify the computation of L#t .

Proposition 2. For n ≥ m (i.e., more/equal motor actions than
feedback features), the “stiff” kinematic control input (26) provides
the local feedback error yt − y with asymptotic stability.

Proof: Substitution of the controller (26) into the difference
model (3) yields the closed-loop system:

yt+1 = yt − λ sat(yt − y∗) = yt + λi± λyt

= yt − λyt + λy = yt − λ(yt − y) (27)

Adding±y to (27) and after some algebraic operation, we obtain:

(
yt+1 − y

)
= (1− λ)

(
yt − y

)
(28)

which for a gain satisfying 0 < λ < 1, it implies local asymptotic
stability of the small displacement error (yt − y) (Kuo, 1992).

Remark 4. Note that the above stability analysis assumes that
robot’s trajectories are not perturbed by external forces and that the
estimated interaction matrix locally satisfies AtL

#
tAt ≈ At around

the active neighborhood.

4. CASE OF STUDY

In this section, we validate the performance of the proposed
method with numerical simulations and experiments. A vision-
based manipulation task with a deformable cable is used as
our case of study (Bretl and McCarthy, 2014): It consists in
the robot actively deforming the object into a desired shape
by using visual feedback of the cable’s contour (see e.g., Zhu
et al., 2018). Soft object manipulation tasks are challenging—
and relevant to the fundamental problem addressed here—since
the sensorimotor models of deformable objects are typically
unknown or subject to large uncertainties (Sanchez et al., 2018).
Therefore, the transformation matrix relating the shape feature
functional and the robot motions is difficult to compute. The
proposed algorithm will be used to adaptively approximate the
unknown model. Figure 3 conceptually depicts the setup of this
sensorimotor control problem.

4.1. Simulation Setup
For this study, we consider a planar robot arm that rigidly
grasps one end of an elastic cable, whose other end is static;
We assume that the total motion of this composed cable-
robot system remains on the plane. A monocular vision sensor
observes the manipulated cable and measures its 2D contour
in real-time. The dynamic behavior of the elastic cable is
simulated as in Wakamatsu and Hirai (2004) by using the
minimum energy principle (Hamill, 2014), whose solution is
computed using the CasADi framework (Andersson et al., 2019).
The cable is assumed to have negligible plastic behavior. All
numerical simulation algorithms are implemented in MATLAB.
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FIGURE 3 | Representation of the cable manipulation case of study, where a

vision sensor continuously measures the cable’s feedback shape yt, which

must be actively deformed toward y∗.

FIGURE 4 | Various configurations of the visually measured cable profile (black

solid line) and its approximation with Fourier series (red dashed line).

The cable simulation code is publicly available at https://github.
com/Jihong-Zhu/cableModelling2D.

Let the long vector st ∈ R
2α represents the 2D profile of

the cable, which is simulated using a resolution of α = 100
data points. To perform the task, we must compute a vector of
feedback features yt that characterizes the object’s configuration.
For that, we use the approach described in Digumarti et al. (2019)
and Navarro-Alarcon and Liu (2018) that approximates st with
truncated Fourier series (in our case, we used four harmonics),
and then constructs yt with the respective Fourier coefficients
(Collewet and Chaumette, 2000). The use of these coefficients as
feedback signals enable us to obtain a compact representation of
the object’s configuration, however, it complicates the analytical
derivation of the matrix At .

4.2. Approximation of the Matrix At
To construct the data structure (8), we collect τ = 40 data
observations dt at random locations around the manipulation
workspace. Next, we define local neighborhoods centered at the
configuration points w1 = [0.3, 0.5], w2 = [0.5, 0.5], w3 =

[0.5, 0.3], and w4 = [0.5, 0.5]. These neighborhoods are defined
with a standard deviation of σ = 1.3. With the collected
observations, l = 1, . . . , 4 matrices Âl

t are computed using the
update rule (14).

Figure 4 depicts the measured shape (black solid line) of the
cable at the four pointswl and the shape that is approximated (red

FIGURE 5 | Profile of the function G that is computed along the circular

trajectory passing through the points in Figure 4; The “switch” label indicates

the instant when Âl
t switches to different one.

dashed line) with the feedback feature vector yt (i.e the Fourier
coefficients). It shows that four harmonics provide sufficient
accuracy for representing the object’s configuration. To evaluate
the accuracy of the computed discrete configuration space and its
associated matrices Âl

t , we conduct the following test: The robot
is commanded to move the cable along a circular trajectory that
passes through the four points wl. The following energy function
is computed throughout this trajectory:

G =
∥∥∥δt − Âl

tut

∥∥∥
2

(29)

which quantifies the accuracy of the local differential mapping
(3). The index l switches (based on the solution of 23) as the robot
enters a different neighborhood.

Figure 5 depicts the profile of the function G along the
trajectory. We can see that this error function increases as the
robot approaches the neighborhood’s boundary. The “switch”
label indicates the time instant when Al

t switches to different
(more accurate) matrix, an action that decreases the magnitude
of G. This result confirms that the proposed adaptive algorithm
provides local directional information on how the motor actions
transform into sensor changes.

4.3. Sensor-Guided Motion
In this section, we make use of the approximated sensorimotor
model to guide the motion of a robotic system based on feedback
features. To this end, various cable shapes are defined as target
configurations y∗ (to provide physically feasible targets, these
shapes are collected from previous sensor observations). The
target configurations are then given to the motion controller (26)
to automatically perform the task. The controller implemented
with saturation bounds of | sat(·)| ≤ 2 and a feedback gain
λ = 0.1.

Figure 6 depicts the progression of the cable shapes obtained
during these numerical simulations. The initial y0 and the
intermediate configurations are represented with solid black
curves, whereas the final shape y∗ is represented with red dashed
curves. To assess the accuracy of the controller, the following cost
function is computed throughout the shaping motions:

E =
∥∥yt − y∗

∥∥2 (30)
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For these four shaping actions, Figure 7 depicts the time
evolution of the function E. This figure clearly shows that the
feedback error is asymptotically minimized.

Now, consider the setup depicted in Figure 8, which has
two 3-DOF robots jointly manipulating the deformable cable.
For this more complex scenario, the total configuration vector
xt must be constructed with the 3-DOF pose (position and
orientation) vectors of both robot manipulators as xt =

A

B

C

D

FIGURE 6 | Initial and final configurations of four different shape control

simulations (A–D), using a single robot manipulator.

FIGURE 7 | Minimization process of the energy function E.

[ x
L ⊺

t , x
R ⊺

t ]
⊺ ∈ R

6. Training of the sensorimotor model is done
similarly as with the single-robot case described above; The
same feedback gains and controller parameters are also used in
this test.

Figure 9 depicts the initial shape y0 and intermediate
configurations (black solid curves), as well as the respective final
shape y∗ (red dashed curve) of the cable. Note that as more
input DOF can be controlled by the robotic system, the object
can be actively deformed into more complex configurations
(cf. the achieved S-shape curve with the profiles in Figure 6).
The result demonstrates that the approximated sensorimotor
model provides sufficient directional information to the
controller to properly “steer” the feature vector yt toward the
target y∗.

FIGURE 8 | Representation of a two-robot setup where both systems must

jointly shape the cable into a desired form.

FIGURE 9 | Initial and final configurations of the shape control simulation with

two robots.

FIGURE 10 | Minimization process of the energy function E.
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We now compare the performance of our method (using
the same manipulation task shown in Figures 8, 9) with two
state-of-the-art approaches commonly used for guiding robots
with unknown sensorimotor models. To this end, we consider
the classical Broyden update rule (Broyden, 1965) and the
recursive least-squares (RLS) (Hosoda and Asada, 1994). These
two methods are used for estimating the matrix A that is needed
to compute the control input (6). To compare their performance,

FIGURE 11 | The experimental robotic setup.

FIGURE 13 | Asymptotic minimization of the error functional E obtained with

the experiments shown in Figure 12.

FIGURE 14 | Control input (with normalized units of pixel/s) of the experiment

shown in Figure 12a.

FIGURE 12 | Snapshots of the initial (left) and final (right) configurations for two shape control experiments (a) and (b), where the red curve represents the target shape.
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FIGURE 15 | Control input (with normalized units of pixel/s) of the experiment

shown in Figure 12b.

the cost function E is evaluated throughout their respective
trajectories; The same feedback gain λ = 0.1 is used for
these three methods. Figure 10 depicts the time evolution of E
computed with the three methods. This result demonstrates that
the performance of our method is comparable to the other two
classical approaches.

4.4. Experiments
To validate the proposed theory, we developed an experimental
platform composed of a three degrees-of-freedom serial robotic
manipulator (DOBOT Magician), a Linux-based motion control
system (Ubuntu 16.04), and a USB Webcam (Logitech C270);
Image processing is performed by using the OpenCV libraries
(Bradski, 2000). A sampling time of dt ≈ 0.04 s is used in
our Linux-based control system. In this setup, the robot rigidly
grasps an elastic piece of pneumatic air tubing, whose other end
is attached to the ground. The 3-DOF mechanism has a double
parallelogram structure that enables to control the gripper’s
x-y-z position while keeping a constant orientation. For this
experimental study, we only control 2-DOF of the robot such
it manipulates the tubing with plane motions. Figure 11 depicts
the setup.

We conduct similar vision-guided experiments with the
platform as the ones described in the previous section. For these
tasks, the elastic tubing must be automatically positioned into
a desired contour. The configuration dependant feedback for
this task is computed with the observed contour of the object
by using two harmonic terms (Navarro-Alarcon and Liu, 2018).
The sensorimotor model is similarly approximated around four
configuration points (as in Figure 4), by performing random
motions and collecting sensor data.

Figure 12 depicts snapshots of the conducted experiments,
where we can see the initial and final configurations of the
system. The red curves represent the (static) target configuration
y∗. For these two targets, Figure 13 depicts the respective time
evolution profiles of the energy function E, where we can clearly
see that the feedback error is asymptotically minimized. The
control inputs ut used during the experiments are depicted in
Figures 14, 15. These motion commands are computed from raw
vision measurements and a saturation threshold of ±1 is applied
to its values. This results demonstrate that the approximated
model can be used to locally guide motions of the robot with
sensor feedback.

5. CONCLUSION

In this paper, we describe a method to estimate sensorimotor
relations of robotic systems. For that, we present a novel adaptive
rule that computes local sensorimotor relations in real-time;
The stability of this algorithm is rigorously analyzed and its
convergence conditions are derived. A motion controller to
coordinate sensor measurements and robot motions is proposed.
Simulation and experimental results with a cable manipulation
case of study are reported to validate the theory.

The main idea behind the proposed method is to divide
the robot’s configuration workspace into discrete nodes, and
then, locally approximate at each node the mappings between
robot motions and sensor changes. This approach resembles the
estimation of piecewise linear systems, except that in our case, the
computed model represents a differential Jacobian-like relation.
The key to guarantee the stability of the algorithm lies
in collecting sufficient linear independent motor actions
(such condition can be achieved by performing random
babbling motions).

The main limitation of the proposed algorithm is the local
nature of its model, which can be improved by increasing the
density of the distributed computing units. Another issue is
related to the scalability of its discretized configuration space.
Note that for 3D spaces, the method can fairly well approximate
the sensorimotor model, yet for multiple DOF (e.g., more than 6)
the data is difficult to manage and visualize.

As future work, we would like to implement our adaptive
method with other sensing modalities and mechanical
configurations, e.g., with an eye-in-hand visual servoing
(where the camera orientation is arbitrary) and with variable
morphology manipulators (where the link’s length and joint’s
configuration are not known).
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