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Abstract 

Background Whether or not to progress from a pilot study to a definitive trial is often guided by pre-specified 
quantitative progression criteria with three possible outcomes. Although the choice of these progression criteria will 
help to determine the statistical properties of the pilot trial, there is a lack of research examining how they, or the pilot 
sample size, should be determined.

Methods We review three-outcome trial designs originally proposed in the phase II oncology setting and extend 
these to the case of external pilots, proposing a unified framework based on univariate hypothesis tests and the con-
trol of frequentist error rates. We apply this framework to an example and compare against a simple two-outcome 
alternative.

Results We find that three-outcome designs can be used in the pilot setting, although they are not generally more 
efficient than simpler two-outcome alternatives. We show that three-outcome designs can help allow for other 
sources of information or other stakeholders to feed into progression decisions in the event of a borderline result, 
but this will come at the cost of a larger pilot sample size than the two-outcome case. We also show that three-out-
come designs can be used to allow adjustments to be made to the intervention or trial design before commencing 
the definitive trial, providing the effect of the adjustment can be accurately predicted at the pilot design stage. An R 
package, tout, is provided to optimise progression criteria and pilot sample size.

Conclusions The proposed three-outcome framework provides a way to optimise pilot trial progression criteria 
and sample size in a way that leads to desired operating characteristics. It can be applied whether or not an adjust-
ment following the pilot trial is anticipated, but will generally lead to larger sample size requirements than simpler 
two-outcome alternatives.
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Introduction
When there is some uncertainty about the feasibility of a 
planned randomised clinical trial (RCT), an external pilot 
trial can be conducted in advance [1, 2]. External pilots 
take the form of a smaller version of the main trial [3], 

and can be used to estimate various parameters of inter-
est when deciding if (and how) to progress to the main 
study. Investing in a pilot trial can identify potential 
issues at an early stage, making a successful main trial 
more likely and reducing overall research waste [4].

Progression decisions are often guided by so-called 
progression criteria [5]. A single two-outcome progres-
sion criterion specifies a decision rule which maps the 
pilot data to a stop or go outcome. Specifically, the pilot 
data are used to calculate a statistic, typically an estimate 
of a parameter of interest, and this statistic is compared 
against a threshold value. If the statistic exceeds the 
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threshold, the suggested decision is to go forward to the 
main trial; otherwise, to stop on the grounds of infeasi-
bility. When progression criteria are specified for several 
parameters, these can be combined by proceeding to the 
main trial only if all of the estimates exceed their respec-
tive thresholds [6] or through more complex decision 
rules [7]. It has been recommended that, in addition to 
being reported in the pilot study manuscript, progression 
criteria are pre-specified at the protocol stage in agree-
ment with the study funder [8, 9].

Progression criteria are often based on a three-outcome 
‘traffic light’ system [10]. These criteria stipulate two 
threshold values for a given parameter of interest. If the 
estimate falls below the lower of these, the decision is to 
stop (red); if the estimate falls above the higher threshold, 
the decision is to proceed immediately to the main trial 
(green); and if the estimate falls between the two thresh-
olds, an intermediate decision is reached (amber). The 
specific purpose and interpretation of this intermediate 
decision can vary, and will depend on the motivation for 
using the three-outcome system. Three such motivations 
can be found in the methodological literature.

The CONSORT 2010 statement argues that basing 
strict stop/go decisions on a single threshold may lead to 
an unacceptably high chance of making the wrong deci-
sion as a result of sampling variability [5]. Allowing for 
an intermediate result between stop and go may reduce 
the probability of incorrect decisions. A second motiva-
tion stems from the fact that many aspects (quantitative 
and qualitative) being studied in a pilot trial are poten-
tially relevant to the progression decision, and that this 
decision will be jointly made by several stakeholders 
(such as the trial team, the trial steering committee, the 
funder, and patients). A three-outcome system will allow 
immediate stop or go decisions to be made if the evidence 
is sufficiently strong with respect to a handful of key 
parameters, whilst allowing, in the event of a borderline 
result, the decision to be informed by other data based 
on the differing perspectives of all decision makers. Sar-
gent et al. argued this better represents what happens in 
practice even when a two-outcome process is nominally 
being followed. In that case, although a borderline result 
will technically dictate a firm stop/go decision, this may 
be overridden in light of other information [11].

A final reason for an intermediate outcome is to 
provide the flexibility needed to make some adjust-
ment to the intervention or trial design in an attempt 
to improve the parameter in question and ensure the 
feasibility of the main trial. For example, after observ-
ing a mediocre follow-up rate in a pilot trial, the trial 
designers might consider moving from a postal follow-
up strategy to one based on contacting the participants 

over the phone. A three-outcome approach could facili-
tate this by prescribing an ‘adjustment’ decision to the 
intermediate outcome, whilst still allowing for immedi-
ate stopping or progression when obtaining ‘stop’ or ‘go’ 
outcomes.

Despite the prevalence of quantitative three-out-
come progression criteria [12], there is little statisti-
cal guidance to help researchers decide how to specify 
them. The related question of determining the pilot 
trial sample size is also undeveloped, with work in 
this area typically focusing on pilot trials where the 
primary objective is to estimate the primary outcome 
variance to inform the main trial sample size calcula-
tion. These methods are nevertheless used when this 
is not the main purpose of the pilot, often in the form 
of simple ‘rules-of-thumb’ [13–15]. Three-outcome 
designs have, however, been proposed in the setting of 
phase II trials of cancer treatments [16]. Some of these 
designs were motivated by the same factors given 
above, and so may provide a useful framework for the 
design and analysis of pilot trials with three-outcome 
progression criteria.

In this paper we consider if, and how, three-outcome 
phase II designs can be used to determine optimal 
progression criteria and sample size in pilot trials. We 
begin by introducing a simple example, before argu-
ing  that quantitative progression criteria are math-
ematically equivalent to hypothesis tests, and are best 
viewed as such. We then review relevant three-outcome 
phase II trial designs and extend these to the pilot trial 
setting. Finally, we examine the statistical properties of 
these pilot trial designs and consider whether or not 
they can help achieve any of the three motivating goals 
before concluding with a discussion.

An example
Throughout this article we will refer to a simple exam-
ple of a pilot trial assessing the probability that a par-
ticipant in the intervention arm of the main trial will 
adhere to their prescribed treatment. Specifically, we 
consider adherence to be measured as a binary out-
come and denote the probability of adherence by ρ . 
Given n patients in the pilot trial’s intervention arm, we 
then model the number of adherers using a binomial 
distribution with parameters ρ and n. We denote the 
pilot estimate by ρ̂.

We will consider both two- and three-outcome ver-
sions of progression criteria. In the two-outcome case, 
the progression decision is defined by a threshold value 
x, such that
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In the three-outcome case, we allow for an additional 
intermediate result and require two thresholds, x0 and x1:

The specific meaning of the intermediate pause result 
will vary depending on the purpose and context of the 
pilot trial.

Progression criteria as hypothesis tests
In order to apply the two-outcome progression crite-
ria of Eq.  1, we must choose the sample size n and the 
threshold x. One way to do so is though constructing a 
hypothesis test using the approach of A’Hern [17], as fol-
lows. First, we identify a parameter value ρ0 such that if 
ρ ≤ ρ0 we would like to limit the probability of incor-
rectly making a go decision (a type I error) to at most α∗ . 
Similarly, we identify ρ1 such that if ρ ≥ ρ1 we would like 
to limit the probability of incorrectly making a stop deci-
sion (a type II error) to at most β∗ . For example, we could 
choose adherence rates of ρ0 = 0.5 and ρ1 = 0.7 to repre-
sent poor and promising values respectively, and then use 
the standard choices of α∗ = 0.05,β∗ = 0.1 for our nomi-
nal error rates. We then choose values of n and x which 
minimise n whilst satisfying the type I and II error rate 
constraints

where we have used the monotonicity of power as a func-
tion of ρ to note that the type I and II error rates will be 
maximised when ρ = ρ0 and ρ = ρ1 respectively.

Alternatively, we can work backwards and take any 
given choice for n and x and calculate the resulting error 
rates for some hypotheses ρ0, ρ1 . In particular, whenever 
a pilot trial progression criteria is specified in the form of 
Eq. 1, it is mathematically equivalent to a hypothesis test. 
For example, consider a pilot trial with n = 15 partici-
pants in the intervention arm and a stop/go progression 
criteria with threshold x = 9/15 . If we suppose that the 
null and alternative hypotheses are ρ0 = 0.5, ρ1 = 0.7 , 
this design will give type I and II error rates of α = 0.28 
and β = 0.28 . If we instead constrain the error rates 
to, for example, α∗ = 0.05 and β∗ = 0.1 , the smallest 

(1)Decision =
go if ρ̂ ≥ x
stop if ρ̂ < x.

(2)Decision =







go if ρ̂ ≥ x1
pause if x0 < ρ̂ < x1
stop if ρ̂ < x0.

(3)
α = max

ρ≤ρ0
Pr[ρ̂ > x | ρ]

= Pr[ρ̂ > x | ρ = ρ0] ≤ α∗

(4)
β = max

ρ≥ρ1
Pr[ρ̂ ≤ x | ρ]

= Pr[ρ̂ ≤ x | ρ = ρ1] ≤ β∗
,

possible sample size satisfying these constraints is n = 53 
with a corresponding progression threshold is x = 32/48.

The equivalence of two-outcome progression criteria 
and hypothesis tests suggests the latter can provide a sta-
tistical framework for determining the former [6]. This 
will allow us to use hypotheses to express what param-
eter values would lead to errors of each type, and then 
subsequently to control the probability of these errors by 
choosing a sufficient sample size and associated progres-
sion threshold.

Extending three‑outcome phase II trial designs
Just as standard hypothesis testing can be used as a 
framework for two-outcome progression criteria, three-
outcome extensions of it can be used for the three-out-
come progression criteria of Eq. 2. We will consider two 
such extensions proposed for phase II trials by Sargent 
et al. [11] and by Storer [18].

The design of Sargent et  al. defines four operating 
characteristics relevant to the three-outcome setting. 
Firstly, a measure akin to the type I error rate, denoted 
αa , is defined as the probability under the null hypothesis 
ρ = ρ0 that the parameter estimate will exceed the upper 
threshold x1 and thereby lead to an incorrect go decision. 
Similarly, a type II error rate βa is given as the probability, 
under the alternative hypothesis ρ = ρ1 , of the parameter 
estimate falling below the lower threshold x0 and lead-
ing to an incorrect stop decision. Two further operating 
characteristics relating to the intermediate outcome are 
then defined: the probability of obtaining a pause deci-
sion under the null hypothesis, denoted � , and again 
under the alternative hypothesis, denoted δ . These oper-
ating characteristics are summarised in Table 1 and illus-
trated in Fig. 1. The authors propose to set constraints on 
these four operating characteristics and choose n, x0, and 
x1 to minimise n whilst satisfying these constraints. They 
argue that their designs will lead to a lower sample size 
requirement than standard two-outcome alternatives by 
reducing the probabilities of type I and II errors ( αa and 
βa ) through increasing the probabilities of pause deci-
sions ( � and δ).

An alternative three-outcome design proposed by 
Storer [18] takes the same basic approach, but with a 
different set of four operating characteristics. Here, 
the type I error rate αb is taken to be the probability of 
exceeding the lower threshold, x0 , under the null; and 
similarly the type II error rate βb is now the probability 
of failing to exceed the upper threshold under the alter-
native. The remaining two operating characteristics are 
the probabilities of incorrectly obtaining a stop or a go 
decision when the true parameter is at some midpoint 
ρm ∈ (ρ0, ρ1) . These operating characteristics, denoted 
by γL and γU respectively, reflects the motivation of this 
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design to encourage an intermediate outcome when the 
true parameter value is between the null and alternative. 
The operating characteristics are summarised in Table 1 
and illustrated in Fig. 2, where we follow the author’s sug-
gestion to set ρm = (ρ1 + ρ0)/2.

Considering the proposal of Sargent et al., we note that 
the measure αa does not fully capture the probability of 
making a type I error since a decision to progress to the 

main trial can be arrived at in two ways: directly, by obtain-
ing ρ̂ > x1 ; or indirectly, by first obtaining a pause outcome 
x0 < ρ̂ < x1 and then deciding to proceed. To capture 
these situations, we define the probabilities of making 
incorrect decisions following a pause outcome under the 
null and alternative hypotheses:

(5)η0 = Pr[decide to go | ρ = ρ0, x0 < ρ̂ ≤ x1]

Table 1 Operating characteristics for Sargent et al. and Storer’s three-outcome designs [11, 18]

Symbol Equation Description

Sargent αa Pr[ρ̂ > x1|ρ = ρ0] Probability of an immediate go decision under the null hypothesis

βa Pr[ρ̂ ≤ x0|ρ = ρ1] Probability of an immediate stop decision under the alternative hypothesis

� Pr[x0 < ρ̂ ≤ x1|ρ = ρ0] Probability of a pause decision under the null hypothesis

δ Pr[x0 < ρ̂ ≤ x1|ρ = ρ1] Probability of a pause decision under the alternative hypothesis

Storer αb Pr[ρ̂ > x0|ρ = ρ0] Probability of not obtaining an immediate stop decision under the null hypothesis

βb Pr[ρ̂ ≤ x1|ρ = ρ1] Probability of not obtaining an immediate go decision under the alternative hypothesis

γL Pr[ρ̂ ≤ x0|ρ = ρm] Probability of an immediate stop decision when ρ = ρm

γU Pr[x1 < ρ̂|ρ = ρm] Probability of an immediate go decision when ρ = ρm

Fig. 1 Graphical illustration of the operating characteristics for Sargent et al.’s three-outcome design [11]. The curves represents the sampling 
distribution of the estimate under the null hypothesis ρ = ρ0 (solid line) and the alternative hypothesis ρ = ρ1 (dashed line)

Fig. 2 Graphical illustration of the operating characteristics for Storer’s three-outcome design [18]. The curves represents the sampling 
distribution of the estimate under the null hypothesis ρ = ρ0 (solid line), the alternative hypothesis ρ = ρ1 (dashed line), and a mid point 
ρ = ρm = (ρ1 + ρ0)/2 (dotted line)
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For example, η0 is the probability of making a go deci-
sion following a pause outcome and when the true 
parameter value is ρ0 . The probability of making a go 
decision when ρ = ρ0 , then, is not αa but

Similarly, the type II error rate is

Previous authors have suggested these operating 
characteristics in the context of multi-armed screen-
ing trials [19, 20]. For simplicity we will assume that 
η0 = η1 = η ; that is, the probability of eventually mak-
ing the wrong decision following an intermediate result 
is the same when ρ = ρ0 as when ρ = ρ1 . Under this 
reformulation an optimal three-outcome design can be 
found by first estimating the probability η , setting con-
straints on the type I and II error rates α,β , and finally 
searching for the values of n, x0, x1 which minimise n 
whilst satisfying the constraints. Note that we no longer 
need to set constraints on the operating characteristics 
� and δ , as these probabilities of obtaining an interme-
diate decision under the null and alternative hypothesis 
will be automatically limited by the constraints on α 
and β (as defined in Eqs. 7 and 8) respectively.

A similar argument applies when considering Storer’s 
method, where we can replace the operating character-
istics αb,βb with α and β . As the operating character-
istics γL, γU are designed to encourage an intermediate 
outcome under ρm , rather than limit it as in the method 

of Sargent et  al., we keep these in our reformulation. 
Thus, an optimal three-outcome design under the 
reformulated Storer method can be found by estimat-
ing the probability η , setting constraints on α,β , γL and 
γU , and finally searching for the values of n, x0, x1 which 
minimise n whilst satisfying the constraints.

For simplicity, we will assume that the cost of an 
incorrect stop or go decision when ρ = ρm are the same, 
and replace the two error rates γU , γL by the single error 
rate

the probability of making an incorrect conclusive deci-
sion of either type. Note that the reformulated method 

(6)η1 = Pr[decide to stop | ρ = ρ1, x0 < ρ̂ ≤ x1].

(7)α = αa + η0�.

(8)β = βa + η1δ.

γ = γL + γU ,

of Sargent et al. is a special case of this method when we 
set the trivial constraint γ ≤ 1 , and so we have a single 
unified framework for designing and analysing three-
outcome pilot studies which don’t allow for adjustments 
to the intervention or trial design prior to the definitive 
trial.

Allowing for adjustments following a pause outcome
We now further generalise the three-outcome testing 
framework to allow for adjustments to be made follow-
ing a pause outcome. Denote the effect of this adjustment 
by τ , such that the parameter in the main trial will equal 
ρ′ = ρ if no adjustment is made and ρ′ = ρ + τ if it is. 
We will assume that the adjustment effect is known up 
to an interval τ ∈ [τmin, τmax] , and that τmin ≥ 0 . We then 
refine our definitions of the error rates α and β as

• α : the probability of proceeding to the main trial 
when ρ′ ≤ ρ0

• β : the probability of not proceeding to the main trial 
when ρ′ ≥ ρ1;

Because we can make a go decision in two ways, α is now 
the maximum probability of proceeding either directly 
or following a pause outcome (in which case the adjust-
ment is made) when this will lead to ρ′ ≤ ρ0 . As before, 
we assume there is a constant probability of mistakenly 
deciding to proceed following a pause outcome when in 
fact ρ + τ ≤ ρ0 , denoted by η . That is,

The first term is maximised at ρ = ρ0 . The second term 
can be written as

and so is maximised at ρ = ρ0 − τmin , giving

An incorrect stop decision may again occur two ways 
- directly, or following a pause outcome. The error rate β 
can therefore be written as

The first term is maximised at ρ = ρ1 , while the second 
term can be written as

α = max

[

max
ρ≤ρ0

Pr(x1 < ρ̂), max
ρ+τ≤ρ0

η Pr(x0 < ρ̂ ≤ x1)+ Pr(x1 < ρ̂)

]

.

η Pr(x0 < ρ̂ ≤ x1)+ Pr(x1 < ρ̂) = η Pr(ρ̂ ≤ x1)− η Pr(ρ̂ ≤ x0)+ 1− Pr(ρ̂ ≤ x1)

= 1+ (η − 1)Pr(ρ̂ ≤ x1)− η Pr(ρ̂ ≤ x0),

(9)

α = max
[

Pr(x1 < ρ̂ | ρ = ρ0), η Pr(x0 < ρ̂ ≤ x1 | ρ = ρ0 − τmin)

+ Pr(x1 < ρ̂ | ρ = ρ0 − τmin)
]

.

(10)
β = max

[

max
ρ>ρ1

Pr(ρ̂ ≤ x0), max
ρ+τ>ρ1

Pr(ρ̂ ≤ x0)+ η Pr(x0 < ρ̂ ≤ x1)

]

.
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which is maximised at ρ = ρ1 − τmax . Since τmax > 0 , 
then Pr(ρ̂ ≤ x0|ρ = ρ1) ≤ Pr(ρ̂ ≤ x0 | ρ = ρ1 − τmax) 
and so Eq. 10 can be simplified to

Note that the general error rates of Eqs.  9 and 11 
are valid in the special case where no adjustments are 
going to be made following a pause decision (i.e. when 
τmin = τmax = 0 ). As such, we have a general formulation 
of error rates in three-outcome designs regardless of the 
possibility of adjustment.

Implementation
To determine appropriate values for n, x0 and x1 which 
will satisfy nominal error rate constraints α∗,β∗ and 
γ ∗ , we first consider n and x1 to be fixed and such that 
Pr(ρ̂ > x1 | ρ = ρ0) ≤ α∗ . Then we set the second term 
in Eq. 9 equal to α∗ and rearrange to get

Using the inverse of ρ̂ ’s distribution function, we can then 
find the value of x0 which gives us α = α∗ (or for the case 
of a binary outcome, the x0 which maximises α whilst 
ensuring α ≤ α∗).

To choose x1 we continue to fix n and then use a 
numerical search to find the largest x1 such that x0 ≤ x1 
(with x0 determined using Eq. 12) and β ≤ β∗ . Finally, we 
can choose n by finding the smallest value such that the 
third constraint γ ≤ γ ∗ is satisfied when the correspond-
ing x1 and x0 are chosen using the above procedure.

The R package tout uses this approach to determine 
optimal three-outcome designs for the case of univari-
ate progression criteria based on a binary or continuous 
endpoint in single arm, single stage trials. See the sup-
plementary material and package documentation for full 
details and illustrations.

Evaluation
As noted in  the introduction, adding a third outcome 
to pilot trial progression criteria has been motivated on 
grounds of i) statistical efficiency; ii) the need to incorpo-
rate other information or stakeholders into progression 
decisions; and iii) the need to make modifications to the 
intervention or the trial design before commencing the 
main trial. In this section we examine to what extent the 
three-outcome design framework described in the previ-
ous section can be used to meet these goals.

η Pr(ρ̂ ≤ x1)+ (1− η)Pr(ρ̂ ≤ x0),

(11)
β = Pr(ρ̂ ≤ x0 | ρ = ρ1 − τmax)+ η Pr(x0 < ρ̂ ≤ x1 | ρ = ρ1 − τmax).

(12)Pr(ρ̂ ≤ x0) =
1

η
+

η − 1

η
Pr(ρ̂ ≤ x1)−

α∗

η
.

Statistical efficiency
Sargent et al. show that three-outcome designs based on 
the operating characteristics given in Table  1 will have 
a lower sample size than corresponding two-outcome 
designs whilst constraining the error rates αa,βa to the 
same levels, providing � and/or δ are allowed to be greater 
than 0. For example, take ρ0 = 0.5 and ρ1 = 0.7 . A two-
outcome design will require n = 53 to ensure αa ≤ 0.05 
and βa ≤ 0.1 . In contrast, by allowing � ≤ 0.1 and δ ≤ 0.1 
in a three-outcome design, we can obtain αa ≤ 0.05 and 
βa ≤ 0.1 with only n = 42 , suggesting three-outcome 
designs are indeed more efficient [11, 21]. However, this 
apparent advantage breaks down when using our  refor-
mulation. To illustrate this we found optimal sample 
sizes for this example problem over the range 0 ≤ η ≤ 0.5 
(where η denotes the probability of making an incorrect 
progression decision following a pause outcome), using 
the constraints α ≤ 0.05,β ≤ 0.2, γ ≤ 1 . We have not 
considered η > 0.5 as this represents a decision-making 
ability worse than random, in which case the optimal 
design remains the usual two-outcome design. The opti-
mal sample sizes are plotted in Fig. 3, where the discrete 
nature of sample size leads to step functions.

When η = 0.5 , in which case we can only guess at the 
correct decision following a pause outcome, the optimal 
sample size is n = 52 . Figure 3 shows that a low value of 
η is required to achieve a meaningful reduction in sample 
size. For example, for a 20% reduction from the n = 52 
two-outcome design down to n = 41 , we would require 
η = 0.2 . That is, we must be confident that following a 
pause outcome, but with a true ρ = ρi(i = 0, 1) , we will 
make the correct progression decision with a probability 
of 0.8. In the context of our simple one-parameter exam-
ple, the estimate ρ̂ is a sufficient statistic for ρ and so we 
cannot obtain any other information relevant to this par-
ticular judgement. This would lead to η = 0.5 , in which 
case the optimal three-outcome design will reduce to a 
two-outcome design.

We may expect η < 0.5 if measures of another out-
come in the trial, correlated with the outcome of interest, 
are going to inform the progression decision following 
a pause outcome. For example, patient adherence and 
retention may be correlated. If a pause outcome was 
observed when assessing adherence but retention was 
seen to be high, we might infer the true adherence rate to 
be larger than the estimate. The extent of this will depend, 
however, on the strength of the correlation, which may be 
hard to judge at the design stage.

To explore the implications of incorrectly assum-
ing η < 0.5 , we took each of the optimal designs found 
over the range 0 ≤ η ≤ 0.5 and calculated their type I 
and II error rates under a true value of η = 0.5 . These 
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error rates are plotted in Fig.  4. We find that error 
rates will be substantially inflated whenever η was 
incorrectly assumed to be small enough to lead to a 
meaningful reduction in sample size. For example, if 
we incorrectly assume η = 0.2 when in fact η = 0.5 the 
‘optimal’ design will lead to actual type I and II error 
rates of 0.094 and 0.188, rather than the nominal 0.05 
and 0.1.

Given the challenges of estimating η and the impli-
cations of doing it badly, we follow previous sugges-
tions [19, 20] that a default assumption of η = 0.5 is 
appropriate. Under this conservative assumption, 
three-outcome progression criteria will not improve 

statistical efficiency in pilot trials beyond two-out-
come alternatives.

Incorporating other information
Although three-outcome progression criteria are not 
more efficient than their two-outcome alternatives, we 
may nevertheless wish to use them to allow other infor-
mation to inform the progression decision rather then 
being ignored completely. For example, in addition to 
requiring sufficient adherence we may also want to see 
good recruitment and retention in the pilot trial. In the 
event of a pause outcome when assessing adherence, 
we could then decide to proceed to the main trial only 
if the estimated recruitment and retention rates are 

Fig. 3 Minimum required sample size for a three-outcome design as a function of η (solid line), along with the corresponding size 
of the intermediate zone x1 − x0 (dashed line)

Fig. 4 Type I (solid line) and II (dashed line) error rates of three-outcome designs, each locally optimal for an assumed η , when in fact η = 0.5
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large enough. A pause outcome could also provide an 
opportunity for discussion amongst the various stake-
holders (such as the trial team, steering committee, 
funder, and patients) to arrive at a collective decision 
on progression.

To facilitate this we can encourage the design to have 
an appropriate intermediate zone |x1 − x0| by con-
straining the operating characteristic γ = γL + γU 
defined in Table  1, thus limiting the chance of mak-
ing a conclusive stop or go decision when ρ = ρm . With 
ρ0 = 0.5, ρ1 = 0.7,α ≤ 0.05 and β ≤ 0.1 as before, we set 
ρm = (ρ1 − ρ0)/2 = 0.6 and found optimal designs for a 
range of γ ∗ while assuming throughout that η = 0.5 . The 
sample sizes of these designs are plotted in Fig. 5.

When we set γ ∗ = 1 , no intermediate zone is required 
and so the optimal design is the usual two-outcome 
design. As we decrease the nominal level on this con-
straint we permit an ever smaller probability of obtaining 
a conclusive stop or go outcome when ρ = ρm . This leads 
to an increasing width of intermediate zone |x1 − x0| , 
alongside an increasing sample size. The required 
increase in sample size beyond the two-outcome design 
can be substantial. For example, to ensure a maxi-
mum 40% chance of obtaining a conclusive result when 
ρ = ρm , we must increase the sample size from n = 52 
to n = 98 . Providing such increases in sample size are 
considered worthwhile, we conclude that three-outcome 
designs can be used in pilot trials to allow other informa-
tion and stakeholders to feed into progression decisions.

Allowing for adjustments
A final rationale for an intermediate outcome in pilot tri-
als is to enable some modifications to be made prior to 
commencing the main trial. These could be adjustments 

to the trial design (e.g. to improve recruitment) or to 
the intervention itself (e.g. to improve adherence). The 
intermediate pause outcome now leads to the decision 
to either stop or to make these modifications and then go 
to the main trial. Recall that the effect of such an adjust-
ment is denoted by τ.

Known adjustment effect
Assume that the effect of adjustment τ is known 
a priori. Considering the same problem as before 
( ρ0 = 0.5, ρ1 = 0.7,α∗ = 0.05,β∗ = 0.1, η = 0.5 ) we 
found optimal designs for a range of known adjustment 
effects spanning τ ∈ [0, 0.125] . The required sample size 
of these designs is illustrated in Fig. 6.

When adjustments have no effect ( τ = 0 ), the opti-
mal three-outcome design reduces to the usual stop/
go two-outcome design with n = 52 . As τ increases 
the required sample size increases with it exponen-
tially. For example, for τ = 0.125 we require n = 275 . 
This can be explained by looking back at our error rate 
definitions in Eqs.  9 and 11, which show that α con-
strains the term Pr(x1 < ρ̂ | ρ = ρ0) and thus places 
a lower limit on x1 ; meanwhile, β constrains the term 
Pr(ρ̂ < x0 | ρ = ρ1 − τmax) and thus forces x0 to be low-
ered as τmax increases, leading to a larger intermediate 
zone and correspondingly worse error rates.

Partially known adjustment effect
We now consider the case where the adjustment effect τ 
is known only up to an interval τ ∈ [τmin, τmax] . We con-
sidered a range of values for τmin from 0 up to 0.1 along-
side a range of interval widths τmax − τmin from 0 to 0.05. 
The resulting sample sizes are plotted in Fig. 7.

Fig. 5 Minimum required sample size for a three-outcome design as a function of γ ∗ (solid line), along with the corresponding size 
of the intermediate zone x1 − x0 (dashed line)
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We see that increasing the width of the adjust-
ment effect interval leads to an increased sample size, 
and the rate at which this happens increases with the 
lower interval limit τmin . For example, moving from 
[τmin, τmax] = [0, 0] to [0, 0.05] leads to a change in 
sample size from n = 52 to n = 93 ; while moving from 
[τmin, τmax] = [0.1, 0.1] to [0.1,  0.15] takes us from 
n = 158 to n = 620 . Figure  7 suggests that the main 
driver of sample size is the upper limit τmax , but changing 
τmin while keeping this fixed can still lead to considerable 
changes in n. From example, [τmin, τmax] = [0.05, 0.05] 
(that is, a known τ = 0.05 ) requires n = 71 while 
[τmin, τmax] = [0.01, 0.05] requires n = 87.

The case η < 0.5

In the preceding subsections we have assumed η = 0.5 . 
In the context of allowing adjustments we might argue 
that η < 0.5 is plausible because, although we may not 
be able to learn anything about ρ beyond what is pro-
vided by ρ̂ , we might learn something about the adjust-
ment effect τ during the pilot. If we can assume this will 
reduce η , this will lead to a corresponding reduction in 
sample size in a manner similar to the no-adjustment 
case discussed  previously (see supplementary mate-
rial for more details). We must bear in mind, though, 
that learning about τ can only take us so far. Even in the 
extreme case where we can learn τ exactly, the resid-
ual uncertainty about ρ will place a lower limit on our 

Fig. 6 Minimum required sample size for a three outcome design as a function of the known adjustment effect τ

Fig. 7 Minimum required sample size for a three outcome design as a function of the lower limit of the adjustment effect τmin and the width 
of the effect interval, τmax − τmin
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ability to make the correct decision following a pause 
outcome.

We conclude that three-outcome progression crite-
ria can be used to allow for adjustments, but note that 
this ability will come at the cost of an increased sample 
size. This increase can be especially large if the effect of 
adjustment may be substantial, or if there is considerable 
uncertainty about how large it is.

Discussion
We have shown how the three-outcome progression 
criteria commonly used in pilot trials can be viewed as 
three-outcome hypothesis tests, and described how 
related clinical trial designs from the phase II setting can 
be used (with some reformulation) to optimise these cri-
teria and the pilot sample size. This allowed for a formal 
comparison to be made between three- and two-outcome 
designs for pilot trials, with the latter as a special case of 
the former. We have shown that three-outcome designs 
do not improve efficiency in comparison to two-outcome 
alternatives, but that three-outcome designs can be used 
to allow for a more realistic decision-making process 
involving multiple sources of information and multi-
ple stakeholders in the event of a borderline result. We 
have also shown that three-outcome progression criteria 
can facilitate making adjustments to the intervention or 
trial design following the pilot when the effect of such an 
adjustment is known in advance. We found that there is a 
price to pay for these benefits, with three-outcome pilot 
trials needing a (sometimes considerably) larger sample 
size than two-outcome alternatives to obtain the same 
operating characteristics. This suggests that the small 
sample sizes typically seen in pilot trials [22] may be 
inadequate for their goals.

We  have quantified the impact of using three-outcome 
progression criteria through the resulting required sam-
ple size while keeping operating characteristics con-
strained. An alternative would be to fix the pilot sample 
size and examine the impact on operating characteris-
tics. For example, taking ρ0 = 0.5 and ρ1 = 0.7 as before 
and fixing n = 30 , a two-outcome design with thresh-
old x0 = x1 = 17 will give us operating characteristics of 
α = 0.18,β = 0.08, γ = 1 . Moving to a three-outcome 
design will allow us to reduce γ , but only at the expense of 
an increased α and β . For example, the design with x0 = 15 
and x1 = 20 gives α = 0.22,β = 0.21, γ = 0.35 . Although 
this type I error rate is larger than conventional constraints, 
previous authors have argued that these may be relaxed in 
the setting of phase II [23, 24] and pilot [25] trials.

In order to apply the proposed method in practice we 
need to specify null and alternative hypotheses for the 
parameter of interest and put constraints on three error 
rates. Specifying hypotheses for feasibility parameters 

like adherence rates may be challenging when compared 
to the more typical setting of assessing efficacy. Gener-
ally speaking there will be no default choice for the null of 
a feasibility parameter, as opposed to the default efficacy 
null of no difference to standard care. Moreover, the con-
cept of Minimal Clinically Important Difference, which 
often guides the choice of target difference in efficacy, 
will not apply to feasibility. It may help to begin by deter-
mining the midpoint ρm = (ρ0 + ρ1)/2 which we would 
consider a borderline value and where we would ideally 
like to obtain a pause outcome, then determine the width 
of the interval |ρ1 − ρ0| , and finally set constraints on 
error rates α and β based on the relative impact of these 
errors when defined with respect to ρ0 and ρ1 . Having 
determined these values, one can find optimal designs for 
a range of constraints on the third operating character-
istic γ as shown in Fig. 5. Alternatively, the choice of ρ0 
and ρ1 could be driven by the corresponding impact on 
any subsequent trial as measured though, for example, its 
power [7].

In addition to defining hypotheses, the proposed 
method also requires values for η0 and η1 , the probabili-
ties of making an incorrect progression decision with 
respect to the parameter ρ following a pause outcome 
under the null and alternative hypothesis respectively. 
We have argued that a default of η0 = η1 = 0.5 may be 
justified as a conservative assumption. Alternatively, we 
may anticipate a bias towards progressing from the pilot 
to the definitive trial. This could be modelled by set-
ting η0 > 0.5, η1 < 0.5 whilst constraining η0 + η1 = 1 , 
although we found this to have little impact on the opti-
mal design in our running example.

Our results have highlighted the difficulties of allow-
ing adjustments to be made following a pilot trial when 
using pre-specified progression criteria, even when the 
effect of the adjustment is known (or partially known) 
in advance. This may be an unrealistic assumption, 
since a primary goal of many pilot trials is to identify 
unforeseen problems and solutions to these. In this 
context, pre-specifying an upper threshold x1 can help 
identify cases which are feasible enough, without modi-
fication, to proceed to the main trial. In contrast, the 
lower threshold x0 appears somewhat arbitrary and 
may force inappropriate decisions. For example, if x0 
is set too high, we may be led to a stop decision (i.e. 
ρ̂ ≤ x0 ) despite believing, based on what was seen in 
the pilot, that a certain modification would lead to an 
adjusted adherence rate greater than ρ1 . When a new 
and unanticipated adjustment is proposed following 
the pilot trial, a second (and potentially internal) pilot 
may be needed to establish that it works as expected. 
Brown et al. suggested a similar strategy in the context 
of phase II drug trials, and it is in line with guidance 
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on the development and evaluation of complex inter-
ventions [26] which emphasises the iterative nature of 
the process. Alternatively, if the cost of adjustment is 
low then a two-outcome design could be used where we 
assume the modification will always be made following 
a go outcome. Note that the power of this design will 
depend on the unknown effect of adjustment τ , and a 
conservative assumption of τ = τmax would lead to 
large sample size requirements.

The underlying statistical framework considered in this 
paper is frequentist, focused on pre-specified decision 
rules chosen based on their long-run operating charac-
teristics. An alternative is to design and analyse the pilot 
trial under a Bayesian framework [27–29]. This could 
improve efficiency by allowing external information or 
expert knowledge to be incorporated into decision-mak-
ing, and would enable a more flexible approach to analy-
sis which could formally account for anticipated effects of 
adjustments based on what was seen in the pilot. Willan 
and Thabane [30] do not consider the question of opti-
mising pilot sample size, but show through an example 
how a Bayesian analysis of pilot data can help quantify 
uncertainty around feasibility parameters by producing 
posterior distributions which can be used to design the 
main trial. A Bayesian approach would also help address 
the aforementioned difficulties in specifying parameters 
(including the the probability of making correct decisions 
following a pause outcome, and the anticipated effect of 
adjustment) by allowing uncertainty regarding these to 
be expressed through prior distributions.

Our work has been motivated by external pilot trials 
assessing the feasibility of a subsequent study, but may 
be equally relevant to other settings such as phase II drug 
trials where the parameter of interest is a measure of effi-
cacy. For example, the three-outcome framework could be 
used when making post trial adjustments to improve effi-
cacy by changing eligibility criteria in an attempt to focus 
on a subgroup of patients. Although our findings should 
also broadly apply to internal pilot trials, care may be 
needed when the error rates of the final analysis may be 
affected by a formal internal pilot analysis of a correlated 
endpoint (for example, adherence). Finally, we expect 
our conclusions to carry over from the univariate setting 
considered here to the more general multivariate setting, 
where several progression criteria are applied simultane-
ously [6], although it has been shown that such multivari-
ate tests can be counter-intuitively inefficient [7].
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