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Abstract

An accurate understanding of the current and future water cycle over the Third Pole is of great societal importance, given 
the role this region plays as a water tower for densely populated areas downstream. An emerging and promising approach 
for skillful climate assessments over regions of complex terrain is kilometer-scale climate modeling. As a foundational step 
towards such simulations over the Third Pole, we present a multi-model and multi-physics ensemble of kilometer-scale 
regional simulations for the hydrological year of October 2019 to September 2020. The ensemble consists of 13 simulations 
performed by an international consortium of 10 research groups, configured with a horizontal grid spacing ranging from 2.2 
to 4 km covering all of the Third Pole region. These simulations are driven by ERA5 and are part of a Coordinated Regional 
Climate Downscaling EXperiment Flagship Pilot Study on Convection-Permitting Third Pole. The simulations are compared 
against available gridded and in-situ observations and remote-sensing data, to assess the performance and spread of the model 
ensemble compared to the driving reanalysis during the cold and warm seasons. Although ensemble evaluation is hindered by 
large differences between the gridded precipitation datasets used as a reference over this region, we show that the ensemble 
improves on many warm-season precipitation metrics compared with ERA5, including most wet-day and hour statistics, and 
also adds value in the representation of wet spells in both seasons. As such, the ensemble will provide an invaluable resource 
for future improvements in the process understanding of the hydroclimate of this remote but important region.

Keywords Kilometer-scale climate modeling · Third Pole region · CORDEX · Ensembles

1 Introduction

The Third Pole region contains the largest amount of ice 
outside of the polar regions and acts as a water tower for 
highly populated communities, agriculture, and industry 
downstream (e.g., Immerzeel et al. 2020). An understand-
ing of how the regional water cycle has changed and will 
change in the future is of high societal importance, how-
ever, knowledge of mountain climate is limited by a lack 
of observations and by the relatively coarse resolution of 
the models conventionally used for climate simulations. 
Such models are unable to adequately represent complex 
orography and associated processes (e.g., Rasmussen et al. 
2011; Prein et al. 2013; Ban et al. 2014; Schmidli et al. 2018; 
Chow et al. 2019; Singh et al. 2021) and also parameterize 

deep convection, which is a key source of uncertainty (see 
e.g., Prein et al. 2015; Mooney et al. 2017). Over the Tibetan 
Plateau (TP), CMIP6 models exhibit pronounced wet, cold, 
and excess snow biases as well as difficulties in capturing 
observed trends (Lalande et al. 2021). These biases are in 
part attributable to their smoothed representation of the 
orographic barrier (e.g., Lin et al. 2018) and contribute to 
uncertainty in future projections.

Refining the horizontal resolution of climate models to 
kilometer-scale (km-scale; grid spacing ≤ 4 km) has emerged 
as a promising way forward for understanding present and 
future mountain climate, due to better-resolved orography 
and dynamical representation of atmospheric processes. 
More importantly, this approach allows for explicit simula-
tion of deep convection (often referred to as "convection-
permitting" and or "convection-resolving" modelling; e.g., 
Weisman et al. 1997) and has led to major improvements 
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in regional climate simulations, especially over complex 
topography. For example, km-scale regional climate mod-
els improve the simulation of precipitation diurnal cycle and 
heavy precipitation, especially on sub-daily time scales (e.g., 
Ban et al. 2014, 2015; Prein et al. 2015); produce a better 
representation of cloud cover (e.g., Prein et al. 2013; Hent-
gen et al. 2019), snow cover (e.g., Rasmussen et al. 2011; 
Lüthi et al. 2019) and local wind systems like sea-breeze 
(e.g., Belušić et al. 2018); and, reduce model uncertainties 
and parameter sensitivities (e.g., Ban et al. 2021; Pichelli 
et al. 2021).

Recent applications of km-scale regional models over the 
Third Pole have similarly demonstrated added value for pre-
cipitation amount, frequency, intensity, and diurnal timing 
at the event (Prein et al. 2022a) and seasonal (e.g.,Li et al. 
2021) timescales compared to both reanalyses and coarser 
simulations with parameterized deep convection as well as 
for spatial and temporal variability of near-surface mete-
orological fields (e.g., Collier and Immerzeel 2015; Karki 
et al. 2017; Sugimoto et al. 2021) and orographic effects 
on water vapor transport (Lin et al. 2018). Although the 
impact of convection-permitting modeling has been explored 
over limited domains (e.g., Cai et al. 2021) and for seasonal 
simulations (e.g., Li et al. 2020; Yun et al. 2020; Li et al. 
2021; Sugimoto et al. 2021; Liu et al. 2022; Ma et al. 2023), 
there is a lack of multi-annual, multi-model and multi-phys-
ics ensembles with domains covering all of the Third Pole 
region, hindering process understanding and leaving gaps 
in our knowledge of the impact of model uncertainty on 
simulated mountain climate.

The Coordinated Regional Climate Downscaling Exper-
iment (CORDEX; (Gutowski et al. 2016)) Flagship Pilot 
Study (CORDEX-FPS) Convection-Permitting Third Pole 
(CPTP; Prein et al. 2022a) was established in 2019, with 
the aim of addressing this gap and of improving the under-
standing of the current and future water cycle and associated 
processes over the region. In the first phase of the project, 
Prein et al. (2022a) evaluated an initial model ensemble for 
three short case studies of different precipitation events: a 
mesoscale convective system, an exceptionally wet month 
during the monsoon season, and a large snowfall event, 
with the km-scale simulations demonstrating similar skill 
as observations across these varying weather events. Here, 
we present the second phase of the project, consisting of 
a 13 member multi-model and multi-physics ensemble of 
km-scale simulations for one hydrological year (October 
2019 to September 2020; hereafter referred to as Water Year 
2020 or WY2020). This hydrological year was selected due 
to improved observational coverage closer to the present 
and because of the extreme precipitation and flooding that 
occurred in East Asia in the summer of 2020 related to a 
record-strong positive Indian Ocean Dipole event (e.g., Zhou 
et al. 2021). This paper aims to present first results from 

the simulations and to evaluate ensemble performance and 
spread compared with available observations on seasonal 
timescales, with a focus on precipitation as one of the most 
important variables for understanding the hydroclimate of 
the Third Pole. The simulations will provide an invaluable 
resource towards future improvements in the process under-
standing of the water cycle over this remote but important 
region.

2  Methods

2.1  Model simulations

The ensemble consists of 13 simulations run at km-scale 
grid spacing by 10 research groups for a year-long period, 
which are listed in Table 1. The simulation domain differs 
from model to model, with a minimum domain for analysis 
that encompasses all of the Third Pole as shown in Fig. 1.

The simulation ensemble consists of four models: 

1. COSMO-CLM: Consortium for Small-Scale Modeling, 
run in climate mode (Rockel et al. 2008; Baldauf et al. 
2011)

2. ICON-CLM: Icosahedral Nonhydrostatic Weather and 
Climate Model, run in limited-area climate mode (Pham 
et al. 2021)

3. MPAS: the Model for Prediction Across Scales (Skama-
rock et al. 2012)

4. WRF: the Weather Research and Forecasting model 
(e.g., Skamarock and Klemp 2008; Powers et al. 2017).

A detailed description of the model configurations and phys-
ics options is provided in Table 1 of Prein et al. (2022a). For 
brevity, we refer readers to this paper and specific references 
therein for more details on the dynamics and physics of each 
participating model. However, Table 1 reviews key details of 
the model settings and indicates changes made from Prein 
et al. (2022a) for the WY2020 simulations.

All models were initialized with and forced at the lateral 
boundaries by the ERA5 reanalysis (Hersbach et al. 2020) 
at either hourly or three-hourly temporal resolution (cf. 
Table 1) from 1 October 2019 to 30 September 2020. Spin-
up procedures vary between the models. For COSMO-CLM, 
soil and snow fields in the 12-km parent and 2.2-km domains 
were spun up over 1 year and 2 months, respectively. At the 
start of the WY2020 period, the atmosphere was reinitial-
ized and unrealistic snow depths over the Karakoram were 
capped at 2 m following Collier et al. (2013). ICON-CLM 
employed one month of spin-up for both atmosphere and 
land. For MPAS, a one-year spin-up simulation was run 
on a global, quasi-uniform 30-km mesh from 1 September 
2019 to 31 August 2020. The initial and lower boundary 
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conditions for this spin-up simulation were taken from 
ERA5. The final land state of the 30-km spin-up simulation 
was remapped to the 4–32 km variable resolution global 
grid and used as the initial conditions for another one-month 
spin-up from 1 September 2020 to 30 September 2020 on the 
4–32 km grid. WRF_REF performed a spin-up simulation 
with a 12-km grid-spacing domain (covering D2 in Fig. 1) 
that started on the 1st of October 2016 to spin up the soil 
fields. All other WRF simulations used the same initial and 
boundary conditions as the WRF_REF simulation.

The multi-model framework, as presented here, per-
mits sampling of uncertainty due to model structure and 
horizontal grid spacing. Additionally, several sensitivity 
experiments with WRF were performed (Table 2) to assess 
uncertainty due to the parameterization of microphysical 
(MP) and planetary boundary layer (PBL) processes. In 
all km-scale simulations, cumulus (CU) parameterization 
was turned off except for one model (WRF_CU_KF, which 
employed a scale-aware scheme; cf. Table 2), and, therefore, 
deep convection is explicitly resolved in most simulations. 
Information on the treatment of shallow convection in each 
simulation is provided in Table 1 of Prein et al. (2022a). 
Furthermore, all simulations were allowed to freely evolve 
in regions away from the lateral boundaries except for one 
(WRF_NDG, which employed spectral nudging).

We note that there are more simulations performed 
using the WRF model than with other models due to the 
CPTP group’s capabilities. However, we follow Ban et al. 
(2021) and Pichelli et al. (2021) in presenting the mean of 
all ensemble members regardless of the differing prevalence 
of modelling systems. We note that the WRF simulations 

and the processes underlying their differences would benefit 
from more detailed investigation in future studies, as this 
analysis is out of the scope of the current study.

2.2  Observational datasets

To evaluate model performance, we used the following sat-
ellite-based gridded precipitation products: 

1. CHIRPS – a gauge-corrected product based on satel-
lite infrared data. It incorporates several climatologies 
and in-situ station data to create a gridded rainfall time 
series. The data span 50◦S-50◦ N and all longitudes. We 
use data at daily temporal and 0.05◦ spatial grid spacing 
(Funk et al. 2015).

2. CMORPH – a product based on passive microwave data. 
The data consist of satellite precipitation estimates that 
have been bias-corrected and reprocessed using the 
Climate Prediction Center (CPC) Morphing Technique 
(MORPH) to form a global, high-resolution precipita-
tion analysis (Xie et al. 2019). The quality of this data is 
compromised for snowfall and cold-season precipitation. 
In particular, it tends to underestimate the precipitation 
amount during cold seasons over mid- and high latitudes 
(Xie et al. 2019). We use CMORPH data at 30-min tem-
poral and 8-km spatial grid spacing (Xie et al. 2019).

3. IMERG (Integrated Multi-satellitE Retrievals for GPM) 
– is the successor to the Tropical Rainfall Measuring 
Mission (TRMM) and merges multiple satellite inputs 
of precipitation radar and microwave data (Ma et al. 
2016). This dataset has been found to match or exceed 

Table 1  Participating Models

a Over analysis area shown in Fig. 1
b LBC is not required for the global variable-resolution MPAS-Atmosphere simulation
c Incorrectly reported as 38 in Prein et al. (2022a)

Model Name Organization LBC freq Δxa Levels Nesting Δt Changes from Table 1 in 
Prein et al. (2022a)

COSMO-CLM v.6.0 COSMO-CLM University of
Innsbruck (UIBK)

3-hour 2.2 km 60 Nested in
12-km domain

15 s Newer model version
Higher temporal resolu-

tion LBC freq

ICON 2.6.4 ICON-CLM Goethe University 
(GUF)

1-hour 3.3 km 61 None 20 s Newer model version
More vertical levels
Microphysics: COSMO-

DE (Doms et al. 2011)
Radiation: ecRad (Hogan 

and Bozzo 2018)

MPAS-Atm. 7.3 MPAS Pacific Northwest
National Laboratory 

(PNNL)

daily
for SST/sea
ice b

4 km 55 none 24 s Shorter radiation timestep 
(5 mins) Version 
updated from 7.0 to 7.3

WRF 4.2 See Table 2 See Table 2 6-hour 4 km 49c none 15 s Larger simulation domain 
(D2 in Figure 1 of Prein 
et al. (2022a)) directly 
nested in ERA5
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the skill of TRMM products in detecting light and solid 
precipitation on the TP (Ma et al. 2016). We use the L3 
V06B product at 30-minute temporal and 0.1◦ spatial 
grid spacing (Huffman et al. 2019).

In addition to gridded precipitation datasets, we also use 
in-situ observations of daily total precipitation and daily 
near-surface air temperature from the Global Surface Sum-
mary of the Day (GSOD) dataset (https:// www. ncei. noaa. 
gov/ access/ metad ata/ landi ng- page/ bin/ iso? id= gov. noaa. 
ncdc: C00516; last accessed 1 August 2023). Even though 
these data are quality controlled prior to release, we impose 
additional filters based on available metadata in the dataset. 
For daily minimum, mean, and maximum air temperature, 
we consider only those days with at least 6 sub-daily obser-
vations available. For precipitation, we excluded days when 
the total precipitation amount was reported in either less 
than two 6-h reports or one 12-h report or when the station 
reported 0 mm precipitation on the given day, but sub-daily 
observations showed that precipitation had occurred. Lastly, 
for each variable, we discarded stations that had less than 
30% (40 days) of available observations per season and/or 
if the difference in elevation between the ensemble grid (see 
Sect. 2.3) and observations exceeded 500 m. This filtering 
process resulted in 247 (220) and 233 (226) GSOD stations 
for the precipitation (near-surface air temperature) analysis 
in the cold and warm seasons, respectively. For the remain-
ing stations, we corrected near-surface air temperature for 

the elevation difference using an environmental lapse rate of 
−6.5◦ C km−1 . To extract model data for the station location 
we use the nearest neighbor interpolation method. We also 
tested using a 3x3 kernel instead of the nearest neighbor 
for the GSOD comparison, but it did not significantly affect 
the results and conclusions, although as expected, metrics 
like precipitation intensity were lower. For near-surface air 
temperature, we calculated the mean bias as the ensemble-
average minus station data, and for precipitation, the relative 
bias as the difference between ensemble-average daily mean 
or heavy precipitation minus the corresponding station data 
value normalised by the station data. For precipitation, we 
neglected stations that recorded zero precipitation in a sea-
son for computing the relative bias. We note that we did not 
assess whether the GSOD observations have been assimi-
lated in the reanalysis dataset.

As the above list implies, several observations for the 
same variable are used to account for observational uncer-
tainty (see e.g., Prein and Gobiet 2017) following previous 
studies (see e.g.,Ban et al. 2021; Pichelli et al. 2021; Prein 
et al. 2022b). In such a way, we do not take one observa-
tional dataset as ground truth but rather consider the spread 
between observations and how it relates to the model ensem-
ble prediction.

For completeness, we note some of the well-known obser-
vational uncertainties. Satellite estimates provide areal aver-
ages that suffer from biases due to complex terrain, which 
often underestimate the intensity of extreme precipitation 

Table 2  WRF sensitivity simulations

aMicrophysics (MP); Planetary Boundary Layer (PBL); Surface Layer (SL); Radiation (RAD); Land-surface Model (LSM)

Name Organization Parameterizationa

WRF_REF National Center for
Atmospheric Research (NCAR)

CU: None

MP: Thompson (Thompson et al. 2008)

PBL: YSU (Hong et al. 2006)

SL: MM5 (Grell et al. 1994)

RAD: RRTMG (Iacono et al. 2008)

LSM: Noah-MP (Niu et al. 2011)

WRF_CU_KF Beijing Normal University CU ⟶ Multi-scale Kain-Fritsch (Zheng et al. 2016)

WRF_NDG no CU parameterization

spectral nudging (3 hly)

WRF_MP_WDM6 Japan Agency for Marine-Earth
Science and
Technology

MP ⟶ WDM6 (Lim and Hong 2010)

WRF_MP_WSM6 Pennsylvania State University MP ⟶ WSM6 (Hong and Lim 2006)

WRF_MP_WSM5 Nanjing University MP ⟶ WSM5 (Hong et al. 2004)

WRF_PBL_SHIN PBL ⟶ Shin-Hong (Hyeyum and Hong 2015)

WRF_MP_MORR Norwegian Research Centre MP ⟶ Morrison (Morrison et al. 2009)

WRF_PBL_MYNN University of Gothenburg PBL ⟶ MYNN3 (Nakanishi and Niino 2009)

SL ⟶ MYNN (ref)

WRF_MP_SBU MP ⟶ SBU-Ylin (Lin and Colle 2011)

https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
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events. Even though some of these datasets are corrected 
using surface rain gauges, they themselves suffer from 
well-known shortcomings, in particular in complex terrain 
where station density is sparse in space and time and tends 
to under-sample high-elevation regions. Station observations 
also suffer from issues such as undercatch of precipitation, 
which can reach up to 50% of the total precipitation depend-
ing on the season, intensity, region, and altitude (Frei et al. 
2003); interpolation effects (Isotta et al. 2014); and inac-
curate retrieval of light and solid precipitation (Ma et al. 
2016). Since different observational datasets suffer from 
different shortcomings, it is difficult to select one as a ref-
erence. There is also a debate in the literature suggesting 
that high-resolution models, such as those run at km-scale, 
may surpass the skill of observations (see e.g., Lundquist 
et al. (2019)). However, there is not yet a clear way forward 
to more thoroughly address this issue. We therefore use all 
of the aforementioned, different observations to check our 
simulations for physical consistency and to evaluate whether 
the ensemble captures the observed spatio-temporal charac-
teristics of the variables and statistics of interest.

2.3  Analyses

Our analysis focuses on the warm and cold seasons of 
June–July–August–September (JJAS) and December–Janu-
ary–February–March (DJFM), respectively, unless otherwise 
stated, representing two different synoptic situations where 
precipitation is predominantly related to the South- and East-
Asian monsoons and to the westerlies (e.g., Bookhagen and 
Burbank, 2010). We focus our evaluation on precipitation, 
where the km-scale simulations are anticipated to add value 
(see e.g., Prein et al. 2015; Ban et al. 2021), with an empha-
sis on the warm season, when 60 to 70% of the annual total 
precipitation falls on the TP (Wang et al. 2018).

For evaluation, all km-scale ensemble members were 
regridded to a common 0.036x0.036◦ grid ( ∼4 km), using 
conservative remapping for precipitation and bilinear inter-
polation for other variables. Statistics in ERA5 and the grid-
ded observational datasets were computed on their native 
grids. For creating the Taylor diagrams (Taylor 2001b), all 
datasets were regridded to the coarsest-resolution grid, that 
of ERA5. One ensemble member contained negative pre-
cipitation values (ICON-CLM; ∼O(100) kg m−2 hr−1 ) which 
were zeroed prior to using the data.

For precipitation, we further considered the metrics pre-
sented in Table 3 following Ban et al. (2021). The mon-
soonal circulation is characterized by active and break peri-
ods consisting of heavy and low rainfall, respectively (e.g., 
Rajeevan et al. 2010), that are of high societal importance 
(e.g., Singh et al. 2014). Flooding is often caused by multi-
day extreme precipitation (e.g. the flooding in Pakistan in 
2022 Nanditha et al. (2023), and in East Asia during the 

summer of 2020). As such, we analyze wet spells using the 
three statistics provided in Table 3 considering a length of 
three days, following Singh et al. (2014).

In addition to the above indices, we evaluate precipitation 
by calculating the spatial correlation (R) and the standard 
deviation (STD). The STD is normalized by the standard 
deviation of reference observations (IMERG) and yields the 
normalized STD (NSTD). Taylor diagrams are calculated for 
the mean daily precipitation and heavy precipitation for each 
season. Using the Law of Cosines, we relate these metrics 
to infer the centered root mean squared error (CRMSE) to 
produce Taylor diagrams (after Taylor 2001a):

Here �
m
 represents the spatial standard deviation of the mod-

eled and �
o
 of the observational seasonally averaged mean 

daily or heavy precipitation.
Furthermore, we analyze the link between temperature 

and heavy precipitation in observations, ERA5, and the 
model ensemble. Because of the lack of availability of both 
temperature and precipitation in other observational data-
sets, here we focus only on the GSOD observations and daily 
precipitation data. To provide more robust statistics, we con-
sider the full year of data. We require that valid measure-
ments of temperature and precipitation are available simulta-
neously for at least 300 days at each considered station. Such 
a criterion is fulfilled at 198 stations, which are then used for 
the analysis. As in the previous analyses with station data, 
ERA5 and the model ensemble gridpoints nearest to each 
GSOD station are taken into account. After that, for each 
station, we group daily precipitation data according to the 
corresponding mean daily temperature following, for exam-
ple, Ban et al. (2014); Lenderink and van Meijgaard (2008). 

(1)CRMSE
2
= �

2

m
+ �

2

o
− 2�

m
�

o
R

Table 3  Precipitation & wet-spell statistics analyzed in this studya

aFollowing from Ban et al. (2021)
b A wet day is defined as having precipitation ≥ 1 mm

cCalculated using all data following Schär et al. (2016)
dFollowing Singh et al. (2014)
eFollowing the Expert Team (ET) on Climate Change Detection and 
Indices (ETCCDI) variable CDD; see http:// etccdi. pacifi ccli mate. org/ 
list_ 27_ indic es. shtml; last accessed 1 August 2023

Statistic Unit

Mean precipitation [mm/d]

Wet-dayb  frequency [fraction]

Wet-dayb  intensity [mm/d]

Heavy (99th percentilec ) of daily precipitation [mm/d]

Average wet-spell length [number]

Number of wet spells lasting at least three daysd [number]

Maximum continuous wet spelle [number of days]

http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
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We use bins of 2 ◦ C, with 1 ◦ C overlap, to derive statistics. 
Furthermore, from these binned values, we calculate the 
80th, the 90th, and the 99th percentiles, which are consid-
ered to represent heavy daily precipitation. The percentiles 
are calculated using all events in a bin (i.e., including dry 
days, following Schär et al. 2016), but only if there are at 
least 10 events in that bin. After percentiles are calculated 
for each station and gridpoint individually, they are averaged 
and shown only if there are at least 10% of stations and grid-
points with enough data for the calculation of the percentiles 
in that specific temperature bin. This analysis is shown for 
an average over all stations over the analysis domain as well 
as separately for stations above and below 2800 meters, i.e., 
on and below the TP.

3  Results

3.1  Precipitation

For the evaluation of precipitation, we first consider the 
spatial representation, focusing on daily metrics due to 
the greater availability of observational datasets. Figure 2 
shows spatial maps of daily precipitation statistics during 
the cold and warm seasons. The observed spatial patterns 
are generally well reproduced by both ERA5 and the model 
ensemble, although there is a large observational spread. 
However, the ensemble provides some clear improvements 
compared with the reanalysis, including (i) a reduced wet 
bias in the eastern Himalaya (northern India) in both seasons 
and in the central Himalaya in JJAS (Fig. 2a); (ii) a reduced 
overestimate of wet-day frequency and underestimate of 
wet-day intensity, along the slopes in DJFM and over much 
of the analysis domain in JJAS (Fig. 2b,c); and (iii) a bet-
ter representation of heavy precipitation in the western part 

of the analysis domain in both seasons (Fig. 2d). Similar 
patterns and results are obtained when comparing spatial 
patterns of hourly precipitation statistics (see Fig. S1.1 in 
the Supplementary Information (SI) Sect. S1). Although at 
hourly timescales the ensemble simulates clearly higher wet-
hour intensities in low-elevation regions in JJAS, it provides 
much greater improvements in wet-hour frequency, which 
is largely overestimated in the reanalysis data. Thus, it is 
clear that the ensemble improves on these biases and has a 
better representation of spatial patterns of daily and hourly 
precipitation statistics.

In addition to the ensemble mean, we show the individual 
models for heavy hourly precipitation in the warm and cold 
seasons in the SI (Fig. S1.2). It can be seen that even though 
those individual simulations slightly differ in the intensity of 
heavy precipitation, the spatial patterns are quite similar. It is 
also quite notable that no clear differences between different 
modeling groups or systems are visible and those differences 
are within the range of the differences for different realiza-
tions of one model, i.e., WRF simulations.

Next, we evaluate the spatial representation of sea-
sonal mean and heavy precipitation considering individual 
members using Taylor Diagrams (Taylor 2001a) as well as 
compare IMERG with other gridded datasets (Fig. 3). The 
km-scale simulations show a relatively good performance 
according to these metrics for both seasons. For mean 
precipitation, spatial correlation coefficients are generally 
higher in DJFM, although COSMO-CLM and MPAS are 
noticeably lower, and most ensemble members have a higher 
spatial correlation than ERA5, consistent with the predomi-
nance of orographic precipitation in this season, which can 
be better resolved at higher resolutions. Conversely, spatial 
variability (here spread in the normalized standard devia-
tion) is higher in JJAS, consistent with the greater preva-
lence of localized convective precipitation on the TP in this 

Fig. 1  The model and analy-
sis domains employed in this 
study. The green, red, light-blue 
and orange contours deline-
ate the extent of the km-scale 
domains for COSMO-CLM, 
WRF, ICON-CLM, and MPAS, 
respectively. The dark blue box 
shows the extent of the analysis 
domain (70–115E, 25–40N), 
with surface elevation at 0.036◦ 
resolution shaded [m] and the 
elevation of 2800 m, above 
which area averages were com-
puted, delineated in dark purple
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season (e.g., Ueno et al. 2001). For heavy precipitation, the 
results are similar for both seasons, however correlations, 
NSTDs, and CRMSE values are all lower than for mean pre-
cipitation. Noticeably, simulated results have a similar differ-
ence to IMERG as CMORPH (except for some simulations 
with high normalized standard deviations), indicating that 
the models are close to observational quality with regard to 
simulating seasonally averaged precipitation patterns. Here, 
we choose IMERG as the reference dataset against which to 
correlate the model and other observational datasets, and 
with which to calculate the CRMSE. There is a strong corre-
lation and low CRMSE between IMERG and CHIRPS, sug-
gesting that taking CHIRPS as the reference dataset would 
lead to similar patterns in model spread.

In addition to considering gridded precipitation datasets, 
we evaluate daily precipitation at GSOD station locations. 
The results for the observational and model datasets are 
shown in Fig. 4 for mean daily precipitation, while a similar 
analysis for heavy precipitation is shown in SI Sect. S2. The 
spatial maps of the relative biases in the ensemble mean and 
reanalysis (Fig. 4a, b) show large variability, however, some 
general patterns include: in DJFM, stronger biases overall 

and a tendency for the ensemble to underestimate both sta-
tistics in the western part of the domain and to overesti-
mate them in the eastern part; and in JJAS, to underestimate 
them in the western and northeastern parts of the analysis 
domain. The probability density functions (PDFs) are more 
informative (Fig. 4c), showing that ERA5 slightly overesti-
mates the frequency of lower intensity events and strongly 
underestimates the frequency of higher intensity events for 
both seasons, as expected and previously reported for the 
region at six-hourly timescales by Prein et al. (2022a). In the 
cold season, the ensemble also simulates fewer of the highest 
intensity events than GSOD but is in better agreement with 
the other observational datasets. However, it is noteworthy 
that GSOD occasionally reports very large daily precipita-
tion totals, exceeding all other datasets. In the warm season, 
the ensemble (and all other datasets) are much closer to the 
GSOD PDF, although some members (WRF_CU_KF and 
ICON-CLM) strongly overestimate peak daily intensities 
compared with observations.

In addition to daily precipitation statistics, the number of 
consecutive wet days is also of high societal importance due 
to impacts such as flooding (e.g., Singh et al. 2014). Thus, 

Fig. 2  Spatial representation of the daily precipitation statistics pre-
sented in Table  3 for the DJFM (top row) and JJAS (bottom row) 
seasons: a mean; wet-day b frequency and c intensity; and, d heavy 

precipitation. The panel labelled ’Ensemble’ displays the mean of all 
km-scale simulations
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we next consider the wet-spell statistics shown in (Fig. 5). 
The km-scale ensemble represents the spatial patterns and 
magnitudes of all wet-spell statistics in both seasons bet-
ter than the driving reanalysis compared with the gridded 
observations. ERA5 strongly overestimates the average and 
longest spell length (Fig. 5a,c) along the central and eastern 
Himalaya in DJFM and over much of the Third Pole region 
in JJAS, with the overestimate in spell length exceeding ∼ 30 
days over a large area during the latter season. ERA5 also 
generally overestimates the number of wet spells (Fig. 5b) 
compared with the gridded observations. The km-scale 
ensemble improves on all of the aforementioned biases, 
although wet-spell statistics are still overestimated over the 
eastern Himalaya, a feature that may be inherited from the 
driving reanalysis but may also reflect observational error 
as discussed at the end of this section. The improved rep-
resentation of consecutive wet days is relevant for impact 
studies, as some land-surface and cryospheric models reset 
snow albedo to that of fresh snow after a certain precipita-
tion threshold is exceeded (e.g., Niu et al. 2011).

In addition to seasonal and daily statistics, we also ana-
lyze the sub-diurnal variability of precipitation, focusing 
on JJAS due to the predominantly convective nature of 
precipitation. The diurnal cycles of mean precipitation, 
wet-hour frequency and intensity, and heavy precipitation 
for the area above 2800 m are shown in Fig. 6. Both the 

ensemble mean and most individual members capture the 
salient features of the diurnal cycles of the metrics as rep-
resented by the gridded observations (Fig. 6). In particular, 
the km-scale simulations improve on several issues in the 
driving reanalysis, including the too-early onset and peak 
in convective precipitation (Fig. 6a), the constant drizzle 
in the form of too-frequent wet hours of too-low intensity 
(Fig. 6b, c), and the underestimation of heavy precipitation 
(Fig. 6d). These issues are typical of coarser resolution 
models that parameterize deep convection as ERA5 does 
(e.g., Ban et al. 2014, 2015). In addition, ERA5 also suf-
fers from constant small precipitation amounts due to data 
processing1. Compared with the gridded observations, the 
km-scale simulations tend to overestimate night-time pre-
cipitation (Fig. 6a) and to underestimate both the wet-hour 
intensity and the heaviest convective precipitation (Fig. 6c, 
d),. However, there is large observational spread in the 
intensity, and spatial maps indicate that on the slopes and 
low-elevation regions, the models simulate much higher 
intensities than the gridded datasets (see Fig. S1.2). An 
outlier in the sub-diurnal analysis is the COSMO-CLM 

Fig. 3  Taylor diagram for DJFM 
(left column) and JJAS (right 
column), displaying the spatial 
pattern correlation, normalized 
spatial standard deviation, and 
centered root mean squared 
error for ERA5 and observa-
tions (black symbols) and 
for the km-scale simulations 
(colored numbers). The top row 
shows the seasonal mean daily 
precipitation and the bottom 
row the seasonal heavy daily 
precipitation calculated as the 
99th percentile. The marker 
labelled ENS_MEAN displays 
the mean of all km-scale simu-
lations

1 see https:// confl uence. ecmwf. int/ displ ay/ UDOC/ Why+ are+ there+ 
somet imes+ small+ negat ive+ preci pitat ion+ accum ulati ons+-+ ecCod 
es+ GRIB+ FAQ; last accessed on 1 August 2023

https://confluence.ecmwf.int/display/UDOC/Why+are+there+sometimes+small+negative+precipitation+accumulations+-+ecCodes+GRIB+FAQ
https://confluence.ecmwf.int/display/UDOC/Why+are+there+sometimes+small+negative+precipitation+accumulations+-+ecCodes+GRIB+FAQ
https://confluence.ecmwf.int/display/UDOC/Why+are+there+sometimes+small+negative+precipitation+accumulations+-+ecCodes+GRIB+FAQ
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simulation, which shows a delayed onset and peak in pre-
cipitation, seemingly due to more frequent light precipita-
tion in the afternoon. However, the COSMO-CLM simu-
lation also provides one of the better representations of 
wet-hour and heavy precipitation intensity compared with 
gridded observations (cf. Figure 6c,d). Further details on 
the delayed onset and peak in mean precipitation in this 
simulation are provided in SI Sect. S3.

The spatially averaged patterns presented in Fig. 6 mask 
considerable regional and spatial variability in the timing 
of the diurnal peak in precipitation, as illustrated by the 
spatial map of the timing of the diurnal peak shown in 
Fig. 7. Gridded observations show that the diurnal peak 
occurs in the early to mid-morning hours on the slopes and 
to the east of the TP and in the evening on the TP itself. 
Consistent with previous studies (e.g., Li et al. 2021), 
these patterns are better captured by the km-scale simula-
tions than the convection-parameterizing reanalysis data. 
ERA5 tends to simulate peak precipitation too early in the 
day over high-elevation areas and on the slopes. The high-
resolution ensemble is much better in representing these 
features although the timing of the peak on the slopes is 
still earlier than observed.

3.2  Temperature

Figure 8 compares daily mean air temperatures in the rea-
nalysis and model datasets with GSOD station data. On aver-
age, the ensemble exhibits relatively small warm biases at 
lower elevations and cold biases at higher elevations on the 
TP (Fig. 8a), a pattern that is more pronounced in ERA5 and 
in the warm season. The simulated PDFs of near-surface 
air temperature of the ensemble and ERA5 generally agree 
well with GSOD (Fig. 8c) and added value is most appar-
ent for the left tails of the distributions, as ERA5 strongly 
overestimates the frequency of occurrence of colder tem-
peratures in both seasons. In DJFM, the ensemble also better 
represents values near the melting point, although there is a 
clear outlier, WRF_MP_WDM6. This simulation has a cold 
bias and erroneous peak around the melting point related to 
simulated snow accumulation at the GSOD station locations 
(SI Sect. S2), which is much higher than in other simulations 
during January and February. The relatively deep snowpack 
in the cold season and at the start of the warm season in 
ERA5 at GSOD station locations is consistent with the bias 
towards colder temperatures. In JJAS, the high-resolution 
ensemble not only improves the left tail of the distribution 

Fig. 4  Maps of the relative bias [%] of mean daily precipitation 
in DJFM (left column) and JJAS (right column) for a the ensemble 
mean and for b ERA5 in comparison with GSOD station data. The 
marker size indicates the number of valid observations per sea-
son. c The probability density functions (PDFs) of daily precipita-

tion amounts comparing GSOD and all other datasets at GSOD sta-
tion locations. The probabilities were calculated in bins of 5  mm 
per day to reduce noise. We note that the largest intensities in the 
GSOD observations during the cold season occur in only few stations 
towards the Eastern part of the domain
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but also better represents the peak frequency of the tempera-
tures between 25 and 30◦C.

Even though there are some improvements in the simula-
tion of the temperature when using high-resolution models, 
they are not as clear as for the simulation of the precipita-
tion. A smaller added value when simulating daily mean 
temperature with higher resolution models is not surprising 
and is consistent with previous studies over other regions 
(see e.g., Soares et al. 2022). This is especially true for daily 
mean temperature, while sub-daily values might show dif-
ferent results as they can be influenced by cloudiness and 
locally developing systems. Due to the lack of sub-daily 
observations with which to evaluate the diurnal cycle, we 
examined the diurnal temperature range (calculated as a 
difference between daily maximum and minimum tempera-
ture from the model output and at GSOD stations), how-
ever, there were no clear differences in the spatial patterns 
between the reanalysis and km-scale ensemble during the 
warm season (not shown).

3.3  Scaling of heavy precipitation with temperature

In the last part of the study, we analyze the combined 
dependency of precipitation and temperature. With such an 
analysis, we test the hypothesis originating from the Clau-
sius-Clapeyron (CC) relation, that the equilibrium vapor 
pressure of the atmosphere increases with temperature at a 
rate of 7 %∕1K . Many studies have argued that this relation 
sets a scale for the thermodynamically driven increase of 
precipitation extremes as the atmosphere warms (see e.g., 
Trenberth et al. 2003; Lenderink and van Meijgaard 2008). 
We examine if such a relationship can be found in the obser-
vations for the Third Pole region, and how it is represented 
in the reanalysis data and high-resolution ensemble.

In Fig. 9, we show the 80th, 90th, and 99th percentiles 
as a function of daily mean temperature, averaged over all 
stations over both the analysis domain and considering high 
and low elevations separately, and considering all data from 
WY2020 for more robust statistics. However, we note that 
this is only one year and further analysis should be done 
once more data are available.

Fig. 5  Maps of the wet-spell 
statistics presented in Table 3 
for the DJFM (top row) and 
JJAS (bottom row) seasons: 
a average spell length, b total 
number of wet spells longer 
than 3 days, and c the longest 
continuous wet spell. The panel 
labelled ’Ensemble’ displays the 
mean of all km-scale simula-
tions
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Overall, the observed scaling shows good agreement 
with the 7 %∕1K rate given by the CC-relation for tempera-
tures between 0 and 25◦ C when averaged across all stations 
(Fig. 9a), especially for the 99th percentile. The 80th and 
90th percentiles show a smaller scaling rate than expected 
from the CC-relation. Deviations are visible at both ends of 
the curves, i.e., for the coldest and warmest temperatures. 
For warmer temperatures, the scaling drops quickly, which 
is expected, has been reported by other studies, and is most 
likely due to the lack of available moisture to form heavy and 
extreme precipitation (see e.g. Prein et al. 2016). However, 
it is surprising that for colder temperatures, i.e., below 0 ◦ C, 
the intensity increases with decreasing temperature. More 
detailed analysis shows that this feature comes from sta-
tions above 2800 ms, i.e., on the TP, while stations below 
2800 ms exhibit a drop in the scaling for lower temperatures 
(Fig. 9e,i).

Both the reanalysis and high-resolution model ensem-
ble largely reproduce the observed scaling rates, however, 
some differences exist. For example, ERA5 produces slightly 
lower scaling for the 99th percentile and shows a drop in 
the scaling for stations above 2800 m already around 10◦ C, 
while in the observations this occurs around 15◦ C, and this 
feature is better represented by the high-resolution model 
ensemble. However, both ERA5 and the ensemble fail to 
reproduce the observed increase in scaling for temperatures 
below 0 ◦C.

Fig. 6  Diurnal cycles of the 
following hourly precipitation 
statistics, averaged over the 
JJAS season and above 2800 m 
on the TP: a mean precipita-
tion; wet-hour b frequency and 
c percentage (expressed relative 
to the total number of hours in 
each bin); and d heavy (99th 
percentile) precipitation. The 
curve labelled ENS_MEAN dis-
plays the mean of all km-scale 
simulations

Fig. 7  Map of the timing [in UTC; LT is ∼UTC+6] of the diurnal 
maximum in mean three-hourly precipitation totals in the warm sea-
son. The contour labels indicate the center point of the three-hour 
window. The label ’Ensemble’ displays the mean of all km-scale sim-
ulations
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4  Discussion and conclusions

In this paper, we presented a novel ensemble of km-scale 
simulations conducted over the TP region for the hydrologi-
cal year of October 2019 to September 2020 (WY2020), 
performed as the second phase of the CORDEX-FPS CPTP 
project. We analyzed a total of 13 simulations, which were 
produced by 10 international research groups and configured 
with a horizontal grid spacing ranging from 2.2 to 4 km. 
The simulations were completed with four different climate 
models and driven by ERA5 reanalysis data. We evaluated 
the km-scale ensemble against available observations and 
explored the representation of precipitation and near-surface 
air temperature compared with the driving reanalysis.

We identified a clear improvement in the km-scale ensem-
ble for simulated warm-season precipitation statistics and for 
wet spells in both the warm and cold seasons. Specifically, 
we showed an improvement in the simulation of the pre-
cipitation diurnal cycle, precipitation frequency, and heavy 
precipitation, consistent with other regions like the European 
Alps (e.g., Ban et al. 2021; Pichelli et al. 2021) and seasonal 
studies over this region (e.g., Li et al. 2020). We also showed 
for the first time that km-scale models improve the repre-
sentation of wet-spell statistics over the Third Pole region. 

This result has important implications for impact assess-
ments using ERA5, particularly those determining flood and 
water resource risks, as ERA5 considerably overestimates 
the length, and the number of long, wet spells while under-
estimating the intensity of wet days compared to both obser-
vational datasets and the high-resolution model ensemble 
(cf. Figs. 2 and 5). The temperature evaluation showed some 
benefit from the km-scale ensemble in terms of the simu-
lated frequency of colder air temperatures in both seasons, 
likely related to the unrealistically deep snowpack present 
in ERA5 in DJFM and at the start of JJAS. The smaller 
added value is not surprising since the temperature is not 
as variable as precipitation and is consistent with previous 
studies over other regions (e.g, Soares et al. 2022). How-
ever, it remains to be investigated how other metrics of tem-
perature, such as extremes and the diurnal cycle and range, 
are represented in such high-resolution model ensembles. 
As shown by Ban et al. (2014), higher resolution models 
have the potential to better represent the diurnal tempera-
ture range due to a better representation of the diurnal cycle 
of precipitation. The combined analysis of temperature and 
heavy precipitation showed that ERA5 has more shortcom-
ings in reproducing the observed scaling of heavy precipi-
tation with temperature than the ensemble mean. Although 

Fig. 8  Maps of the average daily bias [ ◦ C] of daily mean near-surface 
air temperature in DJFM (left column) and JJAS (right column) for a 
the ensemble mean and b ERA5 in comparison with GSOD station 
data. The marker size indicates the number of valid observations per 

season. c Same as Fig. 4c but for mean daily air temperatures, calcu-
lated for each degree using a ± 2 ◦ C window and re-scaled by bin size 
to result in a cumulative probability of 1
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ERA5 overestimates the frequency of colder temperatures, 
it underestimates the intensity of heavy precipitation at these 
temperatures. In addition, it shows the drop in precipitation 
intensity already around 10°C for stations above 2800 m, 
while in the observations this occurs around 15°C. While 
the ensemble mean shows the same performance as ERA5 
for colder temperatures, it shows a better performance for 
warmer temperatures for stations on the TP. The better per-
formance of high-resolution models in reproducing such 
a relation between temperature and precipitation has also 
been found in other regions like European Alps (e.g, Ban 
et al. 2014), and it increases the credibility of such models in 
projecting changes in heavy and extreme precipitation with 
further warming of the atmosphere.

Overall, all analyzed metrics show a good performance 
of the km-scale ensemble and general consistency among 
ensemble members. However, there are some outliers, which 
is not surprising since some of the models have been applied 
for the first time over this region at such high-spatial resolu-
tion and over such an extended period of time. Some exam-
ples include the highest daily warm-season precipitation 
intensities simulated by some members (Fig. 4); the delayed 

diurnal cycle of mean precipitation and wet-hour frequency 
simulated by COSMO-CLM (Fig. 6a,b); and the bias in the 
distribution of daily air temperatures in WRF_MP_WDM6 
(Fig. 8). Although a detailed analysis of differences between 
ensemble members is not the focus of the current study, 
some potential takeaways from the evaluation are that (i) 
the scale-aware cumulus parameterization (WRF_CU_KF) 
with this WRF configuration does not lead to a significant 
improvement compared with other members and produces 
quite high warm-season intensities (compared with station 
data (cf. Fig. 4), although this member does not stand out 
in spatial analyses (cf. Figure S1.2)) and (ii) the WDM6 
microphysics scheme with this WRF configuration produces 
unrealistically high snowfall during the cold season, which 
was not apparent from previous sensitivity studies focused 
on the monsoon season (Orr et al. 2017). For the delayed 
onset and peak in convective precipitation in COSMO-CLM, 
preliminary analysis indicates that the issue is related to the 
representation of low clouds (SI Sect. S3). However, it has 
not been observed over other mountainous areas (e.g., over 
the European Alps; Ban et al. 2015, 2021) and highlights 
both the challenges that can arise in transferring regional 

Fig. 9  Percentiles of daily precipitation as a function of daily mean 
temperature averaged across a–c all  stations, e–g stations below and 
(i-k) stations above 2800 meters. d, h, l Number of precipitation val-
ues in each temperature bin averaged across all stations in all three 
data sets considered - GSOD station observations, ERA5 reanalysis 
and high-resolution ensemble simulations. Precipitation intensity is 

plotted for the 80th, 90th, and 99th percentiles. The shading indicates 
the range between 10th and 90th percentile calculated over stations 
for each specific bin and each intensity percentile. The black dash-
dotted (dashed) lines are the exponential relations given by a 7 % 
(14% ) increase of precipitation with temperature. The analysis covers 
the entire WY2020
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climate models to a new region (e.g., Prein et al. 2022b), 
especially at high-spatial resolutions, and the difficulties that 
general circulation models encounter when using a setup 
tuned for a specific region or process.

A feature that repeatedly appears in the precipitation 
evaluation for the region is the large spread in the gridded 
observations. In general, IMERG has more frequent wet days 
and hours of lower intensity than CMORPH and CHIRPS 
(cf. Fig. 2). During the warm season, CMORPH also has 
localized areas of high values of precipitation statistics due 
to retrieval errors over lakes (Guo et al. 2017) while dur-
ing the cold season, it shows unrealistically low statistics 
over the Karakoram and western Himalaya compared with 
IMERG and CHIRPS (cf. Fig. 2). These issues are consistent 
with the CPTP case study evaluation (Prein et al. 2022a) and 
previous studies indicating that this product has relatively 
low fidelity over the Third Pole (Guo et al. 2017; Wang 
et al. 2017). In addition, ERA5 and the ensemble generally 
show higher precipitation and spell statistics over the east-
ern Himalaya, where there are known differences between 
satellite-derived estimates (IMERG) and gauge observations 
that have been attributed to warm-rain processes (Ma et al. 
2016). The spread in gridded observational datasets in this 
region and the lack of, or difficulty in accessing hourly in-

situ observations, represents two huge challenges for the 
km-scale climate modelling community in assessing the 
performance of their simulations, both over the Third Pole 
and over other regions as well. Therefore, there is an urgent 
need for different communities, not only observational, to 
address these issues and to provide a standardized way for-
ward for model evaluation, thus making such analyses more 
consistent across different regions, models, and studies.

The ensemble of high-resolution simulations and analysis 
presented here lays the foundation for using the WY2020 
data to tackle the many open and interesting questions about 
the hydroclimate of the Third Pole. The ensemble represents 
a foundational step towards decadal climate simulations at 
high resolution over this complex region, which will lead to 
a better understanding of processes and of natural variabil-
ity in this sparsely observed region, and finally, of how the 
climate of the Third Pole will change in the future.
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