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Comparative evaluation in the wild:

Systems for the expressive rendering of music
Kyle Worrall, Zongyu Yin, and Tom Collins

Abstract—There have been many attempts to model the ability
of human musicians to take a score and perform or render
it expressively, by adding tempo, timing, loudness and articu-
lation changes to non-expressive music data. While expressive
rendering models exist in academic research, most of these
are not open source or accessible, meaning they are difficult
to evaluate empirically and have not been widely adopted in
professional music software. Systematic comparative evaluation
of such algorithms stopped after the last Performance Rendering
Contest (RENCON) in 2013, making it difficult to compare newer
models to existing work in a fair and valid way. In this paper,
we introduce the first transformer-based model for expressive
rendering, Cue-Free Express + Pedal (CFE+P), which predicts
expressive attributes such as note-wise dynamics and micro-
timing adjustments, and beat-wise tempo and sustain pedal use
based only on the start and end times and pitches of notes (e.g., in-
expressive MIDI input). We perform two comparative evaluations
on our model against a non-machine learning baseline taken from
professional music software and two open-source algorithms – a
feedforward neural network (FFNN) and hierarchical recurrent
neural network (HRNN). The results of two listening studies
indicate that our model renders passages that outperform what
can be done in professional music software such as Logic Pro
and Ableton Live.1

Impact Statement—While artificial intelligence has seen rapid
growth and development across many fields in recent years, the
adoption rate of artificially intelligent music technology remains
low. Deep learning has been utilized to generate, mix and master
music, but there has been a lack of application of expressive
rendering algorithms in the industry. In this paper we present
the first transformer-based expressive rendering model, which
uses minimal input features for the widest possible breadth of
application in music software. Our evaluations demonstrate that
our algorithm outperforms the industry standard non-machine
learning technology, which we propose should be considered the
new baseline in a field lacking systematic comparative evaluation.

Index Terms—Artificial Intelligence in art and music, Com-
puter Generated Music, Music Information Retrieval, Neural
Networks, Deep Learning.
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I. INTRODUCTION

THE art of musical performance resides in being able to

take a score – which, in addition to the notes themselves,

often includes expressive instructions or score cues regarding

the tempo, articulation, and dynamics of notes – and play it

for an audience in a manner that is deemed novel yet within

cultural and stylistic norms “creative” [66]. One could also

say that composers use score cues to indicate to performers

how to bring out the character of a piece.

Beyond score cues as directives for performers, there are

further annotations that can be added to scores in order

to describe the musical information on a deeper level, thus

improving the way they can be understood/computed. These

include but are not limited to annotations for meter, phrase

information, or musicological analyses [48], [43], [34].

Research spanning several decades has explored compu-

tational analysis and generation of expressive performances

(e.g., [64], [27], [25], [39], [6]), with more recent efforts

leveraging neural networks and deep learning [37], [38],

[67]. For instance, the VirtuosoNet [37] algorithm takes basic

score data (the notes) and additional score cues, and creates

deviations in tempo, note timing, articulation (sometimes

including pedalling), and dynamics (note velocity) that imitate

a human performance. By comparison, the Basis Mixer [6]

encodes high-level aspects of the score as a type of score

annotation (e.g., tonal tension calculations [34]) to supplement

encoded score cues (e.g., dynamic markings) and low-level

note information when rendering expressive performances.

While architectures and input features grow more complex,

however, there is a lack of standardized evaluation of expres-

sive rendering algorithms following the discontinuation of the

Performance Rendering Contest (RENCON) in 2014 [39].

Furthermore, while symbolic music generation algorithms

are adopted in professional Digital Audio Workstations

(DAWs) such as Ableton [30], [29] and Cubase [61], algo-

rithms for the expressive rendering of inexpressive music data

have yet to be integrated in DAWs. Rather, DAW users can

choose to add uniformly distributed randomized deviations to

musical parameters such as loudness and timing, to provide

variation (Logic Pro X’s “Humanize”) or create their own rule-

sets to improve upon randomness (Cubase’s logical editor).

These industry standard are generally overlooked in compar-

ative evaluations [37]–[39].

Below we introduce two transformer-based expressive ren-

dering algorithms, Cue-Free Express (CFE) and Cue-Free

Express + Pedal (CFE+P), which require only the start and end
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times and pitches of notes as input.2 While the application of

the transformer architecture to music tasks is not novel in and

of itself [36], this is the first use of an ensemble of transformers

to tackle expressive rendering.

We compare our systems to the aforementioned “Humanize”

function, which we propose should be a baseline for future

research in this area, as it is an industry standard, and does

not require any additional input beyond that found in MIDI.

Additionally, we compare our systems to two other deep

learning models – the Basis Mixer [6] and VirtuosoNet [37],

as well as real human performances [17]. While other existing

models could be compared in studies to follow, we must

consider the time that listening studies take to complete, and

we choose to be representative of the existing open-source

systems by choosing the Basis Mixer and VirtuosoNet. We

choose these models as both have been shown to perform well

in this domain, and because they utilise fundamentally dif-

ferent architectures (LSTM+FFNN and HRNN respectively).

Use of the phrase “in the wild” in our title indicates that

Basis Mixer and VirtuosoNet’s source code was not usable

for retraining the models on the same data [17], but they

could be used in their pretrained form, and so we did not

want to omit them from consideration. Due to this difference

in training data, however, the description “in the wild” is a

better characterisation than “systematic” of the comparative

evaluation we provide.

The remaining sections of this paper are structured as

follows. First, we provide a review of the literature surround-

ing music performance science (MPS), expressive rendering,

music generation, and evaluation. Second, we discuss the aims

of our machine learning approach and how the dataset is pre-

pared. Third, we introduce Cue-free Express (CFE) and Cue-

free Express + Pedal (CFE+P) . Fourth, we report the results

of two comparative listening studies using a relatively new

technique for non-parametric statistical analysis called Bayes

factor analysis (BFA) [62]. Last, we discuss our findings and

their implications, the limitations of our work, and possible

future directions for research in this area.

II. RELATED WORK

A. Music Performance Science

A plethora of research considers how musicians make deci-

sions during performances [56], [21], [50], [53], [54]. While

many factors can affect the perceived expression of a musical

performance, it is well established that musicians make their

performances expressive through the “subtle continuous shap-

ing of musical parameters such as tempo, timing, dynamics

and articulation” [8, p.1], and so research into expressive

performance focuses on these parameters [41], [65], [7].

In the area of music performance science (MPS), there are

efforts to mathematically evaluate musical expression [12] – in

particular, how performers use dynamics [42] and timing [52]

– often in order to better-model timing/micro-timing devia-

tions [58] or dynamics [60] via machine learning. Considera-

tion of this literature led us to the initial decision to model the

2Henceforth, we refer to this information as OPD, short for ontimes, pitches
(represented using MIDI note numbers – MNN), and durations.

general tempo of playing, micro-timing of note start and end

times, and dynamics (changes in loudness or velocity) in piano

playing, as these are the main factors affecting the expressive

qualities in a musical performance [8], [12].

B. Expressive Rendering

Expressive rendering entails the study or modelling of

human-like performance parameters, based on but going be-

yond information contained in a musical score. Computational

approaches go back several decades, with rule-based mod-

elling systems emerging in the late 80’s/early 90’s [59], [18].

Table I contains a reverse-chronological, non-comprehensive

but representative summary of systems used for expressive

rendering in the last 20 years: we can see that rules-based

models are among the earliest examples of research into ex-

pressive rendering [64], [4], [71] with artificial neural network

models soon following [3], [19]. This research leverages MPS

to better-inform computational modelling of human musical

expression.

Table I indicates that early computer systems for expressive

music performance (CSEMPs) are not reliant on the use of

score cues as input, focusing mainly on data that can be

extracted from notes such as ontime, pitch, and duration

(OPD). Additionally, some models supplement note-level data

with extra conditional information using score annotations.

These computational annotations are often derived from mu-

sicological rulesets, and are typically created automatically

at runtime [16], [28], [1], [6]. Alternatively, models may

incorporate a human-in-the-loop design to achieve similar

goals [32], [31].

The focus on OPD (absent score cues, sometimes including

score annotations) for use in expressive performance mod-

elling applies to most early systems such as YQX [15] and

Director Musices/KTH [4], both of which are examples of

CSEMPs that performed well at RENCON [39]. As the field

has evolved, and we move up Table I, additional input features

have been included with the aim of improving performance.

For example, human-in-the-loop CSEMPs (e.g., Pop-E [31]

and Mixtract [32]), allow users to annotate music for phrasal

information and edit articulation curves. Later machine learn-

ing models incorporate a variety of input features for the same

purpose, including: score cues (i.e., dynamic and tempo mark-

ings) [37], [15], [5]; encoded mid- and high-level features such

as metrical stress patterns [6]; or automatically added score

annotations based on musicological analyses [48], [43], [34].

As Table I indicates, the continued development of deep

learning architectures and an increased number of input fea-

tures have continued to push the boundaries. CSEMPs have

seen continued improvement using, but not limited to; graph

neural networks (GNNs) [38], hierarchical attention recurrent

neural networks (HRNNs) with conditional variational au-

toencoders (CVAEs) [37], and convolution variable recurrent

neural networks (CVRNNs) [20].

While the evaluation of CSEMPs has become non-

standardized in recent years (see Sec. II-D), many papers

include a listening study to evaluate the quality of a model’s

performance, and some evaluations are even comparative. In
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System Description Inference
input

Code Evaluation

CFE and
CFE+P (this
paper)

NN Model
with 4 or 5
transformers

OPD Yes Listening study,
metric evaluation
of distributions,
self-attention
mapping

Compose
+ Embel-
lish [67]

Generation
and
performance
modelling
with
transformer

OPD +
chord
progression
+ beat-level
info

No Listening study
& metrical
evaluation of
distinct n-grams,
beat-level info

3-layer bi-
directional
LSTM [57]

Three
LSTM
models with
128 units

beat-wise
OPD +
score cues

No Pearson co-
efficient vs
human, schemata
discussion

VirtuosoNet
[37]

RNN with
hierarchical
attention
and CVAE

OPD + score
cues

∼ Listening study,
case study
comparison,
reconstruction
loss

Graph
Neural Net-
work [38]

Graph gated
hierarchical
attention
model

OPD + score
cues

Yes Listening study,
reconstruction
loss

Seq2seq +
VIB [23]

Seq2Seq
model +
recurrent
variational
info
bottleneck

OPD +
aligned
audio

Yes Listening study,
mean square ab-
solute error, KL
divergence

Basis
Mixer [6]

Neural net-
work + lin-
ear models

OPD3+
score cues

∼ Cross validation
comparison

CVRNN [20] CVRNN
with
position
dependent
conditional
inputs

OPD +
piano roll
around
position

No Listening study

Maximum
Entropy [47]

Maximum
Entropy
model

Note metri-
cal onset

No Listening
study, con-
vergence/swing,
perceptual
validation

CaRo 2.0 [5] Interactive
rule set

OPD + score
cues + ANN

No RENCON

Linear basis
mixer [25]

Linear
regression

OPD + score
cues

No Goodness-of-
fit, analysis of
dynamics in
recording, and
predictions

Kalman Fil-
ter [28]

Switching
Kalman Fil-
ter/Gaussian

Ontime +
metrical
onset

No Listening study
(pairwise),
smoothing,
improvement

YQX [16] DBN + rules
for articula-
tion

OPD4 No RENCON

ESP [27] Hierarchical
HMMs

OPD +
ANN

Yes Listening study

KTH
Perf. Rules [4]

ANN OPD + KTH
rules

Yes RENCON

SaxEx Sys-
tem [1]

Case-based
reasoning

OPD5+
sound +
user input6

No Listening study

KTH
Perf. Rules [59]

Rule-Based OPD + KTH
rules

Yes Listening study

TABLE I
SUMMARY OF EXPRESSIVE RENDERING SYSTEMS. OPD STANDS FOR

ONTIMES, PITCHES, AND DURATIONS. ANN STANDS FOR SCORE

ANNOTATIONS.

particular, the graph gated HRNN architecture has outper-

formed the Basis Mixer and the vanilla HRNN, showing the

promise of graph gated hierarchical architectures [37]. In this

comparison, all models use similar input features, such as;

grace notes [14], dynamics markings [25], and articulation

markings [6], [26] commonly found in MusicXML files. In ad-

dition to listening studies, some research includes quantitative

analysis of the proposed model and human output, to indicate

the extent to which model output emulates characteristics of

human output [38], [37], [23], [47].

The CVRNN model [20] is an exception to the trend of the

increased utilization of score cues. Unlike the models com-

pared in [37], the CVRNN emphasizes OPD, supplementing

it by providing note-level information for all of the notes in

a seven-bar window around each note. This approach offers

enhanced phrasal context to inform predictions. This aligns

closely with the input features of the models introduced in

this paper, with our use of positional embeddings and self-

attention mirroring this phrasal-contextual information.

C. Music Generation

Beyond the scope of research focused entirely on ren-

dering expressivity onto non-expressive music data, music

generation tasks have seen similar application of machine

learning techniques, including but not limited to neural net-

works: seq2seq [45], recurrent neural networks (RNNs) [13],

and Markov chains [11] in the generation of non-expressive

symbolic musical output. In three non-peer-reviewed papers,

the transformer neural network architecture has been used

to output symbolic notes and expressive renderings of those

notes, all in one go [36], [51], [67].7 As such, these algorithms

also represent research into expressive rendering, in scenarios

where score cues are not available per se. However, the

training data itself is expressive, containing expressive tempo,

timing, and dynamic information. Large datasets have been

used to train two of these models (e.g., hundreds of hours of

piano performances transcribed from YouTube, among other

data sets), and the authors acknowledge that there may be

shortcomings with regards to the extent that the algorithms’

outputs are original.

Theoretical and empirical work attempting to address this

originality issue has found evidence to suggest that users

of these algorithms may be listening to or using output

consisting of large chunks of training data, often without

recognizing the problem. This is because the training sets are

too large for instances of copying to be identified manually

(by ear) [68], [69]. As such, without checking properly for

originality, we suggest that it might be overly ambitious to use

a transformer neural network to generate notes and expressive

1This model encodes mid-high level features of the score (i.e., tonal tension)
for improved inference [34].

2This model uses Narmour’s IR model, these are basic principles of melodic
perception, derived empirically by [48] to enhance their input.

3This model uses the generative theory of tonal music [43], Narmour’s
IR [48], and a proposed analysis (Jazz Theory) to enhance their input.

4This model supplements input with user provided qualitative values across
3 dimensions of preference; tender-aggressive, sad-joyful, calm-restless.

7This has also been termed “direct performance generation” in a peer-
reviewed contribution focusing on LSTMs [49].
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renderings of those notes all in one go.8 We see potential,

however, in using transformer neural networks to learn and

predict just those aspects of expressivity, given quantized start

and end times and pitches of notes as a reduced input, similar

to that seen in early CSEMP research [15], [4]. The benefits

of this reduced set of input features is the increased potential

for use within the domains such as DAWs and game engines,

where these algorithms have innovative potential. Furthermore,

the transformer architecture’s self-attention mechanism may

be powerful enough to compensate for the smaller number of

input features, by providing positional context to the models

understanding of notes, and potentially surpass the capabilities

of non-attention based architectures, such as RNN or LSTM.

The recent Compose & Embellish model [67] utilises two

transformers based on the Compound Word model [35]. The

first “Compose” model generates a lead melody based on a

prompt, while the second “Embellishment” model generates

an accompaniment (i.e., chords/left hand on a piano), as well

as generating deviations in timing and dynamics on the note

level for the generated content. While this utilisation of the

transformer does tackle elements of performance modelling,

it does not tackle deviations in human tempo change, nor the

use of a sustain pedal, leaving it lacking in some elements of

performance modelling that are addressed below.9

D. Evaluation

Since the discontinuation of RENCON, the evaluation of

CSEMPs has become non-standardized. Of the papers listed

in Table I, 10 including this paper use listening studies, and 10

use a variety of metric analyses (goodness-of-fit, loss, diver-

gence, etc.) to assess their models. While only 3 of the models

included in Table I were evaluated at RENCON [39], the

contest/platform enabled models using a variety of architec-

tures, datasets and input features to participate in widespread

comparative evaluation. Notable models that performed well

at RENCON include YQX [15], Director Musices [4], Pop-

E [31], Mixtract [32] and CaRo 2.0 [5].

In recent years, listening studies have been widely used

in this field, but they demonstrate a variety of methodolo-

gies [23], [20], [38], [67]. Each of these papers includes a

listening study with between 11-40 participants, however, of

these four papers, two use pairwise comparisons per piece,

where listeners pick which is better [23], [38], while two

compare all systems per piece, where metrics of composition

and performance are rated using Likert scales [20], [67]. In ad-

dition, three of these papers use ≈ 30 sec excerpts (which [38]

finds is not long enough to judge a performance). Furthermore,

none of the 4 papers uses a standardized baseline for their

8In models that rely on tokenisation, expressive data (e.g., MIDI events
where timing and velocity values are still expressive) lead to a larger dictionary
than inexpressive data (where the note ons/offs can be represented by fewer
tokens, and velocities would not be encoded at all). If two training sets
contain the same pieces, but one has expressive versions and the other
inexpressive versions, then a model trained on the expressive set is more
likely to have issues with copying chunks of training data than one trained on
the inexpressive set, since the variety in dependencies between local tokens
is lower for the scenario with the larger dictionary.

9This system’s code is not open source at the time of conducting these
experiments.

comparison; instead opting for bespoke or adapted existing

algorithms. This variety of evaluation approaches, combined

with a historic absence of open-source code, makes “system-

atic” comparison of models difficult. We propose the adoption

of the industry-standard baseline from DAWs, to establish

consistency across future listening experiments.

III. DATASET AND LEARNING AIMS

The dataset used for this paper is the Aligned Scores and

Performances (ASAP) dataset [17], which consists of 236

musical scores and 1,067 performances of these scores. All

of the pieces are Western classical music from 15 different

composers and all are written for and played on piano. Each

performance in the ASAP dataset has an associated annotation

file, which we use to calculate an performance-symbolic

beat map (PSBM) between the beat ontime in the symbolic

representation of the piece and the beat onset in seconds in

the performance. The original beat annotations for the ASAP

dataset were created automatically [explained in 17].

Our overall data processing approach and terminology is

similar to other work in the field [6], [37], [64]. From the MIDI

performance of a piece, we derive the onset in seconds that

each note begins, the duration in seconds for which it is held

(that we call durSec), and the velocity (dynamic level) of

each note. As indicated in Figure 1, for any score note (shaded

note in top panel), we can use the PSBM to estimate where

that note will begin and end in the performance (empty note

in bottom panel), and compare these to the same properties

observed in the performance (shaded note in bottom panel),

deriving the quantities d′ and d′′. Using the PSBM once more,

we can define the start- and end-time differences in units of

quarter-note beats (empty note in top panel), labeled x′ and

x′′, generally, referred to as ontimeAdj and offtimeAdj.

Based on existing MPS and observations of our first listen-

ing study, we developed models aiming to predict dynamics,

tempo, timing, and sustain pedal:

• Dynamics. Given OPD note data, predict the velocity

value of each note;

• Tempo. Given OPD note data and one existing tempo

in BPM, predict the beat-wise tempo values up to and

including the end of the note data;

• Timing. Given OPD note data, predicted velocity data

and associated beat-wise tempo values, predict the

ontimeAdj and offtimeAdj values of each note;

• Sustain pedal. Given OPD note data, predict beat-wise

pedal values (our CFE+P model only).

IV. METHOD

A. Data preparation

Before training any models, we first determine for each

performed note in ASAP whether there was a score note of

the same pitch within 0.1 sec of where we would expect

it to occur, given the PSBM. We calculate an F1 synchro-

nization score for each MIDI performance and only admit
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Fig. 1. 1. A note’s ontime is extracted from the score; 2. This is combined
with the PSBM to estimate the onset of the corresponding note in a
performance; 3. This estimated onset is compared to the actual time at
which the note is performed; 4. The difference is combined with the PSBM
again to give ontimeAdj/offtimeAdj. The values indicated in the figure
are exaggerated for sake of readability.

a performance into our dataset if its F1-score exceeds .9.10

Additionally, we applied a further filtering of notes if either

the ontimeAdj or offtimeAdj values were outside of

the range (−0.7, 0.7) sec. This gives us 247,247 notes for

training our models, and we adhere to a train:test:validate split

of 80:10:10.11

B. Architecture

The architecture for our initial CFE model consists of

an ensemble of four transformer models [63], [36] (one for

velocity, one for tempo fluctuations, one for note start-time

adjustment, and one for note end-time adjustment). This initial

model is then augmented for our second listening study, to

include a fifth transformer for predicting sustain pedal usage

10For each note in the score MIDI, we use the annotated beat locations
to derive an estimate of where that note should occur in a performance of
the piece. On searching the performance, if we find a note of the same pitch
within 0.1 sec of our estimate, then this counts as a true-positive (TP) result
(when there are multiple candidates, the one with the smallest absolute time
difference between estimated and performed time is selected); otherwise (no
note found in the performance) it counts as a false-negative (FN); if, once the
score MIDI has been iterated over, a note from the performance MIDI remains
unmatched, this counts as a false-positive (FP). The F1 synchronisation score
is then calculated in the ordinary way: F1 = 2PR/(P + R), where P =
TP/(TP + FP) and R = TP/(TP + FN).

11We note that the number of successfully synchronized notes is fewer than
the total number of notes in the ASAP dataset. We suspect that some MIDI
encodings of performances having non-standard tempos may be responsible
for synchronisation failures, but we are satisfied with the amount of data
available, and leave further investigation of this issue to future work.

(also indicated in Figure 2). We refer to this second model as

CFE+P.

In this architecture, we use the transformer encoder only,

as the predictive task is not auto-regressive, and we directly

input the conditioning features and predict the target fea-

ture, meaning there is no application of cross-attention or

causal masking. The right-hand side of Figure 2 depicts our

architecture in more detail: we have an initial embedding

layer for pitch, which converts the discretized pitches into

learnable embeddings. Subsequently, we use the remaining

input features (e.g., ontime and duration) to provide positional

information to the model, where the value or position is not

discrete. For the ontimeAdj and offtimeAdj models, we also

provide the predicted velocity values as further positional

information. These embeddings are then converted into a

vector of the same size of the initial pitch embedding, and

the summed information is passed through the transformer

encoder, which captures the dependencies and relationships

between elements in the sequence. The model’s output yt is a

certain predicted attribute (e.g., velocity) of the note at time

t, based on the given attributes xt (e.g., OPD).

The transformer architecture is chosen because the self-

attention mechanism, in combination with positional context,

gives the model the potential to understand the relationship

between tokens, within the max sequence length parameter of

the model. Our premise is that with our architecture’s focus

on using only OPD as input, our premise is that self-attention

may help it to overcome the lack of additional input features,

such as score cues (e.g., crescendo marks).

First in the inference pipeline,12 OPD are used as input

for the Dynamics model. Using these features, the model

predicts the velocity of each note in the sequence, where the

predicted attribute is an integer value of 0-31, with each value

representing four values in the range of 0-127 typically used

for velocity.

Second, the Timing model is comprized of two components:

one that predicts adjustments to the note’s quantized ontime

(ontimeAdj); and another that predicts adjustments to note’s

quantized offtime (offtimeAdj). This model takes the OPD

and predicted velocity values as input, and predicts an

ontimeAdj and offtimeAdj for each note in the sequence.

In these cases, the predicted attribute is a float representing

a micro-adjustment to quantized-start or end-time of a note,

respectively, in units of quarter notes.

Thirdly, the Tempo model analyses the OPD informa-

tion for all the notes in the piece, and calculates a set

of features per beat: note density, min ontime,

max ontime, mean ontime, min MNN, max MNN,

mean MNN, min duration, max duration, mean

duration. Using these input features, it predicts the propor-

tional change in tempo from one beat to the next. We label

this α∆t, where α = 0.25 is a weighting affecting the amount

we allow tempo to change proportionally from one beat to the

next.

With the information provided, we then calculate the new

12All of the models in this architecture make probabilistic predictions, using
categorical sampling at a temperature of 0.4.
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expressive start time x according to Eq. 1 and expressive

duration z according to Eq. 2, where O is the expected start

time and D is the expected duration according to the tempo

fluctuations, x′ and x′′ are ontimeAdj and offtimeAdj,

respectively, and β = 0.25 is a weighting affecting the amount

we allow timing variations to shift notes either side of the

underlying beat. The weights α, β were chosen via varying

these parameters and listening to the resulting outputs.

x = O + βx′ (1)

z = O +D + βx′′ − x (2)

For CFE+P, the last step involves using the same beat-level

input features employed in tempo modelling to predict the

given position of the sustain pedal at the time of each beat.

For this model, the predicted attribute is an integer within

the range of 0-3, where 0 denotes complete depression of the

pedal, and 1-3 represent varying degrees of the pedal being

raised. We do not model sustain pedal use in this project

initially, for the CFE architecture, because we do not want

our modelling efforts and results to be too confined to one

specific instrumental category (e.g., keyboard instruments with

a sustain pedal). The downside of this decision, however, is

that the software we use to turn expressive MIDI data into

audio accesses a qualitatively different sample bank when the

sustain pedal is down, and this may lead to slightly more

realistic or favorable-sounding excerpts for the VirtuosoNet

and human categories. As such, we introduce the modelling

of the sustain pedal in Listening Study 2, which comes with

a reduction in instrument agnosticism.

C. Training

We train all of the models in a supervised fashion, aiming to

minimize the loss of the predictions [38], [57]. The three note-

level transformers have a model dimension = 256, number of

heads = 4, number of layers = 6, batch size = 32, sequence

length = 255, while the beat-level transformers have a model

dimension = 64, number of heads = 4, number of layers =

3, batch size = 12, sequence length = 255. All are trained

with the Adam optimiser [40] with a learning rate = 0.0001.

Loss scores are tracked during training and the final scores are

shown in Table II. We evaluate the note-wise models using L2

loss (mean squared error, MSE), because it is appropriate for

the loss ratings to be scaled depending on the distance between

the prediction and target, rather than reporting the prediction as

equally incorrect for all values except the target. We evaluate

the beat-wise models using L1 (mean absolute error, MAE)

and Cross Entropy (CE) loss, respectively. We do this as we

feel that deviations in tempo do not need to be penalized as

strongly as those in note-wise models, and pedal prediction is

a classification task, meaning CE loss is appropriate.

D. Model Evaluation

We employ Bayes factor analysis (BFA) to analyse our

quantitative listening study results. BFA is superior to the

frequentist hypothesis testing framework (e.g., the F -test

behind an ANOVA, and t-tests) because it allows for the

Model Loss Type Loss/Error

Velocity MSE 0.650
OntimeAdj MSE 1.200
OfftimeAdj MSE 0.098

Tempo MAE 0.029
Pedal CE 0.441

TABLE II
FINAL LOSS RATINGS FOR EACH MODEL DURING TRAINING.

possibility of finding a meaningful lack of difference between

two systems being compared; in frequentist hypothesis testing,

one can only reject the null hypothesis (abbreviated H0) in

favor of the alternative hypothesis (H1), or fail to reject H0 in

favor of H1 – the latter being subtly but importantly different

from finding evidence in favor of H0 [62]. The Bayesian

hypothesis testing framework is being adopted gradually in

the comparative evaluation of systems [70], [2], with this

manuscript representing a relatively novel example of its use.

In conducting a non-parametric BFA, 20 simulations are run

for each system comparison, each providing a BF10-value (a

counterpart to the traditional p-value). The mean of these 20

results is reported for each hypothesis for Listening Study 1

(Sec. V-A3) and 2 (Sec. V-B3).

Table III shows how these values are typically interpreted in

terms of strength of evidence for H0 or H1. These coefficient

thresholds are somewhat arbitrary, similar to the α-value in

frequentist statistics, but are based on those used in previous

work [70]. The BF10 score is a likelihood ratio of the marginal

likelihood of H0 and H1, given the following equation, where

θ0 denotes the parameter of interest:

BF10 = Pr(θ0|H0) /Pr(θ0|data, H1) (3)

BF10 Interpreting

> 100 Extreme evidence for H1

30 – 100 Very strong evidence for H1

10 – 30 Strong evidence for H1

3 – 10 Moderate evidence for H1

1 – 3 Anecdotal evidence for H1

1 No evidence
1 – 0.333 Anecdotal evidence for H0

0.333 – 0.1 Moderate evidence for H0

0.1 – 0.033 Strong evidence for H0

0.033 – 0.01 Very strong evidence for H0

< 0.01 Extreme evidence for H0

TABLE III
BAYES FACTOR INTERPRETATION [70]

V. EXPERIMENTS

We assess our model’s (CFE and CFE+P) through a com-

parative evaluation of expressive renderings of music data,

taking place over two listening experiments. The first study

includes data for nine participants, and the second expanded

version of the first study includes data for 13 participants. The

experimental design, hypotheses, and results of each study are

detailed below.
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Fig. 2. The inference pipeline of Cue-free Express (CFE) and Cue-free Express + Pedal (CFE+P) models (left); and a diagram after indicating the transformer
architecture used (right).

A. Listening Study 1

1) Experimental Design: Two computational expressive

rendering algorithms (VirtuosoNet [37], our CFE model) and

two comparison points (Human Performer and Inexpressive

MIDI) are evaluated using a within-participants design involv-

ing nine pieces of music, giving rise to 36 stimuli.

Participants are undergraduate or postgraduate music stu-

dents at the University of York and the study received ethical

approval from from York Computer Science Ethics Board.

Nineteen participants completed the study and received £15
in compensation for one hour of their time. Four participants’

data are removed for completing the questions in less time than

it took to listen to all the music excerpts, and six for rating

completely inexpressive output as highly expressive (rating of

four or higher on a Likert scale of 1-7) two or more times,

leaving nine participants’ data for analysis.

The participants rate excerpts along the following di-

mensions: overall expressiveness of the performance; use

of dynamics; use of timing and articulation; use of tempo

change/rubato. A free-text box is also provided per piece for

participants to record their thoughts and reactions. Participants

are not aware of the provenance of any excerpt with respect to

underlying system. Furthermore, it is explained to participants

that the lowest ratings should be reserved for excerpts that

sound inexpressive or robotic, and the highest ratings reserved

for excerpts that sound expressive or human-like.

The nine excerpts used as stimuli for this study consist of

three Bach Fugues, two Bach Preludes, one Haydn Keyboard

Sonata, one Chopin Ballade, and two excerpts from a Schubert

Impromptu.13 These pieces represent a range of musical peri-

ods (Baroque, Classical, Romantic) and time signatures (9-8,

4-4, 3-4, 6-8). This piece selection and the test:train:validate

split happens pseudo-randomly to keep the tests fair, using a

seed for replicability. In keeping with previous comparative

evaluations of expressive rendering systems (e.g., [67], [20]),

we take matching sections from the human performance data

and the MIDI scores, and give VirtuosoNet and CFE the

necessary input (see Table I) to render the same selections.

All of the MIDI is processed using the same Steinway Piano

preset in GarageBand, and is faded in and out using the same

amounts of time within Audacity to ensure consistency. Based

on the existing literature, we opt for all excerpts to be 20-

60 sec long [due to feedback that 10-15 sec is too short a

time to assess music, 46].

2) Hypotheses: As we use a BFA for our data analysis, we

are able to state hypotheses about finding evidence in favor

13The opus numbers of the test data are as follows: Bach Fugues BVW862,
885 & 893; Bach Preludes BVW865 & 892; Chopin Ballade D47 no.3 mvt.1;
Haydn Keyboard Sonata Hob XVI nr.32 mvt.1; Schubert Impromptu D899
no.2. mvt.2
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of the null hypothesis (i.e., no difference between systems),

unlike in frequentist hypothesis testing. Our hypotheses are as

follows:

1) CFE will receive significantly higher ratings on

expressivity that the Inexpressive baseline;

2) Human Performer will receive significantly higher

ratings on tempo/rubato than VirtuosoNet;

3) Human Performer will receive significantly higher

ratings on tempo/rubato than CFE;

4) Human Performer will receive significantly higher

ratings on expressivity than VirtuosoNet;

5) Human Performer will receive significantly higher

ratings on expressivity than CFE;

3) Results: Our results can be seen in Figure 3, which

indicate that our model, CFE, was rated higher than the

inexpressive baseline MIDI system. This finding is confirmed

by the statistical analyses reported below. It is also worth

noting that across our approximately 30-sec excerpts, Virtu-

osoNet is evaluated on par with the human performers, being

almost indistinguishable across all four metrics of expressivity,

dynamics, timing and tempo. The outcomes of the BFA are as

follows:

1) Extreme evidence (BF10 > 100) that CFE receives

significantly higher ratings on expressivity than the

expressionless baseline;

2) Strong evidence (BF10 = 0.0565) that Human

Performer did not receive significantly higher ratings

on expressive tempo than VirtuosoNet;

3) Extreme evidence (BF10 > 100) that Human Performer

receives significantly higher ratings on expressive tempo

than CFE;

4) Strong evidence (BF10 = 0.0624) that Human

Performer did not receive significantly higher ratings

on expressivity than VirtuosoNet;

5) Extreme evidence (BF10 > 100) that Human Performer

receives significantly higher ratings on expressivity than

CFE;

4) Listening Study 1 Discussion: The main findings of

Listening Study 1 are that: our model (CFE) performs better

than the inexpressive baseline; and VirtuosoNet performs well

compared to Human Performer and CFE. Interesting qualita-

tive responses highlight some thoughts on: how participants

engage with listening studies based on their own performance

experience; the nature (and emphasis) of fugue subject during

performances; the use of pedal in performances being a

potential detriment (even though ratings indicate otherwise in

this case).

• “my opinion [of each audio stimuli] would have differed

had I had experience playing [the pieces the excerpts

came from]. . .I judged the ones I have played much

more critically – probably because I knew what the

score demanded”;

• “all [system’s renditions of a single piece] seem to

think the fugue’s subject has to [be] emphasized and be

dynamic”;

• “[The final performance of Schubert’s D899 no.2] is

rather muffled with too much pedal”.

B. Listening Study 2

Based on feedback received concerning Listening Study 1,

we decide to perform a second listening study which includes

two new systems. These systems are: the Basis Mixer [BM,

6], another score cue informed algorithm; and a Randomized

MIDI (RM) system (described more fully below). RM is

intended to offer a stronger baseline than Inexpressive, while

BM offers another computational model for comparison.

Furthermore, based on observations of VirtuosoNet’s perfor-

mance in Listening Study 1, we train a fifth transformer model

to generate sustain pedal predictions. We do this as, the use

of sustain pedal automation in GarageBand appears to access

qualitatively different samples on the Steinway Piano preset,

and VirtuosoNet’s incorporation of sustain pedal predictions

could be driving a larger difference in ratings between CFE

and VirtuosoNet in Listening Study 1 than would otherwise

be the case. As such, we include CFE+P in Listening Study 2,

which enables us to shed some light on this matter.

For Listening Study 2, the same musical excerpts are

used as in Listening Study 1, so the examples for CFE,

VirtuosoNet, Human Performer and Inexpressive remain the

same. We prepare additional audio stimuli for the three new

systems: CFE+P, RM, and BM. The BM system uses the

publicly available implementation that can be found “in the

wild”,14 which is trained on the Vienna 4x22 data set. This

data set is smaller than the full ASAP data set, but of a

comparable size to the amount of data that we use for our

models based on synchronisation F1 scores. The RM system is

based on code we wrote to simulate Logic Pro X’s “humanise

function” (referred to technically as MIDI Transform presets).

This is the industry standard, non-machine learning solution

that composers use when working in Logic Pro X, whereby

random, uniformly distributed numbers in a specifiable range

are added to or subtracted from the velocity, ontime, and

duration of inexpressive note data, to replicate what Logic Pro

X users would expect from “humanising” their MIDI.15 In this

case, the natural, scientific approach would be to parameterise

the RM system using the ranges observed in CFE’s output, but

an RM system parameterized in this way sounds too chaotic,

so we reduce the ranges RM used until the output sounds

less chaotic but not too metronomic or inexpressive. While

Cubase’s logical editor provides an alternative, potentially

14https://github.com/CPJKU/basismixer
15We read the documentation at https://support.apple.com/guide/logicpro/

midi-transform-window-presets-lgcp215831be/mac and studied distributions
derived from applying the MIDI Transform presets to toy examples, in order
to arrive at our findings and simulation.
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Fig. 3. Raincloud plots of our results for Listening Study 1; expressivity, dynamics, timing and tempo ratings.Jittering of data means that there may be slight
discrepencies between scores of the same value, i.e. if they sit around the same number but on either side.
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superior baseline for potential comparison, we choose to

use “humanise” as the second baseline because: our model

purposely requires only inputs seen in MIDI data and is

designed to replace this function in particular; the use of the

logical editor requires direct input from users which for the

experiment would be different depending on who is conducting

the experiment; the use of the logical editor is analogous

to how score cues and markings are potential impediments

to creative workflow when using a DAW, even if they may

increase the expressive quality of MIDI playback.

1) Experimental Design: We use the same experimental

design and recruitment methods as the previous study, and the

same exclusion criteria, but scaled up to allow for participants

listening to almost twice as many excerpts. For example, in

Listening Study 2, a participant’s data are only excluded if

they rated four or more Inexpressive stimuli higher than 4

for expressivity. This exclusion criteria meant that we excluded

data for seven of our 20 participants, leaving us with the data

of 13 participants for analysis.

2) Hypotheses: For Listening Study 2, our hypotheses are

as follows:

1) CFE will receive significantly higher ratings in

expressivity than RM;

2) CFE+P will receive significantly higher ratings in

expressivity than CFE;

3) CFE will receive significantly higher ratings in

dynamics than RM;

3) Results: Our results can be seen in Figure 4, with the

BFA results as follows:

1) Anecdotal evidence (BF10 = 0.267) that CFE did not

receive significantly higher ratings in expressivity than

RM;

2) Moderate evidence (BF10 = 4.160) that CFE+P

receives significantly higher ratings in expressivity than

CFE;

3) Strong evidence (BF10 = 0.0956) that CFE did not

receive significantly higher ratings in dynamics than

RM;

Based on the results above, we decide to conduct a post-hoc

analysis to determine if our CFE+P model rates significantly

higher than RM (since CFE did not). The results of this post-

hoc analysis show strong evidence (BF10 = 30.0) that CFE+P

receives significantly higher ratings for expressivity than RM.

C. Listening Study 2 Discussion

The results of this study indicate that our model that

includes sustain pedal prediction (CFE+P) rates higher than

BM [6], CFE (our non-pedal using model), and both the

RM and Inexpressive baselines for expressivity, dynamics and

tempo. RM is evaluated better than BM and Inexpressive

for expressivity and dynamics, but performs equally to BM

and Inexpressive for tempo. Furthermore, RM performs better

than Inexpressive, and equally to BM, CFE and CFE+P

for timing. The timing result is unexpected, considering the

random distribution of expressive values used by this system.

Additionally, as with Listening Study 1, VirtuosoNet [37] is

evaluated almost on par with Human Performer across our 30-

sec excerpts, the difference being slightly more distinguishable

than found previously (see Figure 3).

Qualitative data from free-text boxes in Listening Study 2

reveal: a participant senses that RM’s distribution of velocity

values is random and arbitrary compared to a human; longer

excerpt lengths can affect the ratings positively; pedal use

could be masking perception, making it harder to discern

expressive intent from timing mistakes.

• “Some of the [RM] performances have wide dynamic

ranges, but are not necessarily expressive as a result of

this because the louder/softer notes are clearly arbitrary”;

• “I felt as though some of these extracts were too short to

get a true measure of their expression – had these gone

on for longer, I would probably have considered some

of them to be more expressive because there would have

been more room for contrast”;

• “The midi [Inexpressive system] is far too perfect with

it’s timing, I hate it”;

• “It is quite hard to tell which is good because a lot of

them cover their mistakes with the pedal”.

VI. GENERAL DISCUSSION

How expert human performers imbue music with expres-

sion, and how computational models of expressive perfor-

mance emulate this process, are topics of interest to the

academic fields of music performance science (MPS), music-

cognitive science, and music informatics research, as well as

in multiple application domains, such as musical co-creation

with AI, and game audio. While research into the creation of

expressive rendering algorithms is ongoing, unlike music gen-

eration research, there has been no commercial application of

these algorithms in professional music making software. Fur-

thermore, while these algorithms continue to yield improving

results, the industry standard, non-machine learning solution

that is available in DAWs has not been adopted in research

to serve as a basis of comparison. This lack of a standardized

baseline makes comparative evaluation between experiments

complicated, and this issue is compounded by a lack of sys-

tematic evaluation within the field (since the discontinuation

of RENCON). Further complicating the problem is a lack of

available open-source models “in the wild.” Understandably,

these factors make it difficult to conduct fair comparison

between models, in experimental settings with high internal

validity. This is especially true when considering that many

models utilize wildly different data sets, architectures, and

require varying input features.

Not only is there an academic-scientific imperative to es-

tablish a more ecologically valid methodology for comparison

between expressive rendering algorithms in future work, but
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Fig. 4. Raincloud plots of our results for Listening Study 2; expressivity, dynamics, timing and tempo ratings. The scores are integers between 1 and 7.
Jittering of data means that there may be slight discrepencies between scores of the same value, i.e. if they sit around the same number but on either side.
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to consider the many potential applications for expressive ren-

dering algorithms, which could innovate and support creative

workflows. OPD-focused models by requiring minimal input

features, can be applied in situations where a composer is

working with piano roll in a DAW, and intends the DAW

export to represent some or all of the final expressive musical

artifact. The application of these algorithms can support cre-

ative workflows, as it can be cumbersome and an impediment

to have to draw in tempo, timing, and velocity information

for each bar/note [55], or where a tool like Cubase’s logical

editor requires the devising of rulesets by the user.

With such motivation in mind, the first algorithm we present

in this paper is called Cue-Free Express (CFE). This model

consists of an ensemble of transformer neural networks fo-

cused on tempo, timing, and dynamics, and requires only

minimal input that can be found in MIDI data for the maxi-

mum breadth of application. We pose the question of whether

this cue-free model can outperform an inexpressive baseline

(see Listening Study 1). We find that CFE does receive

significantly higher ratings for expressivity compared to the

inexpressive baseline, but it is short of the cue-based system

VirtusosoNet [37] and also the professional human performers.

We use non-parametric Bayes factor analyses to test our

hypotheses [62], which is an improvement upon frequentist

hypothesis testing (allowing for testing of meaningful non-

differences between systems), and could be of benefit in

future research. We then augment our initial architecture with

a fifth model that predicts sustain pedal use (CFE+P), and

pose the questions: can either of our models outperform the

industry standard, non-machine learning baseline; and how do

these OPD-focused models compare to existing neural network

models [6], [37]? In Listening Study 2, we find that while

our original CFE model only outperforms the inexpressive

baseline, that CFE+P outperforms the industry standard, the

inexpressive baseline, our initial CFE model, and performs

on par with the cue-informed Basis Mixer as it is found

“in the wild”. This improvement is not enough to close the

gap between our efforts and VirtuosoNet/human performers,

but provides valuable insight into the advantage of including

pedal predictions in expressive rendering pipelines. We also

provide evidence to demonstrate the potential advantages of

architectures leveraging self-attention for modelling expressive

performance tasks.

Thus we re-initiate the interesting and application-relevant

challenge of generating expressive renderings using only the

pitch and quantized start and end-times of notes as input

for prediction and compare our systems to those models that

are available for comparison “in the wild,” and the industry

standard baseline, and finish by outlining some limitations and

ideas that for future work in this domain.

A. Limitations

A limitation of this research is that there are three reasons

that the Basis Mixer may not have scored higher than CFE+P:

a lack of pedal predictions in the Basis Mixer (as it scored

similalry to CFE); the MusicXML files used for these studies

may contain fewer cues that are necessary for better prediction

of basis functions; the Vienna 4x22 dataset may not be large

enough to compete with our selection from the ASAP dataset

(even though they are approximately equal in size once we

filter for highly synchronized data).

Another limitation is that we do not manage to synchro-

nise the entire quantized-expressive representations present in

the ASAP dataset. The dataset contains separate quantized

(e.g., MusicXML and MIDI from score) and expressive (e.g.,

MIDI from human performer) representations, and then (semi-

automatically-calculated) beat annotation files that should

make it possible to bridge or synchronise the two. We find,

however, that some of these annotation files lead to predictions

of performed notes given the score notes that do not exist

within a reasonable time threshold, and so we work only

with the subset of pieces for which synchronization F1 values

are above .9. Addressing this limitation may lead to future

modelling improvements, because we would be able to work

with a larger training dataset. This also means that while a

broad range of periods, keys, and time signatures are used for

musical excerpts in our study, all the pieces do have quite

similar tempi (allegro). This means we cannot guarantee that

our findings will generalize well to more extreme tempi.

B. Future work

In conducting this research, we made initial explorations

in using Gaussian-uniform transformations during inference,

to increase the frequency with which our transformer models

predict tokens from the tails of distributions – to “take more

risks” or utilise stronger contrasts with regards to expressive

rendering decisions. This was motivated by how human per-

formers use (and listeners perceive) contrast, and take risks

such as extreme changes in dynamics or tempo change in

their performances, as opposed to making changes that can be

quantified as being drawn from near to a distribution’s mean.

As an example of “risk taking” and a final, more high-level

thought, we return to the Bach fugue (BVW 885) excerpt from

our listening studies. The fugue subject is present in the top

or soprano part at the beginning of the excerpt, and again

in the tenor or lower part towards the end of the excerpt.

The human performer emphasizes its appearance with dynamic

values that are greater than those of contemporaneous, higher-

pitches notes – which could be said to go against a general

observation of expressive performance that the highest notes

in a texture should be played louder, typically because this is

where the “melody” resides.16 This is a relatively mild risk

for a human performer to take – to go against the general

observation or rule of expressive performance and instead

adhere to a stylistically appropriate rule that the appearance

of a thematically important element or repetition occurrence

ought to be highlighted, even if it occurs in a lower voice.

Considering the dynamic values of the VirtuosoNet output,

however, we see that the occurrence is quieter than the contem-

poraneous higher notes.17 VirtuosoNet appears to have learnt

the general rule (top-of-texture notes should be played loudly)

but presumably not the rule that would be more stylistically

16This is Human 01 02 in the Supplementary Audio.
17This is VirtuosoNet 05 02 in the Supplementary Audio.
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appropriate in this scenario (emphasise thematically important

note collections). Our models also adhere to this same gener-

alized rule. Existing work on pattern discovery is far enough

advanced that repetitive elements such as fugue subjects can

be extracted automatically from a musical score [9], [10],

[24]. As such, future work may consider how such extracted

information could be integrated with a neural net approach, in

order to further advance work on expressive rendering.

C. Conclusion

In conclusion, in this paper we introduce the first

transformer-based CSEMP models, and we evidence that an

ensemble of transformers utilising self-attention and posi-

tional embeddings for tokens in a sequence can be used to

expressively render musical performance onto inexpressive

MIDI data, using only the pitch and quantized start and end

times of notes as input for prediction. Our results demonstrate

that this model can outperform both the industry standard

and inexpressive baselines, while performing on par with

an existing FFNN model. Additionally, we demonstrate that

with small edits to the pedal predictions, an existing model

(VirtuosoNet) can perform on par with human performances

over 30-sec excerpts. Furthermore, we propose, that future

research use a model based off the “Humanize” function from

Logic Pro X as the industry standard to set a precedent for

fair and valid comparison across experiments.
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