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Phase behavior of polymer dispersed liquid
crystals, comparison between mean-field
theory, and coarse-grained molecular
dynamics simulations

William S. Fall, ab Hima Bindu Kolli,c Biswaroop Mukherjeea and

Buddhapriya Chakrabarti *a

We report a simulation methodology to quantitatively predict the thermodynamic behaviour (phase

diagrams) of polymer mixtures, that exhibit phases with broken orientational symmetry. Our system

consists of a binary mixture of short oligomers (NA = 4) and long rod-like mesogens (NB = 8). Using

coarse-grained molecular dynamics (CGMD) simulations we infer the topology of the temperature-

dependent free energy landscape, from the probability distributions of the components for a range of

compositions. The mixture exhibits nematic (N) and smectic phases (Sm-A) as a function of two

temperature scales, Tc, that governs the demixing transition, and TNI the nematic–isotropic temperature.

Thus in addition to the isotropic (I), a nematic (N) phases observed in simulations of similar systems ear-

lier we report the formation of a new entropy-stabilized phase separated smectic-A (Sm-A) phase with

alternating mesogen-rich and oligomer-rich layers. Using the mean-field free energy for polymer-

dispersed liquid crystals (PDLCs), with suitably chosen parameter values, we construct a mean-field

phase diagram that matches those obtained from CGMD simulations. Our results are applicable to

mixtures of synthetic and biological macromolecules that undergo phase separation and are orientable,

thereby giving rise to the liquid crystalline phases. Our proposed methodology has a distinct advantage

over other computational techniques in its applicability to systems with complex molecular interactions

and in capturing the coarsening dynamics of systems involving multiple order parameters.

1 Introduction

Complex mixtures of solute and solvent molecules are wide-

spread, encompassing subjects ranging from physics and

chemistry to materials science and even biology. These materi-

als organise on a mesoscopic length scale, which lies between

the smaller microscopic and larger macroscopic length scales

and are inherently soft.1–3 The softness arises from relatively

weak interactions (BkBT) between molecular constituents and

as such thermal fluctuations play a major role in deciding both

their structural and dynamical behaviour. Thus both entropic

and enthalpic effects are important in determining the thermo-

dynamic behavior. In a multi-component mixture molecules

can attract or repel each other and their relative strength of

interaction can be altered by changing the temperature or

composition, or both. Such changes lead to varied self-

assembled structures.

For anisotropic molecules an even richer phase behaviour4

is observed, not only controlled by entropy and enthalpy but

also directional interactions between the molecules. The sim-

plest phase behaviour arises in polymer solutions, where the

mixed state is stabilised by the entropy of mixing at higher

temperatures. Upon lowering the temperature, enthalpic effects

take over and below the bulk critical temperature Tc, it is

energetically more favourable for the system to phase separate

and exist as a mixture of polymer rich and solvent rich regions.

In some cases, cooling polymer solutions often results in the

appearance of a semi-crystalline or glass phase, where polymer

chains are packed parallel to each other forming lamellar

regions, which coexist with amorphous regions with an imper-

fect packing.1–7

Polymer dispersed liquid crystals (PDLCs) are one such

example where the coupled effect of directional interactions

and molecular flexibility leads to a rich phase diagram showing

a plethora of ordered bulk thermodynamic phases and unique

interfacial phenomena. PDLCs thus form an important class of
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materials with applications ranging from electro-optic devices,8

coatings with tunable surface roughness9 and electric field

driven meso-patterning on soft surfaces.10,11 These soft materi-

als can be termed multi-responsive as they can be controlled by

electric and magnetic fields, the presence of interfaces or

substrates and temperature or concentration-gradients etc.

While a lot of work has been done on the synthesis and

application of these novel materials, a fundamental under-

standing of the thermodynamics and kinetics of phase trans-

formations in these complex mixtures is still in a stage of

infancy.

Interestingly, a rich phase diagram is also observed for

complex mixtures of soft molecules with purely repulsive inter-

actions. Discovered in context of mixtures of rod-like hard

particles and non-adsorbing polymers, from density functional

theory (DFT) calculations12,13 it arises due to an effective

depletion attraction between the rod-like particles at small

separations and thus, even in systems with only excluded

volume interactions, one observes three distinct phases: of

which two are isotropic (L1 + L2) (one polymer-rich and the

other mesogen-rich) and one mesogen-rich nematic N1. Simple

mean-field models of mixtures of polymers and liquid crystals

has, however, considered both entropic and enthalpic

effects.14–17 The phase boundary between the one-phase and

the two-phase regions of these mixtures in the temperature-

order parameter plane (shown in Fig. 1 by the blue line) is

commonly referred to as having a ‘‘teapot’’ topology and is

characterised by a number of special points. The primary order

parameter, f, is the difference between the local densities of

the two components, the polymers and the liquid crystals. The

‘‘top’’ of the teapot is the critical point and it’s ‘‘lid’’ marks the

coexistence of polymer-rich and mesogen-rich isotropic phases

(see Fig. 1). In this region, the order parameter f, which is of

the Ising universality class, grows continuously from zero as

one cools the system below Tc. At order parameter values close

to unity, the system consists primarily of the mesogens. For a

purely mesogenic phase (f = 1), as one cools the system the

nematic order parameter discontinuously jumps to a non-zero

value, at the isotropic–nematic transition temperature, TNI
which forms one ‘‘spout’’ of the teapot. At this point the

rotational invariance of the configurations are broken and the

mesogens spontaneously order along a common director. This

discontinuous transition is different to the demixing transition

outlined earlier and the phases formed by the mixture of

polymers and liquid crystals allow a novel interplay between

order parameters of different symmetries, which affects both

the thermodynamics and kinetics of these complex mixtures. In

some situations, cooling the system further results in the

sudden appearance of a non-zero smectic order at TSN, a

thermodynamic state characterised by broken orientational

symmetry and a one dimensional positional ordering. The

phases coexisting in this region are pictorially shown in

Fig. 1. The relative positions of these special points in the

temperature-composition plane, are functions of the micro-

scopic interactions, and dictate the topology of the phase

diagram. The four different phases that appear here are:

mesogen-poor liquid, mesogen-rich liquid, nematic and smec-

tic as denoted by L1, L2, N1 and S1 respectively. The coexistence

regions of the various phases are shown in Fig. 1.

Recently, the nematic ordering of semi-flexible macromole-

cules, have been probed via large-scale molecular dynamics

simulations. These simulations are applicable for macromole-

cules whose contour length, L, is much greater than its persis-

tence length lp. An implicit solvent mimicking a thermally

fluctuating environment is implemented. Owing to large direc-

tor fluctuations, the effective tube radius within which each

macro-molecule is confined is much greater than what should

be expected from the length scale arising from average

density.18 These director fluctuations modify the phase dia-

gram computed from density functional theories. In material

systems both entropic and enthalpic interactions decide the

phase behaviour of complex mixtures; the interplay between

nematic order and phase separation has been recently studied

for polymeric chains in implicit solvents of varying quality.19

The stiffer chains showed a single transition from isotropic to

nematic, while the softer chains also exhibited a demixing

between isotropic fluids, one polymer-rich and the other

mesogen-rich.19 For a detailed discussion on how the shape

of the phase boundaries are affected by the parameters please

refer to Section 4.3.

Phase diagrams, that indicate the thermodynamic stability

of materials as a function of external parameters, e.g. tempera-

ture T, pressure P, etc. are central to the understanding

of material properties. Calculating phase diagrams from

Fig. 1 A typical ‘‘teapot’’ phase diagram for a mixture of longer flexible

polymers and shorter rod-like smectic-A mesogens, reproduced from ref.

17, where f indicates the LC volume fraction and T temperature. The inset

panels illustrate the phases that can exist in each of the respective regions

demarcated by the (blue) phase boundaries; the flexible polymers and rod-

like mesogens are represented by (purple) dots and (yellow) oblate spheres

respectively. The four different phases include: mesogen-poor liquid,

mesogen-rich liquid, nematic and smectic as denoted by L1, L2, N1 and

S1 respectively. Dashed lines mark the triple points, Tc the (continuous)

transition from single-phase to two-phase liquid, TSN the (first-order)

transition from smectic to nematic and TNI the (first-order) transition from

nematic to isotropic liquid. Parameters used: TNI = 333 K, a = 0.851, r2/r1 =

2.25 and w(T) = �1 + 772/T.
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molecular simulations however is a non-trivial task.20 The two

most prominent methods is the Gibbs ensemble technique21

(used for computing phase diagrams of liquid–vapour systems

and for fluid mixtures), and the method of thermodynamic

integration.22 A number of recent publications have introduced

a powerful method for estimating the whole phase diagram

from a single molecular dynamics simulation by leveraging

the multithermal–multibaric ensemble.23–25 Other methods

include estimation of free-energy landscapes for complex

physio-chemical processes, e.g. conformational dynamics

of macromolecules, and chemical reactions of complex

systems.26–28 A key problem that arises in these systems is the

resolution of the details of the rarely occurring transitions

between two metastable states.26–28 Although the duration of

these events are short, the presence of large free-energy barriers

existing between these metastable states lead to transitions

occurring over large time-scales. Simulation methods such as

transition path sampling (TPS),29 transition interface sampling

(TIS),30 Milestoning,31 and Markov state models32 are tailored

to exploring the rare-events in systems that are in thermal

equilibrium. The method of forward flux sampling33,34 was

introduced to simulate rare events in stochastic, non-

equilibrium systems, where the dynamics lacks detailed-

balance and consequently there is an absence of a Boltzmann

like stationary distribution function. In addition, the method of

metadynamics,35 accelerates rare events and thereby estimates

free-energy landscapes of complex molecular systems. The key

idea is to iteratively modify the potential energy of a given

system by a sum of Gaussians centred along the reaction

coordinate, followed by a suitably chosen set of collective

variables (CVs). These Gaussians ‘‘fil’’ the free energy landscape

as a function of the CVs and thus allows the system to explore

the whole phase space. A key issue associated with the above

methods is a clear definition of the order parameter of the

collective variable. Whilst the choice of order parameter36 is

relatively straightforward in some cases like nucleation (num-

ber of particles in the crystalline state), polymer translocation

(number of translocated monomers),37,38 it is difficult when

describing the hydrophobic collapse of a polymer, where, both

the solvent and solute coordinates play a crucial role. The above

methods have been applied to study nucleation in a variety of

different contexts, changes in DNA configuration,39 droplet

coalescence,40 polymer translocation37,38 and protein confor-

mational changes.41,42

In this work, we develop a methodology to extract para-

meters characterizing the mean-field free energy of polymer–

liquid crystal mixtures, thus enabling an explicit computation

of the mean-field phase diagram16 from molecular dynamics

simulation trajectories of coarse grained bead spring models.

This method, in principle, is similar to lattice models used to

explore the thermodynamics of liquid crystals and their mix-

tures. Lattice models of liquid crystals, i.e. Lebwohl–Lasher

models, have been studied to investigate the phase behaviour

and weak first order nature of the phase transition via careful

finite size scaling studies.43–45 However, unlike these liquid

crystalline systems where a single order parameter, namely the

nematic order parameter describes their thermodynamic behav-

iour our system, i.e. a polymer dispersed liquid crystal has three

coupled order parameters. These are (i) the local density

difference between the polymeric and liquid crystalline compo-

nents, (ii) the nematic order parameter and (iii) the smectic

order parameter of the LC component. These extracted para-

meters characterising the free energy and the phase diagram

therefore naturally depend on more microscopic parameters

like the bending stiffness of the liquid crystalline molecules

(this dictates the isotropic to nematic and nematic to smectic

transition temperatures) and the relative affinity of the two

species (this dictates the location of the critical point and the

shape of the phase diagram in the vicinity of this critical point).

As a result these parameters can also be used for simulating the

same polymer–liquid crystal mixture via a mesoscale (density

based) description, which accesses much longer length and

timescales than those allowed in these CGMD simulations.

However, this systematic extension from the CGMD to mesos-

cale dynamics simulations have not been discussed in the

present manuscript. This manuscript concerns only the extrac-

tion of these parameters from a given CGMD model. Here we

discuss how our method is thus suited to trace out the phase-

boundaries (i.e., the binodal lines, which indicate the limit of

metastability of the homogeneous/mixed phase and phase

separated/demixed thermodynamic states) of complex mixtures

where one can have more than one order parameter: in this

case we have one scalar order parameter (proportional to the

difference of the local densities of the polymeric and LC

components) and two order parameters describing the broken

orientational symmetry and the translational periodicity of the

LC rich mesogenic phase. In contrast to the methods discussed

in the previous paragraph, the resulting MD trajectories retain

meaningful dynamical information which can be probed to

follow coarsening phenomena in these complex mixture. This

topic, however, requires a separate investigation, and we just

briefly touch on the coarsening behaviour in the concluding

section of this manuscript. By scanning the temperature-

composition space via multiple CGMD simulations and by

monitoring the resulting order parameter distributions we

locate the boundary between the locally stable and unstable

regions. This maps out the phase boundaries and by appro-

priately tuning parameters appearing in the mean-field theory,

we obtain a phase diagram which is qualitatively similar to the

phase diagram obtained from CGMD simulations. In principle,

this method can be applied to a plethora of soft matter systems

that are phase separating systems with the possibility of addi-

tional ordered phases, e.g. gels, gel–nematic mixtures, nematic–

nematic mixtures etc.

The paper is organised as follows: The CG model of PDLCs

used in MD simulations is outlined in Section 2 and the

protocol for launching simulations across the phase-space.

This is followed by the methodology used to infer the phase

boundaries (binodals) from the resulting MD trajectories in

Section 3 alongside the definition of the different order para-

meters used to identify different phases. Results are then

discussed in Section 4 which includes, the results of CGMD
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simulations, the global order parameters, phase-diagrams and

the tuning of the mean-field phase diagram to qualitatively

match that obtained from MD simulation. We conclude in

Section 5, highlighting the meaningful dynamics retained

using our method.

2 Coarse-grained model

We carry out CGMD simulations for five separate LC volume

fractions f0 = 0.1, 0.25, 0.5, 0.75 and 0.9, modelling the LCs as

semi-flexible chains of fixed length NB = 8. The oligomer (with

volume fraction 1 � f0 is modelled as a flexible polymer of

length NA = 4. A brief overview of our model),46 used for both

the polymer (A) and liquid crystal species (B), is given in this

section for reference, including how it is extended to control

the rigidity of the model mesogens. The bonded interactions

between coarse-grained beads for both species are described

using the FENE potential,47

Ubond ¼ �
1

2
kbondr0

2 log 1�
r

r0

� �2
" #

(1)

where Ubond is the change in potential energy associated with

bond stretching, kbond is the spring constant and r0 is the bond

distance or range of the bond potential, see Table 1 for a list of

parameter values.

Additional rigidity was also included via a bending potential

where each set of three consecutive beads along the mesogens

backbone interact via a harmonic potential,

Ubend = kbend(1 � cos y) (2)

where Ubend is the potential energy change associated with the

change in bond angle from its equilibrium position and kbend is

the angle spring constant, related to the persistence length

lp

l
¼

kbend

kBT
. Non-bonded interactions between like and unlike

beads interact via pairwise 12 � 6 Lennard-Jones potentials of

the form,

ULJ12�6
¼ 4eab

s

r

� �12

�
s

r

� �6
� �

(3)

where r is the distance between pairs of beads and the indices a

and b denote the binary species. In order to ensure phase-

separation the species dependent term eab, is chosen such that

eAA = eBB = 2eAB. We note that variable persistence length alone

has been demonstrated recently to be sufficient in itself to

facilitate entropic un-mixing in similar systems.48

Throughout lengths, times and temperatures are expressed

as dimensionless quantities such that l* = l/s, t� ¼ t
. ffiffiffiffiffiffiffiffiffiffiffiffiffi

ms2=e
p

and T* = kBT/e respectively. Each composition was prepared

such that the dimensionless density p* = Ns3/(LxLyLz) E 1 to

ensure a liquid system far from solid–liquid and liquid–gas

transitions at the simulated temperatures. Initial configura-

tions were prepared by performing simulations for t = 2 � 105

timesteps at T* = 10 for each composition and extracting 5

independent starting configurations. These configurations

were then instantaneously quenched to a series of temperatures

between T* = 10 and T* = 3 at DT* = 0.4 intervals. Variable

simulation times were used since simulations at lower tem-

peratures, although quick to phase-separate, take longer to

order than those at higher temperatures which equilibrate fast.

Simulations in temperature intervals 4.2 o T* r 5.5, 5.5 o T*

r 7.0 and 7.0o T*o 10.5 were run for 160 ns, 80 ns and 40 ns

respectively. All simulations were performed in a constant

volume ensemble and the temperature maintained by a

Nose–Hoover thermostat.

3 Analysing phase boundaries in
simulation
3.1 Mapping phase boundaries

Our method, to extract phase boundaries from MD simulation

trajectories, proceeds as follows. Simulations of a binary mix-

ture of rod-like mesogens and oligomers, are performed for a

series of initial starting compositions f0, at high temperature

and quenched to a temperature below the miscibility curve in

the T–f plane. Details of the coarse-grained model, including

the parameters used, can be found in the proceeding Section 2

and the simulation results in Section 4. For a given volume

fraction of the LC component f0, the system will phase

separate depending on its final temperature and the underlying

free energy landscape. We devise a new procedure to probe the

free energy landscape. We map the CGMD simulation snap-

shots to a coarse-grained order parameter configuration profile

and compute the order parameter correlation function to

extract the correlation length x. We divide the simulation box

into cubes of length x and find the time-averaged continuum

order parameter distribution, P(f;f0), and invert it to obtain a

partial free energy f (f;f0) = �kBT logP(f;f0). The location of

the minima, and approximate phase boundaries can be

extracted from this quantity. Our method is detailed below.

The first step of our numerical recipe is to determine the

correlation length at each point under consideration in the T–f

plane. This is achieved by coarse-graining the order parameter

field and effectively reducing it to a spin-1/2 Ising-like variable.

Each of the instantaneous simulation snapshots are binned

into cubes of size E(2s)3, s is defined in Section 2 and the

number of monomers of each species nA and nB inside are

totalled. A state C = �1 is then assigned to each cell following a

majority rule, such that C = 1 if nA 4 nB and C = �1 otherwise.

The spatial correlation function is then calculated,

Table 1 Bond parameters for MD, note values chosen for s = 0.339 nm,

while e = 0.359 kJ mol�1 and the value of masses of all the beads have

been chosen as m = 12.01 amu

Type kbond (e/s2) r0 (s) kbend

A 40 1.5 50
B 40 1.5 0

Paper Soft Matter

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

0
 S

ep
te

m
b
er

 2
0
2
4
. 
D

o
w

n
lo

ad
ed

 o
n
 9

/3
0
/2

0
2
4
 1

2
:4

2
:2

7
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



This journal is © The Royal Society of Chemistry 2024 Soft Matter

C(rij) = (Ci � hCi)(Cj � hCi) (4)

where rij is the radial distance between the respective cubes and

the angle brackets indicate averaging over a suitable long time

period. For this case the last 15 kt of all independent quenches

are used to compute averages. Fig. 2(a) shows the typical

correlation functions calculated from MD simulations as

quenched from T* = 10.5 to T* = 5.1 (T* is the dimensionless

temperature, expressed in Lennard-Jones units, which is

defined in Appendix B) for all compositions considered in this

work. The zero-crossing point of the correlation function

indicates the correlation length x as indicated explicitly for

the f0 = 0.5 composition in the figure. The correlation length

for each of the simulations considered then serves as a custo-

mised estimate for the bin size used in the subsequent binning

procedure to determine the continuum order parameter dis-

tribution P(f;f0).

In the second step, the order parameter distribution is

determined by re-binning the simulation cell into cubes with

dimensions Ex3. For further details see the Methods Section 6,

Fig. 11(a). The number of monomers of each species inside

each bin are counted and a value assigned, using the order

parameter of an arbitrary bin i, which is defined as

fi ¼
1

2

niA � niB
niA þ niB

þ 1

� �

(5)

In this case however, the continuum order parameter fi, is

bounded between zero and unity and is the continuum defini-

tion of the order parameter C, defined above. The probability

distribution P(f;f0) is obtained by computing a time average of

the order parameter configuration over the last 15 000t of each

independent quench and producing a histogram of the bin

values. Fig. 2(c) shows typical probability distributions which

reveal a distinct splitting of the simulation cell to its bracketing

densities, corresponding to a series of mesogen-rich and

mesogen-poor regions as indicated by the inset cartoon panels.

In the final step the order parameter distributions are

inverted to reveal the topology of the free energy landscape

through a partial free energy f (f;f0) = �kBT log P(f;f0) at each

composition, f0. Fig. 4(f) shows an example inversion from MD

simulations from the different compositions at T* = 5.1. A

series of minima are present and as a result the system splits

into high and low density phases lowering the total free energy.

A rationale behind this method is provided in Section 6.1. As

demonstrated, we solve the phase ordering kinetics of a con-

served order parameter with an underlying free energy land-

scape that can either have a single or double minima

depending on the parameter values. Starting from a random

initial configuration, the system evolves to the correct equili-

brium state at long times, reflected in either a uni-modal or

bimodal probability distribution. This leads to an important

rule that is used to understand the resulting partial free energy

profiles. Simulations that converge onto their starting compo-

sitions f0 with a single minimum are initiated from region of

positive curvature, or f 00(f;f0) 4 0 while those with that split

into two or more successive minima are initiated from a region

of negative curvature f 00(f;f0) o 0 and spontaneously phase

separate. In Section 4.2 this rule is employed to map out the

approximate location of the phase boundaries from our CGMD

simulations.

3.2 Characterising phase boundaries

The second half of our numerical procedure details the calcula-

tion of an orientational order parameter that is used to classify

the disordered liquid, and ordered liquid crystalline phases,

based on the underlying minimas of the partial free energy

landscape. The system under consideration can break rota-

tional symmetry and exhibit nematic, and smectic phases.

However, a global orientational order parameter49 cannot dis-

tinguish between the ordered and disordered phases of rod-like

mesogens on simulation time scales. As the system phase

separates different regions of the sample break symmetry

uniquely picking out a direction about which the rod-like

molecules are oriented. As a result, the global order parameter

obtained by spatial averaging of the local orientational order

parameter is close to zero suggesting that the phase is a

disordered liquid. Once the system reaches equilibrium, the

Fig. 2 Correlation functions, local nematic order parameter and conti-

nuum order parameter distributions from MD simulations at T* = 5.1. (a)

Correlation function used to estimate the correlation length and bin size.

The zoomed inset shows the zero-crossing points more clearly for all

compositions and the correlation length x, for the f0 = 0.5 composition, is

indicated by the arrows as an example. (b) Local P2 order as a function of

the cutoff distance, the HWHM is indicated and used as the cutoff distance

rc when assigning P2 values to each rod. (c) The probability distribution as a

function of the density, the cartoon panels indicate the mesogen-rich and

mesogen-poor regions where the flexible polymers and rod-like meso-

gens are represented by (purple) dots and (yellow) oblate spheres

respectively.
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molecules eventually orient about a common axis signalling a

broken symmetry phase, the time scales associated with coar-

sening of domains are much long compared to those accessible

by CGMD simulations. We define the local nematic order P2(r)

of each rod-like molecule probed as a function of the cutoff

distance rc,
50,51

P2ðrÞ ¼

PN�1

i¼1

PN

j¼iþ1

d r� rj � ri

	
	

	
	


 �
P2 ûi rið Þ � ûj rj


 �
 �

PN�1

i¼1

PN

j¼iþ1

d r� jrj � rij

 �

* +

(6)

to pick out such broken-symmetry phases. Here, P2 is the

second Legendre polynomial and ûi(ri) the unit vector asso-

ciated with the largest eigenvalue of the inertia tensor of

particle i, with its centre of mass located at ri. The detailed

method is explained in Section 6.3. The angular brackets

indicate time averages performed over the last 15 000t of each

independent quench. Fig. 2(b) shows a series of P2 curves as a

function of the cutoff distance rc for each of the compositions

at T* = 5.1. As a convention the half width half maximum

(HWHM) is then used as the cutoff rc, to assign a P2 value to

each rod-like mesogen in the system. For reference P2 B 1

indicates perfect orientational order of the rods and P2 B 0 a

completely random orientation as illustrated in Fig. 12 (see

Section 6.3.1).

In order to then quantify the extent of nematic ordering

within each of the distinct phase separated regions, the local

order parameter P2 is computed along with the order parameter

distributions P(f;f0). This is achieved by isolating the bins at

different points along the P(f;f0) histogram and then aver-

aging the local P2 values of the molecules inside. In Fig. 4(f)

points at different intervals along the f (f;f0) profiles have been

coloured from blue (isotropic) to red (anisotropic) according to

their local P2 values and the corresponding liquid and liquid

crystalline phases are revealed. We note that it is possible for a

bin to have a non-zero continuum order parameter f0 and

return a null local nematic order parameter P2 value. In this

situation there are no rods in the system with a centre of mass

(COM) that lie inside the bin and thus the P2 values cannot be

averaged. The continuum order parameter fi however counts

beads of each type (A or B) inside the bins and is not concerned

with full molecules. Therefore those points with non-zero fi

and null P2 are drawn as empty circles within the partial free

energy profiles.

On the other hand, when the system converges to its

equilibrium starting composition and there is no phase separa-

tion, a global approach may be used to identify the structure of

different LC phases using a suitably defined order parameter.

The isotropic and nematic phases can be characterised by

defining the usual tensor Q

Q �
1

2N

XN

i¼1

3ûi � ûi � 1ð Þ (7)

where # is the dyadic product and 1 is a unit tensor and the

summation is taken over all the rod-like mesogens. The unit

vector ui points along the backbone of the rod like mesogens

and is defined as the vector spanning the first and last beads

x(i)1 � x(i)NA for an arbitrary molecule i. The global nematic order

parameter S corresponds to the largest eigenvalue of the tensor

Q, such that S E 0 in the I phase and S E 1 in the nematic

phase (N1) where molecules are aligned parallel to the nematic

director n̂. The eigenvector associated with the largest eigen-

value is the global nematic order parameter S and therefore

contains information about the orientational ordering of

molecules.

In order to probe the long ranged positional ordering in the

smectic-A phase (S1) and the distributions of the centre of mass

of the rod-like mesogens along n̂, the smectic order parameter

must be introduced. It is given by the leading coefficient of the

Fourier transform of the local density r(ri�n̂).

L �
1

N

XN

i¼1

exp
2pi ri � nð Þ

d

� �
	
	
	
	
	

	
	
	
	
	

* +

(8)

where d represents the spacing between layers of rod-like

molecules in a perfect Sm-A phase. This is predetermined to

be 8.2s from the density waves discussed in Fig. 3(d) for the

f0 = 0.9 composition. In a pure system of rod-like molecules,

i.e. f0 = 1, one might reasonably expect a perfect Sm-A phase to

form, such that d E k and L = 1 but in the systems considered

here this is rarely the case due to thermal fluctuations and the

long run-times required to achieve perfect ordering. It is clear

that any non-zero value indicates some degree of smectic

ordering as evidenced by the density waves and snapshots,

L = 0.1 is therefore taken as a reasonable cutoff. By combining

our new method, with the local and global approaches dis-

cussed here, it becomes possible to both map out the phase

boundaries and characterise them. This is demonstrated in

Section 4.2 where the phase diagram is built from our CGMD

simulations.

4 Results & discussion
4.1 Molecular dynamics simulations

The global nematic and smectic order parameters, for all the

compositions considered in this work, are shown in Fig. 3(a)

and (b) respectively and have been averaged using the last

15 000t of 5 independent quenches. It is apparent, from

Fig. 3(a), that the nematic–liquid transition temperature TNL,

increases monotonically with an increasing LC volume fraction,

towards the bulk nematic–isotropic transition temperature TNI.

Thus the sharp jump in the order parameter S obtained by

melting a pure LC system corresponding to f0 = 1 (black line)

indicates TNI E T*E 10.5. The pure LC system (f0 = 1) exhibits

the well-known sequence of ordered phases spontaneously. At

the lowest temperatures, i.e., T* o 5.5 the smectic phase, S1
appears, in which layers of aligned rods stack on top of one-

another with a well defined spacing. Consequently the smectic

order parameter, L E 1. Upon increasing the temperature the

translational order gradually decreases till T* E 5.5 at which

point long-range positional order is lost (L E 0) and the N1
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phase appears where the rods retain rotational order, S E 0.8.

As the temperature is raised further, the nematic order con-

tinues to decrease towards a value of SE 0.75 until TNI = 10.5 at

which point all rotational order is lost and the system is

completely isotropic. This behaviour has been observed in a

number of similar studies of rod-like mesogens52 and is not

unexpected. Aside from the pure system, the remaining com-

positions with a flexible polymeric component, were studied

upon quenching the system from the isotropic phase at T* =

10.5 (TNI) to ensure that no rotational ordering of the mesogens

remains in any of the compositions studied for f0 r 0.9.

For T* Z 6.0 the compositions with a large volume fraction

of mesogens 0.75 r f0 r 1 are clearly nematic (N1) with

S E 0.8 and L E 0. Compositions with f0 o 0.75 are

completely isotropic (L1) with S E 0. As temperature is further

decreased to T* = 5.6 compositions with f0 Z 0.5 show a non-

zero S and L indicating the presence of both rotationally

ordered and positionally ordered regions. We speculate that

T* = 5.6 is close to the point where S1, N1 and L1 phases may

coexist. Even though the smectic ordering retains only a small

non-zero value (L E 0.25) for the f0 = 0.9 composition, it is

clear from Fig. 3(d) that there is preferential ordering of the

rod-like mesogens into bands, with the flexible polymers filling

the interstitial regions indicated by the solid and dashed lines

respectively. Those configurations with compositions lying

between 0.5 r f0 r 0.75 also show a non-zero L indicating

small S1 domains may exist. All other compositions f r 0.25

are completely isotropic at this temperature.

For the temperature range 4.2 r T* r 4.6 the smectic order

L for compositions 0.5 r f0 r 1 gradually increases accom-

panied by an increased S, indicating significant global ordering

and a micro-phase separated S1 phase appears. This is no more

apparent than in Fig. 3(c) and (d) where the mesogen-rich

regions contain no flexible polymers in comparison to higher

temperatures T* 4 4.6 as well as a reduction in the number of

mesogens in the polymer-rich regions. Importantly for the

f0 = 0.9 composition, the system fully adopts the S1 phase as

seen in Fig. 3(d) whereas the f0 = 0.75 composition always

contains regions with what appears to be some splitting with a

low density liquid phase. This is shown most clearly at T* = 4.2

in Fig. 3(c) where the system is split between the S1 phase and

with 3 clearly defined peaks in one half of the simulation cell,

with the other side containing a small number of rod-like

mesogens dispersed in the flexible polymers. This should

feature prominently in the MD phase diagram; the absence of

the N1 phase would also suggest that T* = 4.6 is below the triple

point where only S1 and L1 phases may coexist. Similar self-

organisation is also evident in experimental systems of binary

mixtures of long and short PDMS molecules, where they phase-

segregate into alternate layers of long and short smectic phase

owing to entropic stabilisation.53,54 Here, we observe similar

micro phase-separated phases owing to combined effects of

entropy and enthalpy.

4.2 Phase diagrams obtained from molecular dynamics

simulations

Fig. 5(b) shows the binary phase diagram for the semi-flexible

rod-like mesogens with stiffness constant kbend = 50 and NA = 8

and fully-flexible polymers with NB = 4 as extracted from our

CGMD simulations. This has been reconstructed using the

procedure outlined in Section 3 such that the local minimas

of f (f;f0), that result from the splitting of the effective free

energies or order parameter distributions, are taken to define

the phase boundaries. For T* o 5.1 the system shows a pure

Fig. 3 (a) and (b) Global nematic P2 and smectic order L parameters for

each composition from MD simulation vs. temperature. Both order para-

meters are calculated by averaging over the last 15 kt of 5 independent

quenches at each temperature. (c) and (d) Density waves in the smectic

phase for f0 = 0.75 and f0 = 0.9 compositions obtained by binning along

the nematic director and averaging waves over the last 5 ns of a single

quench. The solid and dashed lines indicate the densities of the rod-like

mesogens and flexible polymers respectively.
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liquid phase L2 and pure smectic-A phase S1, at very low and

very high mesogen concentrations respectively. This is evi-

denced by the value of the local P2 order parameter in both

regions as highlighted by the colouring of the points in Fig. 4(f)

and a non-zero value of the global smectic ordering L in

Fig. 3(b). Between these two regions lies a large L2 + S1
coexistence region spanning the intermediate concentrations.

The typical bin size in the order parameter space used in the

computation of the free energy profiles is about 0.03. This

obviously depends on the width of the coexistence region at the

particular temperature the free-energy profile is being com-

puted. Given the nature of the phase diagram, for example in

Fig. 5(b) the coexistence region gets narrow above T* = 5.

At T* = 5.1, L2 moves inwards to higher concentrations (f E

0.25) and S1 moves similarly to lower concentrations (f E 0.9)

and another highly ordered nematic phase appears N1, this

demarcates the L2 + N1 and N1 + S1 coexistence regions. The

effective free energy profiles at T* = 5.1 are shown in Fig. 4(f)

where the f0 = 0.5 simulation (cyan line) shows the 3 distinct

regions corresponding to the L2, N1 and S1 phase boundaries.

We have used the minima of the free energies to locate the

splitting between different phases in our coarse-grained model.

The correct procedure entails a common tangent construction

similar to the one outlined in the Section 4.3 dealing with the

mean field theory. However, due to the lack of finely meshed

data of free energy profiles in a realistic coarse-grained model

we have not been able to perform the common tangent

constructions here. This is further confirmed by the local P2
ordering in all 3 regions with the L2 phase corresponding to

P2 E 0 and the N1 and S1 phases reaching P2 E 0.5 showing

that they are highly ordered. In order to distinguish these two

ordered minima we consult Fig. 3(a) and (d) and note that at

high concentrations f0 4 0.5 which show this splitting have

both L a 0 and S a 0 indicating the presence of nematic and

smectic phases. However this is not enough to identify which

minimum corresponds to the smectic phase since a measure of

the local smectic ordering or indeed its distribution is impossible

to calculate, unlike the local nematic ordering (P2), see Fig. 4(f).

We therefore examine the simulation snapshots in Fig. 2 taken at

T* = 5.1 which shows the f0 = 0.5 concentration (Fig. 2(c)) is

predominantly split between L1 at low concentrations and N1 at

high concentrations, whereas the snapshots for the f0 4 0.5

concentrations (Fig. 2(d) and (e)) are predominantly S1.

As temperature is further increased to T* = 5.6 both L2 and

N1 appear to move inward with only the highest composition

f0 = 0.9 having any smectic ordering with L 4 0, see Fig. 3(b).

At T* = 6.0 all positional ordering is lost and the S1 phase is

replaced by the N1 phase, this is the first spout of the double

‘‘teapot’’ topology indicated by TSN in Fig. 5(b). The L2 region

moves to even higher f values leaving a narrow L1 + N1

coexistence region as evidenced by the splitting of the

f0 4 0.75 simulation in Fig. 5(d). This region narrows further

at T* = 6.5 in Fig. 5(e) after which the minimas appear to merge

with no apparent splitting at higher temperatures. However this

does not mean that the coexistence region is lost but instead

that it has narrowed sufficiently such that the compositions at

which simulations have been performed do not fall inside this

narrow coexistence region. We speculate that this region could

be isolated by considering compositions in the region 0.75 r

f0 r 0.9, it is sufficient however to simply connect these

minimums to the nematic–isotropic transition temperature

TNI determined by melting the pure system (f0 = 1). This gives

the second spout of the double ‘‘teapot’’ topology indicated by

TNI in Fig. 5(b).

4.3 Phase diagrams obtained from mean-field theory

To understand the topolological features of the phase-diagram,

the phase diagram obtained from MD simulations is compared

to an existing MFT, reparameterised for the system considered

here. We therefore provide a brief recap of the theoretical

model for predicting phase diagrams of mixtures of polymers

and liquid crystals and the highlight key parameters which

govern the phase behaviour of this system. More details about

the model and its development can be found in ref. 12, 15 and

16. The free energy of a mixture of polymers and liquid crystals

f = fiso + faniso comprises of two parts, an isotropic part describ-

ing the thermodynamics of isotropic liquids fiso and an aniso-

tropic part which accounts for the ordering of the liquid

crystals faniso. Flory–Huggins theory,56 is used to describe the

former for a liquid crystal–polymer mixture such that

fiso f;Tð Þ ¼
f

r1
lnfþ

1� f

r2
ln 1� fð Þ þ wðTÞf 1� fð Þ (9)

Fig. 4 Constructing partial free energy landscapes from MD simulations

at T* = 5.1. (a)–(e) Snapshots taken from MD simulations as the LC

component is increased, the flexible polymers and semi-flexible rod-like

mesogens are coloured purple and yellow respectively to enhance their

orientational alignment and in panels (d) and (e) half the rods have been

removed to reveal the banding of purple polymers in the smectic phase,

produced using OVITO.55 (e) Free energy profiles as inverted from the

probability distributions in Fig. 2(c), the approximate locations of the phase

boundaries are indicated by dashed (grey) lines. The points along the

histogram have been coloured continuously, according the local nematic

order parameter P2 of the rods, as indicated by the colourbar on the RHS,

from P2 = 0 (blue) to P2 = 0.6 (red). In this way it is possible to distinguish

between isotropic and anisotropic minima in the free energy landscape.
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where r1 is the length of the rod-like mesogens, r2 is the length

of the polymer and f is the volume fraction of the LC compo-

nent. The F–H interaction parameter w(T) is a quantity account-

ing for the enthalpic interactions and is varies inversely with

temperature having a form w ¼ Aþ
B

T
, where A and B are

material specific parameters. The anisotropic part of the free

energy, which couples the LC composition is given by

faniso f;T ;mn;msð Þ ¼ �
X

mn;msð Þf

�
1

2
nðTÞ s mnð Þ2þak msð Þ2

� �

f2:

(10)

where S represents the decrease in entropy as the rod-like

polymers align (eqn (15c)), s is the nematic order parameter

(eqn (15a)) and k is the smectic order parameter (eqn (15b)).

The smectic coupling a, is defined as

a ¼ 2 exp �
pr0

d

� �2
� �

(11)

where r0 is the length of the rod-like LC molecule (E7.63s) and

d is the spacing between the smectic layers. The nematic and

smectic order parameters s and k are defined as

s ¼
1

2
3 cos2 y� 1
� 

(12a)

k ¼
1

2
cos

2pz

d

� �

3 cos2 y� 1

 �

� �

(12b)

where y represents the angle of an arbitrary rod-like polymer

with the director and the angular brackets denote averages

performed using the following translational–orientational

Fig. 5 Phase diagram of a binary polymer–smectic–liquid crystal mixture. (a) Phase diagram as calculated from the mean-field theory with parameters

as indicated in the figure in the long rod regime, see Section 4.4 for a detailed methodology of the numerical procedure. (b) Phase diagram as extracted

from CGMD simulations, point types correspond to different phases:’-liquid,K-nematic andm-smectic. Each point is coloured according to the local

nematic order P2(f), with the corresponding value in the colourbar (rhs). (c) and (d) Effective free energy profiles f (f;f0) extracted from CGMD

simulations at all compositions considered for T* = 5.6, 6.0 and 6.5 where the points are coloured according to their local P2 values according to the

colour scale in panel (b). Shown alongside are the corresponding snapshots for each of the compositions considered at each temperature, the flexible

polymers and semi-flexible rod-like mesogens are coloured purple and yellow respectively.
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distribution function,

f ðz; cos yÞ ¼
1

4pZ
exp

1

2
mn 3 cos2 y� 1


 �
� �

� exp
1

2
ms cos

2pz

d

� �

3 cos2 y� 1

 �

� � (13)

where Z is the partition function and mn and ms are the

nematic and smectic mean-field parameters respectively which

describe the potential field strength. In ref. 12 the partition

function is defined as

Z ¼

ð1

�1

ð1

0

exp
1

2
mn 3 cos2 y� 1


 �
� �

� exp
1

2
ms cos

2pz

d

� �

3 cos2 y� 1

 �

� �

dzd cos y

(14)

where mn and ms are dimensionless mean-field parameters

which characterise the strength of the potential fields and

correspond to the nematic and smectic phases respectively.

Their order parameters s and k may then be related to Z using

the following relations as well as the entropy S

s ¼

ð1

�1

ð1

0

f ðz; cos yÞ
1

2
3 cos2 y� 1

 �

dzd cos y ¼
1

Z

@Z

@mn

(15a)

k ¼

ð1

�1

ð1

0

f ðz; cos yÞ
1

2
cos

2pz

d

� �

� 3 cos2 y� 1

 �

dzd cos y ¼
1

Z

@Z

@ms

(15b)

X

¼ �

ð1

�1

ð1

0

f ðz; cos yÞ ln½4pf ðz; cos yÞ	dzdO

¼ lnZ �mns�msk (15c)

where O denotes solid angle in eqn (15c). The orientational

order parameters s and k are then evaluated by minimising the

anisotropic portion of the free energy such that
@faniso
@s

¼ 0 and

@faniso
@k

¼ 0 which results in the two coupled equations

ms = an(T)kf (16a)

mn = n(T)sf (16b)

which must be solved self-consistently as functions of the

dimensionless nematic and smectic mean-field order para-

meters mn and ms. The nematic coupling term n(T) is a

temperature dependent term which depends on the nematic–

isotropic transition temperature TNI, such that n(T) = 4.541T/

TNI, note the prefactor is a universal quantity.12,16 The smectic

interaction coupling a, is a dimensionless quantity as defined

in eqn (11) and is kept fixed. By minimising the free energy

functional with respect to the order parameters (
@faniso
@s

¼ 0 and

@faniso
@k

¼ 0), the resulting expressions (eqn (16a) and (16b)) can

be evaluated numerically using the procedure outlined below.

The renormalised free energy obtained after re-substituting the

minimised values of the nematic and the smectic order

parameters back into the full free energy expression is then

computed at a given temperature (see Fig. 6) and the phase

diagram can be mapped out as illustrated in Fig. 5(a). This is

discussed in conjunction with the phase diagram extracted

from our CGMD simulations.

The numerical procedure for solving the mean-field theory

begins by first solving eqn (14) for an initial guess of the mean-

field parameters m(0)
n and m(0)

s at a given temperature T and

composition f. This is achieved by performing a 2d Simpsons

rule integral and defining an approximate expression for the

partition function

Z mn;msÞð Þ 

h1h2

36

XN�1

i¼0

XN�1

j¼0

f 0 ih1; jh2ð Þ þ f 0 ði þ 1Þh1; jh2ð Þf

þ f 0 ih1; ð j þ 1Þh2ð Þ þ f 0 ði þ 1Þh1; ð j þ 1Þh2ð Þ

þ 4 f 0 ði þ 1=2Þh1; jh2ð Þ þ f 0 ih1; ð j þ 1=2Þh2ð Þ2
h

þ f 0 ði þ 1=2Þh1; ð j þ 1Þh2ð Þ

þ f 0 ði þ 1Þh1; ð j þ 1=2Þhð Þ2
�

þ 16f 0ðði þ 1=2Þh1; ð j þ 1=2Þh2Þg

where N is the number of Simpsons rule intervals, f0(i,j)

corresponds to the value of the expression inside the integral

in eqn (14) and h1 = 2/N and h2 = 1/N. Note the larger this

number, the more computationally intensive the calculation

becomes since this procedure must be repeated for every guess

of mn and ms until a convergence condition is reached, N = 100

is sufficiently large for our purposes and gives sufficiently

accurate statistics. For a given guess of mn and ms the expres-

sion in eqn (15a) is evaluated such that

sð0Þ 

1

Z m
ð0Þ
n ;m

ð0Þ
s

� �

�
Z m

ð0Þ
n þ dmn;m

ð0Þ
s

� �

�Z m
ð0Þ
n � dmn;m

ð0Þ
s

� �

2dmn

(17)

where dmn is some sufficiently small step, in our case dmn E

10�6 to give a value of the nematic order parameter s(0). This is

Fig. 6 (left) Free energy f (f), at 310 K. (right) Transformed free energy

g(f). The red point in each figure denotes f* where f (f*) = g(f*) and

df ðjÞ

dj

	
	
	
	
j�
a0 and

dgðjÞ

dj

	
	
	
	
j�
¼ 0. Dashed lines indicate the common tangent

solutions (w = �1 + 772/T, TNI = 333 K, a = 0.851).
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then substituted into eqn (15a) to provide a new estimate of the

mean-field parameter m(1)
n such that

m(1)
n = n(T)s(0)f (18)

At this point one can either reiterate the same procedure for the

smectic ordering using the same initial guess for the mean-field

parameters at step 0 (m(0)
n and m(0)

s ) or save iterations by using

the new estimate m(1)
n in the next step, we choose the latter

approach since it is more computationally efficient. Hence the

smectic order parameter may be evaluated in much the

same way

kð0Þ 

1

Z m
ð1Þ
n ;m

ð0Þ
s

� �

�
Z m

ð1Þ
n ;m

ð0Þ
s þ dms

� �

�Z m
ð1Þ
n ;m

ð0Þ
s � dms

� �

2dms

(19)

and a new estimate for the smectic order parameter may be

determined using

m(1)
n = an(T)k(0)f (20)

This procedure is then repeated using the new initial values for

the mean-field parameters m(1)
n and m(1)

n until |m(i)
n � m(i+1)

n | r x

and |m(i)
s � m(i+1)

s | r x where x is some acceptable margin of

error, in our case x E 10�6. Once this condition is met the free

energy may be evaluated for a given value of f and T. By

repeating this procedure at fixed T and solving for mn and ms

at different values of f one may evaluate the free energy g(f)

numerically for a given T.

A simple common tangent construction is then used to map

out the phase diagram in the T–f plane but this is in some

cases a non-trivial exercise. Large linear terms dominate the

free energy which if not dealt with appropriately impact the

numerical precision of the gradient terms introducing a large

error. This may be overcome by subtracting a linear gradient

term57 from f (f) such that

gðfÞ ¼ f ðfÞ �
dfðfÞ

df

	
	
	
	
f�

f� f�ð Þ (21)

where f* is some point along f (f),
df ðfÞ

df
. is the first principles

derivative evaluated at that point and g(f) is the new free energy

to be used in the common tangent construction. This proce-

dure only improves the numerical precision of the common

tangent construction and does not influence the position of the

bracketing values f1 and f2. At these points the chemical

potential mðfÞ ¼
df ðfÞ

df
and osmotic pressure PðfÞ ¼ f

df ðfÞ

df
�

f ðfÞ are equal, such that the following equilibrium conditions

are satisfied.

m(f1) = m(f2) (22a)

P(f1) = P(f2) (22b)

It may be proven that this condition holds before and after

applying the transformation in eqn (25) to demonstrate that f1

and f2 are invariant. Under the transformation, eqn (22a) and

(22b) may be rewritten as

m0ðfÞ ¼ mðfÞ �
df ðfÞ

df

	
	
	
	
f�

¼ mðfÞ � m f�ð Þ (23a)

P0ðfÞ ¼ f
df ðfÞ

df
� f ðfÞ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

PðfÞ

�f�df ðfÞ

df

	
	
	
	
f�

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

P�

¼ PðfÞ �P f�ð Þ (23b)

where m0(f) and P0(f) are the chemical potential and osmotic

pressure after the transformation. Thus the points f1 and f2

are invariant under the transformation and

m0(f1) = m0(f2) (24a)

P0(f1) = P0(f2) (24b)

4.4 Characteristics of the mean-field phase diagram

The mean-field phase diagrams, in the T–f plane, resulting

from following the above computational details are presented

in Fig. 7 as we systematically vary the parameters in order to

Fig. 7 Temperature vs. composition phase diagrams for a mixture of

flexible polymers and rod-like smectic-A mesogens with (a) and (b) in

the long polymer regime (r2/r1 = 2.25) and (c)–(e) in the long mesogen limit

(r1/r2 = 2). All parameters are given in the top left portion of the figures to

which they correspond. In panel (a) the phase diagram originally presented

in ref. 12 has been reproduced using identical parameters. In (b) TNI is

raised by 17 K from that originally presented in ref. 12 which effectively

buries the L1 + L2 coexistence region and extends the ‘‘spout’’. In (c) the

system switches into the long rod regime which shifts the L1 + L2 region

left and lowers Tc. In figures (d) and (e) the smectic interaction parameter a

is much reduced and effectively switches off the smectic component of

the free energy, reducing the model to a polymer nematic–liquid–crystal

mixture.
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gradually transition from the physical situation presented in

ref. 12 to a set of parameter values which is close to that

which is appropriate for describing our CGMD simulations.

Fig. 7(a) shows the phase diagram for short mesogens and

longer polymers and it has the ‘‘classic’’ tea-pot shape with

well-separated lid (terminating at the critical point with

TcB 320 K) and the double spout regions, with the upper spout

characterising the isotropic to nematic transition close to f = 1

and at T = TNI and the lower spout characterising the transition

from nematic to the smectic state close to f= 1 and at T = TSN.

The two dashed, horizontal lines denote the two closely located

triple points, a temperature at which the three phases coexist.

In going from panel (a) to (b) the effect of the increase of the

temperature TNI on the shape of the phase diagram has been

studied. One observes that the upper spout thus originates

from the new higher value of TNI = 350 K and as a result the

L2 � N1 coexistence region starts encroaching into lower f

values and as a result of this the lid of the teapot gets buried

into the encroaching L2 � N1 coexistence region. In panel (c)

the mesogens have been made longer than the polymers, in

accordance with our CGMD simulations and we observe that

the critical region, signified by the lid of the tea-pot has been

pushed to lower f values, compared to the situation in panel

(a), and as a result the effect of anisotropic phases starts

occurring from lower f values. The second spout which occurs

due to the occurrence of the smectic phase is controlled by the

value of the parameter a. In going from panel (c) to (d) the value

of a has been reduced, leading to the complete disappearance

of the smectic phase from the phase diagram. A similar trend of

the missing smectic phase, is shown in panel (e) upon a further

reduction of the parameter a.

From the MFT we find a similar picture to that extracted

from the CGMD simulations, this is shown in Fig. 5(a) with two

crucial changes to the parameter values originally presented in

ref. 12 (see Fig. 1 and 7(a)) for the original phase diagram.

Firstly the polymer:mesogen length ratio r2/r1 = 2 has been

inverted such that the mesogens are twice as long as the

polymers to match our CGMD simulations. This has the effect

of pushing the original L1 + L2 coexistence region to lower

concentrations as well as suppressing the temperature at which

these two phases merge Tc, see Fig. 7(a) and (c). Secondly the

nematic–isotropic transition temperature TNI has been raised

from 333 K to 400 K, motivated by the high stiffness of our

mesogens in our CG simulation model, which raises the

temperature of the melt. This has the effect of pushing the

double spout-like topology upwards in the phase diagram to

higher temperatures. As a direct consequence the L1 + L2
coexistence region then becomes buried inside the phase

diagram and is replaced by the L1 + S1 region which also moves

outward such that the pure L2 and S1 phases are forced to

extremely low and high concentrations respectively due to an

increased TNI. Thus we observe L2 + S1, N1 + L2 and N1 + S1
regions as well as pure N1 and S1 regions but no L1 + L2 region.

This bears a resemblance to the phase diagram obtained from

our model CGMD simulations, and possess identical qualita-

tive features (Fig. 5). Fig. 8 shows the three branches of free

energy close to the triple point at 364 K (see the black dashed

line in the zoomed portion in Fig. 5(a)). At this temperature, the

isotropic, the nematic and the smectic phases coexist.

5 Conclusions

We report a methodology to probe the topology of free energy

landscapes, from CGMD simulations of binary mixtures of

polymers and liquid crystals, by manipulating continuum order

parameter distributions. This method, in principle, is similar to

investigation of the thermodynamics of liquid crystals and their

mixtures via simulating simple lattice models. However, unlike

these liquid crystalline systems where a single order paramater,

namely the nematic order parameter43,44 describes their ther-

modynamic behaviour our system, i.e. a polymer dispersed

liquid crystal has three coupled order parameters. These are

(i) the local density difference between the polymeric and liquid

crystalline components, (ii) the nematic order parameter and

(iii) the smectic order parameter of the liquid crystalline

component. Using our method we have shown how the approx-

imate locations of the phase boundaries (spinodals) can be

extracted and then characterized by analysing global nematic

and smectic order parameters, local nematic order parameter

distribution and simulation snapshots. The resulting phase

diagram was then compared with the phase diagrams obtained

from Maier–Saupe type mean-field theory using comparable

parameters to our MD simulations. Both diagrams possess an

identical double spout-like topology, even with modest compu-

tational resources, demonstrating the power of this method.

The accuracy of our method has a strong dependence on the

shape of the phase diagram, specifically the width of the

Fig. 8 Transformed free energy g(f), close to the triple point, at 364 K.

The red point in each figure denotes f* where f (f*) = g(f*) and

df ðjÞ

dj

	
	
	
	
j�
a0 and

dgðjÞ

dj

	
	
	
	
j�
¼ 0. Dashed lines indicate the common tangent

solutions (w = �1 + 772/T, TNI = 400 K, a = 0.851, r1/r2 = 2).
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coexistence regions in f space. If sufficiently wide, it is more

likely that one of the initial starting compositions f0, from our

MD simulations, will fall inside the region and splitting will be

observed. For our regime, long rods and short polymers, the S1,

N1, L1 + N1 and N1 + S1 coexistence regions appear at very high

volume fractions of the LC component and are narrow. In

addition as the temperature is raised, these neighbourhoods

further narrow considerably which hinders the method at

higher temperature. In the reverse scenario however, with short

rods and long polymers, an additional L1 + L2 lid is present.

This part of the diagram would be more accurately probed by

our method since the different phases are well separated in f

space. It is also important to note here that the most interesting

portion of the phase diagram, the region that defines the top of

the teapot as characterised by TNI, TSN and Tc (see Fig. 5(b)) and

appears at higher temperatures. In this temperature range i.e.

T* \ 5 the simulated systems equilibrate well and do not get

stuck in metastable states. At even lower temperatures, we do

observe some instances of metastability where one requires

longer simulations to obtain reliable order parameter distribu-

tions. However, in this regime we know that the phase diagram

consists of a two-phase region which is bounded by two points,

one at very low f and another with f close to unity. A proper

identification of the phase boundaries should also include a

systematic study of the finite size effects in the computed free

energy profiles. In fact, they have been carried out for simpler

lattice systems exhibiting nematic to isotropic transitions.43,44

However, we reiterate that for a realistic off-lattice system like

the one studied a systematic investigation of finite size effects

would require extensive computational resources, that is

beyond the current scope but will be considered in future work.

A quantitative estimate of w(T) from the temperature depen-

dence of the location of the peaks of the order parameter

distribution can also be done and will be performed in a future

work. It is well known in literature that the specific computa-

tion of the Flory Huggins w parameter (a measure of the

incompatibility between different types of coarse grained

beads), for a given microscopic simulation model, is still an

outstanding challenge.58 The fact that purely monomer based w

parameters are reasonable have been proven true in the recent

work on di-block, co-polymer melts,59–61 where the w parameter

has been estimated by fitting the collective structure factor in

the disordered state of symmetric di-block, co-polymer melts.

For situations where the w parameter is primarily enthalpic,62,63

a simple prescription has been proposed for determining the

‘‘effective co-ordination number’’ which replaces the coordina-

tion number appearing in the original expression of the w

parameter in the Flory Huggins theory. While the previous

work has been performed for lattice systems, a number of

heuristic schemes have been developed recently for estimating

Flory–Huggins interaction parameters for off-lattice coarse

grained models of biopolymers and water.64,65 The nematic–

isotropic orientational transition and the estimation of the

temperature-dependent nematic coupling term, n(T), has also

been performed for various generic coarse grained and mole-

cular systems simulated via Monte Carlo66,67 and molecular

dynamics simulations.68 Simplified lattice models of nematic

liquid crystals, like the Lebwohl–Lasher model, has been stu-

died to investigate the phase behaviour of binary liquid crystal-

line mixtures and finite size scaling analysis has confirmed the

weak first order nature of the transition.43–45

This estimate, however, gets more involved as one includes

anisotropic phases in the description, especially for systems

with long mesogens, as in the systems consided here. The

anisotropic phases start appearing at even lower volume frac-

tions and interfere with the Ising like critical point. Here one

observes the effects of the interference of the discrete Ising

symmetry associated with the f order parameter and the

continuous symmetry of the nematic and the smectic order

parameters and this makes the quantitative estimate of w(T)

more difficult. This is an aspect associated with the exact

matching of the phase diagram resulting from MD simulations

to that from the MFT, which would be resolved in future.

Furthermore, in contrast to competing methods to extract

phase diagrams,26–28,34,35 our method has the added benefit of

retaining meaningful dynamical information about the evolu-

tion of ordered phases. In particular, those methods which

leverage other ensembles do not provide information of the

molecular ordering or migration in real time. For example, the

smectic and nematic order parameters shown in Fig. 9 capture

homogeneous nucleation events at short times and the for-

mation of the smectic phase at longer times. The dynamical

behaviour aforementioned here will be reported in a forth-

coming paper. The most interesting aspect about the coarsen-

ing dynamics is the simultaneous presence of different

symmetries in the system studied. For shorter rods and longer

polymers the equilibrium phase diagram in the T–f plane is

tea-pot shaped with a clear demarcation between the ‘‘lid’’ and

the ‘‘spout’’. These two regions are associated with different

order of phase transition. The ‘‘lid’’ is associated with a critical

Fig. 9 Time-evolution of the global smectic L and nematic S order

parameters with time, for the f = 0.9 composition quenched to T* = 5.2.

This is presented on a log time scale to illuminate nucleation events and

ordering at short and long times respectively.
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point below which the order parameter (difference between the

local densities of the two species) grows continuously from zero

(second order transition) and the ‘‘spout’’ region, which is

associated with the abrupt growth (first order transition) of

orientational order. By systematically increasing the length of

the rod-like mesogens in comparison with the polymers and

their stiffness (stiffness controls TNI) the shape of the phase

diagram changes (see Fig. 11). When the mesogens are made

longer and their TNI increases, the ‘‘spout’’ region encroaches

into the ‘‘lid’’ region and this can result in dramatic effect on

the dynamics.

A computational method like the one reported can be easily

applied to the sub-cellular environment where semi-flexible

bio-polymers undergo liquid–liquid phase separation and

under specific physio-chemical conditions they can self-

assemble into non-random filamentous structures with aniso-

tropic interactions promoting nematic ordering. It is also

known that mechanical strain may induce alignment of semi-

flexible polymers. The outlined method, in addition to existing

ones58,69 is an important tool for estimating parameters e.g.,

w(T), n(T), TNI for constructing phase diagrams which enables a

realistic meso-scale description of specific bio-polymers

accounting for their chemical details and this will be attempted

in a future study. This specific mesoscale model can also be

used for non-equilibrium kinetic simulations where one can

probe the important role of various metastable intermediates in

these complex systems.

6 Simulation methods
6.1 A rationalisation for reconstructing free energy

landscapes

In order to rationalise our method of guessing the nature of the

free energy landscape by monitoring order parameter distribu-

tions at various compositions and finally combining them, we

have performed some ‘‘model’’ computations. We simulate a

conserved-order parameter dynamics (model B) on a (100 �

100) square lattice and the dynamic concentration profiles for

the phase-separation order parameter, f(r,t), satisfies

@fðr; tÞ

@t
¼ r � Mr

dF ½fðr; tÞ	

dfðr; tÞ
þ yðr; tÞ

� �

; (25)

where M is the mobility, assumed to be composition indepen-

dent and the local chemical potential mðfðr; tÞÞ ¼
dF fðr; tÞ½ 	

dfðr; tÞ
. An

additive vectorial conserved noise y(r,t) in eqn (25) modelling

solvent effects, satisfying hyi(r,t)i = 0, and hyi(r,t)yj (r
0,t0)i =

2MkBTdijd(r � r0)d(t � t0) ensures thermodynamic equilibrium

at long times. The free energy functional for an in-compressible

binary fluid mixture, in two space dimensions, is given by

F ½fðrÞ	=kBT ¼

ðd

0

ðd

0

f ðfÞ þ k rfð Þ2
h i

dxdz; (26)

where F is the free energy, and z and x are the spatial

coordinates. The first term in eqn (26) is the bulk free energy

and the second term accounts for energy costs associated with

the spatial gradients of the composition field with a stiffness

coefficient k.

For the free energy f(f) we choose a model free energy

(upper panel of Fig. 10) with multiple minima and regions of

both positive and negative curvatures (lower panel of Fig. 10)

present in the free energy landscape. We simulate the temporal

evolution of systems initiated from various f0 (plus a delta

correlated noise term with an amplitude of 0.05) via eqn (32)

and monitor the order parameter distribution at long times. In

this computation we have used Dx = Dz = 0.5 and Dt = 10�6 for

the spatial and temporal discretisation and simulation for each

f0 has been performed for 108 time-steps and the order

parameter distributions have been computed from the final

configuration. We observe that when the simulation is initiated

from a f0 for which f 00(f) is negative, the long time order

parameter distribution (see Fig. 10) shows a split peak at two

values of f which are the extremities of a common-tangent

bracketing the initial unstable f0. On the other hand, when

initiated from a stable f0 the long time order parameter

distribution is a Gaussian centred at f0. Thus the nature of

order parameter distribution for various f0 allows us to map

out the essential features of the free energy landscape.

6.2 Numerical methodology for extracting histograms

Using the correlation length x, as determined from the zero-

crossing of the C(rij) profile described in the main manuscript,

the simulation cell is re-binned into cubes with dimensions

E(x)3. This is depicted in Fig. 11(a) where the bin size,

comparable with the correlation length, has been drawn in

and the molecules inside each of the cells have been coloured

according to their composition fi as defined in the main

manuscript. Note the edges of the simulation cell have been

cutoff to more cleanly show the boundaries between each of the

binned compartments. This particular snapshot is taken close

to the point at L, N and Sm-A phases may coexist at T* = 5.1 for

Fig. 10 The model three minimum free energy (blue) and the regions of

positive and negative curvatures (red) (upper panel). The order parameter

histograms evaluated at long times for various values of f0 (lower panel).

Paper Soft Matter

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

0
 S

ep
te

m
b
er

 2
0
2
4
. 
D

o
w

n
lo

ad
ed

 o
n
 9

/3
0
/2

0
2
4
 1

2
:4

2
:2

7
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



This journal is © The Royal Society of Chemistry 2024 Soft Matter

the f0 = 0.5 composition. The P(f) distribution is then deter-

mined by counting the frequency of number of bins with

compositions that fall into a certain f interval and producing

a histogram. The resulting histogram is shown in Fig. 11(b) and

has been averaged over the last 15 000t of all quenches. Some of

the compartments with compositions corresponding to the

peak values have been isolated and zoomed-in to illustrate

both the arrangement of molecules inside the cells and the

overall composition.

In order to assess the local ordering of the rod-like meso-

gens inside each cell, their individual local P2 values may also

be averaged such that each compartment has both a corres-

ponding density and P2 value, see the following Section 6.3 for

the appropriate definition. The cutoff used for the local P2
calculation corresponds to the HWHM in the P2(r) profile in the

main manuscript. Then the P2 values of those compartments

used to produce each point along the P(f) distribution can be

isolated and averaged to give an estimate of the local alignment

of molecules at different values along the P(f) profile. This

corresponds to the colour of the individual points in Fig. 11(b),

it can be seen that the low-f peak corresponds to a low density

liquid phase, where the alignment of the rod-like molecules are

almost completely random (P2 o 0.1) and the remaining two

peaks correspond to high density liquid crystalline phases

(P2 4 0.5). It is interesting to note that the smaller peak at

around f B 0.95 is more highly ordered (P2 E 0.6) than the

more prominent peak at f B 0.8, we speculate that this could

be due to very few polymers entering the bands of the rod-like

mesogens and that the separation between the nematic band

and the surrounding flexible-polymers is more cleanly defined.

This is characteristic of the layers in a Sm-A configuration

hence we speculate this final peak is the smectic phase appear-

ing, likely due to the close proximity to the triple point and

thermal fluctuations.

6.3 Global nematic order S and local nematic order P2

6.3.1 Local order parameter. The local P2 order parameter

is a measure of the local alignment between rods within a given

cutoff distance rc. For an arbitrary rod i and its neighbours

( j = 1,. . .,N), its local P2 ordering is given by

P2ðiÞ ¼
1

N

XN

j¼1

3 cos2 yij � 1

2
; r � rc (27)

where yij is the angle between the backbone vector of rod i with

the jth rod inside the cutoff distance and N is the number of

neighbouring rods with a centre of mass that falls within the

cutoff. The backbone vector of a given semi-flexible rod is

approximated as the vector spanning the first and last beads

of the rods such that
-

vi = x1 � xNA
as indicated by the (red) arrow

in Fig. 12. In Fig. 12 the angle between the (red) rod i and an

Fig. 12 Assigning the local ordering, P2 order parameter, of a single semi-

flexible rod v
-

i with the remaining black rods v
-

j, inside the cutoff rc

following the procedure outlined in ref. 70. Rods are coloured black/red

and the flexible polymers are drawn in purple and are neglected in the

calculation. The first scenario (top) represents a highly ordered liquid

crystalline configuration P2 E 1 where the semi-flexible rods are generally

aligned with one another and the second where the rods are almost

completely randomly oriented in a liquid such that P2 E 0.

Fig. 11 (a) Snapshot of the f0 = 0.5 configuration at T* = 5.1 showing

coexisting liquid and nematic phases (left) and the simulation cell as binned

where the molecules in the cells are coloured according to their local

composition (right). The bin size which is comparable to the correlation

length has been drawn in. (b) Probability distribution for the f0 = 0.5

composition where each point is coloured according to local order

parameter corresponding to the colour bar (right). In the compartment

snapshots the rod-like mesogens are coloured randomly and the flexible

polymers are purple. Note at this temperature the low-f maximum in P(f)

is identified as liquid due to its low P2 values whereas the high-f maxima

are identified as liquid crystalline (nematic) due to their high P2 values.
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arbitrary surrounding (black) rod j is given by

cos yij ¼
~vi �~vj
j~vij � j~vj j

(28)

Fig. 12 depicts two scenarios where the rods are mostly

aligned with each other inside the cutoff P2 E 1 and when the

rods are mostly randomly oriented P2 E 0.

6.3.2 Global order parameter. In a computer simulation

the global order parameter may be computed in the

following way

S ¼
1

N

XN

i

3

2
cos2 yi

� �

�
1

2

* +

(29)

where yi is the angle of the ith backbone vector with the

nematic director. The orientation of the nematic director is

however already known from theory hence it is more useful to

compute instead

S0 ¼
1

N

XN

i

3

2
n � uið Þ2

� �

�
1

2

* +

(30)

¼
1

N

XN

i

n �
3

2
uiui �

1

2
I

� �

� n

� �

(31)

¼
1

N

Xn

i

n �Q � nh i (32)

where n is an arbitrary unit vector and Qi ¼
3

2
uiui �

1

2
I . The

tensor order parameter is given by

hQi ¼
1

N

XN

i

Qih i (33)

and is a traceless symmetric 2nd-rank tensor with three eigen-

values l+, l0 and l�. The nematic order parameter is defined as

the largest positive eigenvalue of hQi and the true nematic

director is its corresponding eigenvector.71
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