
This is a repository copy of Advancing Domain-Specific High-Integrity Model-Based 
Tools:Insights and Future Pathways.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/217661/

Version: Accepted Version

Proceedings Paper:
Ali, Qurat ul ain, Kolovos, Dimitris orcid.org/0000-0002-1724-6563, Garcia-Dominguez, 
Antonio orcid.org/0000-0002-4744-9150 et al. (3 more authors) (2024) Advancing Domain-
Specific High-Integrity Model-Based Tools:Insights and Future Pathways. In: Proceedings 
of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages 
and Systems. MODELS '24 . Association for Computing Machinery, Inc , New York, NY, 
USA , 104–113. 

https://doi.org/10.1145/3640310.3674094

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Advancing Domain-Specific
High-Integrity Model-Based Tools:

Insights and Future Pathways

Qurat ul ain Ali, Dimitris Kolovos,
Antonio Garcia-Dominguez

{quratulain.ali,dimitris.kolovos,a.garcia-
dominguez}@york.ac.uk

University of York
York, UK

Michael Bennett, Joe Newton,Piotr Zacharzewski
{mike.bennett,joe.newton,piotr.zacharzewski2}@rolls-

royce.com
Rolls-Royce

Birmingham/Derby, UK

ABSTRACT

Rolls-Royce Control Systems supplies engine control and moni-
toring systems for aviation applications, and is required to design,
certify, and deliver these with the highest level of safety assurance.
To allow Rolls-Royce to develop these systems, which continue to
increase in complexity, model-based techniques are now a critical
part of the software development process. At MODELS 2021 we
presented early experiences with using and maintaining a bespoke
domain-specific modelling workbench based on open-source mod-
elling technologies, including the Eclipse Modelling Framework
(EMF), Xtext, Sirius, and Epsilon. In this paper, we build on our
previous paper with further insights, new challenges and lessons
learnt as we have advanced and matured our domain-specific so-
lution. We also discuss our experiences with moving towards web
based modelling tools based on open-source technologies including
Sirius Web, Eclipse GLSP and Eclipse Theia. Rolls-Royce intends
to use a selection of these technologies to build a web-based mod-
elling workbench, which will be used to architect and integrate
the software for future Rolls-Royce engine control and monitoring
systems in a collaborative way.

CCS CONCEPTS

· Software and its engineering→ Object oriented develop-

ment.

KEYWORDS

Domain specific languages, component oriented architecture, web
based modelling, GLSP, EMF

ACM Reference Format:

Qurat ul ain Ali, Dimitris Kolovos,, Antonio Garcia-Dominguez and Michael
Bennett, Joe Newton,Piotr Zacharzewski. 2024. Advancing Domain-Specific
High-IntegrityModel-Based Tools: Insights and Future Pathways. InACM/IEEE

27th International Conference on Model Driven Engineering Languages and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’24, September 22ś27, 2024, Linz, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0504-5/24/09
https://doi.org/10.1145/3640310.3674094

Systems (MODELS ’24), September 22ś27, 2024, Linz, Austria. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3640310.3674094

1 INTRODUCTION

CaMCOA (Controls and Monitoring Component Oriented Archi-
tecture) is a reference software architecture designed to support
future generations of Rolls-Royce’s Controls and Monitoring sys-
tems. CaMCOA allows software components to be independently
developed and integrated together on multiple computing nodes.

CaMCOA is designed to support aerospace safety-critical soft-
ware development standards [3, 8]. This has been part of a large
transformation initiative to modernise tooling and processes to
adopt techniques prevalent in other industries and sectors. Because
of the safety-critical nature of the products, the industry has been
slow to adopt these, and has objectives that must be met to achieve
approval from industry regulators.

To support the application of CaMCOA, a domain-specific mod-
elling environment, named CaMCOA Studio [5], has been devel-
oped. CaMCOA Studio is an architecture, integration and modelling
workbench for developing high-integrity control systems. It has
been developed using various open-source modelling frameworks
(including EMF, Epsilon, Sirius and Xtext) over the last seven years.
It has a deployed user base of over 50 users within Rolls-Royce and
its software supply chain. It is being used in two production engine
products and has been used to model, generate, verify and integrate
software to control development engines.

Figure 1 shows a high-level view of CaMCOA Studio and how
it relates to the reference architecture. The CaMCOA stack is a
combination of a service-oriented architecture (SOA) and a layered
architecture, with a publisher/subscriber data interface between the
services, named the Data-Distribution Layer (DDL). The application
comprises services that predominantly consist of Simulink® compo-
nents. The platform consists of Simulink® and manually-developed
C device drivers and infrastructure services. The Simulink® drivers
are known as the Node Abstraction Layer (NAL), and typically pro-
vide measurements (e.g. temperature or pressure) to the application,
which are sourced from attached sensor hardware.

One of the primary purposes of CaMCOA Studio is to edit and
view the NAL Deployment Specification Model (NDSM), which
describes the requirements for the deployment of device drivers.
The requirements describe the deployment of software components
to realise the acquisition of signal from hardware. For example, the
NSDM describes the deployment of a temperature component that

1



MODELS ’24, September 22ś27, 2024, Linz, Austria Q. Ali, D. Kolovos, A. Garcia-Dominguez, M. Bennett, J. Newton and P. Zacharzewski

CaMCOA

Figure 1: CaMCOA Studio and Stack

sources its inputs from an Analogue-to-Digital Converter (ADC)
where voltages are scaled appropriately to provide an engineering
unit value to the application. Prior to the development of CaMCOA
this information was held in textual requirements.

The NAL Deployment Design Model (NDDM) is a refinement of
the NDSM realised in Simulink® that includes architectural details
such as dataflows. Because of the information provided in the NDSM
the development of the NDDM is achieved using an automated
model-to-model transformation using the Epsilon Transformation
Language (ETL) [12].

The Platform Layer consists of these NAL services and infras-
tructure code conforming to MISRA-C 2012/C99 that is directly
generated by a model-to-text transformation from the Platform
Deployment Design Model (PDDM). To enable modelling of the
software, CaMCOA Studio also supports the definition of the Elec-
tronics Architecture Model (EAM) that includes the processing
nodes and hardware interfaces.

The development teams are now working towards the certifi-
cation of engine software developed using CaMCOA Studio and
this has driven development to support verification, requirements
and traceability objectives required by aerospace standards, as later
discussed in Section 2.1. This has resulted in a need to support
frequent and complex model and meta-model refactors.

As CaMCOA is becoming the standard way to create Engine
Control Systems on all Rolls-Royce projects, globally, there is a
desire to simplify deployment and collaborative development. A
number of technologies to enable this are being investigated, in-
cluding making the tooling web-based, and allowing multiple users
to edit the same model at the same time. In this paper we describe
our experience of using domain-specific model-based technologies
in CaMCOA Studio.

The remainder of this paper discusses the experience of matur-
ing the product, particularly focusing on the challenge of meeting

aerospace standards. It reports back on challenges listed in our pre-
vious paper, lists further lessons learnt, and then presents current
work on adopting web-based modelling technology to facilitate
wider adoption within the business.

2 EXPERIENCES

2.1 Standards Compliance

As our production engine control systems mature towards delivery
using CaMCOA, the focus of improving CaMCOA has moved to-
wards achieving standards compliance. The aerospace industry has
developed a specific set of guidelines [8] for Model-Based Devel-
opment. These guidelines define a number of different objectives
for Specification Models and Design Models. The characteristics of
the different models in CaMCOA are shown in Table 1. The EAM is
out-of-scope of the software guidance, as it is part of the electronics
process (and this is considered future work), but the software mod-
els must be shown to be conformant to standards which have been
developed by Rolls-Royce to describe the structure and content of
valid models. The specification model contains High-Level Require-
ments (HLRs) that describe required behaviour without prescribing
an implementation, whereas the Design Model contains low-level
Requirements (LLRs) that describe detailed behaviour. The Design
Model may contain architecture details, whereas the Specification
Model will generally not.

The availability and wider industrial use of these guidelines has
meant that there is a lower risk to the use of modelling techniques,
because the regulator has standard ways of assessing applicant
software. Tools such as Matlab Simulink® are now prevalent for
functional modelling and code generation.

2.1.1 Model andMetamodel Evolution. In previous releases of CaM-
COA Studio, the information in the NSDM, PDDM and EAM was
combined in a single persisted XMI file. This caused a number of

2



Advancing Domain-Specific High-Integrity Model-Based Tools: Insights and Future Pathways MODELS ’24, September 22ś27, 2024, Linz, Austria

Specification
Model
(NDSM)

Design
Model
(PDDM,
NDDM)

Electronics
Architecture
Model (EAM)

Compliance
to ED-218
required

Yes Yes No

Modelling stan-
dards required

Yes Yes No

Requirements

High-Level
Require-
ments
(HLRs)

Low-Level
Require-

ments (LLRs)

Hardware
Design Re-
quirements
(HDRs)

Requirements
compliant and
traceable to

System Re-
quirements
Allocated to
Software
(SRATS)

High-Level
Require-
ments
(HLRs)

N/A

Contains archi-
tectural details

No
Yes

(Software)
Yes

(Electronics)
Code generated
from model

No Yes No

Table 1: CaMCOA Model Types

problems, including being able to show compliance with the reg-
ulatory guidance; one problem being the ability to review these
in isolation for compliance to objectives. This is discussed in de-
tail in the beginning of this section and the split ensures that the
review and analysis verification activities of each model are fully
self-contained, and changes to one model do not undermine evi-
dence already gathered for a model that has not changed. However,
cross-references between the models and some verification activi-
ties must take into account these dependencies. As an example, the
PDDM references the EAM to account for hardware constraints,
but review and automated checking of the PDDM to show con-
formance to standards can be done without considering whether
the EAM is correct. Regardless, testing of the resulting software
image must consider whether the EAM is also correct as they are
Hardware-Software Integration tests (HSI) that test overall system
operation.

There were additional challenges as the team has grown to sup-
port the transition from a research prototype into a product. Sep-
arate teams now maintain the NDSM+NDDM, PDDM and EAM.
Having an a single all-encompassing model increased the chance
of merge conflicts and difficulty merging.

The single all-encompassing model has been evolved into 3 sepa-
rate logical models (NSDM, PDDM, EAM), which have been further
split into separately persisted model files as shown in Table 2. A set
of reusable Library assets that can be reused in separate projects
has been developed. These reflect the fact CaMCOA is developing
a product line of reusable components to deploy. The organisation
is split into a core team developing the library assets and multiple
project teams working on specific products. All these teams under-
take CaMCOA and Simulink modelling activities.An example of the
information in the library model is shown in Figure 2. This shows

Figure 2: Example of Library Model Information

NDSM PDDM EAM
Deployment
model files

1
1 + 1 per
service

1

Library model
files

0 1 1

Table 2: Decomposition of CaMCOA models into multiple

files

the definition of interface information for a łSolenoidž component,
including its inputs, outputs and parameters. This is architectural
information used to connect the system components together.

The model restructure has gone hand-in-hand with a reorganisa-
tion of themetamodel, which has evolved from a single Ecore EPack-
age to eleven EPackages that reflect the different areas modelled
(e.g. Requirements, NAL, Software, Electronics). This has improved
maintainability and made it easier to support concurrent evolution
of the models and metamodels, as they are now aligned with team
boundaries. Model migration has been a constant challenge, and
this is discussed further in Section 3.3.

2.1.2 Requirements Capture Tool. Rolls-Royce have experience
that shows Commercial-Off-The-Shelf (COTS) tooling requires sig-
nificant customisation to integrate with other tools. This can be a
similar cost to developing a bespoke solution. In line with the rest
of CaMCOA Studio, an in-house Requirements Capture Tool (RCT)
has been developed to allow engineers to define requirements for
manually-coded (i.e. non-Simulink) CaMCOA components. This in-
cluded a new metamodel defining documents, information, require-
ments and traceability links with integrated version management.
This is integrated into CaMCOA Studio, and allows the engineers to
work on models, requirements and code in one integrated environ-
ment. Even within manually-coded components, Rolls-Royce seeks
to minimise requirements specified in natural language (which can
be very ambiguous), and instead use semi-formal descriptions such
as state-charts, flow-charts, truth tables and equations to express
behaviour. To that end, RCT allows the user to capture input in
textual-based syntaxes (including PlantUML, Mermaid and Math-
Jax). This rich-text approach avoids the need to explicitly configure

3



MODELS ’24, September 22ś27, 2024, Linz, Austria Q. Ali, D. Kolovos, A. Garcia-Dominguez, M. Bennett, J. Newton and P. Zacharzewski

Figure 3: RCT Document Example with Picto Rendering

Figure 4: Model to Model and Code to Model Traceability and

Compliance

bitmap images that are not easily editable, improving maintainabil-
ity.

RCT models are serialised in YAML (Yet Another Markup Lan-
guage) format rather than XMI (for readability), and transformed
into Markdown and HTML-rendered artifacts using EGL [17]. With
the information defined in a model, it is possible to perform model
validation in EVL [13] and rendering in Picto [11], and have custom
GUI-based support such as Eclipse-based menu items and naviga-
tion tools. Currently, the RCT is packaged as a set of plugins within
CaMCOA Studio.

2.1.3 Traceability and Compliance. As discussed briefly in Sec-
tion 2.1, an important certification objective is to establish traceabil-
ity and compliance between lower-level and higher-level artefacts,
to ensure all that is required is present and nothing that is not
required is present. Informally, the traceability objective ensures
that everything in a lower-level artefact (either code or a design
model) is linked to a higher-level one (either a design model or a
specification model), and compliance necessitates that everything
in the lower-level artefact meets the intention of the higher-level

Figure 5: Deployment Code Analyser Example GUI-based

Output

requirements. It is possible to have complete traceability (every-
thing is linked) but it could be incorrectly linked and thus not have
correct compliance.

Figure 4 shows the forward path transformations from high-
level artefact to low-level, which imply appropriate traceability and
compliance checks that must be made: 1 Simulink NAL model to
the NDSM, 2 Platform infrastructure code to the PDDM, and 3
PDDM to manually developed HLRs

These objectives can be checked by manual review or using an
appropriately qualified tool. For example, Simulink provides quali-
fied tool support, so is not considered further in this paper. A review
can be challenging if appropriate tool support is not available. In
particular, reviewing code against a model from which the code
was generated can be difficult, due to the size and complexity of
the models and the transformations that consume them. This has
led to the development of a number of tools that make traceabil-
ity information more visible to engineers, to speed up compliance
preparation. The aim is eventually to provide qualified tools that
eliminate manual code review.

Deployment Code Analyser. TheDeployment CodeAnalyser (DCA)
was designed to meet help meet objectives MB.A-5.1, MB.A-5.2, and
MB.A-5.3 from RTCA DO-331/ED-218 [8]. These are respectively
to show that:

(1) The source code is accurate and complete with respect to
the LLRs.

(2) The source code matches the data flows and control flows
defined in the software architecture.

(3) The source code does not trace to model elements that do
not represent low-level requirements.

The initial experience of developing a code generator showed
that developers were putting excessive functional and algorithmic
code in the code generation templates. To enforce the separation
of concerns between the architectural modelling of CaMCOA Stu-
dio and the detailed descriptions of behaviour done in C code or
Simulink models, the architectural models and the code generators
have been kept free of complex algorithmic code, and a separate
process (the DCA) checks the compliance between the CaMCOA
architectural models and the C code. This separation of concerns
simplifies certification, as it decouples checking that the architec-
tural descriptionsmatch the architecture (viamodel/codematching),
from checking that the functional descriptions in C/Simulink meet
the functional requirements (e.g. via testing). In order to provide
feedback to the users, DCA uses trace information emitted by the

4



Advancing Domain-Specific High-Integrity Model-Based Tools: Insights and Future Pathways MODELS ’24, September 22ś27, 2024, Linz, Austria

EGL templates during the model-to-text transformation: by pars-
ing the Abstract Syntax Tree (AST) of the source code using the
Eclipse CDT (C Development Tools) Framework, it is able to estab-
lish matches between model elements and emitted code. The tool
is able to ignore syntactic and irrelevant features of the C language.
Deployed early in the development lifecycle, the tool helps the
developers to refactor the models and code to be compliant. The
non-compliant code can be removed by either adding additional
model information, or by moving this into component code, where
compliance and traceability are checked in relation to component
requirements (which are captured with the RCT, as described in
Section 2.1.2).

The DCA was initially designed as an interactive tool to high-
light code sections within the Graphical User Interface (GUI). Users
can navigate to the model element(s) used to generate a particular
section of highlighted code (see Figure 5). Later updates included a
batch implementation of the DCA on a set of generated code files,
which produces a metric to indicate what percentage of the gener-
ated deployment code can be directly traced to a model element.
This tool is packaged as part of CaMCOA Studio, and also runs in a
Continuous Integration (CI) environment. At present the tool is a
designed to be a review aid, but in future the desire is to eliminate
the manual review.

NAL Deployment Design Model Analyser. The NAL Deployment
Design Model (NDDM) Analyser is a prototype tool designed to
provide similar functionality to the DCA. A major challenge is
interfacing Simulink® with the Eclipse Modelling Framework. It
currently uses Simulink® APIs to support interactive navigation
from a generated Simulink® model to the CaMCOA model element
used to generate it. This was achieved by starting a server upon
launch of CaMCOA Studio, to receive Simulink model information
from Simulink APIs needed for editor navigation in CaMCOA Stu-
dio, which could be triggered with Simulink requirement links gen-
erated using Epsilon Transformation Language (ETL) [12] scripts.
This was developed with audits in mind, where there is a need to
demonstrate compliance and traceability in a live environment. It
improves the time taken to perform software reviews by providing
a faster and clearer route from generated Simulink models to the
corresponding CaMCOAmodels. This tool will eventually acquire a
traceability/compliance metric similar to the DCA. However, it was
recognised that reviewing the Simulink model against the CaM-
COA specification is an easier job than reviewing code against the
CaMCOA design model due to the there being much more detail
in the design model and code. Therefore, the development of the
DCA has taken priority.

2.2 User Experience

With a growing number of customers using CaMCOA Studio on
engine production projects, the need to mature the usability of the
product became a priority. Key updates included custom Eclipse-
based GUI menu items and headless products to automate activities,
alongwith improving our Continuous Integration (CI) pipelines that
automate regression testing and analysis tooling (such as schedu-
lability analysis and code conformance checks). Additionally, im-
provements have been regularly made to the Sirius diagrams, which
provide a more user friendly approach to navigating and editing

Figure 6: Improved Sirius Layout

Figure 7: Improved Dataflow Diagram

proposed deployment designs. A key example included reformat-
ting our diagrams to support the auto-layout functionality provided
by the Eclipse Layout Kernel (ELK) [1] project. Many of our dia-
grams contained nested containers, and when element-based edges
were connected between two elements over a container boundary,
the auto-layout functionality did not work well. Therefore, we de-
veloped the diagrams to minimise the occurrences of this, moving
the elements used to connect element-based edges to border nodes
of top-level containers, as shown in Figure 6.

Another key refactor was to the dataflow diagrams and model.
These diagrams connect service inputs and outputs. In addition to
the layout problem, these suffered from being too large and com-
plex. The Sirius representations file that accompanied the semantic
model regularly became broken. The following improvements were
implemented:

• The ability to hide elements in the diagram using a filter (e.g.
stubbed dataflows and messages)
• Split the dataflow diagrams into three separate diagrams:
(1) communication that is local to a computing node, (2)
channel dataflows that are between channels (our system
has dual-redundant channels running identical software for
safety purposes) and (3) system dataflows that are between
computing nodes.

This made the system easier to maintain, to review and to edit.
An example of the improved system dataflow diagram is shown in
Figure 7. This work required a large migration script: the challenge
of migration is discussed in Section 3.3.

5



MODELS ’24, September 22ś27, 2024, Linz, Austria Q. Ali, D. Kolovos, A. Garcia-Dominguez, M. Bennett, J. Newton and P. Zacharzewski

3 CHALLENGES

The overall challenge for Rolls-Royce has been to support, maintain
and grow CaMCOA since the previous paper whilst it is used on live
projects. This is due to the specialist knowledge required, and the
variety and relative complexity of the underpinning frameworks
compared to traditional Rolls-Royce software tools. Retention and
growth of specialist modelling knowledge within the business is a
key challenge.

There is ongoing tension between the need to add new features
and refactor for maintainability, whilst the product is in active
use. CaMCOA is continuously deployed via release pipelines and
regressions are found quickly by the customers. Improving perfor-
mance (see section 3.1) of validation, generation and interactive
use continues to be an area of focus. Currently, refactoring is slow
due to high-coupling between areas (for example functionality is
sub-optimally distributed across multiple plugins, one case being
the GUI handling), and difficulties in performing model migration
(see section 3.3). This is compounded by modelling challenges, due
to the needs of the aerospace guidance not being fully considered
as the product evolved from a research prototype.

3.1 Performance

Performance has consistently been an area of concern. The tool is
used interactively and headlessly via CI, and is part of pipelines
that can take several hours. CI performance impacts the speed of
the feedback loop for engineers as tests must pass before work is
completed. Interactively, work is also impacted by processes that
take multiple minutes, disrupting concentration.

Transforming the NDSM to the Simulink® NDDM can take tens
of minutes, due to the overhead of the underlying Simulink® Java
interface. This has been partially addressed by parallelising the
generation of independent parts of the model and also by making
more use of native Matlab scripting. One option to improve this
is to generate an intermediate representation using a model-to-
text transformation, producing Matlab scripts, such that use of
the Java interface is minimised. This has been employed in specific
areas, leading to significant improvements when manipulating Data
Dictionaries (improvements of 90% have been seen in these areas).
Another approach is to refactor the Epsilon scripts to minimise
costly model operations. For example, it has been found that re-
parenting Simulink® objects is particularly expensive, requiring
deep-copying of objects. This is believed to be due to a limitation of
the Simulink® interface and has not yet been addressed. If addressed,
it is believed that model generation times could drop significantly
(estimated 50%).

Model validation using Epsilon Validation Language (EVL) and
model-to-text transformations for direct code generation used to
take several minutes to execute. As these delays would frustrate
users, several techniques have been employed to improve this.
Firstly, the activities have been moved to run in background threads,
so the the user can continue to work in an interactive GUI envi-
ronment. Additionally, the built-in Epsilon profiler has been used
to locate performance bottlenecks. It was found that one partic-
ular recursive function was performing a model search on every
invocation. This was contributing over 90% of the execution time.

Figure 8: CaMCOA Pipeline Optimisation

Figure 9: CaMCOA Derived Element Example

Validation and code generation times have been reduced from sev-
eral minutes to around one minute at the time of writing.

In the CI environment, the pipelines have been optimised as
shown in Figure 8. In our previous approach, shown in orange, only
the CaMCOA NSDM model was configured and thus to perform
testing the Simulink® models (the NDDM) and then the source code
has to be generated before build and test. By configuring the source
code and parallelising the generation with the test stages the speed
of the overall end-to-end CI job could be reduced by more that 30%.
The comparison ensures that what is configured matches what is
under configuration control.

3.2 Derived Transient Model Features

The CaMCOA models have started to make use of derived (calcu-
lated at run-time) and transient (not persisted to XMI) elements
in addition to derived elements and attributes. The use of derived
features of EMF is generally to make the model easier to navigate,
but it also fulfils an important purpose for certification to help
remove detail from the code generator and more information in the
PDDM. There are some features of PDDM (variables to hold data
data in the DDL are one example) that we do not want to let users
manually create. They can be inferred from the dataflow model.
However, we need to be able to be able to show traceability and
compliance to the model. Therefore we need these to be shown
in the model. They need to be elements as they often have child
elements and complex attributes. An example is shown in Figure 9.

The downside of this approach is that derived element handling is
complex and relies on correct handling of model events. Pessimistic
re-creation of derived elements can slow down model activities
significantly. There is an open question whether this is the best
approach. Other approaches may be to use validation and quick
fixes to allow a user to create real, persisted elements, provide
an intermediate model-to-model transformation or investigate the
incremental derivation approaches in [10, 14].

6



Advancing Domain-Specific High-Integrity Model-Based Tools: Insights and Future Pathways MODELS ’24, September 22ś27, 2024, Linz, Austria

3.3 Model Migration

Our metamodels have continued to evolve at a fast pace, as we add
support for new components and refactor the models for maintain-
ability and aerospace compliance purposes. The metamodel has
evolved 43 times since a migration capability was introduced in
2021. Prior to this point migrations were handled manually. This
experience contrasts sharply with Simulink® where 2 different
versions of the tool have been used in the same period.

When metamodel changes are introduced, an Epsilon Flock [16]
migration script is written to ensure customers are able to migrate
the models correctly. The features of CaMCOA Studio which rely
on the model structure to retain functionality must also be updated
including updating all test models, the Sirius description and the
code/model generators. Fundamental metamodel refactors such as
the NDSM refactor which separated the NDSM from the PDDM,
remained in progress for a long time which resulted in repeated
merging cycles. Some of the issues experienced included:

(1) The scale of some changes proved challenging to implement
without errors, often causing regressions (eg. broken Sirius
diagrams) because there were limited GUI CI tests.

(2) Migrations would sometimes succeed for a single increment
but fail when run as part of a multi-stage migration. This
was often due to calling generated EMF Java code from the
Flock scripts. This changes as the metamodel evolves and
hence old migration scripts would break.

(3) Incorrect archive versions of the metamodels would be con-
figured as migrations were designed on long-lived feature
branches. As the feature branch progressed other non-breaking
metamodel changes were introduced. This caused certain mi-
grations to break if the customer used a metamodel feature
that was not in the archive.

(4) References to semantic model elements from the Sirius rep-
resentations model are not always correctly migrated. This
leads to invalid cross references and CaMCOA Studio being
slow to open the Sirius project.

To handle these problems, newCI tests were introduced to ensure
a newmigration did not break old ones (see Figure 10 for an example
of the CI running a multi-stage migration test) and ensure that
metamodel versions were correctly archived. Guidance has also
been introduced and there are now around five engineers trained
in the development of migration scripts.

One of the key improvements made was to provide guidance that
during a migration, manual changes to the model should be avoided.
Because migration scripts are demanding to write, engineers were
leaving this until last. This meant that during feature development,
time was wasted merging in other model changes manually into
the feature branch. Instead the user should develop the Flock script
early, meaning that other changes to the model can be merged and
then the migration can be run without any manual model merging.

4 LESSONS LEARNT

A summary of the lessons drawn from the process of developing
and using CaMCOA Studio within the business are enumerated
below:

• It has been found that it is possible to build and deploy a
complex domain-specific modelling capability for engine

control systems within the business, building on mature
Eclipse/EMF-based open-source frameworks.
• The benefits of developing CaMCOA Studio and its associ-
ated tools (eg. RCT) have compared favourably with adopting
COTS tools and customising them to work well together.
• Sirius has proven to be a feature-rich and robust graphical
editor development framework and has been able to support
many different diagram types within CaMCOA Studio. ELK
adds sophisticated auto-layout capabilities to Sirius which
are essential for managing large diagrams.
• It has also been possible to develop a strategy for certifica-
tion and compliance, however this has required significant
refactoring and further work is required to achieve compli-
ance with aerospace guidance developed by industry experts
and accepted by certification authorities.
• Traceability between models and code is essential for review
and certification activities. Using dedicated languages/frame-
works for model-to-text transformation that record traceabil-
ity/provenance information instead of string concatenation
is therefore recommended.
• Care must be taken to develop a model structure that sup-
ports traceability and compliance objectives and an approach
to adding more detail to a model is required (e.g. derived
elements) to avoid introducing non-compliant complexity
into the code generator.
• Splitting models and metamodels across multiple files is
helpful to reduce conflicts in a collaborative development
environment. It also helps align models to team roles.
• Most of the performance issues encountered have been due
to inefficient coding (e.g. unnecessary repeated model-wide
searches) and as a result of crossing tool boundaries (e.g.
interacting with the Simulink® API), and rarely due to fun-
damental inefficiencies of the underpinning modelling and
model management frameworks of CaMCOA Studio. Profil-
ing tools are essential for identifying performance issues in
complex model management programs (e.g. model-to-text
transformations).
• The cost of metamodel evolution sharply increases with
the number/complexity of downstream tools (e.g. graphical
syntaxes, transformations) that depend on it.
• Without seamless and low-overheadmodelmigration it would
not have been possible to rapidly deploy CaMCOA Studio to
a set of live projects.
• While tools such as Flock can be used to automate model
migration activities, diagram migration remains an open
challenge.
• Being able to run model management programs in a headless
mode (without a GUI) is essential for continuous integration
activities.

An overall lesson is CaMCOA Studio development has required
skills that Rolls-Royce traditionally doesn’t have. Training, retain-
ing and recruiting skilled engineers needs continual focus. The
challenge of maintaining and expanding the knowledge base to
meet the growing demands from the business for model-based
tooling and CaMCOA is likely to be an ongoing challenge.

7



MODELS ’24, September 22ś27, 2024, Linz, Austria Q. Ali, D. Kolovos, A. Garcia-Dominguez, M. Bennett, J. Newton and P. Zacharzewski

Figure 10: CaMCOA CI Metamodel Migration Check

5 MOVING TO THE WEB

There is a growing appetite to shift from desktop-based to web-
based development environments. Platforms such as Eclipse Theia [7]
and technologies like EMF.cloud [6] and Sirius Web [9] enable more
than text-focused IDEs: they make it possible to build complex mod-
elling tools based on modern web technologies. Rolls-Royce aspires
to move to a cloud/web-based environment (CaMCOA Cloud) for
several reasons, including:

• Enabling engineers to collaborate and work on the same
model at the same time using a shared workspace.
• Avoiding complex and brittle installation and upgrading
processes on individual engineer workstations, making it
friction-less for new and ephemeral users.
• Migrating computationally expensive processes to a power-
ful and scalable back-end, and sharing physical resources. An
engineer would still be able to launch computationally-heavy
simulations and analyses, even when their local machine
does not have enough computational power.
• Modernising the look-and-feel of the application by using
contemporary web technology stacks.

5.1 Sirius Web

The first technology we explored was Sirius Web1, which is an
open-source web-based graphical editor development framework
from the developers of the Sirius framework (Obeo), that we already
use in CaMCOA Studio. At the time, Sirius Web appeared to be
more geared towards standalone web applications and there was
little documentation on integrating Sirius Web editors with web-
based IDEs such as Eclipse Theia. Also, all the Sirius Web examples
we could find made use of a database to store models, while our
intention was to keep storing models as files so that they could
continue to be version-controlled in Git repositories.

1https://eclipse.dev/sirius/sirius-web.html

5.2 Eclipse GLSP

Eclipse GLSP (Graphical Language Server Protocol) is an open-
source framework for developing graphical model editors provided
by EclipseSource [4]. Eclipse GLSP adapts the LSP client/server
architecture to diagram editing, implementing a similar protocol,
and providing reusable components for the development of custom
web-based diagram editors. Client implementation is decoupled
from diagram logic implementation, enabling the integration of
clients in any technology. GLSP encapsulates all the language know-
how on the server side, which helps reuse existing frameworks (e.g.
EMF) and diagram editors. It also enables the management of large
models by keeping them on the server, and not loading their entire
contents on the browser. The front-end only focuses on rendering
and user interaction.

GLSP provides strong integration with Eclipse Theia and exam-
ples of developing editors that operate on file-based models, and
therefore it has been tentatively selected as the technology of choice
for CaMCOA Cloud.

6 CAMCOA CLOUD

The envisioned architecture for CaMCOA Cloud is illustrated in
Figure 11. The main features of CaMCOA Cloud are expected to
include:

Real-Time Collaborative Model Development

In the absence of robust tools for diagram comparison and merg-
ing, it is challenging for multiple engineers to work on the same
CaMCOA models at the same time using file-based version con-
trol. To overcome this challenge, in CaMCOA Cloud we plan to
investigate real-time collaboration options, building on the model
change notification facilities of GLSP. Expanding the tool’s support
for collaboration is seen as an enabler for Rolls-Royce’s exploitation
of new and adjacent markets, such as UAM (Urban Air Mobility)
vehicle design, where the business will need to collaborate with
third parties in order to truly exploit this market potential.

8



Advancing Domain-Specific High-Integrity Model-Based Tools: Insights and Future Pathways MODELS ’24, September 22ś27, 2024, Linz, Austria

Figure 11: Architecture of CaMCOA Cloud

Multi-domain Modelling

In order to model complete control systems, CaMCOA Studio needs
to ensure that its digital platform modelling capability is (a) generic
enough to support those domains (for example some safety-critical
systems have triple-redundant capabilities rather than dual-lane)
and (b) remove any concepts that are dedicated to engine control
and monitoring. The short-term focus has inevitably meant that
modelling of our engine control systems has been the key focus.

Another key enabler will be better integration with systems
modelling tools such (for example Capella [15]) to allow a more
seamless transition between the systems and software modelling
process. As an example, currently some physical modelling is dupli-
cated in the systems and software processes. A common metamodel
or transformation would reduce or eliminate this duplication.

Wider multi-domain modelling support will support the ambi-
tion to apply and market CaMCOA to wider internal projects and
external partnerships.

Cloud-based Integration

This is a key requirement for transforming CaMCOA Studio into a
łSoftware as a Servicež solution. CaMCOA Studio is a fully desktop-
based solution, requiring local installation andmakingmaintainabil-
ity (updates to latest versions) and portability difficult. Cloud-Based
integration represents a key enabler for supporting wider deploy-
ment of CaMCOA Studio within the business and with potential
partners.

6.1 Feasibility Study

To evaluate the maturity and feature-completness of web-based
technologies that could support CaMCOA Cloud, we have devel-
oped a graphical model editor using GLSP and Eclipse Theia using
a subset of the CaMCOA DSL for electronics modelling, which is
shown in Figure 12. Our observations from the GLSP ecosystem so
far are as follows:

• GLSP is very flexible to extend and integrate with other
web-based technologies.
• At the same time it is a complex and fast-evolving framework
with limited documentation and few up-to-date examples.

• GLSP is very code-heavy compared to Sirius.
• Tools and facilities that are provided out of the box in Eclipse/EM-
F/Sirius (e.g. tree-based editor, property view, problems view)
need to be implemented almost from scratch in Theia/GLSP.
• To persist models in XMI (for compatibility with the existing
CaMCOA Studio), we need to use a Java-based backend and a
Typescript-based front-end.We have found debugging across
two different languages to be significantly more challenging
than debugging a Java-based solution within Eclipse.
• Frequent updates to GLSP cause code breakage and regres-
sions. This issue has also been reported by the developers of
OpenBPMN [2], which is one of the most prominent adopters
of GLSP.

As a consequence, in parallel to our continued exploration of
GLSP, we are also monitoring the development progress of Sir-
ius Web and keeping it under consideration for future feasibility
studies.

7 CONCLUSIONS

This paper has reported our experiences with developing an ad-
vanced domain-specific model-based development workbench us-
ing open-source Eclipse-based modelling technologies at Rolls-
Royce, and the lessons we have learnt on the way. We have also
outlined our future plans for moving our modelling workbench to
the cloud and the relevant opportunities and challenges we have
identified.

ACKNOWLEDGEMENTS

This research was supported by a Knowledge Transfer Partnership
co-funded by InnovateUK & Rolls-Royce plc. and by the SCHEME
InnovateUK project (#10065634).

REFERENCES
[1] [n. d.]. Eclipse Layout Kernel. Retrieved Mar 28, 2024 from https://eclipse.dev/elk/
[2] [n. d.]. OpenBPMN. Retrieved Feb 23, 2024 from https://www.open-bpmn.org/

index.html
[3] RTCA (Firm). SC 167. 2012. Software considerations in airborne systems and

equipment certification : DO178C / ED-12C. RTCA, Incorporated.
[4] Dominik Bork, Philip Langer, and Tobias Ortmayr. 2024. A Vision for Flexible

GLSP-Based Web Modeling Tools. In The Practice of Enterprise Modeling, João
Paulo A. Almeida, Monika Kaczmarek-Heß, Agnes Koschmider, and Henderik A.
Proper (Eds.). Springer Nature Switzerland, Cham, 109ś124.

[5] Justin Cooper, Alfonso De la Vega, Richard Paige, Dimitris Kolovos, Michael
Bennett, Caroline Brown, Beatriz Sanchez Piña, and Horacio Hoyos Rodriguez.
2021. Model-Based Development of Engine Control Systems: Experiences and
Lessons Learnt. In 2021 ACM/IEEE 24th International Conference on Model Driven
Engineering Languages and Systems (MODELS). 308ś319. https://doi.org/10.1109/
MODELS50736.2021.00038

[6] Eclipse Foundation. [n. d.]. EMF Cloud. Retrieved Feb 23, 2024 from https:
//eclipse.dev/emfcloud/

[7] Eclipse Foundation. 2024. Eclipse Theia. Retrieved Feb 23, 2024 from https://theia-
ide.org

[8] RTCA (Radio Technical Commission for Aeronautics). 2011. DO-331Model-Based
Development and Verification Supplement to DO-178C and DO-278A. (2011).

[9] Eclipse Foundation. 2024. Sirius Web. Retrieved Feb 23, 2024 from https://eclipse.
dev/sirius/sirius-web.html

[10] Daco C Harkes, Danny M Groenewegen, and Eelco Visser. 2016. IceDust: Incre-
mental and eventual computation of derived values in persistent object graphs.
In 30th European Conference on Object-Oriented Programming (ECOOP 2016).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik.

[11] Dimitris Kolovos, Alfonso de la Vega, and Justin Cooper. 2020. Efficient gen-
eration of graphical model views via lazy model-to-text transformation. In
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (Virtual Event, Canada) (MODELS ’20).

9



MODELS ’24, September 22ś27, 2024, Linz, Austria Q. Ali, D. Kolovos, A. Garcia-Dominguez, M. Bennett, J. Newton and P. Zacharzewski

Figure 12: Screenshot of the Electronics DSL graphical editor in Eclipse Theia

Association for Computing Machinery, New York, NY, USA, 12ś23. https:
//doi.org/10.1145/3365438.3410943

[12] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2006. Eclipse devel-
opment tools for epsilon. In Eclipse summit Europe, eclipse modeling symposium,
Vol. 20062. 200.

[13] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2009. On the evolution
of OCL for capturing structural constraints in modelling languages. Rigorous
Methods for Software Construction and Analysis: Essays Dedicated to Egon Börger
on the Occasion of His 60th Birthday (2009), 204ś218.

[14] István Ráth, Ábel Hegedüs, and Dániel Varró. 2012. Derived features for EMF by
integrating advanced model queries. In Modelling Foundations and Applications:
8th European Conference, ECMFA 2012, Kgs. Lyngby, Denmark, July 2-5, 2012.

Proceedings 8. Springer, 102ś117.
[15] Pascal Roques. 2017. Systems architecture modeling with the Arcadia method: a

practical guide to Capella. Elsevier.
[16] Louis M Rose, Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2010.

Model migration with epsilon flock. In Theory and Practice of Model Transforma-
tions: Third International Conference, ICMT 2010, Malaga, Spain, June 28-July 2,
2010. Proceedings 3. Springer, 184ś198.

[17] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona A. C. Polack. 2008.
The Epsilon Generation Language. In Model Driven Architecture ś Foundations
and Applications, Ina Schieferdecker and Alan Hartman (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 1ś16.

10


	Abstract
	1 Introduction
	2 Experiences
	2.1 Standards Compliance
	2.2 User Experience

	3 Challenges
	3.1 Performance
	3.2 Derived Transient Model Features
	3.3 Model Migration

	4 Lessons Learnt
	5 Moving to the Web
	5.1 Sirius Web
	5.2 Eclipse GLSP

	6 CaMCOA Cloud
	6.1 Feasibility Study

	7 Conclusions
	References

