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Abstract—The setup and configuration of Model-Driven En-
gineering (MDE) tools is not straightforward because the MDE
tooling landscape is highly fragmented. Also, many MDE tools are
research prototypes with limited documentation. In an education
setting where the aim is to teach MDE, having to spend time
setting up and configuring tools reduces the amount of time
learners have available to focus on the concepts being taught.
Although certain tools, such as Epsilon and Umple, offer web-
based playgrounds for their specific tools, they do not cover the
full range of MDE activities. By generalising and extending the
Epsilon Playground, we have created an education platform that
can support a variety of MDE tools and be configured by teachers
to use for their learning activities. We provide an overview of the
platform’s architecture and give an example of the tool and activ-
ity configurations using an Epsilon Validation Language (EVL)
activity. We demonstrate the support for multiple tools with an
Object Constraint Language (OCL) example and discuss key
design decisions and the plan for future work. We hope that
the education platform described here will provide opportunities
for collaboration on the creation and dissemination of learning
resources for the teaching of MDE.

Index Terms—MDE, education, frameworks

I. INTRODUCTION

Model-Driven Engineering (MDE) is a paradigm where

models play a central role in the development of a software

system. Over the last couple of decades MDE has been an

area of active research with advancements in techniques and

tools. In terms of education, there is a consensus that MDE is a

complex subject to teach. Setting up teaching environments for

MDE poses a challenge due to the complexity and availability

of suitable tools [1] [2], hampering teaching activities.

Some MDE languages and tools now provide playground

environments [3] [4] [5] that allow a user to experiment with

the language in a web-browser without having to install any

tools locally. This means that the user can concentrate on

learning the language and its concepts. Playgrounds also offer

a means to share examples created via a link.

The benefits of the playground concept can contribute

towards the solution of making teaching environments easier

to set up. When teaching MDE, however, tools are not used

in isolation. Existing playgrounds, in contrast, only support

a single tool with no direct means of interoperability or

customisation.

We propose developing a web-based education platform that

can support a variety of MDE tools and be easily config-

ured for a variety of learning activities. The platform should

provide a foundation for extensions to support education-

specific features that facilitate teaching MDE. Such a platform

could be used in conjunction with MDE Open Education

Resources [6] [7] to enhance the learners’ experience of using

OERs.

We present an education platform architecture and an im-

plementation as a revision to the Epsilon Playground [3]. Our

architecture generalises the hard-coded support for Epsilon

to make the platform extensible in its support for additional

MDE tools without the need to modify the platform’s front-

end source code. The platform adds: support for additional

tools by way of tool services, type conversion of inputs to

tool service functions, integration with GitHub repositories for

persisting users’ progress, and support for the customisation

of panel layouts. The platform can be set up and run on a

per institution basis. A global instance could be offered in the

future, subject to available resources.

The paper is structured as follows: Section II identifies

related work on web-based tools for teaching MDE. Section III

introduces the education platform users and the scenarios

that describe their interaction with the platform. Section IV

presents a motivating example that is used in the remainder

of the paper. Section V presents the platform’s architecture.

Sections VI and VII describe the tool and activity configu-

rations, respectively. Section VIII describes the tool function

invocation and type conversion protocol which enables tool

integration. Section IX demonstrates new platform features

through a non-epsilon Eclipse OCL tool example. Finally,

Section X summarises our contributions and plan for future

work.

II. RELATED WORK

In addition to the increasing number of playgrounds, there

are web-based versions of IDEs such as Eclipse [8] [9] and



Visual Studio Code [10]. Some tools are only web-based;

examples include AToMPM [11] and Freon [12].

There are no widespread web-based model formats for

online editing and interchange of models that can be used

to help integrate different tools of an education platform. An

early initiative includes LIonWeb [13] however it is in the

specification stage.

A web-based platform for the MontiCore language work-

bench based on JupyterLab [14] has been used for teaching

the tutorials of a conference and lectures on the use and engi-

neering of Domain Specific Languages (DSL). The platform’s

focus is on Monticore based DSLs and does not cover broader

MDE or other tools.

An important consideration for an education platform is its

cost to host and run must not be prohibitively expensive for

education providers. The Epsilon Playground [3] architecture

makes use of Functions-as-a-Service (FaaS) for its backend

functions allowing on-demand scalability and minimal running

costs when the platform is not being used.

III. SCENARIOS

The education platform has three user roles: Learner,

Teacher, and Tool Provider. Learners access the platform

to complete activities created by a Teacher. Teachers create

lessons to deliver to their students as activities on the platform,

and they make available the activity files from a location

accessible to their students (e.g. on a web server or Git

repository). Tool Providers create platform services for their

existing tools. Activities use the platform tool services to per-

form MDE functions, such as model-to-model transformations.

Tool Providers are responsible for making their tool services

available: for example, by deploying them to a cloud hosting

service.

The following descriptions give typical scenarios for each

of the user roles.

A. Learner

Complete Activity A student follows the link from the

teaching organisation’s Virtual Learning Environment (VLE).

They work through some of the activities but do not complete

them before the tutorial is over. They save the activity and

note the generated link to resume the activity at a later time.

Resume Activity A student follows the link that they

generated at the end of their last tutorial, and the platform

activities are reloaded at the previously saved state. The

student completes the activities and saves their changes.

Export Activity A student decides to use the work they

completed for the tutorial as a starting point for a new project.

They follow the last link that they saved and the platform

activities reload at the previously saved state. They export the

activity’s project files as a ZIP archive containing an IDE-

compatible project. The student opens the project in a local

IDE and begins adapting and extending their work.

B. Teacher

Create Activity A lecturer starts creating an example DSL

project to demonstrate model-to-model transformations. They

do not complete the example. Later, the lecturer finishes

the example project and creates a configuration file for the

education platform activities referring to the configuration file

reference documentation. They push the example project and

activity configuration to their teaching repository. The lecturer

checks the activity they created by navigating to the web

address of the deployed platform.

C. Tool Provider

Add tool A software engineer decides to integrate their DSL

tool into the education platform. Using the platform documen-

tation and examples, they plan the tasks they need to complete.

They implement the back-end services, which provide the key

functions of the tool, and deploy them to a cloud service.

The software engineer creates the platform tool configuration

referring to the platform reference documentation. They create

the grammar files and run a local instance of the platform

front-end to verify they are happy with the appearance of

the available tool panels. The software engineer uploads the

grammar files and tool configuration file to the front-end web

server, and checks their tool is functioning correctly.

From these scenarios, we derive the following requirements

for the education platform:

R1 A student shall be able to start an activity given a

URL.

R2 A student’s modifications to an activity shall be

persisted at their request.

R3 A student shall be able to obtain a copy of the files

that are in an activity including any modifications

made by the student.

R4 A teacher shall be able to create activities.

R5 A teacher shall be able to customise the visual

appearance of activities without having to modify the

source code of the platform.

R6 The platform should minimise the workload for a

teacher creating new activities.

R7 A tool provider shall be able to extend the platform

without having to modify the common front-end

source code of the platform.

R8 The platform should minimise the workload for a

tool provider creating a tool for the platform.

Now that we have introduced the platform, the following

section presents an example activity.

IV. RUNNING EXAMPLE

We re-use the Epsilon Validation Language (EVL) [15]

example from the Epsilon Playground built-in example [3]

and adapt it to our education platform as an activity. The

EVL activity is used as a running example to demonstrate

the education platform’s functionality in Sections V to VII.

The platform is available at this1 Git repository for local de-

1https://github.com/mdenet/educationplatform-docker
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Fig. 1. The education platform Epsilon EVL Example.

velopment and testing. The repository documentation includes

a video demonstrating the running activity.

Figure 1 shows the interface that learners see when compet-

ing the activity. There are five panels: constraints (EVL) 2 ,

model 3 , problems 4 , metamodel 5 , and console 6 . The

contents of 2 are the constraints to check against the model

and its metamodel from 3 and 5 , respectively. The contents

of 4 display the result of running the constraints for the model

which is triggered when the learner clicks the run button that

is on 2 .

V. ARCHITECTURE

The education platform uses the architecture of the Ep-

silon Playground [3] as its foundation with additions and

modifications to fulfil the requirements from Section III. The

distinguishing feature of the platform’s architecture its support

for arbitrary tools without modification, whereas the Epsilon

Playground’s tool support is hard-coded.

There are four software components that make up the educa-

tion platform: MDENetPlatform, ToolManager, ActivityMan-

ager, and ToolService. The components and their relationships

are shown in Figure 2.

ToolService

ICompleteActivityIResumeActivityISaveActivityIExportActivity

IToolManagement IActivityManagement

ITool

MDENetPlatform*

ToolManager *ActivityManager

Fig. 2. Education platform components. Bold text indicates new components
and ‘*’ indicates modified components.

The ToolManager is a new component for providing arbi-

trary tool support. It is responsible for fetching and processing

the tool configurations that define a tool’s panels, and fetching

tool resources which include highlighting rules and icons.

The top-level component is the MDENetPlatform. It pro-

vides the front-end user interface and handles responses from

ToolServices. It is a modified version of the playground’s top-

level component with support for arbitrary tools.

The ActivityManager component is responsible for fetching

and processing the activity configuration, and fetching files

displayed in an activity’s panels. It is a modified version

of the playground’s Example Manager that has been re-

structured around learning activities and adds support for the

customisation panel layouts.

The final ToolService component is responsible for handling

requests to tool functions from users completing activities.

Each tool provides its own service so an activity can make

use of many ToolServices. They make-up the backend of the

education platform and are deployable to a cloud platform.

To support saving of activity progress and use of private

Git repositories, the education platform supports the use of a

token server for GitHub authentication.

The education platform needs tools for activities to use, and

activities for learners to complete. In Sections VI and VII, we

present the configuration for the EVL example.

VI. TOOLS

Tool services provide the functionality that the installed

tools on a developer’s local machine environment would nor-

mally provide: for example, model-to-model transformation,

text generation, or model validation. They make up the back-

end of the education platform. A tool service comprises a tool

function and static resources.

The tool function provides an endpoint that conforms to the

tool interface specification. The static resources a tool provider

must create include: a tool configuration file, highlighting

rules, and icons. The tool configurations are independent of

activities, so a teacher only needs to reference a tool by its

URL to use it in an activity they are creating.



A. Configuration

A tool configuration file defines the tool functions and

the panels that are available for a platform activity to use.

Listings 1 to 3 show the tool configuration for the EVL

example.

Listing 1 shows the top-level structure with four attributes:

id, name, version, author, homepage, functions,

and panelDefs. The comments prefixed with ‘#’ indicate

values that have been given their own listings for clarity.

The functions attribute declares the tool functions that

are available to an activity. Finally, the panelDefs attribute

declares the panels available to an activity.

1 tool:

2 id: epsilon

3 name: Epsilon

4 version: 0.0.1

5 author: Eclipse Epsilon

6 homepage: https://eclipse.dev/epsilon/

7 functions:

8 # Listing 2
9 panelDefs:

10 # Listing 3

Listing 1. Tool configuration top-level

A tool can declare multiple functions. Each function dec-

laration has attributes id, name, parameters, return-

Type, and path. A declaration must correspond to a tool

service’s function which are described in Section VI-B. List-

ing 2 shows the EVL tool configuration function declaration

for our example.

1 - id: function-evl

2 name: evl

3 parameters:

4 - name: program

5 type: evl

6 - name: metamodel

7 type: emfatic

8 - name: model

9 type: flexmi

10 - name: language

11 type: text

12 instanceOf: metamodel

13 returnType: text

14 path: http://127.0.0.1:8070/services/

RunEpsilonFunction

Listing 2. Tool configuration function definitions

The parameters attribute lists the inputs of the tool

function. Each parameter must have a name and a type. The

type attribute indicates the language the function accepts:

it is used by the platform for validating the inputs provided

from panels, and converting the inputs if needed. The available

types are defined by the language attributes of all the panel

definitions included by an activity. Parameters that are models

and are an instance of a metamodel have an instanceOf

attribute that references the metamodel parameter by its

name.

The returnType attribute declares the type of the pro-

duced output. It is used by the platform for automatic type

conversions and displaying the response appropriately. Finally,

the path attribute is a URL to the function’s endpoint, where

requests from the platform are to be sent.

A tool can define multiple panel types to be instantiated by

the panels of an activity’s configuration (as in Listing 6).

Each panel declaration has attributes id, name, panel-

class, icon, language, and buttons. Listing 3 shows

the EVL tool configuration panel declaration for our example.

1 - id: evl

2 name: evl

3 panelclass: ProgramPanel

4 icon: evl

5 language: evl

6 buttons:

7 - id: action-button

8 icon: run

9 actionfunction: function-evl

10 hint: Run the program (Ctrl/Cmd+S)

11 - id: help-button

12 icon: info

13 url: https://www.eclipse.org/epsilon/doc/

evl/

14 hint: EVL Language Reference

Listing 3. Tool configuration panel definitions

The panelclass attribute specifies the class of panel

the platform must create. Three are supported: Program-

Panel, ConsolePanel, and OutputPanel. The Pro-

gramPanel provides a text editor that supports syntax high-

lighting, and a diagram viewer that can show a graphical

representation of the editor contents. The ConsolePanel

displays text that can be cleared. The OutputPanel provides

a viewer for multiple text files.

The icon attribute specifies the image file to use from

the images css static resource file. The language attribute

declares the language identifier that is used for type checking

and conversions.

The buttons attribute defines the buttons that are dis-

played on a panel. All buttons have id, icon, and hint

attributes. The icon attribute specifies the image file to use

from the images css static resource file as the button’s icon.

The hint attribute specifies the tooltip text to display when

the user hovers over the button.

The concrete functionality of the button depends on the at-

tributes given. In the case of an actionfunction attribute,

the specified function will be executed when clicked. In the

case of a url attribute, the specified URL will be opened in

a new tab.

B. Service

The tool service functions are stateless FaaS that conform

to the platform’s tool interface. The requests and responses

utilise JSON, which means that a tool provider can use any

technology supporting JSON to implement a tool function as

long as they comply with the tool interface specification.

Table I specifies the tool interface request JSON keys and

their expected value contents. Listing 4 shows a compliant

request for our EVL example.

The [function parameter name] key represents the names

of the tool function parameters for which there may be more

than one. The parameters are file contents encoded as UTF-8

1 {



TABLE I
TOOL REQUEST SPECIFICATION

Key Value Mult.

[function parameter name] File contents required for the action 0..*

language Tool language identifier 1..1

TABLE II
TOOL RESPONSE SPECIFICATION

Key Value Mult.

output String 1..1

[*diagram*] SVG image 0..1

generatedText Output file text 0..1

error Error log text 0..1

2 "program":"// For every task\ncontext Task {\

n\t\n\t// Check that the start month is >

0\...",

3 "metamodel":"@namespace(uri="psl", prefix="")

\npackage psl;\n\nclass Project {\n\tattr

String title;\n...",

4 "model":"<?nsuri psl?>\n<project title="ACME

">\n\t<person name="Alice"/>\n\t<person

name="Bob"/>...",

5 "language":"evl"

6 }

Listing 4. The request for the EVL example.

strings that are the inputs required to generate the function’s

output. The values of each file will be the contents of a panel

mapped by the playground activity configuration.

The language attribute is the language identifier of the

source panel initiating the tool function. It can be used by the

tool function to handle multiple languages as single service.

Table II specifies the tool interface response JSON keys and

their expected value contents. Listing 5 shows a compliant

response for our EVL example.

1 {

2 "validatedModelDiagram": "<?xml version

=\"1.0\"

3 encoding=\"UTF-8\" standalone=\"no\"?>

4 <svg>

5 ...

6 </svg>",

7 "output": ""

8 }

Listing 5. The response for the EVL example.

The response output key value is textual output from the

execution of the tool function: for example, the console

output. A response key that contains the keyword ‘diagram’

is expected to be a diagram in Scalable Vector Graphics

(SVG) image format. The generatedText key value is the

output file contents generated by the tool function as a string.

The error key value is the textual log of any errors that

occur during execution of the function. The output key of a

response is mandatory while all other keys are optional. Every

response key can only be specified once.

VII. ACTIVITIES

Education platform activities are created by a teacher to

demonstrate learning objectives from the course syllabus being

taught. An activity is presented to the learner as a single web

page with a collection of panels. The activities available to a

learner are listed in a navigation menu on the left-hand side of

the page. For our EVL example shown in Figure 1, there are

three activities indicated by the buttons in the menu 1 . The

first three menu buttons are the activities, and the remaining

two are the save and about buttons that appear on every page.

There are three steps to a teacher creating an activity:

1) Create the project files.

2) Create the activity configuration file.

3) Make the activity available.

The project files make up the majority of an activity. They

can be created using the local development environment for

any of the tools supported by the platform. For our example,

the Eclipse IDE can be used to edit and debug the activity

project until it meets the learning objectives of the activity.

Following the creation of the project files, the platform must

be configured so that the project is presented as activities the

teacher designs by creating the activity configuration file.

A. Configuration

An activity configuration file created by a teacher defines

the presentation of project files within the education platform.

The file formats accepted by the platform are YAML [16] and

JSON [17]. Two kinds of common attributes used throughout

the platform configuration files are id and name. An id

uniquely identifies the object that it is an attribute of. A name

or title is the text to use in user interfaces for the object.

Listings 6 to 9 show the activity configuration for our example.

Listing 6 shows the top-level structure. An activity has seven

attributes: id, title, icon, tools, layout, actions,

and panels . The comments prefixed with ‘#’ indicate values

that have been given their own listings for clarity. The icon

attribute specifies the image file to use from the images css

static resource file for the icon in the activity menu 1 .

1 activities:

2 - id: evl

3 title: Validate Project

Plan

4 icon: evl

5 tools:

6 - http://127.0.0.1:8070

/epsilon_tool.json

7 layout:

8 # Listing 7
9 actions:

10 # Listing 8
11 panels:

12 # Listing 9

Listing 6. Activity configuration top-level

The tools attribute specifies the tool service URLs for

all of the tools that are used by an activity. Upon loading an

activity, tool configurations that contain panel definitions are

fetched from the tool urls. The layout attribute specifies

the relative positions of the panels. The actions attribute

specifies the mapping of panels to the input parameters of

tool functions which are requested when a button is pressed.

Finally, the panels attribute defines the panels and the

project file that are displayed.



An activity must define a layout that has an area

attribute with a two-dimensional array of panel IDs. The

rows and columns of the array naturally map to the

layout of the panels displayed by the platform. Listing 7

shows the EVL activity configuration layout specification.

1 area:

2 - [ panel-evl, panel-model, panel-problems]

3 - [ panel-console, panel-mm, ]

Listing 7. Activity configuration layout

The area attribute specifies an array that has two rows and

three columns. The evl, model, and problems panels are

displayed on the top row with the console and metamodel

panels being displayed on the bottom row as shown in

Figure 1. Any empty positions in the area array are filled in

with the panels of the same column by the platform when the

panels are laid out.

An activity can define multiple actions. Each action

definition has attributes source, sourceButton,

parameters, and output. Listing 8 shows the EVL

activity action configuration for our example. The source

and sourceButton attributes specify the button that the

mapping applies to. The source is a panel id from the

panels attribute of the same activity configuration file.

1 - source: panel-evl

2 sourceButton: action-button

3 parameters:

4 program: panel-evl

5 flexmi: panel-model

6 emfatic: panel-mm

7 output: panel-problems

Listing 8. Activity configuration actions

The sourceButton is a button id from the buttons

attribute of the panel’s definition in its tool configuration

file. The parameters attribute (lines 6 to 10) maps each

parameter of a tool function to the ID of the panel whose

contents will be used as input. For example, the program

parameter is mapped to panel-evl for its input.

The output attribute (line 12) specifies the panel that will

display the result of the tool function. In this example, it is

the Problems panel 4 .

An activity can define multiple panels. Each panel definition

has attributes id, name, ref, and file. Listing 9 shows the

EVL activity configuration panel definition for our example.

1 - id: panel-evl

2 name: Constraints(EVL)

3 ref: evl

4 file: psl.evl

Listing 9. Activity configuration panels

The ref attribute is a reference to a panel definition ID

from one of the tools configuration files specified by the

tools attribute in Listing 6. The reference determines the

type of panel that is created and the functions available to it.

Finally, the file attribute specifies the path, relative to the

configuration file location, of the file the panel will display.

VIII. TYPE CONVERSION AND FUNCTION INVOCATION

A problem that increases with the addition of multiple tools

is the proliferation of different input types to tool service

functions. One approach is for the tool functions to provide

versions of the function that accept the different input types.

However, this does not scale as each tool function has to

handle every combination of type available in the platform,

resulting in increased code duplication and coupling.

An alternative approach is to support the conversion of types

using dedicated conversion functions when a tool function is

requested. This reduces the types that tool functions need to

support. To achieve this the platform must:

1) Compare the input value types against the expected tool

function types.

2) Determine the conversion functions to use and call them.

3) Call the requested tool function.

The Epsilon Playground architecture used as the platform

foundation provides no support for either 1 or 2 and fixed

support for 3. Therefore, we add support for 1 and 2 and extend

3 to support the invocation of tool functions from declarations.

The following pseudocode shows how the platform handles

type conversion when a tool function is triggered by a user

clicking on a run action button.

1: params: map of activity action parameters to their type

and value

2: tf : object describing a tool function

3: for all p in params do

4: tfp ← tf .getParam(p)
5: if p.type ̸= tfp.type then

6: if ¬tfp.hasMetamodel() then

7: cr ← convert(p.value, p.type, tfp.type)
8: else

9: cr ← convertIncludingMetamodel(
p.value, p.type,

mm.value,mm.type, tfp.type)
10: end if

11: requestData[p.name]← cr

12: else

13: requestData[p.name]← p.value

14: end if

15: end for

16: call(tf .id , requestData)

When a run action button is pressed, a params object

is created using the corresponding button’s action from the

activity configuration file. The params object maps function

names to a value and type. The value is the input to the

tool function and is the contents of a displayed panel that

is specified by the configuration file’s activity parameter to

panel mapping.

For each of the parameters in params, Line 3, the platform

checks to see if the parameter type matches the corresponding

tool function’s parameter type, Line 5, to determine if any type

conversion is necessary. If the types match, the value params

is inserted into the requestData array on Line 13. If the types

do not match, the platform tries to convert the input value to



a type that matches the tool function’s parameter type using a

conversion function.

Models are an instance of their metamodel, so to convert a

model, the metamodel is required by the conversion function.

Since metamodels do not have such a dependency, the plat-

form handles each of these cases separately. On Line 6 the

parameter is checked for a metamodel dependency. If there

is no dependency, the platform converts the input parameter

using the convert() function. This function has three param-

eters: input value, input type, and target type. If there is a

dependency, the platform converts the input parameter using

the convertIncludingMetamodel() function. This function

has five parameters: input value, input type, metamodel value,

metamodel type, and target type. The result of either conver-

sion is assigned to cr on Lines 7 or 9 that is inserted into the

requestData array on Line 11.

Following all the parameters in params being processed,

the requestData variable holds inputs to the tool function

with the types it expects. The tool function is finally called by

the call() function on Line 16. The call() has two parameters,

the id of the tool function and an array containing the

parameters and their values.

To minimise the complexity of the platform type conversion,

only direct conversions using a single function are considered

so functions are not chained. This means that there needs to

be a suitable conversion function available for the conversion

to be successful and the tool action function called.

IX. EXAMPLE: USING A DIFFERENT CONSTRAINT

LANGUAGE

A goal of the education platform is to support multiple tools

and configurable activities for teaching MDE. We demonstrate

that this goal has been achieved using an Eclipse OCL tool and

activity example. The Object Constraint Language (OCL) [18]

can be used to validate well-formedness of a model. We

developed a platform tool service using the Eclipse OCL

implementation’s [19] standalone API. The education platform

and OCL tool service are available to run locally from this2

Git repository.

The OCL tool service has three inputs: the OCL constraints

to check, the model, and the metamodel. The model is in

the XML Metadata Interchange format (XMI) [20] and the

metamodel is in the Ecore XMI format [21, p. 20]; these

correspond to the ecore and xmi types.

To show the type conversion of the education platform in

our example, we provide the activity’s model in the Epsilon

Flexmi [22] format that the OCL tool function does not

support3. This means that the education platform must convert

the model via its type conversion functionality prior to calling

OCL tool function.

2https://github.com/mdenet/educationplatform-docker
3Technically, the OCL implementation supports any EMF resource and the

Flexmi parser is implemented as an EMF resource. This means that the OCL
tool function could be refined to load EMF resources more generally, rather
than explicitly convert between the exact types.

In order to carry out the type conversions suitable con-

version functions must be provided. Therefore, as part of

developing our example an Emfatic tool service was created

with an EmfaticToEcore function and the Epsilon tool was

extended to include a FlexmiToXmi function. The network

features of the Chrome web browser were used to verify the

requests made by the platform to its tool services.

Figure 3 shows the OCL activity with its four panels:

model 1 , OCL constraints 2 , metamodel 3 , and console 4 .

The library example used is from the Eclipse OCL user

documentation tutorial [23, p. 3]

1 2

3

4

Fig. 3. The education platform Eclipse OCL example.

When the action button is clicked on 2 the platform

determines the conversions that need to be carried out to be

able to call the OCL function and then calls them as required.

Figure 4 shows the calls the platform makes to the tool

services. In total three functions are called. First, Emfat-

icToEcore to convert the metamodel, because the Epsilon

tool service’s FlexmiToXmi function does not accept the

metamodel in Emfatic format as used in 3 . Second, the

Education
Platform

Emfatic
Tool

Epsilon
Tool

OCL
Tool

emfatic

ecore

flexmi, ecore

xmi

ocl, emfatic, xmi

text

Fig. 4. Type conversions the platform makes for the OCL example.

FlexmiToXmi function is called to convert the model in 1

to the format that is accepted by the OCL function. Finally

the OCL function is called that returns the validation result as

text that is displayed by the platform in 4 .



X. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an online education platform for

teaching MDE that generalises and extends the Epsilon Play-

ground to support multiple tools and customisable activities.

The two examples of education platform activities can be used

to show that some of the requirements from Section III have

been met.

R1 and R4 are fulfilled by the first running example that

introduces the new configuration file format. R5 and R7 are

fulfilled by the second example that demonstrates an additional

constraint language tool with no changes to the platform front-

end code.

The examples demonstrate R3 and R8 have been partially

met. For R3, the loading of files has been demonstrated, how-

ever not the retrieval of persisted user modifications (though

this is possible using an included token server). For R8, the

automatic type conversion measure implemented to satisfy the

requirement has been shown.

To ensure that all the requirements have been met, further

validation needs to be completed. For R6 and R8 HCI aspects

need to be considered, and for R2 and R3 persistence of user

modifications to activity must be demonstrated.

To support our goal of the platform being used for teach-

ing MDE it would be beneficial for additional tools to be

developed by providers. Having a greater number of tools

available increases the diversity of the platform so it can offer

a richer learning experience. To this end, there is ongoing work

developing a tool service for YAMTL4, and adding support for

language workbenches like Xtext5 and Langium6.

As future work, we plan to complete the support for

language workbenches as they offer a new category of activity

that can be utilised for teaching important MDE concepts.

To increase the diversity of tools offered by the platform, we

will collaborate with tool providers to develop new platform

tool services. We also plan to improve the usability of the

platform by engaging with the MDE community to create

open education resources that use it, and develop editors for

configuration files to assist users in creating activities and

tools. Finally, we will investigate the support for graphical

languages that use frameworks like Sirius 7.
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