
A reinforcement learning approach to solving very-short term
train rescheduling problem for a single-track rail corridor

Jin Liu *, Zhiyuan Lin, Ronghui Liu
Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, United Kingdom

A R T I C L E I N F O

Keywords:
Reinforcement learning
Q learning
Train rescheduling
Single-track
Railway traffic management

A B S T R A C T

Railway operations are regularly affected by incidents such as disturbances and disruptions,
which cause temporary operational restrictions to the trains in the network. Compared to real-
time disturbances and disruptions, sometimes these incidents can be known at a short notice,
e.g., 24–48 h beforehand, which is known as the Very-Short-Term-Planning in British rail oper-
ations. This paper presents a novel reinforcement learning based approach for rescheduling train
services for in a single-track corridor with bi-directional traffic. As an important subfield of
machine learning, reinforcement learning offers an alternate strategy for tackling the NP-hard
train (re)scheduling problems and shows its advantages in balancing computational efficiency
and solution quality. We propose a Q-learning approach with a tiered rewarding strategy and
lightweight train representation in state vectors, which enables more efficient learning and
knowledge sharing among homogeneous trains. Compared with an existing reinforcement
learning approach, our proposed method can find better quality solutions due to its unique
representation of state vectors and a novel tiered rewarding/punishing mechanism, overcoming
certain disadvantages in existing approaches. Knowledge reusability is another advantage of the
proposed approach, as prior knowledge obtained from training one instance can significantly
enhance the performance of another, potentially more challenging, instance on the same corridor
with substantially reduced computational time and effort on algorithm development. We also
discuss the potential applications of the knowledge reusability feature inherent in reinforcement
learning algorithms, which we believe will benefit the entire industry in addressing NP-hard
problems through data-driven technologies.

1. Introduction

The railway timetable is usually designed well in advance, prioritizing system robustness and resilience while optimizing the
scheduling of its resources (Carey and Lockwood, 1995). However, during daily operations, the planned schedules are not always
strictly followed due to nearly inevitable disturbances/disruptions of varying scales, causing trains to run behind schedule. Without
prompt and proper handling, the delay of a single train would affect the operation of other trains and rapidly spread across the whole
corridor and/or network. Under these circumstances, the objective of train rescheduling is to generate a workable (and likely
near-optimal) schedule based on the original timetable and disturbance/disruption information to minimize the impact of dis-
turbance/disruption as much as possible. The rescheduling action can be accomplished by adjusting the arrival and departure times of

* Corresponding author.
E-mail address: J.Liu12@Leeds.ac.uk (J. Liu).

Contents lists available at ScienceDirect

Journal of Rail Transport Planning & Management

journal homepage: www.elsevier.com/locate/jrtpm

https://doi.org/10.1016/j.jrtpm.2024.100483
Received 7 May 2024; Received in revised form 20 July 2024; Accepted 20 September 2024

Journal of Rail Transport Planning & Management 32 (2024) 100483

Available online 25 September 2024
2210-9706/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

mailto:J.Liu12@Leeds.ac.uk
www.sciencedirect.com/science/journal/22109706
https://www.elsevier.com/locate/jrtpm
https://doi.org/10.1016/j.jrtpm.2024.100483
https://doi.org/10.1016/j.jrtpm.2024.100483
http://creativecommons.org/licenses/by-nc/4.0/

the timetabled trains, and if necessary, may also involve extra train services, cancellation of existing train services (Hong et al., 2021),
modification of stopping patterns (Zhan et al., 2022), and subsequent tasks such as the reallocation of rolling stock (Lin and Kwan,
2016) and crew (Veelenturf et al., 2014), adjustments on train speed profiles and energy consumption (Dong et al., 2023, 2024), etc.

In general, rescheduling must be performed in short time beforehand, and the affordable time window for presenting reschedule
plan may range from days (short-term), 24–48 h (very short-term) and a few hours to minutes (real-time), necessitating varying
degrees of computation speeds and optimality requirements in operational principles of British railway (RSSB, 2022). Depending on
the attributes of a railway network and train services the goal of train rescheduling may involve minimizing train terminating delay,
minimizing the number of delayed trains, reducing the propagation of train delay, minimizing the absolute, peak or average delay in
the network, etc.

Since the majority of train (re)scheduling problems are NP-hard (Cai and Goh, 1994), inexact approaches such as heuristics are
frequently employed to speed up the algorithm at the expense of solution quality. The robustness and transferability of heuristic
approaches may also suffer. If solved by exact methods, scalability usually becomes the biggest obstacle when the problem size gets
large (Khadilkar, 2019). No universally applicable remedy is available for this dilemma between exact and inexact methods in opti-
mization. Reinforcement learning, a significant subfield of machine learning, offers a promising strategy for addressing train (re)
scheduling problems by striking a balance between precise approaches and heuristic methods. The fundamental principle of rein-
forcement learning algorithms is the accumulation of knowledge through a trial-and-error process within an environment. This process
can be time-consuming, particularly for problems with NP-hard characteristics. However, once an agent is adequately trained, rein-
forcement learning algorithms can make optimal or near-optimal decisions in new environments with short computational times. This
efficiency is achieved without being significantly influenced by the problem size, which distinguishes reinforcement learning from
exact methods that often struggle with scalability (Sutton and Barto, 2018).

This article focuses on the train rescheduling problem typically given 24–48 h beforehand, so-called Very Short Term Rescheduling
(VSTR), and proposes a Q learning-based reinforcement learning approach to adjust arrival and departure times of existing services
and/or give cancellation (including early termination at intermediate stations) decisions to specific service(s). This kind of problem is
common when incidents/events can be known shortly in advance, e.g., adverse weather forecasted, planned engineering work, sports
events, and so forth. This train rescheduling problem has a longer time window compared to real-time rescheduling, but still, the
reschedule has to be produced as quickly as possible for the decision makers. Compared with existing reinforcement learning appli-
cations, the key contributions of this paper are.

• Tiered rewarding mechanism: The implementation of a two-tiered reward system aims to more accurately assess the quality and
individual contribution of each train in both successful and unsuccessful scenarios. This approach allows for a clear differentiation
between exclusive reward values and the selection of relevant decision history excerpts for each individual train agent, enabling
‘more targeted’ learning.

• Lightweight train identifier: Using train service direction as identifiers in state vectors, rather than individual train IDs, reduces the
state space’s dimensionality in the reinforcement learning algorithm and facilitates knowledge sharing among homogeneous trains.

• Knowledge reusability: Prior knowledge obtained from training an earlier VSTR instance is proved to be reusable to another (likely
more difficult) instance on the same corridor, and significantly reduces learning efforts. This feature enables the reinforcement
learning algorithm to draw from the accumulated knowledge of past problems, thus reducing the trial-and-error phase and ulti-
mately expediting the learning process when confronted with new issues.

• Delay times are not given as input for the model: Instead, based on indirect information (e.g., adverse weather), our model will
determine the delay time or termination for each train during the rescheduling process.

The rest of this paper is organized as follows. Section 2 reviews the state of the art of railway rescheduling research. Section 3
provides a common description of VSTR problem. In Section 4, we propose reinforcement learning approach to solve VSTR problem.
Section 5 presents the case studies and associated computational experiments based on proposed method in real-world instances.
Finally, Section 6 concludes the key observations of this paper and our future works.

2. Literature review

Train scheduling and rescheduling are conventionally formulated as mixed-integer programming (MIP) problems. Binary variables
typically represent the order of trains entering sections, while continuous variables describe departure and arrival times (Jovanovic
and Harker, 1991; Carey, 1994a; Higgins et al., 1996, 1997). Most problems addressed bidirectional railway systems (Carey, 1994a,
1994b) with constraints including minimum headways, speed limits, and specific departure/arrival times. Solutions vary from exact
methods (Higgins et al., 1996) to heuristics, such as genetic algorithm (Wang et al., 2019; Liu et al., 2019), swarm intelligence (Eaton
et al., 2017), etc.

Fixed block system-based scheduling models incorporate constraints ensuring no two trains occupy the same block simultaneously.
Additional constraints, such as headways between train exits and entrances in block sections, are necessary (Kraay et al., 1991;
Törnquist and Persson, 2007). These problems can also be modelled as job-shop problems, using alternative graph models for
conflict-free scheduling (D’Ariano et al., 2007, 2008a, 2008b; Corman et al., 2010). Particularly for train rescheduling under dis-
ruptions, heuristic approaches like Particle Swarm Optimization aim to minimize secondary delays (Wang et al., 2019). Other MIP
models focus on real-time rescheduling under severe disruptions, minimizing train-deviation costs (Zhan et al., 2022) and delays
(Wang, 2019) Heuristic approaches for train (re)scheduling include binary variables for train stop decisions (Cai and Goh, 1994) and

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

2

conflict resolution using Genetic Algorithm (Dündar and Şahin, 2013). Parallel algorithms improve real-time rescheduling efficiency
(Josyula et al., 2018). The discrete-event approach simulates train movements, organizing overtaking and passing plans to avoid
deadlocks and minimize delays, however, this method, although effective, struggles to enumerate all possible events for
decision-making (Li et al., 2014).

However, both exact and heuristic algorithms have their limitations when addressing the complexities of train rescheduling
problems. Exact algorithms encounter scalability issues; as the problem size grows (e.g., with more trains, tracks, and time intervals)
the computational effort required increases exponentially, making these methods impractical for large-scale scenarios. Conversely,
heuristic algorithms face constraints due to their design. They often focus on exploiting known good solutions and can become trapped
in local optima, leading to suboptimal outcomes, especially in complex, large-scale settings. In recent years, reinforcement learning
(RL) is gaining traction as an alternative to optimization methods for train (re)scheduling due to its ability to handle complex, dynamic
environments where traditional methods struggle (Bešinović et al., 2021; Melnikov et al., 2024). RL algorithms learn optimal policies
by interacting with the system and receiving feedback, enabling them to adapt to varying conditions and uncertainties. This adapt-
ability makes RL suitable for real-time decision-making and dynamic problem-solving (Agasucci et al., 2023). Additionally, RL can
improve performance over time by continuously learning from past experiences, providing scalable solutions that adjust to changes
and complexities in train scheduling (Cui et al., 2016).

Obara et al. (2018) proposed an approach based on DQN and deep RL, where an agent adjusts running times and departure se-
quences to maximize passenger satisfaction and minimize total delays. This model, designed for double-track lines, simplifies traffic
and conflict management compared to single-track lines. Šemrov et al. (2016) used Q-learning for rescheduling trains affected by
single-track disruptions in Slovenia, considering both reordering and retiming with actions specified as signal controls and states
represented by track capacity, train positions, and time. Ning et al. (2019) developed a deep RL method to minimize average delays
along a rail line, incorporating detailed train operations in block sections and stations. The agent modifies running times, dwell pe-
riods, and departure orders, handling conflicts through train sequencing. This method was applied to the Beijing-Shanghai High-speed
Railway, a double-track line.

Khadilkar (2019) presented a Q-table based RL method for scheduling single-track lines, specifying track assignments and arri-
val/departure times for all trains to minimize weighted delays. This method decouples the size of the state-action space from the

Table 1
Notations used in this article.

Symbol Description

E = (G,M ,D ,

C)

An environment E representing the dynamics of a single-track corridor system

G = (N,L) A path graph corresponding to a macroscopic level of a corridor single-line railway with stations and segments
N,n Set, and index of nodes (stations), n ∈ N
L, l Set, and index, of segments (directionless track sections between stations), l ∈ L. We also use them to denote links (directional sections

between stations) when no ambiguity arises.
Mk(t) ∈ M Train movement property (including node/link available capacity αk(t) and dwell/travel time δk) information of a node/link k at time t, k ∈ N

or L. M contains all such information over all nodes/links and timestamps.
T , τ Set, and index, of trains, τ ∈ T

Cτ(t) Train characteristic information of train τ at time stamp t
C Set of train characteristic information, Cτ ∈ C

δn Dwelling time of a certain train at node n
δl Travelling time of a certain train at link l
δD

l Travelling time of a certain train at link l considering disturbance D

δτ,τʹ
n Headway between train τ and train τ́

Di Individual disturbance information
D Set of disturbance information, Di ∈ D

Dτ(t) Disturbance information for train τ at time t. Dτ(t) can be a Di or a null value.
Pτ(t) Overall property information for train τ at time t, including train direction, neighbouring node/link available capacity ατ(t) and related

disturbances w(Dτ(t)).
P Set of all possible Pτ(t) ∈ P , which stores accumulated experienced states over the past episodes and thus defines the Q table used later.
sn

τ State vector of train τ at station n
S Set of states, sn

τ ∈ S
a ∈ A Action and set of actions, where A = {a1,a2,a3}. a1 = halt,a2 = go,a3 = terminate.
e,E Episodes and total number of episodes so far
He Accumulated decision history in episode e
He

τ Accumulated decision history of train τ in episode e
as Decision (as a chosen action) made at state s
Q Q table accumulated through reinforcement learning algorithm
q(s,a) Q value corresponding to state-action pair (s,a)
ϵ Threshold value of action decision-making policy
Rτ Overall reward value for train τ
rτ Reward value to quantify train τ’s individual performance
re Reward value to quantify global performance of episode e
tQa (τ,n,e),t

Q
d (τ,n,e) Rescheduled arrival and departure times of train τ at station n from Q learning in episode e

ta(τ,n), td(τ,n) Arrival and departure time of train τ at station n in original timetable

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

3

problem size, ensuring efficient scalability. States are defined by resource consumption near each train, and actions determine whether
a train should wait or proceed. The number of states can be large when many trains are involved, and backward propagation is
approximated by averaging recent states. Zhu et al. (2020) proposed an RL-based method that learns to reschedule a timetable offline
and applies it online to create optimized dispatching plans. Similar action and state representations to Khadilkar (2019) are used,
assuming each train has a pre-defined tentative delay time and generating a new timetable to minimize overall delays.

Ying et al. (2020) developed an actor-critic method for metro train scheduling with restricted rolling stock, formulating the
problem as an MDP governed by stochastic passenger demand. Using artificial neural networks to parameterize state and action spaces,
the framework facilitates the assessment and search for optimum solutions. A deep deterministic policy gradient algorithm trains
neural networks through simulated system transitions before implementing the actor-critic agent for live schedule control. The method
was evaluated using the Victoria Line, London Underground. Ying et al. (2022) extended this research by adding a multi-agent feature
for controlling various service lines in a metro network with passenger transfer. Each control agent is associated with a critic function
for estimating future states and an actor function for deriving operational decisions. The framework was tested on the Bakerloo and
Victoria Lines, London Underground. Liu and Liu (2023) designed an actor-critic reinforcement learning algorithm to address the train
insertion problem in mixed-use rail networks. In this approach, the actor agent is trained to make new timetable decisions for newly
inserted trains, while the critic agent ensures overall operational robustness. Yue et al. (2024) employed a policy-based reinforcement
learning approach to tackle the real-time rescheduling problem in high-speed rail systems. They proposed an action sampling strategy
to select actions, aiming to achieve more efficient and effective exploration, considering the NP-hard nature of the rescheduling
problem.

In this paper, we propose a novel reinforcement learning based approach for the VSTR in a single-track corridor. The model can be
easily modified into the double-track scenarios, which have a simpler structure than single-track. As far as the authors are aware, this is
the first time that reinforcement learning is applied to solve train rescheduling problem based on short-noticed information on dis-
turbances/disruptions themselves (e.g., adverse weather, engineering work, etc.).

3. Problem statement

In this section, we describe the VSTR problem and formulate it with a mixed integer programming (MIP) approach. The scope of the
VSTR issue is to address the problem of rescheduling trains within 24–48 h before the timetable is executed, taking into account known
hazards in the network that could impact the implementation of the existing timetable. In VSTR problem, the key considered hazards
are deterministic disturbance or/and disruptions (such as forecasted bad weather, ad-hoc engineering activities and maintenance of
infrastructure, etc.), and thus, its impacts to the existing timetable and its operation is deterministic which can be fully anticipated and
considered in the decision making, and thus, the target of the solutions for VSTR is to adjust the existing timetable to satisfy forecasted
demand as much as possible. Table 1 summarizes the notations used in this article.

3.1. Modelling single-track railway environment and disturbance

In this study, railway system is modelled at a macro level, excluding features such as signalling system, train length, and train
acceleration/deceleration. Corridor-based single-track railway is represented by a path graph G = (N, L) with nodes N and links L. ln is
a directionless segment of rail connecting two stations, n and n+1. Trains travelling in the same or opposite directions are not
permitted to share ln. When travel direction is concerned, segment ln is implicitly associated with two directional links: the outgoing
connection cn connects station n to station n+1, and the inbound link cn connects station n+1 to station n. Outbound train i travels in
the opposite direction of inbound train j. Under a context without confusion, we use the terms “segment” (directionless) and “link”
(directional) interchangeably both represented by l ∈ L. We use t to index the times. Note that the time is discretized in a resolution of
minutes. Fig. 1 illustrates an example of the representation.

Based on the path graph G = (N, L), additional property features are needed to model the movements of the trains and infra-
structure occupancy in the line. The property information on link l (or node n) at time t is denoted as Ml(t) = [αl, δ] (or Mn(t)= [αn, δ]
respectively), which includes available capacity α, a dynamic property of the number of resources (node/link space) available, and
travel or dwell time δ needed on the node or link (a travel/dwell time dynamic property). As a result, train movement activities within
path graph G can be identified by values in Mk(t). States of nodes and links are defined as their available capacity αk(t). The last
component included into the environment is for disturbances in the rail network.

Fig. 1. A schematic of single-track corridor railway (top) and its mapped path graph (bottom) with stations as nodes and segments as links. The
stations are consecutively numbered from 1 to |N|.

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

4

Remarks. Without causing ambiguity, we use disturbances hereafter for both disruptions and disturbances considered in the time
scope of VSTR problem, and any other incident that will affect the operations of trains by imposing a reduced speed limit, extra
dwelling, partially/full cancellation of the train service, etc.

The disturbances within VSTR problem usually include ad-hoc engineering work, short term maintenance work, adverse weather,
etc. which place temporary speed restrictions or closure on specific areas. Such temporary speed-limits could be imposed on different
parts and during different time periods, depending on where and when the impact of the disturbances is detected. Let D = {D1,D2,…}

be the set of all such disturbances, where Di = [affected link ID, disturbance start-time, disturbance end-time, adjusted speed as a
percentage of the original speed]. The disturbances information for train τ at time t, Dτ(t), can be determine by mapping the distur-
bance events onto the scheduled train path: if the train path runs through a disturbance event, the train’s running speed through that
part of the track/network would follow the reduced speed limit.

Finally, trains form a component of the environment. The trains are characterised by their IDs, direction of travel indicated as a
binary attribute dτ, their route ρτ (including stopping patterns), their original and rescheduled arrival and departure times at each
station, and the associated station dwell time and link travel time. These information are represented in set Cτ ∈ C for train τ, where

Cτ =
[
ID,dτ,ρτ,ta(τ,n),td(τ,n),tQa (τ,n),t

Q
d (τ,n),δn,∀n,δl,∀l∈ L

]
. The inclusion of C completes the construction of the environment E =

(G,M ,D ,C) ready for the Q-learning process.

3.2. Mathematical formulation of VSTR

The VSTR problem is defined as, considering disturbance D,D ∈ D to generate a feasible timetable for all the services of the day,
{

tQ
a (τ, n), t

Q
d (τ, n)

}
, τ ∈ T , n ∈ N to optimize and replace the existing timetable {ta(τ, n), td(τ, n)}, τ ∈ T , n ∈ N to satisfy the specific

quality of the services. In this study, the target of making a train rescheduling decision is to minimize the impact of delay in every
dwelling station across the trains’ journey and these dwelling station should have same priority in the control target, so the optimi-
zation objective is set as to minimize the deviation of the rescheduled timetable to original one, and we set the objective function of the
optimization as total accumulated departure delays (TAD) of all the trains (see equation (1)). It should be noted that the mathematical
formulation is not essential for organizing the reinforcement learning algorithm. The purpose of this MILP formulation is to
demonstrate the common objective and the constraints imposed by infrastructure and operations.

TAD =
∑

n∈N

∑

τ∈T

(
tQ
d (τ, n) − td(τ, n)

)

(1)

The objective function is optimized with respect to the following constraints:

tQ
a (τ, n) ≥ ta(τ, n), ∀ τ ∈ T , n ∈ N (2)

tQ
d (τ, n) ≥ td(τ, n), ∀ τ ∈ T , n ∈ N (3)

tQ
a (τ, n + 1) ≥ tQ

d (τ, n) + δD
l(n,n+1), ∀ τ ∈ T , n ∈ N (4)

tQ
d (τ, n) ≥ tQ

a (τ, n) + δD
n , ∀ τ ∈ T , n ∈ N (5)

tQ
d (τ

ʹ, n) + M ×
(
1 − iτ,τʹn

)
≥ tQ

d (τ, n) + δτ,τʹ
n ,∀dτ = dτʹ , τ ∈ T , n ∈ N (6)

tQ
d (τ, n) + M × iτ,τʹn ≥ tQ

d (τ
ʹ, n) + δτ,τʹ

n ,∀dτ = dτʹ , τ ∈ T , n ∈ N (7)

tQ
a (τʹ, n) + M ×

(
1 − iτ,τʹn

)
≥ tQ

a (τ, n) + δτ,τʹ
n ,∀dτ = dτʹ , τ ∈ T , n ∈ N (8)

tQ
a (τ, n) + M × iτ,τʹn ≥ tQ

a (τʹ, n) + δτ,τʹ
n ,∀dτ = dτʹ , τ ∈ T , n ∈ N (9)

tQ
d (τ

ʹ, n) + M ×
(
1 − iτ,τʹn

)
≥ tQ

a (τ, n) + δτ,τʹ
n ,∀dτ ∕= dτʹ , τ ∈ T , n ∈ N (10)

tQ
d (τ, n) + M × iτ,τʹn ≥ tQ

a (τʹ, n) + δτ,τʹ
n ,∀dτ ∕= dτʹ , τ ∈ T , n ∈ N (11)

tQ
a (τʹ, n) + M ×

(
1 − iτ,τʹn

)
≥ tQ

d (τ, n) + δτ,τʹ
n ,∀dτ ∕= dτʹ , τ ∈ T , n ∈ N (12)

tQ
a (τ, n) + M × iτ,τʹn ≥ tQ

d (τ
ʹ, n) + δτ,τʹ

n ,∀dτ ∕= dτʹ , τ ∈ T , n ∈ N (13)

δτ,τ+1
n =

{
δ1 min, if dτ = dτ+1

δ2 min, otherwise
(14)

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

5

αl(t) = {0,1} (15)

αn(t) = {0,1,…, |An|} (16)

iτ,τʹn = {0,1} (17)

Equations (2) and (3) impose constraints on the arrival and departure times of the rescheduled train at station n. Specifically, these
equations ensure that the rescheduled train arrival and departure times at station n are not earlier than the originally planned arrival
and departure times, respectively. Equation (4) describes the train travelling constraints from station n to station n+1, considering a
certain regional disturbance D, i.e., the travelling time between n and n+1 should not smaller than the estimated travelling time
δD

l(n,n+1). Equation (5) is the dwelling constraints which indicates train τ at station n shall satisfy the dwelling time of δD
n if the station is

covered by disturbance D. Equations (6)–(9) represent the headway constraints for trains travelling in the same direction at stations,
where the headway is fixed at 2 min, i.e., δ1 = 2. To relax these constraints, the big-M method is used. The binary indicator iτ,τʹn = 1
indicates that the arrival or departure event of train τ occurs before train τʹ at station n, while iτ,τʹn = 0 indicates the opposite. M is a large
positive value. Equations (10)–(13) establish the headway constraints at station n for trains travelling in opposite directions. Spe-
cifically, the entering and leaving events of trains in opposite directions must have a minimum headway of 3 min between them due to
dispatching limitations, i.e., δ2 = 3. Furthermore, Equation (14)–(17) defines the range of the values in this formulation. To generate a
solution for a certain VSTR problem, the variables tQ

d (τ, n) and indicators iτ,τʹn will be carefully adjusted to minimize the objective
function in Equation (1) with respect to the constraints described in Equations (2)–(13).

4. Reinforcement learning algorithm for train rescheduling problem

We introduce here the key elements of our proposed reinforcement learning method to solve train rescheduling problem: the
modelling of railway environment and its operation, agent-based modelling approach to deploy and execute decision making process
(i.e., the rescheduling solutions), policy function and learning process of the reinforcement learning. For the original algorithm
structure of reinforcement learning, readers can refer to Sutton and Barto (2018). In this paper, Q-learning approach is chosen to
organize the reinforcement learning algorithm for solving the single-track VSTR.

4.1. Q-learning agent

A train-oriented agent modelling approach is used in this study, i.e., the agents are the individual trains whose schedule/move-
ments through the network, in terms of their departure and arrival times at stations, are the subject for learning from the network state
information and their own characteristics. Train movements across the whole single-track corridor are modelled as a series of state-
action pairs, which provides trains associated decisions at nodes in the corridor.

4.1.1. Representation of state and state vector
In this study, information from physical railway network, railway traffic management centre, and other environmental information

(e.g., weather forecast) is considered. An overall train property Pτ(t) with movement information, train characteristics, and distur-
bance information of the rail section that the train is moving into, is defined as Pτ(t) = [Cτ,Mτ(t),Dτ(t)]. Based on Pτ(t), we further
define the state vector of train τ at time t as a vector sτ(t) = (dτ,ατ(t),w(Dτ(t))). We introduce how the three terms of the state vector
dτ,ατ(t),w(Dτ(t)) are constructed below.

Train characteristics Cτ(t) ∈ C contains multiple attributes and to form the state vector of a train at a timestamp, only its di-
rection dτ is included.

Node/link available capacity Local available capacity around a train represented by vector ατ(t) with a length of (b+1+f) is
used, which includes the available capacity conditions of b spaces behind the train, f spaces ahead of the train, and the space the train is
currently occupying. As specified in our assumptions, the two terminal stations have a ‘huge’ capacity and we indicate it with a value of
M. A dummy capacity of NaN is assigned to elements of a state vector that are beyond terminal stations. The availability information
that is forwarded to the train agent has a significant impact on the train’s movement decision. Additionally, considering the current

Fig. 2. Example of state vector representation.

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

6

section being occupied helps the train agent determine whether there is another train running parallel to the one being considered. The
reason for backwardly using capability information with the train agent is that the reinforcement learning algorithm can identify the
number of trains waiting behind a specific train at any given time. This feature allows the algorithm to prioritize a particular train if the
line behind it is overcrowded. An example of the representation of two running trains on a corridor line between nodes n1 and n5,
connected by links l1 to l4, is shown in Fig. 2. With b = 3,f = 3, the state vector based on train 1 currently on link l2 is represented by
the available capacity of node n4, link l3 and node n3 in front of it, the capacity of the resource it currently occupies (link l2), and
capacities of node n2, link l1 and node n1 behind it. Similarly, the state vector of train 2 is marked in Fig. 2, where the third element
behind it is beyond the terminal station n5 and thus has a capacity of NaN. Assume the current timestamp is t. Then Train 1 (represented
by τ1) has a state vector sτ1 (t) = (0, [M,1,2,0,2,1,1], 3), and Train 2 (τ2) has a state vector sτ2 = (1, [NaN,M,1,1,1,2,0], 0).

Disturbances Disturbance information will be also considered in the state vector which is used to indicate the operational re-
strictions due to the impacts of disparate conditions of disturbances to train operation. As mentioned in Section 3.1, the disturbance
Dτ(t) is gathered from the node/link the considered train is about to enter, and to be used to support the decision of train on whether to
access the next rail section when all the operational constraints at current rail section are satisfied. Remember that Dτ(t) = Di =

[affected link, disturbance start time, disturbance end time, adjusted speed percentage], if a disturbance is affecting this train, or
simply a null value implying not disturbance is observed for train τ at time t. To incorporate it in the state vector, a transformation
function w is designed to convert Dτ(t) to a pre-defined non-negative integer representing the corresponding Dτ(t), such that
w(Dτ(t) ∈ N. The different values of w(⋅)i correspond to various disturbance scenarios, ranging from no disturbance (‘0’) to different
types of disturbances, with positive values determined by the specifics of Dτ(t). This function classifies the similarity of all the
disturbance information, D , based on its consequential impacts on railway operations and assigns it a universal set of integer numbers
to simplify subsequent computations. For example, in Fig. 2, assume at time t inside an interval [t1, t2], station n3 is experiencing a
disturbance D1 = [l3, t1, t2, v́] = Dτ1 (t) and link l3 has no disturbance D2 = null = Dτ2 (t). If the reduced speed v́ corresponds to value
‘3’, then w(Dτ1 (t)) = 3 and w(Dτ2 (t)) = 0. Train 1 (τ1) and train 2 (τ2) will thus have disturbances information of n3 (‘3’, with heavy
rain) and l3 (‘0’, with no disturbance), respectively, in their state vectors.

4.1.2. Action and policy function
In a certain state, a train agent shall choose one action as its dispatching decision through its policy function, π(⋅|s). In this article,

the state’s actions are characterized by a trifold decision set, i.e., a1, a2 and a3 standing for holding the train (halt), dispatching the
train (go) and terminate the service at current operational node, respectively. For each specific operational decision, there is an

associated Q value,
{

q(s,a)∈ Q
⃒
⃒q : S × A →R

}
, attached to each action which quantifies the confidence of achieving high quality train

rescheduling solution with a certain action a at state s. All possible Q values q(s,a) in S × A are initialised by a unified value qinitial at the
beginning of the learning process by Equation (17). They are then subject to be updated during the learning process by Equation (18), i.
e.,

q0
(s,a) = qinitial, ∀(s, a) ∈ S × A (17)

q
Kʹ
(s,a),e+k

(s,a) = q
Kʹ
(s,a),e+k− 1

(s,a) + β ⋅ μk
(s,a)(H

e), (18)

k=1,…,K(s,a)(He); e=1,…,E.

Equation (18) is interpreted as: the Q-value of an (s, a) pair may be updated iteratively in K(s,a)(He) steps after the completion of

episode e = 1,…,E. Within each update in step k, q
Ke− 1
(s,a)+k

(s,a) is the new Q value, q
Ke− 1
(s,a)+k− 1

(s,a) is the old Q value, β is a pre-set learning rate, and
μk
(s,a)(⋅) is a metric to adjust the desirability of (s, a) at step k based on accumulated history He experienced by (s, a) in episode e. Note

that in the update iterations (Equation (18)), not all (s, a) pairs need to be updated based He—only those relevant (observed) pairs will.
Thus, K(s,a)(He) is defined as the total number of such observations associated with (s, a) from He (K(s,a)

(
H0
)
:= 0) and Kʹ

(s,a),e =
∑e− 1

i=1 K(s,a)
(
Hi
)

is the total number of accumulated steps experienced by (s, a) until episode e − 1. A positive value of μk
(s,a)(He) indicates

the focused pair is more desirable while a negative value implies otherwise. The specific way in updating Q values in our own Q-
learning approach will be discussed in Section 4.1.4.

Q values are stored in a Q table which is frequently updated based on the accumulated decision history. With the execution of a
series of dispatching decisions on state-action pairs in episodes, the learning process of reinforcement learning algorithm will
appreciate or depreciate Q values associated with every state-action pair with respect to their contributions of achieving a successful
episode.

All the state-action pairs will be given a default Q value of qinitial = 0 at the beginning of our reinforcement learning algorithm. To
make a decision to a state-action pair, the choice of decision for a state-action pair is driven by a designed policy. The policy will switch
between an exploration mode and a loyalty mode via a threshold parameter ϵ. In the exploration mode, decision action corresponding to
a state vector is chosen randomly which will provide the decision-making process with sufficient diversity to evaluate and find
optimized train scheduling solutions regardless cumulated knowledge in the Q table, as shown in the first part of Equation (19). Once
the system is switched into the loyalty mode, the Q table should be confident enough to make a decision using the action with the
higher Q value determined by argmaxa∈Aq(s, a) as shown in the second part of Equation (19).

Once a decision is required for a train at an operational node, two Q values for two actions will be extracted from the Q table with

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

7

respect to the state of the train, and result with their absolute difference. If the difference value is lower than ϵ, the action will be chosen
through the exploration mode. Otherwise, the action with the higher Q value will be selected. Detailed mechanism of the action se-
lection policy is shown in Equation (19), where rand choose({a1, a2, a3},0.33) means to randomly choose a1, a2, a3 ∈ A each with a
33.33% chance (exploration mode),

π(⋅|s) = as =

⎧
⎨

⎩

rand choose({a1, a2, a3},0.33), if abs
(
q(s,a1) − q(s,a2)

)
< ϵ

argmax
a∈A

q(s, a),otherwise
(19)

Within the decision-making process, the threshold parameter ϵ plays as a ‘mentor’ across the whole learning process, which
provides the algorithm with a benchmark on ‘how much experience/knowledge will be enough to make a decision independently’. So,
the higher value of ϵ means more knowledge should be accumulated in the reinforcement learning algorithm. Moreover, the design of
the switching mechanism between the exploration mode and the loyalty mode differs slightly from the traditional ϵ-greedy approach.
We define He

τ as the history of decision-made actions as ∈ A = {go, halt, terminiate} associated with state s for train τ within episode e,
organised sequentially by stations n ∈ N, as

He
τ =

{(
sn

τ , a
n
s
)}

n∈N =
{(

s1
τ , a

1
s
)
,
(
s2

τ , a
2
s
)
,…,

(
sn

τ , a
n
s
)
,…,

(
s|N|

τ , a|N|
s
)}

(20)

Values collected from He
τ will be used to update the Q table after episode e is finished.

4.1.3. Optimization objective and tiered rewarding
Within the reinforcement learning algorithm, the train rescheduling solutions generated by the policy function interact with a

virtual railway simulator to support ‘real-time’ train dispatching decisions during an episode of simulation. The simulator operates
based on a series of state-action decisions until either all trains have reached their termination stations or a deadlock is detected. The
reward for a train agent is determined by its current state-action pair (s,a), quantified as R (s,a), where R (⋅) is the reward function.
The total reward for a train τ is the cumulative reward over its trajectory He

τ, calculated by Equation (21).

Rτ =
∑|N|

n=1
γ ⋅ R

(
sn

τ , a
n
s

)
(21)

In this study, the expected cumulated reward for train τ from its state s to the end of its journey over the policy function π(⋅) is
quantified by a state value function Vπ(s) which is shown in Equation (22)

Vπ(s) = Eπ

(
∑|N|

n=1
γ ⋅ R

(
sn

τ , a
n
s
)
⃒
⃒
⃒
⃒
⃒
s = sn

τ

)

(22)

The proposed reinforcement learning algorithm aims to discover the optimal policy π*(⋅) by repeatedly attempting and adjusting its
learning process in order to maximize the total reward received by each individual agent, so the optimal value function can be
formulated as follows.

Vπ* (s) = max
π

Eπ
(
Rτ
⃒
⃒s = sn

τ
)

(23)

In order to determine the total reward earned by each train agent in a given episode, an objective function is created that maps the
optimization target to a particular value. In the context of this study, the optimization objective is to minimize train departure delays in
every station across its journey, and consequently, improve the quality of services across the whole corridor. So, total accumulated
departure delays (TAD) of all simulated trains in episode e is designed as the optimization objective. In an episode that all the trains
have arrived their termination stations, the departure delay of a certain train can be derived from its rescheduled departure times and
departure times in its original timetable at all passed stations, so the TADe can be calculated through Equation (5) which is shown in
Equation (24)

TADe =
∑

n∈N

∑

τ∈T

(
tQ
d (τ, n, e) − td(τ, n)

)

(24)

Otherwise, if an episode is terminated by a deadlock, some of the trains’ services maybe interrupted by the deadlock, and thus, their
rescheduled timetables are incomplete or even empty, so the TADe of an episode terminated by deadlock is given as positive infinity, i.
e., TADe = + ∞.

At the end of an episode, if the TAD of this episode is smaller than the currently best (smallest) total accumulated delay (denoted by
TADʹ = mini=1,…,eTADi), this episode is a successful episode. Otherwise, the episode is unsuccessful (either by deadlock or by poor
episode TAD). Within every episode e, the TAD for each individual train is also calculated, i.e.,

TADτ,e =
∑

n∈N

(
tQ
d (τ, n, e) − td(τ, n)

)
, if train τ is not early terminted (25a)

Equation (25a) only considers situations where an individual train is not early terminated. However, calculating the TAD using
Equation (25a) for a train terminated by action a3 poses a challenge because it considers a limited number of stations, potentially

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

8

resulting in a small value for TADτ,e. This value may not be comparable to a fully serviced train, possibly leading the algorithm to draw
misleading conclusions such as the knowledge that ‘terminating a train early is good’. To enhance the evaluation of the performance of
early terminated trains, dummy delay values are employed to fill the undelivered stops of the train service. Adhering to British
operational principles, a train is typically cancelled if its delay is projected to exceed 25 min. In this paper, we adopt this threshold
value to fill the skipped stations. As a result, the TADτ,e for early terminated train is developed in Equation (25b):

TADτ,e =
∑

nʹ∈N

(
tQ
d (τ, n

ʹ, e) − td(τ, nʹ)
)
+ (|N| − nʹ) × 25,

if train τ is early terminated
(25b)

where ń is the index of stop delivered by the train τ before it is terminated.
In a successful episode, the train-specific TADs for all trains are calculated by (25). In an unsuccessful episode.

(1) If a train has arrived its destination (regardless of deadlock), calculate its TADτ,e by Equation (25a);
(2) If a deadlock causes the failure, for a train that never arrives at its destination,

a. If a train is directly responsible for the deadlock, set TADτ,e = − 1.
b. If the train is not directly responsible, set TADτ,e = + ∞.

(3) If a train is terminated by a3, its TADτ,e is highly likely to be small, given the reduced stations considered, so the value of TADτ,e is
indicative of the necessity of termination in the considered state.
a. If there is no impending hazard within the considered train’s service time frame, or if the time frame of the hazard does not

overlap with the train’s timetable in the specific area, the termination operation is deemed unnecessary. In such cases, set
TADτ,e = − 1.

b. Otherwise, the terminating operation is identified as necessary, in that case, the TAD value is derived by Equation (25b).

The best TAD values (the smallest positive value) for both individual trains and an episode across all past episodes are recorded as
TADʹ

τ and TADʹ, respectively, which will be updated at the end of each episode e. i.e.,

TADʹ
τ =

{
TADτ,e, if 0 < TADτ,e < TADʹ

τ

TADʹ
τ, otherwise

(26)

TADʹ =

{
TADe, if 0 < TADe < TADʹ

TADʹ, otherwise
(27)

For an individual train τ, if 0 < TADτ,e < TADʹ
τ, the service of the train is called better than the incumbent; if TADτ,e > TADʹ

τ, the
service of the train is called worse than the incumbent, and if TADτ,e = − 1, which can only happen with a deadlock, the train’s service
is called responsible (for the deadlock) or the train is terminated without necessity.

Because the optimization objective of this study, TAD, is a globalized evaluation benchmark which can only be fully calculated at
the end of simulation, it is hard to quantify the performance of a single decision through the intermediate states of the simulation. The
reward value shall be decided at the end of each episode e of the simulation to qualify a completed episode and to be applied in Q
learning algorithm. In this study, the overall reward given to train τ after episode e, denoted by Rτ,e, is consisted with two elements: (i)
rτ,e, the reward to evaluate an individual train τ’s service, and (ii) re, the reward to quantify the entire episode e.

Rτ,e = rτ,e + re (28)

The reward for episode, re, is decided by the final performance of the considered episode.

re =

{
0, if TADe > TADʹ

+1,otherwise
(29)

Reward rτ is decided based on the completeness and effectiveness of the service of the train.

Table 2
Tiered reward values under different episode conditions.

Condition of episode Value of reward

Train’s performance Episode result rτ,e re Rτ,e

Better Unsuccessful +1 0 +1
Worse Unsuccessful 0 0 0
Responsible Unsuccessful − 1 0 − 1
Better Successful +1 +1 +2
Worse Successful 0 +1 +1

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

9

rτ,e =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if TADτ,e > TADʹ
τ

+1, if 0 < TADτ,e ≤ TADʹ
τ

− 1, if TADτ,e = − 1
(30)

The detailed rewarding mechanism is listed in Table 2.

4.2. Advantages of tiered rewarding

In this paper, the principle under the tiered reward/punish mechanism aims to classify contributions of each train within an episode
and maps the optimization objective into tiered objectives, i.e., minimizing the TAD value of the whole episode and minimizing the
TAD of each train. In a successful episode, all the decisions will get a positive reward and Q value attached with these decisions will be
appreciated (positively rewarding). In unsuccessful episodes which are interrupted by a deadlock, the episode consists with three types
of train services, i.e., trains that successful delivered their services, trains whose services were interrupted by the deadlock and trains
that are directly responsible for the deadlock. In such a condition, the trains leading to deadlock are the ‘culprits’, so the last decisions
of the trains that are directive responsible to the deadlock and should be punished (negatively rewarding). The trains that are irre-
sponsible for the deadlock are relatively ‘innocent’ in an unsuccessful episode, so every decision made by these trains is not considered
(nullified rewarding). The tiered reward/punish mechanism helps the Q learning algorithm breakdown the decision-making process to
every state-action pair with its own contribution to the whole episode and filter the ‘essence’ and ‘dross’ of past experience, through
which the learning process can be thus more computational efficient.

4.2.1. Q learning process
At the end of each episode, all the Q values of past decisions will be updated using Q learning algorithm through the decision history

of each train. The Q learning algorithm is based on the Bellman equation (Equations (17) and (18)) with an initial value of zero
assigned to all Q values at the beginning of the learning process. Then in the end of each episode it conducts the recursion (18) over all
state-decision pairs a subset of history Hτ

ʹ (see later) of train τ, and then over all trains τ ∈ T . The metric μk
(s,a)(⋅) in Equation (18) is

defined following the principle of backward propagation as in a typical Q-learning process, i.e.,

qnew
(sn

τ ,a)
= qold

(sn
τ ,a)

+ β ⋅
(

Rτ,e + γ ⋅ max
a∈A

qold
(sn+1

τ ,a)
− qold

(sn
τ ,a)

)

,

∀
(
sn

τ , a
)
∈He

τ ,∀τ∈T , e=1, 2,…,E (31)

where β and γ are factors between (0,1] and stands for the learning rate and discount factor, respectively. sn
τ is the state experienced by

train τ at station n; sn+1
τ stands for the next observed state of τ after the execution of decision at state sn

τ . He
τ is a subset of the current He

τ
for train τ based on its reward value in episode e, Rτ,e, i.e.,

He
τ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(
s1

τ , ds
)
,
(
s2

τ , ds
)
,…,

(
s|N|

τ , ds
)}

,Rτ,e > 0
{(

s|N|
τ , ds

)}
,Rτ,e = − 1

∅,Rτ,e = 0
(32)

Note that after episode e, looping over state-action pairs is realised by first looking up the elements in the history of an individual
train τ, i.e. He

τ , from the first station to the last (if Rτ,e > 0
)
, or only at the last (if Rτ,e = − 1), or doing nothing (if Rτ,e = 0). If the current

station n matches with a pair
(
sn

τ ,a
)
, an update between an ‘old’ and ‘new’ Q-values of

(
sn

τ , a
)

will take place as per (31). This recursion
will then continue as the process loops over all the trains τ ∈ T each time a matching between station n and pair

(
sn

τ , a
)

happens. This
two-layer looping is illustrated in Algorithm 1. Using backward propagation, the Q learning algorithm will recursively update all
eligible Q values of state-action pairs that are found in He

τ. If neighbouring same states in He
τ are detected, only the Q value of the last

state-action pair will be updated. For the Q value associated with s|N|
τ , there will be no subsequently observed state, so the part γ⋅

maxa∈Aq
(
sn+1

τ , a
)
− q
(
sn

τ , a
)

in (31) will be assigned to 0. The detailed Q learning algorithm is shown in Algorithm 1:

Algorithm 1. Pseudo code of Q-learning algorithm (Execute at the end of episode e)

1 Decide the overall reward value, Rτ , for each train (see Eq. (28))
2 for train τ ∈ T

3 if Rτ,e > 0
4 He

τ :=
{(

s1
τ ,as

)
,
(
s2

τ ,as
)
,…,

(
sn

τ ,as
)
,…,

(
s|N|

τ ,as
)}

5 elseif Rτ,e < 0
6 H2e

τ :=
{(

s|N|
τ ,ds

)}

7 else

(continued on next page)

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

10

(continued)

8 He
τ := ∅

9 end
10 for state s from s|N|

τ to s1
τ

11 if s = = s|N|
τ

12 qnew
(sn

τ ,a)
←q(sn

τ ,a)
+ β ⋅ Rτ,e

13 elseif s ∕= s|N|
τ & s = = sn+1

τ
14 qnew

(sn
τ ,a)

←q(sn
τ ,a)

15 else
16 qnew

(sn
τ ,a)

←qold
(sn

τ ,a)
+ β ⋅

(
Rτ,e + γ ⋅maxa∈Aqold

(sn+1
τ ,a)

− qold
(sn

τ ,a)

)

17 end
18 end
19 end

4.2.2. Significance of the proposed algorithm
A similar reinforcement learning algorithm as proposed in Khadilkar (2019), labelled as K-QL, is set as a benchmark to be compared

with the newly proposed reinforcement learning algorithm in this paper (marked as New-QL) in section 5. It is worth noting that K-QL
lacks the capability to make early termination decisions within its algorithm. The key differences between the two algorithms are
indicated in Table 3.

The key rationale of solely using directions (up and down) to distinguish trains in state vectors is to take the advantage of train
homogeneity such that accumulated knowledge from early dispatched trains of the same type can be reused by later trains more
quickly and more effectively. In this sense, using train ID will actually slow down the learning process as the knowledge learnt from the
same type of trains cannot be shared with other homogeneous trains. In many cases, trains (of the same priority and direction) can be
regarded homogeneous and thus their decision knowledge should be shared and transferred to other instances with similar structures.
Our direction-based labelling can be easily extended to the cases with train priorities by adding another attribute ‘priority’ such that
individual IDs are still not needed.

Apart from that, using train direction to label them significantly reduces the dimension of state space. The state vector is formed as
sτ(t) =

(
ατ(t),w

(
Dτ(t),Cid

τ
))
. The maximum size of state space (or equivalently, of the Q table) is |S| = dim[α] ⋅ dim[w(D)] ⋅ dim[C id],

where we use dim[⋅] to denote the dimension needed for each component of the state vector and C id stands for the train identifier (ID or
direction). The disturbance entry only takes one space (dim[w(D)] = 1) in our case. About spaces for the train identifier, by using train
ID, we have dim[C label] = |T |, and if direction is used, it is reduced to dim[C id] = 2. In a practical railway network normally |T | ≫ 2,
and thus, representing train characteristics with train service direction is computationally efficient and will reduce the size of state
space and the Q table by a factor of |T |/2, whose benefits will be significantly enlarged with the increase of train volume.

Using lightweight train identifier by direction also encourages reusability where the Q value learnt from one instance can be used
for another instance with similar structure or with a different set of trains. Indeed, by restricting learning only within an individual
train, knowledge learnt in one train cannot be transferred to another train in another case. If trains are only labelled by their directions,
knowledge (Q values) learnt from one instance can be propagated in trains of the same direction in another smoothly.

In our simulation approach, unlike the approach in Khadilkar (2019) which has deadlock avoidance mechanism, we intentionally
allow the algorithm to experience deadlocks. This strategy helps agents learn from incorrect or inappropriate actions, improving their
ability to estimate the value of such actions and reducing the likelihood of making similar mistakes in the future (Sutton and Barto,
2018). Experiencing deadlocks is beneficial for training agents to handle these situations and is crucial for enabling them to avoid
deadlock decisions in future episodes.

4.3. Simulation approach and algorithm integration

A time-based simulator is used in this study to represent train operations in a single-track environment E = (N,L,D ,C). A full run
of one day’s train operations is called an episode, operating in discrete time intervals of 1 min, the minimum time resolution of the
British railway timetable. During each episode, trains are dispatched from their origin at the scheduled departure time, unless their

Table 3
Key differences between K-QL and New-QL.

Properties of algorithm K-QL New-QL

Representation of train
characteristic

Individual train ID Train direction (up and down)

Rewarding mechanism Rewarding based on performance of episode
(success rate)

Tiered rewarding based on performance of both individual train services
and an entire episode

Punish mechanism Punish all the state-action pairs in a failed
episode

Punish only the relevant state-action pairs causing deadlock in a failed
episode

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

11

front link is occupied, and are returned to inventory upon reaching their destination. Time and location are recorded for each train. The
train agent updates track availability information (i.e., αk,k ∈ N ∪ L) at each time step and makes decisions as needed. When running
on a link, trains continue until the next station. If a train’s dwell time exceeds its schedule, a decision to go or wait is made by the agent
using Q-learning. Deadlocks are detected by negative capacity values and can occur at multiple locations simultaneously. The
simulation ends when all trains reach their destinations or a deadlock is detected. Disturbance information Dτ(t) for a specific train τ at
time t is determined based on time t, the train’s current location (from route in characteristic Cτ), and its departure decision as.

The reinforcement learning algorithm will interact with the simulator through every episode information of train dispatching
decisions and accumulate knowledge from all past episodes will be passed from one to the other. The learning process will be
terminated once the algorithm cannot improve the TAD value consecutively in 200 episodes. Here, the termination approach draws
inspiration from heuristic algorithms to enhance the scalability of the algorithm. The interaction flow between the simulation and
reinforcement learning algorithm is shown in Fig. 3.

5. Case study

Cambrian Line, a British single-track rail corridor, is used to test the proposed reinforcement learning algorithm. The corridor spans
81.5 miles from Aberystwyth station to Shrewsbury station and includes eight intermediate stations. Each pair of adjacent stations is
linked by a single-track line that allows only one train to operate at a time. All stations have two platforms, enabling two trains to dwell
simultaneously. A schematic map of the Cambrian Line is provided in Fig. 4. In this study, three different service volumes were used to
evaluate the performance of the proposed Q-learning algorithm (New-QL).

• Low Traffic Volume: 11 trains over a period between 12:30 and 21:30
• Medium Traffic Volume: 21 trains over the same period
• High Traffic Volume: 30 trains over the same period

The algorithm is implemented in Matlab R2020 and scenarios tested on a Windows PC with AMD Ryzen 7 4800U processor and 24
GB RAM. Detailed benchmarks for evaluating the algorithm’s performance are discussed in Appendix A, which also covers the
parameter settings and the rationale behind selecting these parameters.

5.1. Performance in solving train rescheduling problem

The capability on tackling the VSTR problem of the proposed algorithm is tested in synthetic scenarios considering several realistic
disturbance possibilities in railway operations. These disturbances include weather impacts and planned engineering activities,
leading to speed reductions and extra dwell times. Four types of scenarios are considered.

• Scenario 1: full-day weather impact to a single section of the corridor – speed reduction spans from 10% to 40%, applicable to all
the trains passing the section. This means there is a single disturbance D in a link l throughout the day, or D =

[
l,day start,day end,

v́
]
, where v́ = 90%,80%,70%,60%. In practice, rail operations during bad weather will follow either the First Come First Served

(FCFS) rule, the Timetable Order Enforced (TTOE) rule, or both.

Fig. 3. The interaction flow between simulation and reinforcement learning algorithm.

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

12

• Scenario 2: rolling weather impact moving in both temporally and spatially, creating a sequence of k locally affected incidents –
speed reduction of 34% to all the trains passing the considered rail section in specific time period. This means D = [D1,D2,…,Dk],
where Di = [li, ti1, ti2,66%]. In practice, FCFS and/or TTOE will be used.

• Scenario 3: engineering activity in a specific station n – extra dwell time Δt (spans from 5 min to 30 min) is applied at a certain
timestamp t0. This means D = [n,t0,Δt]. In practical rail operation, we usually prioritize station throughput, so FCFS is the default
operation rule.

• Scenario 4: pre-planed engineering activity in a specific section - temporary closure of section l in both directions during a specified
time period, D =

[
l,day start,day end,0

]
. Engineering activities usually extend over a long period in practice, during which op-

erators may consider cancelling their services if necessary.

Samples of rescheduled timetable of Scenario 1, 2, 3 and 4 using New-QL are shown in Fig. B-1, B-2, B-3 and B-4, respectively in
Appendix B. The dotted lines correspond to the original timetabled trains while the solid lines give the rescheduled trains. Comparative

Fig. 4. Schematic map of Cambrian Line single track corridor (with mileage from Aberystwyth).

Fig. 5. Test results of Scenario 1.

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

13

results of the tested scenarios between K-QL and New-QL are presented in Fig. 5, Table 4 and Fig. 6, respectively. In Fig. 5, the ribbon
areas represent the range of objective function values obtained in the designed test case trials in Scenario 1. The ribbon is designed to
visualize all potential delay values in Scenario 1. Each ribbon, whether for New-QL or K-QL, is bounded by the maximum and minimum
delay values under the designed speed deduction rate, providing a comprehensive comparison between the performance of the New-
QL and K-QL algorithms.

New-QL performs better than K-QL in all the cases tested in the Scenario 1 to 3. In Scenario1, New-QL can reduce TAD spans from 3
min to 920 min with a mean value of 279.8 min; in Scenario 2, the improvement on TAD spans from 17 min to 495 min with a mean
value of 174.2 min; and in group 3, the improvement of New-QL is from 5 min to 276 min with a mean value of 125.8 min. Addi-
tionally, in Fig. B-4 for Scenario 4, due to the prolonged blockage of the section between Newtown and Welshpool, New-QL opts for the
early termination of 4 trains rather than rescheduling them. This strategic sacrifice of terminated services significantly enhances the
efficiency and convenience of subsequent rescheduling decisions. Across all the scenarios, in average, the New-QL can reduce the delay
time by 206.8 min compared to K-QL, thanks to the tiered rewarding mechanism of New-QL that considers performance both at the
episode and individual train levels, the lightweight train characteristic labelling that enables knowledge share among different trains
of the same directions. Finally, the representation approach of terminal station by a big number M also improves the quality of final
solution generated by New-QL. Because the train-oriented agent modelling approach will only extract state vector from the sur-
rounding environment and in K-QL the occupancy information of terminal station is identified by platform available capacity, K-QL
will be ‘myopic’ to the trains which have not accessed the simulation yet, i.e., the dispatching decisions made in K-QL will ignore a
train that has not been dispatched at initial station and launch a train that is heading to its terminal station (same station as initial
station of the train not been dispatched) if its next single-track element links terminal station is empty. However, such a decision might
block a train that cannot depart from its initial station due to its next single-track line is occupied by other train and results in huge
delay across its service. By using a virtual big number for the initial/terminal stations, New-QL is able to avoid such train conflicts as it
distinguishes the initial and terminal stations from the intermediate ones.

5.2. Computational efficiency comparison of reinforcement learning and exact algorithm

In this section, we mainly discuss the computational time of the proposed reinforcement learning algorithm. Based on the findings
presented in this section, it can be inferred that the proposed reinforcement learning algorithm exhibits better computational efficiency
as the complexity of the problem grows, attributed to an augmented volume of trains. Moreover, the algorithm demonstrates a notable
capability to yield solutions of equivalent quality, experiencing little to no degradation when compared to exact algorithms.

Although the running efficiency may be different due to variable CPU rates of the computational unit, the computational time is
given here to benchmark typical time consumption of resolving a train rescheduling problem in the single track rail corridor in this
study. To evaluate the whole computational process of the proposed reinforcement learning algorithm including its three typical
phases, the criteria in Appendix A, the episode ID of E1, E2 and E3, are also used in this section. The same train rescheduling problem
was also tested on the same windows PC using exact algorithm. The same train rescheduling problems listed above is solved by Gurobi
(v9.2.6) interfaced with Matlab 2020b via Yalmip (R20210331). The computational times for New-QL in different phases are sum-
marized in Table 5, and the comparation of computational time between New-QL and exact algorithm is shown in Fig. 7.

In the 11-train and 21-trains cases, the exact algorithm has faster computational time. However, the reinforcement learning
approach significantly outperforms the exact method in the 30-trains case, where the exact algorithm requires longer time. This in-
dicates that the proposed reinforcement learning algorithm is more efficient in handling high-volume scenarios and offers better
scalability compared to exact methods in this train rescheduling problem.

The reason for this ‘reversed result’ on the 30-train case is that the computational complexity of reinforcement learning and an
exact algorithm increases in heterogeneous manners. In New-QL, computational complexity depends on the number of states of all the
trains shall face in a single episode, making the computational complexity is proportional to the state space of the entire train
rescheduling problem. Thus, the computational complexity increases linearly with the increase of train volume. Conversely, within
exact algorithms, being NP-hard, have complexity dependent on the number of variables and constraints, growing exponentially with
problem size. Therefore, reinforcement learning is more efficient and scalable in practice for this problem.

5.3. Knowledge reusability: learning based on prior knowledge

Reusability of prior knowledge is another feature of the proposed reinforcement learning algorithm, i.e., the Q table obtained from
previously solved train rescheduling problems (basic knowledge) can be reused and further enhanced when solving a new instance
with shorter computation time and competitive solution quality compared to solving the new instance from scratch. This is because the

Table 4
Test results of Scenario 2.

Affected area and time TAD value of K-QL TAD value of New-QL

11 trains 21 trains 30 trains 11 trains 21 trains 30 trains

Dovey Jn to Machynlleth, 7.30–9.30 87 250 723 55 123 597
Dovey Jn to Talerddig, 7.30–11.30 164 451 1524 147 385 1029
Dovey Jn to Caersws, 7.30–13.30 326 536 3158 174 432 2728

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

14

direction-based train labelling allows the reuse of the Q values learnt previously over all trains of the same direction in a new instance,
rather than only on an individual train as in the case of K-QL.

Two disturbance scenarios, R1 and R2, are considered in the tests, identifying different speed reduction rates. The reusability tests
estimated the impact by comparing the final output solution and convergence KPIs (defined in Table A-1) of the proposed algorithm

Fig. 6. Improvements (reduced TAD) of New-QL against K-QL (scenario 3).

Table 5
Computational time of proposed reinforcement learning algorithm.

Test case E1 (end of Phase 1) E2 (end of Phase 2) E3 (end of Phase 3)

11 trains case 20.4553s 22.9889s 61.5521s
21 trains case 37.6497s 43.2274s 115.0406s
30 trains case 68.6602s 76.0839s 205.8008s

Fig. 7. Computational time of reinforcement learning and exact algorithm.

Table 6
Results of experiments on knowledge reusability.

Scenario Number of trains Disturbance Prior knowledge E1 E2 E3

KT_1 21 R1 None 65 78 289
KT_2 21 R1 11 trains + R1 22 39 241
KT_3 30 R1 None 418 495 705
KT_4 30 R1 21 trains + R1 47 135 311
KT_5 30 R1 & R2 None 545 798 1051
KT_6 30 R1 & R2 30 trains + R1 81 95 296

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

15

with/without prior knowledge for solving the same problem. Table 6 shows the results of reusability tests in 6 scenarios with different
number of trains, disturbance (R1: medium weather hazard between Bow Street and Borth, with 10% speed reduction, R2: severe
weather hazard between Bow Street and Borth, with 20% speed reduction), if prior knowledge is used (if yes, based on what previously
learnt Q table).

The results indicate that using knowledge from prior instances significantly shortens the learning process, particularly in the Phase
1, where the total number of episodes for accumulating knowledge to avoid deadlocks is reduced. This is because the solutions to these
scenarios are inherently similar. For example, in scenario KT_1 to KT_4, the Q table gained from the instances with a lower train volume
(21 trains) is used to solve the instance with a higher volume (30 trains) under the same disturbance R1. The prior Q table cannot fully
present all state conditions when the traffic volume has increased. So, the episodes in Phase 1 of KT_2 and KT_4 are used to populate
extra state-action pairs to cover the new states from extra traffic volume, saving significant time compared to learning the Q table from
scratch. Similarly, in scenario KT_5 and KT_6, the prior Q table only contains knowledge under disturbance R1. However, as the related
disturbances will only impact train operations in one section rather than the whole corridor, the prior Q table can still be reused to
make decisions for trains not affected by R2, avoiding exploring all essential state-action pairs, and thus reducing the time and
computational effort of the learning process.

Furthermore, it is important to note that for the proposed reinforcement learning to be applicable in terms of knowledge reus-
ability, the infrastructure and/or the service volume should be extended in a homogenous manner. This expansion should not alter the
underlying logic of created state-action pairs within the reinforcement learning algorithm, and thus, the existing knowledge can be
reapplied to newly established scenarios. For example, let the single-track corridor extend with more stops and covers long distance,
since the physical extension of infrastructure will not change the representation of the state vector in reinforcement learning (i.e., the
length of track is not included in state vector), there is no alteration in the logical connection between the state and action results from
the extension, moreover, the operational rules remain the same with the single track corridor, and thus, the knowledge populated in
earlier cases can be fully reused without much change.

Finally, the knowledge reusability feature of reinforcement learning is highly significant and is believed to have extensive appli-
cations throughout the development lifecycle of data-driven algorithms. Here, we outline the conditions under which this knowledge
reusability property is particularly suitable.

1) Same and/or similar infrastructure topology: When dealing with rail networks that have the same or similar infrastructure
topology, such as another corridor single-track line with a few additional or fewer nodes and links, the reinforcement learning
approach can effectively handle problems with structural similarities. This allows the knowledge base to be reusable, as the learned
policies and strategies can be applied to rail infrastructure with similar topological features.

2) Same and/or similar operational rules: When the rail networks operate under the same or similar operational rules, such as
headway regulations or segment occupation constraints, reinforcement learning can leverage the pre-learned knowledge. This
enables the reusability of the trained models, as they can adapt to operational environments that follow similar rules and
constraints.

3) Largely homogenous train properties: The knowledge base is suitable for reuse when the properties of the trains are largely
homogenous, such as: same service type (i.e., local, regional and high speed services), similar services under different operators (i.
e., competitive services over same infrastructure), etc.

6. Conclusions

This research presents a novel reinforcement learning-based approach for VSTR in a single-track corridor. Q-learning is used due to
its suitability for our VSTR problem, which features simple state and action representations and prioritizes efficiency and interpret-
ability. Our proposed algorithm offers several advantages over existing reinforcement learning approaches.

1) Trains are distinguished only by their direction (up and down) in the state vector, enabling knowledge sharing of Q values among
all trains in the same direction. This significantly reduces the search space and accelerates the algorithm.

2) A tiered reward/punishment mechanism makes the search process more purposeful and enables more meaningful backward
propagation based on episode history, improving the quality of the final solution.

3) The knowledge gained from prior instances is reusable in new instances, as the Q-learning algorithm can identify similarities and
differences, focusing computational resources on the differences.

4) The knowledge reusability feature is further explored to identify potential areas in railway industry where it can shorten the al-
gorithm development lifecycle through effective reuse of previously acquired knowledge.

Experiments on the Cambria Line, a single-track corridor in the UK, used real-world and artificial timetables of varying sizes from
11 to 30 trains. We identified three phases during the learning process and defined three KPIs to measure convergence performance.
The proposed algorithm outperformed an existing algorithm in all KPIs, with an average total delay reduction of 206.8 min compared
to the benchmark reinforcement learning algorithm. Computational experiment shows that both the tiered rewarding mechanism and
direction-based train characteristic labelling contributed to the improved performance, with the latter also enabling efficient and
reliable knowledge reusability in new instances with higher traffic volumes or different disturbance scenarios.

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

16

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work is supported by the Assisted Very Short Term Planning (aVSTP) Project (Grant No.: RSSB/494204565) funded by UK Rail
Safety and Standards Board (RSSB). The first author also acknowledges the support of the Michael Beverley Innovation Fellowship at
the University of Leeds.

Appendix A. KPIs for algorithm testing and parameter tuning

In this section, we mainly discuss the impact of the parameters in the proposed reinforcement learning algorithm including the train
characteristic property Cid

τ in the state vector and the learning rate β. A common approach to evaluate the searching capability and
convergence rate of an algorithm is analyzing its convergence curve of the entire solution searching process. A typical convergence
curve of the proposed reinforcement learning algorithm is shown in Fig. A-1. The whole learning process can be divided into three
phases.

• Phase 1: At the early stage of the algorithm, almost all episodes will fail, and the Q table will first learn rules to avoid deadlock in
the corridor until it is capable of making a series of correct decisions to achieve a first feasible episode. Most of the decisions in
Phase 1 are made randomly in the exploration mode (see Equation (19)). The criteria to declare the end of Phase 1 is that the Q table
is able to make a feasible solution.

• Phase 2: The Q table will accumulate knowledge on making a series of decisions to optimize dispatching solution and try to
minimize the TAD value in each episode of Phase 2. The decisions will be chosen in both exploration mode and loyalty mode, and
the TAD of every episode of Phase 2 fluctuates frequently, until it converges to the best solution. The criteria of end of Phase 2 is that
the final optimized solution is detected, which is defined as the schedule found in the episode with the smallest TAD throughout the
entire learning process

• Phase 3: The algorithm has obtained high-quality Q values for decision-making and finally converges to optimized solutions in a
stable state. With the optimized solution being continuous detected across episodes, the decisions in an episode will be fully made
via the loyalty mode of policy function (see Equation (19)) and start making the same or similar dispatching solutions in later
episodes. The algorithm will thus be terminated when no improvement has been made for 200 episodes.

In this study, efficiency of the reinforcement learning algorithm means the algorithm can fast-converge to its final optimized so-
lution. Because the computational time of an algorithm may be different due to factors such as CPU rate, RAM capacity, etc., the
associated episode ID where the algorithm terminates (denoted as E3) is chosen as the criterion to quantify algorithm efficiency.
Additionally, to better evaluate its searching capability in different phases of the learning process, the episode IDs at the end of Phase 1
(marked as E1) and Phase 2 (marked as E2) are also considered. Furthermore, because the decisions are chosen randomly in the
exploration mode, randomness of the exploration mode of the action selection policy may significantly influent the quality of the
optimized solution. As a result, reproducibility tests of the algorithm are applied to benchmark its searching capability in Phase 1 and
Phase 2 where the percentage of episodes with the same optimized solution is recorded. These KPIs are listed in Table A-1.

Fig. A-1. Typical convergence curve of reinforcement learning algorithm

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

17

Table A-1
KPIs to evaluate Q learning algorithm

KPIs Description Expected value

E1 Episode ID where the first feasible solution is found As small as possible
E2 Episode ID where the final optimized solution is first found As small as possible
E3 Episode ID that the algorithm ends As small as possible
Reproducibility (%) The percentage of episodes where the algorithm can converge to the same optimized solution As high as possible, not lower than 95%

The tests are recurrently executed for 150 times using same scenario i.e., 21 trains representing medium train volume, 10% speed
reduction in the section between Welshpool and Newtown. We compare two strategies in characterising trains in state vector, i.e. train
ID based and train direction based. The remaining parameters were determined based on computational experiments and our empirical
knowledge, i.e., f = b = 3, γ = 0.95, ϵ = 0.5, β = 0.01,0.02,…,0.06.

The statistical results of the two groups of tests against proposed KPIs are summarized in Table A-2. The test clusters are numbered
in the format of “train characteristic property_learning rate”, and train service direction and train ID based strategies are identified by
“TD” and “ID”, respectively. e.g., TD_0.01 and ID_0.03 stand for train direction based with β = 0.01 and ID based with β = 0.03,
respectively.

Table A-2
Statistic results of test clusters in group 1 and 2

Test Cluster E1 (Avg.) E2 (Avg.) E3 (Avg.) Reproducibility (%)

Direction based
TD_0.01 109.8 123.4 330.4 96.67%
TD_0.02 56.7 65.1 278.1 93.33%
TD_0.03 39.8 46.9 295.3 79.3%
TD_0.04 32.6 37.9 282.4 72.0%
TD_0.05 27.2 31.8 276.8 68.6%
TD_0.06 23.3 27.2 268.5 65.3%
ID-based
ID_0.01 583.3 699.1 899.5 91.3%
ID_0.02 316.2 366.8 584.2 79.3%
ID_0.03 203.2 232.8 501.1 58.0%
ID_0.04 154.6 174.3 458.2 43.3%
ID_0.05 134.0 150.1 445.4 29.3%
ID_0.06 120.9 135.4 436.0 17.3%

The above results suggest that, under the same learning rate, test clusters in the train direction based group perform consistently
better than the ID based group in both convergence and reproducibility. The required number of episodes across all three learning
phases and in particular Phase 1 in the direction based group is much fewer, showing the significant advantages of our lightweight
direction based train characteristic labelling in knowledge sharing and state space reduction.

The learning rate β controls the speed that the algorithm switches between the exploration mode and loyalty mode measured by ϵ. A
higher β means faster convergence and consequently smaller numbers of episodes in Phase 1 and Phase 2. However, shortened Phase 1
and Phase 2 tend to significantly degrade the quality of optimized solution because the number of evaluated solutions is limited, that is,
the algorithm cannot fully explore the searching space, and thus reduces the reproducibility of the algorithm.

Among the tests conducted above, cluster TD_0.01 has the best performance. Hereafter, we adopt the same settings (direction based
and learning rate β = 0.01) in the remainder of the case study experiments.

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

18

Appendix B. Samples of results in Section 5.1

Fig. B-1. Sample of rescheduled timetable with medium train volume in Scenario1

Fig. B-2. Sample of rescheduled timetable with medium train volume in Scenario 2

Fig. B-3. Sample of rescheduled timetable with medium train volume in Scenario 3

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

19

Fig. B-4. Sample of rescheduled timetable with medium train volume in Scenario 4

References

Agasucci, V., Grani, G., Lamorgese, L., 2023. Solving the train dispatching problem via deep reinforcement learning. J. Rail Transp. Plan. Manag. 26, 100394. https://
doi.org/10.1016/j.jrtpm.2023.100394.

Bešinović, N., Donato, L. De, Flammini, F., Goverde, R.M.P., Lin, Z., Liu, R., Marrone, S., Nardone, R., Tang, T., Vittorini, V., 2021. Artificial intelligence in railway
transport: taxonomy, regulations and applications. IEEE Trans. Intell. Transport. Syst. 1–14. https://doi.org/10.1109/TITS.2021.3131637.

Cai, X., Goh, C.J., 1994. A fast heuristic for the train scheduling problem. Comput. Oper. Res. 21, 499–510. https://doi.org/10.1016/0305-0548(94)90099-X.
Carey, M., 1994a. Extending a train pathing model from one-way to two-way track. Transport. Res. Part B 28, 395–400. https://doi.org/10.1016/0191-2615(94)

90038-8.
Carey, M., 1994b. A model and strategy for train pathing with choice of lines, platforms, and routes. Transport. Res. Part B 28, 333–353. https://doi.org/10.1016/

0191-2615(94)90033-7.
Carey, M., Lockwood, D., 1995. A model, algorithms and strategy for train pathing. J. Oper. Res. Soc. 46, 988–1005. https://doi.org/10.2307/3009909.
Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M., 2010. A tabu search algorithm for rerouting trains during rail operations. Transp. Res. Part B Methodol. 44,

175–192. https://doi.org/10.1016/J.TRB.2009.05.004.
Cui, Y., Martin, U., Zhao, W., 2016. Calibration of disturbance parameters in railway operational simulation based on reinforcement learning. J. Rail Transp. Plan.

Manag. 6, 1–12. https://doi.org/10.1016/j.jrtpm.2016.03.001.
D’Ariano, A., Pacciarelli, D., Pranzo, M., 2007. A branch and bound algorithm for scheduling trains in a railway network. Eur. J. Oper. Res. 183, 643–657. https://doi.

org/10.1016/J.EJOR.2006.10.034.
Dong, H., Tian, Z., Spencer, J.W., Fletcher, D., Hajiabady, S., 2024. Bi-Level optimization of sizing and control strategy of hybrid energy storage system in urban rail

transit considering substation operation stability. IEEE Trans. Transp. Electrif. 1. https://doi.org/10.1109/TTE.2024.3385821.
Dong, H., Tian, Z., Spencer, J.W., Fletcher, D., Hajiabady, S., 2023. Coordinated control strategy of railway multisource traction system with energy storage and

renewable energy. IEEE Trans. Intell. Transport. Syst. 24, 15702–15713. https://doi.org/10.1109/TITS.2023.3271464.
Dündar, S., Şahin, I., 2013. Train re-scheduling with genetic algorithms and artificial neural networks for single-track railways. Transport. Res. C Emerg. Technol. 27,

1–15. https://doi.org/10.1016/J.TRC.2012.11.001.
Eaton, J., Yang, S., Gongora, M., 2017. Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling. IEEE Trans. Intell. Transport.

Syst. 18, 2980–2992. https://doi.org/10.1109/TITS.2017.2665042.
Higgins, A., Kozan, E., Ferreira, L., 1997. Heuristic techniques for single line train scheduling. J. Heuristics 3, 43–62. https://doi.org/10.1023/A:1009672832658.
Higgins, A., Kozan, E., Ferreira, L., 1996. Optimal scheduling of trains on a single line track. Transp. Res. Part B Methodol. 30, 147–161. https://doi.org/10.1016/

0191-2615(95)00022-4.
Hong, X., Meng, L., D’Ariano, A., Veelenturf, L.P., Long, S., Corman, F., 2021. Integrated optimization of capacitated train rescheduling and passenger reassignment

under disruptions. Transport. Res. C Emerg. Technol. 125, 103025. https://doi.org/10.1016/j.trc.2021.103025.
Josyula, S.P., Törnquist Krasemann, J., Lundberg, L., 2018. A parallel algorithm for train rescheduling. Transport. Res. C Emerg. Technol. 95, 545–569. https://doi.

org/10.1016/J.TRC.2018.07.003.
Jovanovic, D., Harker, P., 1991. Tactical scheduling of rail operations: the SCAN I system. Transport. Sci. 25, 46–64.
Khadilkar, H., 2019. A scalable reinforcement learning algorithm for scheduling railway lines. IEEE Trans. Intell. Transport. Syst. 20, 727–736. https://doi.org/

10.1109/TITS.2018.2829165.
Kraay, D., Harker, P.T., Chen, B., 1991. Optimal pacing of trains in freight railroads: model formulation and solution. Oper. Res. 39, 82–99.
Li, F., Sheu, J.B., Gao, Z.Y., 2014. Deadlock analysis, prevention and train optimal travel mechanism in single-track railway system. Transp. Res. Part B Methodol. 68,

385–414. https://doi.org/10.1016/J.TRB.2014.06.014.
Lin, Z., Kwan, R.S.K., 2016. A branch-and-price approach for solving the train unit scheduling problem. Transp. Res. Part B Methodol. 94, 97–120. https://doi.org/

10.1016/j.trb.2016.09.007.
Liu, J., Chen, L., Roberts, C., Nicholson, G., Ai, B., 2019. Algorithm and peer-to-peer negotiation strategies for train dispatching problems in railway bottleneck

sections. IET Intell. Transp. Syst. 13, 1717–1725. https://doi.org/10.1049/iet-its.2019.0020.
Liu, J., Liu, R., 2023. Schedule extra train(s) into existing timetable using actor-critic reinforcement learning. In: 26th IEEE International Conference on Intelligent

Transportation Systems. IEEE, Bilbao, Bizkaia, Spain.
Melnikov, L., Michele, G., Raphaelle, C., Michel, L., Nicola, S., Philippe, L., 2024. The journey toward AI-enabled railway companies. https://doi.org/10.13140/

RG.2.2.15261.32484.
Ning, L., Li, Y., Zhou, M., Song, H., Dong, H., 2019. A deep reinforcement learning approach to high-speed train timetable rescheduling under disturbances. In: 2019

IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3469–3474. https://doi.org/10.1109/ITSC.2019.8917180.
Obara, M., Kashiyama, T., Sekimoto, Y., 2018. Deep reinforcement learning approach for train rescheduling utilizing graph theory. In: 2018 IEEE International

Conference on Big Data (Big Data), pp. 4525–4533. https://doi.org/10.1109/BigData.2018.8622214.
RSSB, 2022. Assisted VSTP [WWW Document]. Br. Rail Saf. Stand. Board. URL. https://www.rssb.co.uk/research-catalogue/CatalogueItem/I01-CLR-06.

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

20

https://doi.org/10.1016/j.jrtpm.2023.100394
https://doi.org/10.1016/j.jrtpm.2023.100394
https://doi.org/10.1109/TITS.2021.3131637
https://doi.org/10.1016/0305-0548(94)90099-X
https://doi.org/10.1016/0191-2615(94)90038-8
https://doi.org/10.1016/0191-2615(94)90038-8
https://doi.org/10.1016/0191-2615(94)90033-7
https://doi.org/10.1016/0191-2615(94)90033-7
https://doi.org/10.2307/3009909
https://doi.org/10.1016/J.TRB.2009.05.004
https://doi.org/10.1016/j.jrtpm.2016.03.001
https://doi.org/10.1016/J.EJOR.2006.10.034
https://doi.org/10.1016/J.EJOR.2006.10.034
https://doi.org/10.1109/TTE.2024.3385821
https://doi.org/10.1109/TITS.2023.3271464
https://doi.org/10.1016/J.TRC.2012.11.001
https://doi.org/10.1109/TITS.2017.2665042
https://doi.org/10.1023/A:1009672832658
https://doi.org/10.1016/0191-2615(95)00022-4
https://doi.org/10.1016/0191-2615(95)00022-4
https://doi.org/10.1016/j.trc.2021.103025
https://doi.org/10.1016/J.TRC.2018.07.003
https://doi.org/10.1016/J.TRC.2018.07.003
http://refhub.elsevier.com/S2210-9706(24)00053-2/sref18
https://doi.org/10.1109/TITS.2018.2829165
https://doi.org/10.1109/TITS.2018.2829165
http://refhub.elsevier.com/S2210-9706(24)00053-2/sref20
https://doi.org/10.1016/J.TRB.2014.06.014
https://doi.org/10.1016/j.trb.2016.09.007
https://doi.org/10.1016/j.trb.2016.09.007
https://doi.org/10.1049/iet-its.2019.0020
http://refhub.elsevier.com/S2210-9706(24)00053-2/sref24
http://refhub.elsevier.com/S2210-9706(24)00053-2/sref24
https://doi.org/10.13140/RG.2.2.15261.32484
https://doi.org/10.13140/RG.2.2.15261.32484
https://doi.org/10.1109/ITSC.2019.8917180
https://doi.org/10.1109/BigData.2018.8622214
https://www.rssb.co.uk/research-catalogue/CatalogueItem/I01-CLR-06

Šemrov, D., Marsetič, R., Žura, M., Todorovski, L., Srdic, A., 2016. Reinforcement learning approach for train rescheduling on a single-track railway. Transp. Res. Part
B Methodol. 86, 250–267. https://doi.org/10.1016/j.trb.2016.01.004.

Sutton, R.S., Barto, A.G., 2018. Reinforcement Learning: an Introduction. MIT press.
Törnquist, J., Persson, J.A., 2007. N-tracked railway traffic re-scheduling during disturbances. Transp. Res. Part B Methodol. 41, 342–362. https://doi.org/10.1016/J.

TRB.2006.06.001.
Veelenturf, L.P., Potthoff, D., Huisman, D., Kroon, L.G., Maróti, G., Wagelmans, A.P.M., 2014. A quasi-robust optimization approach for crew rescheduling. Transport.

Sci. 50, 204–215. https://doi.org/10.1287/trsc.2014.0545.
Wang, M., Wang, L., Xu, X., Qin, Y., Qin, L., 2019. Genetic algorithm-based Particle swarm optimization approach to reschedule high-speed railway timetables: a case

study in China. J. Adv. Transport. 2019. https://doi.org/10.1155/2019/6090742.
Wang, Y., 2019. Incorporating Weather Impact in Railway Traffic Control. The University of Leeds.
Ying, C., Chow, A.H.F., Nguyen, H.T.M., Chin, K.-S., 2022. Multi-agent deep reinforcement learning for adaptive coordinated metro service operations with flexible

train composition. Transp. Res. Part B Methodol. 161, 36–59. https://doi.org/10.1016/J.TRB.2022.05.001.
Ying, C. shuo, Chow, A.H.F., Chin, K.S., 2020. An actor-critic deep reinforcement learning approach for metro train scheduling with rolling stock circulation under

stochastic demand. Transp. Res. Part B Methodol. 140, 210–235. https://doi.org/10.1016/J.TRB.2020.08.005.
Yue, P., Jin, Y., Dai, X., Feng, Z., Cui, D., 2024. Reinforcement learning for online dispatching policy in real-time train timetable rescheduling. IEEE Trans. Intell.

Transport. Syst. 25, 478–490. https://doi.org/10.1109/TITS.2023.3305074.
Zhan, S., Wong, S.C., Shang, P., Lo, S.M., 2022. Train rescheduling in a major disruption on a high-speed railway network with seat reservation. Transp. A Transp. Sci.

18, 532–567. https://doi.org/10.1080/23249935.2021.1877369.
Zhu, Y., Wang, H., Goverde, R.M.P., 2020. Reinforcement learning in railway timetable rescheduling. In: 2020 IEEE 23rd International Conference on Intelligent

Transportation Systems (ITSC), pp. 1–6. https://doi.org/10.1109/ITSC45102.2020.9294188.

J. Liu et al. Journal of Rail Transport Planning & Management 32 (2024) 100483

21

https://doi.org/10.1016/j.trb.2016.01.004
http://refhub.elsevier.com/S2210-9706(24)00053-2/sref30
https://doi.org/10.1016/J.TRB.2006.06.001
https://doi.org/10.1016/J.TRB.2006.06.001
https://doi.org/10.1287/trsc.2014.0545
https://doi.org/10.1155/2019/6090742
http://refhub.elsevier.com/S2210-9706(24)00053-2/sref34
https://doi.org/10.1016/J.TRB.2022.05.001
https://doi.org/10.1016/J.TRB.2020.08.005
https://doi.org/10.1109/TITS.2023.3305074
https://doi.org/10.1080/23249935.2021.1877369
https://doi.org/10.1109/ITSC45102.2020.9294188

	A reinforcement learning approach to solving very-short term train rescheduling problem for a single-track rail corridor
	1 Introduction
	2 Literature review
	3 Problem statement
	3.1 Modelling single-track railway environment and disturbance
	3.2 Mathematical formulation of VSTR

	4 Reinforcement learning algorithm for train rescheduling problem
	4.1 Q-learning agent
	4.1.1 Representation of state and state vector
	4.1.2 Action and policy function
	4.1.3 Optimization objective and tiered rewarding

	4.2 Advantages of tiered rewarding
	4.2.1 Q learning process
	4.2.2 Significance of the proposed algorithm

	4.3 Simulation approach and algorithm integration

	5 Case study
	5.1 Performance in solving train rescheduling problem
	5.2 Computational efficiency comparison of reinforcement learning and exact algorithm
	5.3 Knowledge reusability: learning based on prior knowledge

	6 Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A KPIs for algorithm testing and parameter tuning
	Appendix B Samples of results in Section 5.1
	References

