
This is a repository copy of Classifying changes to LabVIEW and simulink models via 
changeset metrics.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/217685/

Version: Accepted Version

Article:

Popoola, Saheed, Zhao, Xin, Gray, Jeff et al. (1 more author) (2024) Classifying changes 
to LabVIEW and simulink models via changeset metrics. Innovations in Systems and 
Software Engineering. ISSN 1614-5054 

https://doi.org/10.1007/s11334-024-00577-y

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Springer Nature 2021 LATEX template

Classifying Changes to LabVIEW and Simulink Models via

Changeset Metrics

Saheed Popoola1*, Xin Zhao2, Jeff Gray3 and Antonio Garcia-Dominguez4

1*School of Information Technology, University of Cincinnati, Cincinnati, USA.
2Department of Computer Science, Seattle University, Seattle, USA.

3Department of Computer Science, University of Alabama, Tuscaloosa, USA.
4Department of Computer Science,University of York, York, UK.

*Corresponding author(s). E-mail(s): saheed.popoola@uc.edu;
Contributing authors: xzhao1@seattleu.edu; gray@cs.ua.edu;

a.garcia-dominguez@york.ac.uk;

Abstract

Automated classification of software changes can help to understand the reason why a change was

made. Support for the classification of changes can also guide the adoption of quality control practices

as bugfix trends are observed, and cluster related sets of changes for similar management of the changed

artifacts, thereby reducing maintenance efforts. A number of change classification techniques have been

developed based on information extracted from the change author, change message, change size, or

changed file. However, most of these approaches have targeted textual general-purpose programming

languages. Furthermore, some of these approaches are computationally expensive because they often

require the analysis of the whole source code, while others rely on the developers’ ability to describe a

commit via a well-written message. In this paper, we present an approach to classify changes to models

into the appropriate maintenance type via a set of metrics that are extracted from the version history

of models. We developed seven metrics related to changes applied to models and model elements. We

then conducted an empirical study involving 10 classifiers to determine the classifier that offers the

best performance for automating the change classification process. These classifiers were trained on

over 300 changesets extracted from the version history of 28 Simulink repositories, and 60 changesets

from 10 LabVIEW repositories. The results of the study show that the Random Forest classifier

offers the best performance for Simulink models, while the Bayes Net offers the best performance for

LabVIEW models. The Random Forest classifier has also been evaluated by comparing its results with

labels extracted from the discussions within the issues reported in a similar time frame. The evaluation

results show that the Random Forest classifier is able to achieve an F-1 score of 0.83, thereby showing

its ability to classify changes into the appropriate categories intended by the original developers.

Keywords: change classification, changeset metrics, LabVIEW, Simulink, classifier

1 Introduction

Models continuously evolve to satisfy new require-
ments, improve the performance of the system

being modelled, or correct some anomalies. This
evolution involves the changes to models and
model elements. The analysis of these changes
is important to guide the software development

1



Springer Nature 2021 LATEX template

process and reduce maintenance efforts. For exam-
ple, change analysis has been used to predict
future changes, identify defect-prone sections of
code, group related and dependent software com-
ponents for similar maintenance activities, and
help in decision-making activities [32, 38, 48]. A
major task in change analysis is the classification
of related changes [56]. In this paper, we define
the aggregate set of changes in a version as a
changeset.

The classification of changes into its mainte-
nance types helps to understand the reason behind
a change, supports diverse analysis regarding a
changeset, and helps with future decision-making
tasks [26, 37, 56]. For example, knowing that a
changeset deals with corrective maintenance activ-
ities such as fixing a bug can help in understanding
why the change set was implemented in the first
place. An increase in corrective maintenance tasks
might also be an indicator that it is time to
focus more on quality assurance practices. Unfor-
tunately, changesets are often not labeled with
their types, and manual classification of changes
is time-consuming and error-prone.

Software repositories such as GitHub provide
capabilities for tracking the changes made to soft-
ware. The history log of these repositories provides
information related to the changes committed to
the repository, such as who made the change,
the changed files, a description of the change (in
unstructured plain text), and other documenta-
tion. The widespread adoption and easy acces-
sibility of these repositories often provide a rich
source of data to analyze the history of changes
to software. However, these repositories do not
provide automated techniques for systematically
classifying the changes [31].

A number of approaches have been devel-
oped for classifying changesets. These approaches
use diverse information, such as changed files,
change hunks, change author, and change message
[4, 26]. The information related to the authors of a
change is often not enough to classify a changeset,
hence this information is often used to augment
other change classification approaches. A well-
written change message often conveys the reason
behind a change and can significantly help the
change classification process [43]. However, change
messages are subjective and may contain trivial
or irrelevant information. Change hunk metrics
involve information related to the structure of a

change, such as the number of loops, methods,
variables, and null pointers affected by the change.
Unfortunately, change hunk metrics and change
files have only been validated when classifying
changes related to text-based general-purpose pro-
gramming languages. Furthermore, many of the
existing approaches have focused on one or two
maintenance categories, e.g., whether the changes
are corrective or non-corrective [32].

This paper presents an approach for classify-
ing changes over the history of a model repository.
We extracted 7 sets of primitive change metrics
from the version history of model repositories. The
metrics include model changes (adding/removing
models), changes to model elements (adding/re-
moving/reordering elements), and changes to the
attributes of the model elements. These change
metrics have been used to train a set of classifiers
to label a changeset related to a specific com-
mit in the model repository history with its type
of maintenance. This paper makes the following
contributions:

1. We present an approach for classifying changes
to model repositories into their maintenance
types.

2. We conducted an empirical study, where we
trained 10 classifiers to assess the performance
of the classifiers in predicting the type of a
change. The 10 classifiers have been chosen
from the WEKA toolset [17].

3. We introduce a novel evaluation method by
comparing the performance of a change classi-
fier with the labels associated with discussion
in the issue logs.

This paper is an extended version of the con-
ference paper [46]. The original analysis targeted
only Simulink models [2]. This paper expands the
analysis to LabVIEW models [30]. An overview of
LabVIEW models is provided in Section 2.2. Lab-
VIEW models have distinct syntax and semantics
from Simulink models, and both modeling lan-
guages tend to target different applications. We
also explore the performance of the classifiers
on LabVIEW models when trained on Simulink
models. We added two new research questions in
Section 3. Hence, we have enhanced the scope and
the context of the original analysis.

The remaining sections of the paper are as fol-
lows. Section 2 introduces the background tools



Springer Nature 2021 LATEX template

ation 3

used in this paper to mine Simulink reposito-
ries, while Section 3 provides an overview of the
research questions that motivated this research.
Section 4 discusses how the background tools have
been used to extract changeset metrics across
successive versions of Simulink models. Section
5 discusses our empirical study to assess the
performance of 10 classifiers in predicting the
maintenance type associated with each change-
set. Section 6 presents our approach to evaluate
a change classifier by comparing its performance
with the manual classification by the original con-
tributors via the discussions in the issue logs.
Section 7 summarizes the limitations of this study
and the possible threats that may affect the valid-
ity of the results presented in this paper. Section
8 overviews the related work and also highlights
how the research presented in this paper extends
existing change classification approaches. Finally,
Section 9 concludes this paper and highlights our
future research directions.

2 A Toolchain for Change
Extraction

This section introduces the five tools that have
been used in this work. These tools are Simulink
for modeling dynamic systems, Massif [28] for con-
verting Simulink models to EMF-based models,
LabVIEW for modeling test instruments, Eclipse
Hawk [18] for indexing the version history of
fragmented models stored in file-based reposito-
ries, and EMF Compare [50] for extracting the
differences across two sets of models.

2.1 Simulink and Massif

Simulink by MathWorks is an extensible, graph-
ical programming environment that supports the
analysis, modeling and simulation of dynamic sys-
tems. Simulink is part of the MATLAB tool and
it also provides support for diverse model man-
agement tasks such as automated code generation,
testing, and model verification. Simulink provides
a graphical editor and extensible libraries that
can be used to design models of systems and run
different simulations on the models. Fig. 1 is a
graphical representation of a Simulink model that
captures the motion of a car after the speed pedal
is pressed and the resulting position of the car
relative to its starting point. The model contains

Fig. 1: A Simulink Model of a Car Acceleration
System

five blocks connected by lines. The pulse generator
produces the input signal to indicate the pressing
of the speed pedal, while the gain block multiplies
the input signal by a defined factor to indicate
the resultant effect of pressing the speed pedal on
the car’s acceleration. The second-order integrator
performs the integration of the input signal twice
to calculate the relative position of the car based
on the acceleration. The two output blocks desig-
nate the position of the car relative to its starting
point.

Massif integrates the Eclipse-based EMF
tools and the MATLAB/Simulink framework via
Java commands in the MATLAB API. The
tool supports bi-directional transformations from
Simulink models to EMF-based models, as well as
user-based configurations to guide the transforma-
tions. Each transformation is achieved in Massif
by first connecting to the MATLAB Engine, then
sending a series of commands to the MATLAB
API to either retrieve useful information about the
Simulink model in order to construct an appro-
priate EMF representation of the model, or to
construct a new Simulink model based on the
properties of an EMF model. The EMF models
that are supported by the Massif tool must con-
form to an Ecore-based metamodel that captures
most of the essential elements in a Simulink model.
Figure 2 is the graphical representation of Mas-
sif’s EMF representation of the Simulink model in
Figure 1.

2.2 LabVIEW

The Laboratory Virtual Instrument Engineering
Workbench (LabVIEW) [30] by National Instru-
ments is an extensible, graphical programming
environment that supports the development, anal-
ysis and validation of software systems that
require fast access to hardware data. LabVIEW is
widely adopted by hundreds of thousands of users



Springer Nature 2021 LATEX template

Fig. 2: Massif EMF’s Representation of a Simulink Model

in more than 26,000 companies to develop soft-
ware that spans diverse domains [1, 14]. LabVIEW
supports many third-party applications and pro-
vides capabilities for extending the tool for custom
interfaces and automated user commands. A Lab-
VIEW model is built out of Virtual Instruments
(VIs) and contains two main parts: a front panel
that provides the user interface and a block dia-
gram where users write the graphical code. Figure
3 is the front-end and block-diagram of a sam-
ple VI that converts the temperature value in
Fahrenheit to its appropriate value in Celsius.

Traditionally, LabVIEW models were stored
in a proprietary binary format, thereby mak-
ing it challenging to analyze LabVIEW models
via third-party automated tools. A recent version
(LabVIEW NXG) stores a model in XMI for-
mat, thereby making it easier for third-party tools
to analyze such models. This paper focuses on
LabVIEW NXG models.

2.3 Hawk

Hawk [7] is a scalable model indexing framework
that can be used to query models that are dis-
tributed over a large number of files, such as those
that are stored in file-based repositories such as
the Git version control system (VCS). A VCS
like Git can track changes that are made to files,
support a large number of users, and handle con-
flicts in the changes made to files by different
users. However, a VCS does not provide support
for managing the relationships between the model
elements stored in the files, leaving that com-
plexity to the user [8]. Although a number of
model-centric repositories have been developed,

they have not been widely adopted by practi-
tioners: some lack features such as branching and
tagging, while others re-implement similar func-
tionality (e.g., user management, locking, checking
out a model), or only work seamlessly with their
own modeling tool. These repositories tend to
lack the widespread tool support (e.g., continuous
integration systems) of traditional file-based VCS.

Hawk provides a model-centric layer over
file-based repositories, thereby combining the
model-centric querying and navigation capabili-
ties of model repositories with the maturity and
widespread use of file-based repositories. Hawk
can answer arbitrary queries in a dialect of the
Epsilon Object Language [40], report changes
across files in the repository, and present views
of the indexed models as read-only EMF mod-
els. Hawk follows a component-based architecture
that can be extended in various ways. Fig. 4 pro-
vides a graphical overview of Hawk. The version
control manager component in Hawk retrieves file-
based changes from a VCS, and the model resource
factory component parses the files into an in-
memory model abstraction (inspired by EMF, but
independent from it). The model updater com-
ponent compares the in-memory models against
the current state of the backend component (cur-
rently, one of several database management sys-
tems), and performs an incremental update on the
backend to reflect the latest state of the models.
For large models fragmented across files, Hawk
will save memory by first indexing each fragment
separately and then reconnecting the fragments.
After the backend is updated, it is ready to answer
questions via query engine components.



Springer Nature 2021 LATEX template

ation 5

Fig. 3: A Front Panel and Block Diagram for Temperature Conversion

Fig. 4: Overview of the Eclipse Hawk workflow [6]

In its default configuration, Hawk only records
the most recent version of the models in the repos-
itory. Hawk can be configured to use time-aware
versions of the above components [18], providing
the ability to record the full history of the indexed
models into a temporal graph [23]. Each version
of the model is associated with a time point that
corresponds to when the change was made. A
time-aware dialect of EOL is provided to query
historic information about the models, such as
when the models started exhibiting some behav-
ior, or when a model element was first added to the
repository. These time-aware extensions allow for
efficient investigation and analysis of the evolution
of models in file-based repositories.

2.4 EMF Compare

EMF Compare is an Eclipse-based project that
supports two- and three-way differencing and
merging of EMF-based models. EMF Compare
provides distinct phases of the comparison pro-
cess that can be extended and customized toward
user-specific needs. For example, while the default
method of detecting if elements in different models
are the same is based on the similarities of their

features, EMF Compare can be told to use static
identifiers to match elements.

EMF Compare provides two approaches for
extracting differences between models: a two-
way differencing approach that extracts differ-
ences directly between two sets of models, and a
three-way differencing approach that extracts the
differences between two models based on their evo-
lution from a common third base model. EMF
Compare also supports four kinds of differences
between two models: ADD to show the addition
of new elements, DELETE to indicate the removal
of elements, MOVE to show the reordering of ele-
ments, and CHANGE to indicate changes in the
attributes of elements.

3 Research Questions

The main goal of this research is to automate
the classification of changes to LabVIEW and
Simulink models in order to provide insights
on why the change was made. We did this by
extracting changes from open-source LabVIEW
and Simulink repositories on GitHub, developing
a set of metrics on each change, and using the
developed metrics to automatically determine the



Springer Nature 2021 LATEX template

change type via a set of classifiers. We specifi-
cally aim to answer the following four research
questions.

1. RQ1: Which classifier(s) best predict the
maintenance type for changes in Simulink mod-
els?

2. RQ2: Which classifier(s) best predict the
maintenance type for changes in LabVIEW
models?

3. RQ3: Can a classifier trained on Simulink
models accurately predict the maintenance
type for changes in LabVIEW models (and
vice-versa)?

4. RQ4: What is the performance of the best-
performing classifier in terms of precision,
recall, and F1-score, over the labels associated
with some of the design decisions in the issues
reported in the repositories?

The original paper was focused on RQ1 and RQ4.
This paper extends the classification analysis with
RQ2 and RQ3. Section 5.3 answers RQ1, RQ2,
and RQ3, while Section 6 answers RQ4.

4 Mining Repositories and
Change Extractions

This section discusses how we extracted changes
from the evolution history of a set of Simulink
models in 28 GitHub repositories and LabVIEW
models in 10 repositories. First, we search for rel-
evant Simulink repositories on GitHub via the
keyword “simulink.” We then manually searched
through each repository in the search results and
extracted the repositories with at least 10 com-
mits, and the original search results were filtered
down to approximately 100 repositories. We used
Hawk to query Simulink models in each reposi-
tory, and finally selected models with more than
five version histories. A version is defined as a com-
mit that involves changes to at least one Simulink
file. This exclusion criteria was established to
ensure that the selected repositories have suffi-
cient evolution history to capture diverse types of
changes, and not only the addition of new mod-
els. The final selection consists of 28 repositories
with 537 versions across many industrial and aca-
demic domains. The same process was repeated
for LabVIEW repositories (except that the search

keyword was “labview nxg”). However, most Lab-
VIEW repositories contained LabVIEW models
persisted in the traditional binary format, and
only a few repositories were associated with the
NXG format. Unfortunately, the current version
of the extended Hawk tool supports only the NXG
version. Therefore, we selected almost all of the
NXG-based LabVIEW repositories.

Table 1 and Table 2 provide a statistical
overview of the selected repositories. The tables
show the total number of commits, the average
number of commits, the minimum number of com-
mits in any of the repositories, the maximum
number of commits in a single repository, the
average number of commits across all of the repos-
itories, and the median number of commits. The
same set of statistical data was also extracted
for the number of versions, models, model ele-
ments, branches, and contributors. It can be seen
from the tables that this study analyzes 451 mod-
els containing an aggregate of over four million
model elements for Simulink and 76 models con-
taining an aggregate of over thirteen thousand
model elements for LabVIEW.

Fig. 5 provides a graphical summary of the
domains of the Simulink repositories. The figure
shows that the robotics and avionics domains have
the highest number of repositories. Furthermore,
we could not assign two repositories to a particular
domain; therefore, we labeled them as others. In
total, the 28 repositories span across 12 different
domains, thereby showing the heterogeneity of the
repositories used in this study, which offers a more
diverse dataset for the classification. We could not
verify the domains for the LabVIEW repositories.

Fig. 5: Domain Distribution in the Simulink
Repositories



Springer Nature 2021 LATEX template

ation 7

Properties \Variables Commits Version Models Model elements Branches Contributors
Total 5310.0 537.0 451.0 3061796.0 139.0 66.0
Average 189.6 19.3 16.1 109349.8 4.9 2.4
Minimum 20.0 5.0 1.0 911.0 1.0 1.0
Maximum 1168.0 90.0 174.0 830193.0 48.0 8.0
Median 69.0 11.0 8.0 57085.0 1.0 1.0

Table 1: Overview of Selected Simulink Repositories

Properties \Variables Commits Version Models Model elements Branches Contributors
Total 744.0 52.0 76.0 13246.0 13.0 31.0
Average 74.4.6 5.2 7.6 1324.6 1.3 3.1
Minimum 4.0 2.0 1.0 171.0 1.0 1.0
Maximum 593.0 11.0 15.0 5537.0 2.0 18.0
Median 12.5 3.5 7.0 667.0 1.0 1.0

Table 2: Overview of Selected LabVIEW Repositories

The full details about each of the reposito-
ries considered and the final repositories selected
for this research are provided here 1. The remain-
ing part of this section discusses how we mined
LabVIEW and Simulink models from the selected
GitHub repositories via the integration of Hawk
and Massif, with the extraction of the changes via
EMF Compare.

4.1 Mining/Extracting Data with
Hawk and Massif

Figure 6 shows how the time-aware version of
Hawk has been extended to support the indexing
of LabVIEW and Simulink models. The exten-
sion includes a model parser to parse LabVIEW
and Simulink files, and a language to support
high-level queries over model versions. The model
parser detects LabVIEW and Simulink files via
their respective file extensions. For LabVIEW
files, the parser extracts the model elements and
converts them into an EMF resource. The result-
ing EMF resource is validated against a LabVIEW
metamodel developed in a previous work [45].
For Simulink files, the parser transforms Simulink
models into an appropriate EMF resource via the
integration of Hawk with the Massif framework.
The generated EMF resource for LabVIEW and

1https://bit.ly/ChangeAnalysisSAM

Simulink files is then passed to Hawk for indexing
and storage in a temporal graph database. Succes-
sive versions of the same model can also be passed
to EMF Compare to generate additional change
data between the versions. The query language
extends the default time-aware query language
provided by Hawk to offer new capabilities for
querying the indexed models to extract the neces-
sary change data needed for change classification
tasks. The set of extensions provided by the query
language include the following:

1. Model-level queries. This provides information
about the models (via the file name) that
have been added, deleted or modified. Sample
queries include a query to return the total num-
ber of models added at a particular timepoint.

2. EMF Compare changes. This provides infor-
mation about changes between two successive
versions based on the results produced by EMF
Compare. Sample queries include a query to
extract all the changes between two timepoints
(which may contain multiple versions).

4.2 Extracting Changes with EMF
Compare

A change analyzer has been developed and inte-
grated with the extended Hawk framework in
order to support the extraction of changes across
the version history of models. Change has always



Springer Nature 2021 LATEX template

Fig. 6: The Extended Hawk Framework

1 Let A= set of models in prior version
2 Let B= set of models in following version
3 If A intersection B is empty
4 Added models= All B
5 Deleted Models = All A
6 Else
7 ChangedModel = (A union B) - (A intersection

B)
8 Added models = ChangedModel intersection B
9 Deleted models = ChangedModel intersection A

Listing 1: Differencing for model-level changes

been recognized as an important factor in soft-
ware evolution and many sets of metrics have
been developed to quantify and analyze changes
to software systems. We adapted existing change
metrics defined by Wen et al. [54] to fit changes
to models. In particular, we considered six oper-
ations that characterize the evolution of a set of
models from version A to version B. These opera-
tions are grouped into three categories: changes to
the models (adding/removing models), changes to
model elements (adding/removing/reordering ele-
ments), and changes to the attributes of the model
elements.

The changes were extracted in two phases. The
first phase involves checking for the addition or
deletion of models, while the second phase involves
extraction of the changes in successive versions
of models via EMF Compare. In the first phase,
we extracted the high-level changes to models in
the repository by comparing the models via the
file name property of the models that is captured
by the Simulink metamodel provided by Massif.
The sets of added and deleted models between
each pair of adjacent versions are computed as in
Listing 1.

The second phase involves extracting changes
at the level of model elements and attributes
via the integration of EMF Compare with our
extended Hawk framework. In this phase, the set
of common models in two adjacent versions are
entered as inputs into EMF Compare. The kind
of differences (i.e., ADD, DELETE, CHANGE,
or MOVE) and the affected model element/at-
tributes are then extracted from the results pro-
duced by EMF Compare. If any difference is
detected during this phase, the model is also added
to a list of modified models. Table 3 shows the
total number of extracted changes to the mod-
els and model elements in the selected Simulink
and LabVIEW repositories. The table captures
the total number of changesets, added model
elements, deleted model elements, changed or
modified model elements, moved model elements,
added models, changed models, and deleted mod-
els.

Figure 7 is a simplified model of an hospital
that has been modified from an initial version to
the final version. The initial version of the model
is composed of two patients and one doctor. In the
final version, one patient has been deleted and the
role of the doctor has been modified. For the initial
version, the change extraction process will capture
the addition of one model and three elements. For
the final version, the process will capture the mod-
ification of one model, the deletion of one model
element (Patient Sam), and the modification of
one model element (Doctor Jeff). It should be
noted that the processes described in Section 4.1



Springer Nature 2021 LATEX template

ation 9

Environment\
Variables

Change-
set

Added
Element

Deleted
Element

Changed
Element

Moved
Element

Added
Model

Deleted
Model

Changed
Model

Simulink 360 5146360 3533164 249584 431368 228 76 812
LabVIEW 44 20176 369 884 174 120 63 55

Table 3: Summary of Total Extracted Changes

Fig. 7: A Sample Model of an Hospital

and Section 4.2 are automated, and the complete
code is publicly available in a Github repository2.

5 Classification of the
Extracted Changes

This phase of our work describes how we classify
the extracted change sets discussed in the pre-
vious section. To classify a changeset, we used
a set of classifiers from the Waikato Environ-
ment for Knowledge Analysis (WEKA) toolset
[17]. The WEKA tool set is open-source software
that provides access to state-of-the-art machine
learning and classification algorithms. These algo-
rithms can be accessed easily by users to exe-
cute many machine-learning tasks on user-defined
data. The WEKA toolset was used to classify the
changes recovered from the previous section into
four categories of changes associated with software
maintenance, as specified by the ISO/IEC 17464
standard [29]. The set of classifiers used for the
classification process includes OneR [27], Random
Forest [9], Multi-class Classifier [36], Classification

2https://github.com/sopopoola/hawk

via Regression [17], KStar [12], SMO [44], Lib-
SVM [10], Bayes Net [42], Naive Bayes [33], and
J48 [47]. The categories of changes considered in
this work include the following:

1. Corrective: This is a change associated with fix-
ing an issue that negatively affects the optimal
functioning of the software. These changes are
associated with correcting bugs or mistakes in
the models.

2. Adaptive: This is a change associated with
enhancing the functionalities of the software
to satisfy new requirements or specifications.
These changes are often associated with adding
new features, satisfying new requirements or
adapting to new external factors.

3. Perfective: This is a change associated with
optimizing the functionalities or features of
software. These changes include reorganizing
the code base, improving the software doc-
umentation, and refactoring the models to
improve maintainability.

4. Preventive: This is a change that is done in
order to address a possible future need. These
kinds of changes include testing components of
the models.



Springer Nature 2021 LATEX template

5.1 Dataset Collection and Analysis

The training data for the supervised learning algo-
rithm was developed by manually annotating over
300 changes from 28 Simulink repositories and
60 changes from 10 LabVIEW repositories via
the process described in Section 4.2. The man-
ual annotation was independently done by the
first two authors using the labels and descriptions
adapted from Murgia et al. [39]. At the end of
the classification process, 45.4% of the changes
were classified as perfective, 39.3% were classified
as adaptive, 12.3% were classified as corrective,
and 3% were classified as preventive. Fig. 8 and
Fig. 9 summarize the distribution of the change
types across the 28 Simulink repositories and 10
LabVIEW repositories.

For each changeset, we extracted seven prim-
itive metrics and matched them to the manually
annotated label for that changeset. The seven met-
rics are the total number of elements added, total
number of elements deleted, total number of ele-
ments with at least one attribute changed, total
number of elements that have been reordered,
total number of newly added models, total num-
ber of models deleted, and the total number of
existing models that have at least one element
or attribute changed. These metrics were chosen
because they capture all the basic atomic (non-
derived) set of metrics related to changes between
two models. The class labels used for the classifica-
tion are the types of changes manually annotated
for each changeset and they are adaptive, pre-
dictive, corrective, and preventive. It is possible
that a particular commit belongs to more than
one classification. Therefore, we adopt a binary
classification where each commit is either classi-
fied as one of the class labels or not. This means
that we have four identical files for each type:
the first file classifies the changesets into adaptive
or non-adaptive, and the second file divides the
changesets into corrective or non-corrective. The
third and fourth files also follow a similar pattern
for the perfective and preventive categories.

In summary, we have four identical files for
each of the change categories with over 400
changesets. This also means that the classifica-
tion process was executed four times with each of
the classifiers mentioned previously. Finally, each
entry to the dataset used for the classification pro-
cess in WEKA contains seven numeric attributes,

representing each of the seven extracted metrics
and a class label of either positive or negative for
the change type that is under consideration.

5.2 Methodology for Validating the
Classifiers

The ten-fold cross-validation technique has been
used to assess the performance of the classifi-
cation algorithm used in our work. A ten-fold
cross-validation technique is a popular mechanism
for assessing the performance of machine learning
models and algorithms [2]. In a 10-fold cross-
validation process, the dataset is divided into 10
equal parts (called folds) and ten rounds of vali-
dation are conducted. For each validation round,
one part or fold of the data set is used as test data
and the remaining 9 folds are used as a training
set. For the next round of validation, a new fold is
used as test data and the other 9 folds (including
the one used as test data in the prior round) are
used as the training set. The procedure is repeated
ten times, with each fold used as test data once.

Every changeset in the dataset has been
assigned exactly one label, whose value is either
a positive or negative for the change type under
consideration. The dataset is divided into 10 parts
as per the requirement of the ten-fold cross valida-
tion technique. The training data that consists of 9
parts of the data set is used to train the classifica-
tion model to identify the best set of patterns and
anti-patterns of changes that best match a given
classification label. The testing fold is used to vali-
date the classification model by initially excluding
the manually annotated label from the training
data, then allowing the classification model to
predict the appropriate change classification, and
comparing the results with the initial label. In
this way, the validation process mimics realistic
scenarios where the training set corresponds to
available data that have been manually classified
by humans, and the test data correspond to the
set of changes that need to be classified by our
classification algorithm.

The F-1 score is a standard statistical value to
measure of the accuracy of a classification model.
The F-1 score is the harmonic mean of a model’s
precision and recall. The highest possible F-1 score
is one and this score indicates a model that is 100%
accurate, while the worst score is zero. However,
most real-world classification models have a score



Springer Nature 2021 LATEX template

11

Fig. 8: Distribution of Maintenance Types across Simulink Repositories

Fig. 9: Distribution of Maintenance Types across LabVIEW Repositories



Springer Nature 2021 LATEX template

greater than 0 but less than 1. The F-1 score mea-
sure has been used to assess the performance of
each of the 10 classifiers used in this paper.

5.3 Analysis of the classification
results

The results of the classification process shows
that some of the classifiers perform better in
one category while others excel in other cate-
gories. No classifier actually performed better than
other classifiers in all the change categories being
considered. We analyzed the results of the clas-
sification process in three distinct categories -
Simulink datasets, LabVIEW datasets, a combina-
tion of Simulink and LabVIEW datasets. During
the analysis, we aimed to answer the first three
research questions discussed in Section 3 and
stated below.

1. RQ1: Which classifier(s) best predict the
maintenance type for changes in Simulink mod-
els?

2. RQ2: Which classifier(s) best predict the
maintenance type for changes in LabVIEW
models?

3. RQ3: Can a model trained on Simulink mod-
els accurately predict the maintenance cate-
gories of changes in LabVIEW models (and
vice-versa)?

RQ1. Performance of Classifiers on

Simulink Models

To answer the first research question, we used
the 10-fold cross-validation approach on change
instances from Simulink models only. The aver-
age F-1 score for all the classifiers across the four
categories was 0.79. Overall, the Random For-
est classifier offers the best aggregate performance
across the four categories with an average F1-
score of 0.84 while the LibSVM has the worst
performance with an average F-1 score of 0.71.
Furthermore, the best performance from all the
classifiers was in the preventive category with an
average F1-score of 0.95 while the perfective cate-
gory has the worst score 0.65. Fig. 10 summarizes
the results of the classification process.

RQ2. Performance of Classifiers on

LabVIEW Models

To answer the second research question, we used
the 10-fold cross-validation approach on change
instances from LabVIEW models only. The aver-
age F1-score for all the classifiers across the four
categories was 0.62. Overall, the Bayes Net clas-
sifier offers the best aggregate performance across
the four categories with an average F1-score of
0.68 while Regression has the worst performance
with an average F-1 score of 0.45. Furthermore,
the best performance from all the classifiers was in
the preventive category with an average F1-score
of 0.94 while the perfective category has the worst
score 0.49. The performance in the maintenance
categories is consistent with the results in RQ1.
Fig. 11 summarizes the results of the classification
process.

RQ3. Performance of Classifiers on

Simulink-Trained LabVIEW Models

To answer the third research question, we trained
the selected classifiers on Simulink models only,
and then tested the trained models on LabVIEW
models. The average F-1 score for all the classi-
fiers across the four categories was 0.58. Overall,
the Naive Bayes classifier offers the best aggre-
gate performance across the four categories with
an average F-1 score of 0.74 while the SMO has the
worst performance with an average F-1 score of
0.52. Furthermore, the best performance from all
the classifiers was in the preventive category with
an average F-1 score of 0.94 while the perfective
category has the worst score 0.55. The perfor-
mance in the maintenance categories is consistent
with the results in RQ1 and RQ2. Fig. 12 sum-
marizes the results of the classification process.

In conclusion, the best performance was by
classifiers trained and validated on Simulink mod-
els, while classifiers from both the LabVIEW
models and the Simulink-trained LabVIEW mod-
els offer a mixed performance. This suggests that
a large dataset is necessary for the training, while
using a generic model (in this case, trained on
Simulink but test on LabVIEW models) may not
offer much improvement in the performance. Fig.
13 summarizes the result of the comparison across
the three categories. The “LabVIEW-Simulink”
tag indicates the Simulink-Trained LabVIEW



Springer Nature 2021 LATEX template

13

Fig. 10: Results of the Change Classification Process on Simulink Models

models. Some of the classifiers in Fig. 10, Fig.
11, and Fig. 12 do not have an F-1 score. This
is because the number of true positives produced
by the classifier is zero. Therefore, the calculated
precision and recall will also be zero leading to an
invalid F-1 score.

6 Evaluation Methodology
and Results

This section describes the procedure we fol-
lowed to evaluate the effectiveness of the change
classification process. Specifically, we compared
our results with the design decisions that have
been extracted from the discussions in the issues
reported in two large Simulink repositories. The
logged issues that are reported in the issues section
of the repository often contain some discussions on
why a change is necessary, and the type of change
required via labels. Therefore, a manual analysis
of the discussion around an issue might be able
to reveal the intended type of change behind a
changeset. This makes the issues a helpful way to
evaluate the change classification process.

We evaluated the accuracy of our framework
on two repositories: NASA T-MATS3 (a thermo-
dynamic modeling package), and CJT4 (a personal
repository for modeling robotic joints). These
repositories were chosen because they are open
source, and they have a high number of logged
issues and commits in GitHub. These reposito-
ries have also been excluded from the original 28
Simulink repositories used for the training set, in
order to prevent bias when evaluating the gen-
eralizability of our approach. Table 4 gives an
overview of the repositories, with number of issues,
number of issues related to Simulink models,
number of commits, and application domains.

Table 4 shows that only a small fraction of the
total number of issues typically affects Simulink
models. To evaluate the applicability of the clas-
sified changes, we compared our results with the
issues in the repository within the same time
period. For example, the first version of the T-
MATS repository was on Jan 31, 2014 which our

3https://github.com/nasa/T-MATS
4https://github.com/geez0x1/CompliantJointToolbox



Springer Nature 2021 LATEX template

Fig. 11: Results of the Change Classification Process on LabVIEW Models

Properties \ Repositories T-MATS CJT

Number of issues 89 75

Number of resolved
issues

86 58

Number of issues
related to Simulink
models

26 10

Number of commits 221 668

Domain Thermody-
namics

Robotics

Table 4: Overview of T-MATS and CJT
Repositories

framework predicted to be a corrective type of
change; on the same day, two issues were closed
and they were labeled correction and bugs, respec-
tively. In particular, we aim to answer research
question 4 as stated below.

RQ4: What is the performance of the best-
performing classifier in terms of precision, recall,
and F1-score, over the labels associated with some
of the design decisions in the issues reported in the
repositories?

The Random Forest classifier offers the best
aggregate performance for Simulink models from

the list of classifiers discussed in Section 5. There-
fore, we used the Random Forest classifier to
evaluate the accuracy of predicting the type of
change. To investigate the performance of the
classifier, we extracted the seven attributes dis-
cussed in Section 4 for each of the commits in
the two repositories used for the evaluation. Then,
we considered the performance of our change clas-
sification algorithm with respect to the labels
attached to some of the design decisions in the
issue logs. All of the affected decisions have only
four kinds of labels, and we matched these labels
to appropriate change types. The four labels are
the correction and bug labels that were matched to
the corrective change type, the clean up label that
was matched to the perfective change type and
the enhancement label that can be either adaptive
or perfective. It should be noted that none of the
labels were associated with the preventive change
type. Finally, we calculated the precision, recall
and F1-score for each of the change types.

Figure 14 gives an overview of the correctness
of the prediction classification with respect to the
labels in the issue logs. The figure shows that



Springer Nature 2021 LATEX template

15

Fig. 12: Results of the Change Classification Process of Simulink-Trained LabVIEW Models

the classification algorithm performed very well
for all the classes with an aggregate F-1 score of
0.83. The preventive class offers the highest per-
formance of 0.95. This means that the Random
Forest classifier could efficiently predict that none
of the labels were associated with a preventive
class. Furthermore, the corrective class offers the
least performance of 0.74. A manual investigation
reveals that the corrective cases that have been
labeled incorrectly actually involved the addition
of new features. However, the new features were
added to fix a bug and not to satisfy new require-
ments. We could not repeat the same experiment
for LabVIEW models due to a lack of issues in the
LabVIEW repositories.

In general, an acceptable F-1 score for a
machine learning model will depend on the con-
text in which the model will be applied. For
example, safety-critical systems will require very
high level of accuracy compared to other domains.
The Random Forest classifier used for this study
produces an F-1 of more than 70% in its worst
case scenario. This, in our opinion, indicates a
high-level of confidence in its prediction.

7 Limitations and Threats to
Validity

There are some limitations that may affect the
generalization of the results presented in this
paper. We analyse some of the threats to the
validity of our results in the following paragraphs.

1. Small dataset. A small dataset can affect the
generalizability of results because the dataset
may not contain sufficient patterns for different
scenaios. Unfortunately, the dataset used for
this study involved only 28 Simulink reposito-
ries and 10 LabVIEW repositories. The major
challenge in the data collection process was
in finding models with rich version history,
because the scope of this paper focuses on
change extraction and analysis. While there
are a lot of third-party models [11, 49], many
of them do not capture a rich version history
of the models. Additionally, we also consid-
ered extracting models from MatlabCentral,
the official webpage from Mathworks for shar-
ing Simulink files. However, the platform offers



Springer Nature 2021 LATEX template

Fig. 13: Average F-1 Scores

Fig. 14: Evaluation results for the Random
Forest classifier

an RSS feed and the platform only offers
project releases instead of commits. Due to this
limitations, it was very hard to extract granular
commit-level changes between successive ver-
sions of project releases. The changes between
project releases are very large (as opposed to

commit changes), and contain multiple cate-
gories of changes embedded in a new release.
This makes it inefficient for the study and was
excluded. In the future, we plan to work more
on how to incorporate changes from project
releases. Furthermore, LabVIEW was limited
to only 10 repositories because the extended
Hawk tool currently supports only the NXG
version of LabVIEW. In the future, we plan to
incorporate support for the traditional binary
format of LabVIEW models. Finally, some
studies have also shown that the difference in
performance when a model is trained on small
or large dataset may not be significant [5, 53].
Hence, we believe the results presented here is
still very important, even though future work
on larger dataset is necessary to validate the
results.

2. The datasets contain only LabVIEW and
Simulink models. The dataset used for train-
ing and evaluating the classifier contains only
LabVIEW and Simulink models that have been
extracted from open-source repositories. Hence,



Springer Nature 2021 LATEX template

17

it is possible that the results may not be gen-
eralizable to other types of models especially
non-executable models.

3. Simple LabVIEW datasets. The LabVIEW
dataset contains few models with limited
changesets. This lack of sufficient data may
affect the classification results.

4. Simulink repositories do not only contain
Simulink models. Other file formats (espe-
cially MATLAB files) are often present in
the same repository. For example, a bug in a
Simulink model might be fixed with a code in
a MATLAB file. Furthermore, we only consider
the commits where changes are made to any
Simulink model.

5. This work assumes that models have the same
names across versions. Hence, if a model name
was changed across two versions, the tool pre-
sented in this paper detects such scenarios as
the addition of a new model in the succeed-
ing version and the removal of another model
in the previous version. Furthermore, our work
primarily targets Simulink models, and the
process of matching identical models uses the
file attribute captured in the Simulink meta-
model provided by the Massif tool. However,
we believe that most aspects of our work should
be generalizable to any EMF-based framework.
We plan to address these limitations in the
future by using additional VCS capabilities and
metadata: Git can be asked to report renames,
for instance.

6. The functionality described in this work
depends on the correctness of results produced
by the three main tools : Hawk, Massif, and
EMF Compare. Although attempts have been
made to verify the correctness of the results, we
cannot guarantee their absolute correctness.

Despite the above limitations, we believe that
our work lays a good foundation for classifying
changes associated with the evolution history of
models in repositories. Our future lines of work
include the lifting of several of these limitations.
Section 9 provides more details on the proposed
future work.

8 Related Work

Some work has also been done in classifying
changes to software. Ferzund et al. [15], Herzig et

al. [25], Kim et al. [32], and Xia et al. [55] intro-
duced various techniques and algorithm to classify
software changes as bug-free or buggy code. Fer-
zund et al. [15] presented a metric-based approach
to classify changes while Herzig et al. [25] classified
changesets using a graph of the structural depen-
dencies among the changesets. Kim et al. [32]
adopted a machine learning approach that uses
data from the version history of a previous project,
and Xia et al. [55] used genetic algorithms to
identify defective changes. Pandey et al. [41] con-
ducted an empirical study where they used various
machine-learning algorithms to classify issue logs
into bugs or non-buggy categories. Their results
show that the Random Forest classifier offers the
best performance, similar to the results reported
in this paper. These research works mainly focus
on the corrective maintenance activities and did
not consider other types of maintenance activities.

Hassan [24] developed an algorithm to classify
commit messages into their respective mainte-
nance categories. Mockus et al. [37] also classified
changes to their appropriate maintenance types
via the manual classification of a change’s com-
mit message. Li et al. [34] conducted an empiri-
cal study to identify characteristics of influential
changes and then developed a classifier to pre-
dict changes that are influential based on the
identified characteristics. The evaluation results
show that the classifier is able to achieve an F-
1 score of 80%. Hindle et al. [26] developed a
classifier to categorize changes in a large commit
using only the commit metadata such as com-
mit messages, commit authors and modified files.
Their study reported that data related to the com-
mit message and commit author is sufficient for
classifying changes in a commit into their respec-
tive categories. Gharbi et al. [20] and Yan et al.
[56] also uses active-learning and topic-modeling
techniques respectively to classify changes belong-
ing to multiple maintenance categories via its
commit message. The research discussed above
have targeted text-based programming languages.
Furthermore, most of these research works have
focused on classifying changes to their respective
maintenance types via its commit message. Unfor-
tunately, commit messages are subjective and may
contain trivial or irrelevant information.

Several works on change classification have
also been published in the MDE community.



Springer Nature 2021 LATEX template

Goknil et al. [21] proposed an approach for clas-
sifying changes to requirement models into the
structural type of change such as addition or dele-
tion of requirements. This classification have been
used to manage the impacts of changes in soft-
ware requirements. Hamlaoui et al. [13] proposed
a change classification approach based on whether
the elements were added, deleted, or modified. The
classification process was shown to help ensure
global consistency of partial models as the mod-
els evolve. Gruschko et al. [22] and Wachsmuth
[52] also classified changes to metamodels based
on the effect of these changes on the conformance
relationship between the metamodel and its con-
forming models. The approaches discussed so far
have focused on change classification based on
the structure of the change and do not consider
the maintenance categories. Furthermore, these
research contributions are mainly focused on pre-
serving the consistency of models. The research
presented in this paper extends the literature
by proposing a novel approach for automatically
classifying changes to models into maintenance
categories via the changeset metadata.

9 Conclusion and Future
Work

This paper describes an approach to classify
changes to model repositories into maintenance
categories via a set of change metrics. The
change metrics include changes to models, model
elements, and model element attributes. These
change metrics have been extracted from the
version history of 451 Simulink models in 28 open-
source repositories and 76 LabVIEW models in
10 repositories. To facilitate the extraction of the
change metrics from open-source repositories, we
extended the Hawk framework to support the
indexing of LabVIEW and Simulink models. We
mined over 300 versions of Simulink models and
60 versions of LabVIEW models.

Ten classifiers have been trained on the
extracted changes to predict the type of change
embedded in changesets between two version his-
tories. Four types of changes were identified, based
on the type of maintenance activity. The Random
Forest classifier and the Bayes Net classifier were
shown to offer the best aggregate performance
among the ten classifiers.

The performance of the Random Forest clas-
sifier was evaluated by comparing its results with
the labels associated with discussions that were
manually extracted from the issues logs within a
similar timeframe. These labels have been man-
ually classified into an appropriate maintenance
type and compared with the predictions of the
Random Forest classifier. The Random Forest
classifier achieved an aggregate F-1 score of 0.83.

In the future, we plan to extend this work
in four major areas. Firstly, we plan to improve
the performance of the classifier by developing
new approaches that can also use the change his-
tory (in addition to the change operation counts
used in this paper) to predict the correct type
of change. We can draw insights from existing
works on source code change classification such as
those that uses structural dependencies among the
changesets [25], refactoring changes and granular
change types [19] from existing tools like Refac-
toringMiner [51] and ChangeDistiller [16], infor-
mation extracted from commits metadata[26], and
the abstract syntax tree of changed codes [35].
Secondly, we plan to expand the datasets to more
model formats in order to generalize the results
across different types of models. Thirdly, this
paper relies primarily on file names to identify
models across successive versions. In the future,
we plan to utilize existing works on model clone
detection [3] to support change identification and
classification tasks. Finally, we plan to conduct
empirical studies to understand the relationships
between the different types of change and other
phenomena such as bad smells and refactoring
tasks.

10 Declarations

10.1 Ethical Approval

Not applicable.

10.2 Competing Interests

The authors have no known competing interests
that may affect the results presented in this paper.

10.3 Authors’ Contributions

Saheed Popoola wrote the main manuscript.
Saheed Popoola and Xin Zhao did the manual



Springer Nature 2021 LATEX template

19

classification of commits into appropriate mainte-
nance types. Antonio Garcia-Dominguez provided
mentorship and helped with Hawk integration.
Jeff Gray provided mentorship and supervision.
All authors reviewed the manuscript.

10.4 Funding

Not applicable

10.5 Availability of Data and
Materials

The data used in this paper
can be publicly accessed here -
https://github.com/sopopoola/hawk and
https://bit.ly/ChangeAnalysisSAM

References

[1] Companies using LabVIEW. https://enlyft.
com/tech/products/labview.

[2] MATLAB Simulink. https://www.
mathworks.com/products/simulink.html.

[3] Manar H Alalfi, James R Cordy, Thomas R
Dean, Matthew Stephan, and Andrew
Stevenson. Models are code too: Near-miss
clone detection for simulink models. In 2012
28th IEEE International Conference on Soft-
ware Maintenance (ICSM), pages 295–304.
IEEE, 2012.

[4] Abdulkareem Alali, Huzefa Kagdi, and
Jonathan I Maletic. What’s a typical com-
mit? a characterization of open source soft-
ware repositories. In 16th IEEE international
conference on program comprehension, pages
182–191, 2008.

[5] Alexandre Bailly, Corentin Blanc, Élie Fran-
cis, Thierry Guillotin, Fadi Jamal, Béchara
Wakim, and Pascal Roy. Effects of dataset
size and interactions on the prediction perfor-
mance of logistic regression and deep learning
models. Computer Methods and Programs in
Biomedicine, 213:106504, 2022.

[6] Konstantinos Barmpis, Antonio Garćıa-
Domı́nguez, Alessandra Bagnato, and
Antonin Abherve. Monitoring model ana-
lytics over large repositories with Hawk and
MEASURE. In Model Management and
Analytics for Large Scale Systems, pages
87–123. 2020.

[7] Konstantinos Barmpis and Dimitris Kolovos.
Hawk: Towards a scalable model indexing
architecture. In 1st Workshop on Scalabil-
ity in Model Driven Engineering, pages 1–9,
2013.

[8] Christian Bartelt. Consistence preserving
model merge in collaborative development
processes. In International Workshop on
Comparison and Versioning of Software Mod-
els, pages 13–18, 2008.

[9] Leo Breiman. Random forests. Machine
learning, 45(1):5–32, 2001.

[10] Chih-Chung Chang and Chih-Jen Lin. LIB-
SVM: a library for support vector machines.
ACM Transactions on Intelligent Systems
and Technology, 2(3):1–27, 2011.

[11] Shafiul Azam Chowdhury, Lina Sera Vargh-
ese, Soumik Mohian, Taylor T Johnson, and
Christoph Csallner. A curated corpus of
simulink models for model-based empirical
studies. In Proceedings of the 4th Interna-
tional Workshop on Software Engineering for
Smart Cyber-Physical Systems, pages 45–48,
2018.

[12] John G Cleary and Leonard E Trigg. K*: An
instance-based learner using an entropic dis-
tance measure. In Machine Learning, pages
108–114. 1995.

[13] Mahmoud El Hamlaoui, Saloua Bennani,
Mahmoud Nassar, Sophie Ebersold, and
Bernard Coulette. A MDE approach for
heterogeneous models consistency. In 13th
International Conference on Evaluation of
Novel Approaches to Software Engineering,
pages 180–191, 2018.

[14] Jeannie Falcon. Facilitating modeling and
simulation of complex systems through inter-
operable software. In Keynote address at
ACM/IEEE 20th International Conference
on Model Driven Engineering Languages and
Systems, 2017.

[15] Javed Ferzund, Syed Nadeem Ahsan, and
Franz Wotawa. Software change classification
using hunk metrics. In IEEE International
Conference on Software Maintenance, pages
471–474, 2009.

[16] Beat Fluri, Michael Wursch, Martin PInzger,
and Harald Gall. Change distilling: Tree dif-
ferencing for fine-grained source code change
extraction. IEEE Transactions on software



Springer Nature 2021 LATEX template

engineering, 33(11):725–743, 2007.
[17] Eibe Frank, Mark Hall, Geoffrey Holmes,

Richard Kirkby, Bernhard Pfahringer, Ian H
Witten, and Len Trigg. Weka-a machine
learning workbench for data mining. In Data
Mining and Knowledge Discovery Handbook,
pages 1269–1277. 2009.

[18] Antonio Garcia-Dominguez, Nelly Bencomo,
Juan Marcelo Parra-Ullauri, and Luis Hernán
Garćıa-Paucar. Querying and annotating
model histories with time-aware patterns. In
22nd ACM/IEEE International Conference
on Model Driven Engineering Languages and
Systems, pages 194–204, 2019.

[19] Lobna Ghadhab, Ilyes Jenhani,
Mohamed Wiem Mkaouer, and Montas-
sar Ben Messaoud. Augmenting commit
classification by using fine-grained source
code changes and a pre-trained deep neural
language model. Information and Software
Technology, 135:106566, 2021.

[20] Sirine Gharbi, Mohamed Wiem Mkaouer,
Ilyes Jenhani, and Montassar Ben Messaoud.
On the classification of software change mes-
sages using multi-label active learning. In
34th ACM/SIGAPP Symposium on Applied
Computing, pages 1760–1767, 2019.

[21] Arda Goknil, Ivan Kurtev, Klaas Van
Den Berg, and Wietze Spijkerman. Change
impact analysis for requirements: A meta-
modeling approach. Information and Soft-
ware Technology, 56(8):950–972, 2014.

[22] Boris Gruschko, Dimitrios Kolovos, and
Richard Paige. Towards synchronizing mod-
els with evolving metamodels. In Interna-
tional Workshop on Model-Driven Software
Evolution, page 3, 2007.

[23] Thomas Hartmann, Francois Fouquet,
Matthieu Jimenez, Romain Rouvoy, and
Yves Le Traon. Analyzing complex data in
motion at scale with temporal graphs. In
29th International Conference on Software
Engineering and Knowledge Engineering,
pages 596–601, 2017.

[24] Ahmed E Hassan. Automated classification
of change messages in open source projects.
In 23rd ACM symposium on Applied comput-
ing, pages 837–841, 2008.

[25] Kim Herzig, Sascha Just, Andreas Rau, and
Andreas Zeller. Classifying code changes and
predicting defects using changegenealogies.

Saarland University, 2013.
[26] Abram Hindle, Daniel M German, Michael W

Godfrey, and Richard C Holt. Automatic
classication of large changes into maintenance
categories. In 17th IEEE International Con-
ference on Program Comprehension, pages
30–39, 2009.

[27] Robert C Holte. Very simple classifica-
tion rules perform well on most commonly
used datasets. Machine learning, 11(1):63–90,
1993.

[28] A Horváth, István Ráth, and Rodrigo Rizzi
Starr. Massif-the love child of Matlab
Simulink and Eclipse. EclipseCon NA, 2015.

[29] ISO/IEC. International standard-iso/iec
14764:2006; software engineering- software
lifecycle processes and maintenance. Inter-
national Standard Organization, pages 1–46,
2006.

[30] Gary W Johnson, Richard Jennings, and
Richard Jennigns. LabVIEW graphical pro-
gramming, volume 580. McGraw-Hill New
York, 2006.

[31] Arvinder Kaur and Deepti Chopra. Gcc-
git change classifier for extraction and clas-
sification of changes in software systems.
In Intelligent Communication and Computa-
tional Technologies, pages 259–267. 2018.

[32] Sunghun Kim, E James Whitehead, and
Yi Zhang. Classifying software changes:
Clean or buggy? IEEE Transactions on
Software Engineering, 34(2):181–196, 2008.

[33] Pat Langley, Wayne Iba, Kevin Thompson,
et al. An analysis of bayesian classifiers.
In 10th National Conference on Artificial
Intelligence, volume 90, pages 223–228, 1992.

[34] Daoyuan Li, Li Li, Dongsun Kim,
Tegawendé F Bissyandé, David Lo, and
Yves Le Traon. Watch out for this com-
mit! a study of influential software changes.
Journal of Software: Evolution and Process,
31(12):e2181, 2019.

[35] Shangqing Liu, Cuiyun Gao, Sen Chen,
Lun Yiu Nie, and Yang Liu. Atom: Commit
message generation based on abstract syntax
tree and hybrid ranking. IEEE Transactions
on Software Engineering, 48(5):1800–1817,
2020.

[36] Yiguang Liu, Zhisheng You, and Liping Cao.
A novel and quick SVM-based multi-class



Springer Nature 2021 LATEX template

21

classifier. Pattern Recognition, 39(11):2258–
2264, 2006.

[37] Audris Mockus and Lawrence G Votta. Iden-
tifying reasons for software changes using his-
toric databases. In International Conference
on Software Maintenance, pages 120–130,
2000.

[38] Audris Mockus and David M Weiss. Pre-
dicting risk of software changes. Bell Labs
Technical Journal, 5(2):169–180, 2000.

[39] Alessandro Murgia, Giulio Concas, Roberto
Tonelli, Marco Ortu, Serge Demeyer, and
Michele Marchesi. On the influence of main-
tenance activity types on the issue resolution
time. In 10th international conference on pre-
dictive models in software engineering, pages
12–21, 2014.

[40] Richard F Paige, Dimitrios S Kolovos,
Louis M Rose, Nicholas Drivalos, and
Fiona AC Polack. The design of a concep-
tual framework and technical infrastructure
for model management language engineering.
In 14th IEEE International Conference on
Engineering of Complex Computer Systems,
pages 162–171, 2009.

[41] Nitish Pandey, Debarshi Kumar Sanyal, Abir
Hudait, and Amitava Sen. Automated clas-
sification of software issue reports using
machine learning techniques: an empirical
study. Innovations in Systems and Software
Engineering, 13(4):279–297, 2017.

[42] Judea Pearl. Bayesian networks. The Hand-
book of Brain Theory and Neural Networks,
pages 149–153, 1998.

[43] Ralph Peters and Andy Zaidman. Evaluat-
ing the lifespan of code smells using software
repository mining. In 16th European Confer-
ence on Software Maintenance and Reengi-
neering, pages 411–416, 2012.

[44] John Platt. Sequential minimal optimiza-
tion: A fast algorithm for training support
vector machines. advances in kernel methods-
support vector learning. MIT Press, pages
185–208, 1999.

[45] Saheed Popoola and Jeff Gray. A lab-
view metamodel for automated analysis. In
2019 International Conference on Compu-
tational Science and Computational Intelli-
gence (CSCI), pages 1127–1132. IEEE, 2019.

[46] Saheed Popoola, Xin Zhao, Jeff Gray, and
Antonio Garcia-Dominguez. Classifying

changes to models via changeset metrics. In
Proceedings of the 25th International Confer-
ence on Model Driven Engineering Languages
and Systems: Companion Proceedings, pages
276–285, 2022.

[47] J Ross Quinlan. C4. 5: Programs for Machine
Learning. 2014.

[48] Per Roveg̊ard, Lefteris Angelis, and Claes
Wohlin. An empirical study on views of
importance of change impact analysis issues.
IEEE Transactions on Software Engineering,
34(4):516–530, 2008.

[49] Sohil Lal Shrestha, Shafiul Azam Chowd-
hury, and Christoph Csallner. Slnet: a redis-
tributable corpus of 3rd-party simulink mod-
els. In Proceedings of the 19th International
Conference on Mining Software Repositories,
pages 237–241, 2022.

[50] Antoine Toulmé and I Inc. Presentation of
EMF Compare utility. In Eclipse Modeling
Symposium, volume 1, pages 1–8, 2006.

[51] Nikolaos Tsantalis, Ameya Ketkar, and
Danny Dig. Refactoringminer 2.0. IEEE
Transactions on Software Engineering,
48(3):930–950, 2020.

[52] Guido Wachsmuth. Metamodel adapta-
tion and model co-adaptation. In Euro-
pean Conference on Object-Oriented Pro-
gramming, pages 600–624, 2007.

[53] Pin Wang, En Fan, and Peng Wang. Com-
parative analysis of image classification algo-
rithms based on traditional machine learning
and deep learning. Pattern Recognition Let-
ters, 141:61–67, 2021.

[54] Zhihua Wen and Vassilios Tzerpos. An
effectiveness measure for software cluster-
ing algorithms. In 12th IEEE International
Workshop on Program Comprehension, pages
194–203, 2004.

[55] Xin Xia, David Lo, Xinyu Wang, and Xiaohu
Yang. Collective personalized change clas-
sification with multiobjective search. IEEE
Transactions on Reliability, 65(4):1810–1829,
2016.

[56] Meng Yan, Ying Fu, Xiaohong Zhang, Dan
Yang, Ling Xu, and Jeffrey D Kymer. Auto-
matically classifying software changes via dis-
criminative topic model: Supporting multi-
category and cross-project. Journal of Sys-
tems and Software, 113:296–308, 2016.


	Introduction
	A Toolchain for Change Extraction
	Simulink and Massif
	LabVIEW
	Hawk
	EMF Compare

	Research Questions
	Mining Repositories and Change Extractions
	Mining/Extracting Data with Hawk and Massif
	Extracting Changes with EMF Compare

	Classification of the Extracted Changes
	Dataset Collection and Analysis
	Methodology for Validating the Classifiers
	Analysis of the classification results
	RQ1. Performance of Classifiers on Simulink Models
	RQ2. Performance of Classifiers on LabVIEW Models
	RQ3. Performance of Classifiers on Simulink-Trained LabVIEW Models



	Evaluation Methodology and Results
	Limitations and Threats to Validity
	Related Work
	Conclusion and Future Work
	Declarations
	Ethical Approval
	Competing Interests
	Authors' Contributions
	Funding
	Availability of Data and Materials


