
The Journal of Systems and Software 220 (2025) 112229

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Specification, validation and verification of social, legal, ethical, empathetic
and cultural requirements for autonomous agents✩

Sinem Getir Yaman a,∗, Pedro Ribeiro a, Ana Cavalcanti a, Radu Calinescu a, Colin Paterson a,
Beverley Townsend b

a Department of Computer Science, University of York, UK
b York Law School, University of York, UK

A R T I C L E I N F O

Keywords:
Autonomous agents
Social, legal, ethical, empathetic and cultural
requirements
Verification and validation
Sociotechnical systems
Formal methods

A B S T R A C T

Autonomous agents are increasingly being proposed for use in healthcare, assistive care, education, and other
applications governed by complex human-centric norms. To ensure compliance with these norms, the rules
they induce need to be unambiguously defined, checked for consistency, and used to verify the agent. In this
paper, we introduce a framework for formal specification, validation and verification of social, legal, ethical,
empathetic and cultural (SLEEC) rules for autonomous agents. Our framework comprises: (i) a language for
specifying SLEEC rules and rule defeaters (that is, circumstances in which a rule does not apply or an alternative
form of the rule is required); (ii) a formal semantics (defined in the process algebra tock-CSP) for the language;
and (iii) methods for detecting conflicts and redundancy within a set of rules, and for verifying the compliance
of an autonomous agent with such rules. We show the applicability of our framework for two autonomous
agents from different domains: a firefighter UAV, and an assistive-dressing robot.
1. Introduction

There is huge push to develop and use autonomous agents (soft-
ware and cyber–physical systems) in high-stakes applications from
health and social care, transportation, education, and other domains.
Along functional and non-functional requirements such as dependabil-
ity, performance and utility, a new class of non-functional requirements
related to social, legal, ethical, empathetic, and cultural (SLEEC) con-
cerns (Townsend et al., 2022) has become increasingly important and
challenging for these applications (Wing, 2021; Moor, 2006; Inverardi,
2022; Calinescu et al., 2019). Despite that recognised importance,
there is currently very little support for the elicitation, specification,
validation, and verification of SLEEC requirements. Existing research in
the area is promising, but only covers specific aspects of the problem.
For example, there are results on the study (Bremner et al., 2019;
Dennis et al., 2016) and verification (Dennis et al., 2015) of ethical
concerns of autonomous agents, modelling of legal requirements for
software systems (Boltz et al., 2022), and development of personalised
ethical assistant tools based on the moral choices of the user (Alfieri
et al., 2022).

In our paper, we build on this early research to provide support
for the development of autonomous agents that need to perform tasks
that raise SLEEC concerns (Townsend et al., 2022; Floridi, 2018). To

✩ Editor: Prof Neil Ernst.
∗ Corresponding author.
E-mail address: sinem.getir.yaman@york.ac.uk (S. Getir Yaman).

that end, we introduce a tool-supported SLEEC requirement specifica-
tion, consistency validation, and verification framework. It includes a
language for defining these concerns as SLEEC rules that complement
the functional and other non-functional requirements of an autonomous
agent. Our language supports the use of defeasible logic (Horty, 2012;
Zalta et al., 2005) to allow both the definition of SLEEC constraints and
the specification of conditions under which these constraints do not
apply or may need to be replaced with alternative constraints. Such
conditions are expressed in terms of additional information coming
from the environment or the agent components, and are specified
within SLEEC rules as defeaters. Our language also supports the defi-
nition of deadlines for required responses, and of alternative responses
when a deadline is missed.

As shown in Fig. 1, our approach for the specification, validation
and verification of SLEEC requirements for an autonomous agent under
development comprises three steps. In step (i), the set of SLEEC rules
for the autonomous agent are formalised in tock-CSP (Baxter et al.,
2022), a version of the communicating sequential processes (CSP)
algebra (Hoare, 1978) that can describe discrete-time properties. This
formalisation is carried out automatically, starting from rules specified
by the relevant SLEEC experts (lawyers, ethicists, psychologists, engi-
neers, etc.) in our SLEEC language. Next, in step (ii), our framework
https://doi.org/10.1016/j.jss.2024.112229
Received 2 November 2023; Received in revised form 7 September 2024; Accepted
vailable online 5 October 2024
164-1212/© 2024 The Authors. Published by Elsevier Inc. This is an open access ar
23 September 2024

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:sinem.getir.yaman@york.ac.uk
https://doi.org/10.1016/j.jss.2024.112229
https://doi.org/10.1016/j.jss.2024.112229
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112229&domain=pdf
http://creativecommons.org/licenses/by/4.0/

S. Getir Yaman et al. The Journal of Systems & Software 220 (2025) 112229
Fig. 1. SLEEC requirement specification, consistency validation, and verification framework.
performs a validation of the SLEEC ruleset consistency, to ensure that
its rules are not conflicting, and to identify any redundant rules. The
outcome of this rule consistency validation is fed back to the SLEEC
experts, enabling them to revise the SLEEC rules in order to address
any validation issues. These first two steps of the approach may need
to be repeated several times, until all validation errors are resolved.
Once a valid set of SLEEC rules is obtained, the compliance of a model
of the autonomous agent (provided by its developers) with these rules
is verified in step (iii) of the approach.

We have evaluated our framework with two case studies: a fire-
fighter uncrewed aerial vehicle (UAV) and an assistive robot applica-
tion from the healthcare domain. Their rules have been identified with
the help of lawyers and ethicists. Our models representing the agent
behaviour are also tock-CSP models, either developed by engineers with
formal modelling expertise, or generated automatically from a high-
level agent model specified in a domain-specific language for robotics,
RoboChart (Miyazawa et al., 2019). This is a diagrammatic notation
that can be used to model control software using state machines, time
primitives to capture budgets and deadlines, and a simple component
model. Since there is support to generate tock-CSP models of RoboChart
diagrams automatically, we can use these models to formally verify
designs of the autonomous agents’ software against SLEEC rules.

The main contributions of our paper include:

(1) A domain-specific language supporting the specification of
SLEEC rules for autonomous agents.

(2) The definition of a formal semantics for this language in tock-
CSP, catering for the definition of time budgets, deadlines, and
timeouts in the rules.

(3) A method for the formal validation of SLEEC specifications, to
detect conflicting and redundant rules.

(4) A method for formally verifying the compliance of a tock-CSP-
encoded agent specification or design with respect to a set of
valid SLEEC rules.

(5) End-to-end tool support for SLEEC requirements specification,
consistency validation and verification, using a combination of
software components developed by our project and the FDR
model checker (Gibson-Robinson et al., 2014).

These contributions complement our proposed SLEEC requirement
elicitation process (Townsend et al., 2022), which describes how ex-
perts can determine the informal SLEEC rules for an agent at the
start of the workflow described in Fig. 1. A preliminary presentation
of the tool support available for the framework activities (i) and (ii)
from Fig. 1 is available in our short tool paper (Getir Yaman et al.,
2023). Here, we extend the results from Getir Yaman et al. (2023)
considerably by providing for the first time: (a) a detailed description
of our domain-specific language for the specification of SLEEC rules
(Section 3); (b) the formal tock-CSP semantics for the SLEEC rules
(Section 4); (c) our formal methods for SLEEC rule validation and
verification (Section 5); and (d) a significantly expanded evaluation of
the SLEEC framework (Section 7).
2
The remainder of the paper is structured as follows. Section 2
introduces the firefighter UAV, which we use as a running example in
later sections. Section 3 presents the SLEEC language, and Section 4
defines its formal semantics. Section 5 describes our approach to con-
flict and redundancy checking, and our verification process for SLEEC
specifications. Section 7 details our evaluation, describing the tool
support provided, and the two case studies. Finally, Section 8 covers
related work, and Section 9 concludes the paper with a brief summary
and a discussion of directions for future work.

2. Running example

To illustrate the concepts, notation, methods, and application of
our SLEEC framework, we use as a running example a firefighting
UAV inspired by recent research on the use of drones to help tackle
wildfires and urban fires (Alon et al., 2021; Cervantes et al., 2018;
Innocente and Grasso, 2019). We consider that this UAV is tasked with:
(i) using a thermal camera to detect a potential fire at a warehouse;
(ii) determining the precise location of the fire (with its depth camera)
to report to a human teleoperator; and (iii) using an onboard water
spraying system to control the fire until the arrival of the fire brigade.

In addition to these functional goals, we suppose that the firefighter
UAV from our running example needs to consider SLEEC concerns
arising from its interactions with human firefighters, bystanders and
teleoperators. For example, we assume that the UAV has an alarm
which sounds when the battery is running low. However, there are
social concerns about sounding a loud alarm too close to a human. As
another example, we consider that reporting a (potential) fire involves
sending video footage of the surveyed building to teleoperators. If, how-
ever, bystanders are present in the vicinity of the building, including
them in this footage can raise legal and/or ethical privacy concerns.
We explain the UAV capabilities and the associated SLEEC concerns in
detail as we introduce our SLEEC notation and its semantics in the next
sections.

3. The SLEEC Language

Our framework supports the definition of SLEEC rules for an au-
tonomous agent by using a domain-specific language whose syntax we
co-developed with autonomous-agent stakeholders including lawyers,
ethicists, sociologists and psychologists (Townsend et al., 2022; Getir
Yaman et al., 2023). While an alternative syntax/language (e.g., one
using if-then-else constructs) could be used to express such rules,
our stakeholders strongly preferred the syntax we chose, particularly
because its constructs improve the readability of rules with multiple
defeaters over the alternatives we considered.

As shown in Fig. 2, the set of SLEEC rules for an agent is provided
in this language as a specification comprising two blocks. The first
block (an element of the syntactic category defBlock) provides defini-
tions for the functional capabilities and parameters of the agent. The
second block (ruleBlock) defines the actual SLEEC rules in terms of
those capabilities and parameters. These blocks are described next.

S. Getir Yaman et al.

t
a
e
l
t
i
f
i

The Journal of Systems & Software 220 (2025) 112229
Fig. 2. BNF syntax of the SLEEC language.
a

E
p
t

3.1. The definitions block

The definitions block (delimited by the keyword pair
def start. . .def end) comprises declarations of events and measures
that represent capabilities of the agent, and constants that represent
parameters of the agent. Events and measures correspond to interac-
tions between the agent and the environment, including any humans,
to reflect aspects of the environment that are perceptible or affected
by the agent. Measures differ from events in that they carry values,
communicated to the agent on demand. A measure corresponds to a
query whose answer is always immediately available. An event is an
atomic interaction (input or output) that happens sporadically.

A constant represents a value for some parameter of the system
configuration; its specific value may or may not be defined. If a value
is not defined, the constant represents, for instance, a parameter that
is defined at deployment time to reflect the hardware or environment
in which the system is deployed, or the preferences of its user.

Example 3.1. An example of a definition block for our firefighter UAV
is shown in Listing 1. BatteryCritical is an event that occurs when the
battery is very low. This is an abstraction for a battery sensor that
provides input to the UAV regarding its own hardware. CameraStart
represents an interaction with a teleoperator, who can turn on the cam-
era and start recording. SoundAlarm is associated with a loudspeaker
hat the UAV can use to sound an alarm. Finally, GoHome represents

navigation capability of the UAV, provided by its motors and the
mbedded software for using these motors to return the UAV to a home
ocation. In addition, the SLEEC definition block from Listing 1 defines
hree measures. The first, personNearby, communicates a boolean to
ndicate whether, using its cameras and associated vision software, the
irefighter UAV has detected the presence of a person. Whenever that
nformation is needed, the agent can use the personNearby measure to

obtain it. We declare also two measures for the temperature of the air,
and the windSpeed level. Finally, the constant ALARM DEADLINE
records a ‘‘time budget’’ for the alarm to sound. We do not give its
value in the specification, as we assume it is dependent on the actual
deployment of the UAV. □

In summary, an event can be issued by an agent; GoHome is an
example. Alternatively, an event can be a request issued by a user,
such as CameraStart, or an input from another system component,
such as BatteryCritical. Measures, on the other hand, provide to the
agent information about the state of the system. Some measures may
be known with a high degree of certainty from sensors, such as a
 t

3
def_start
event BatteryCritical
event CameraStart
event SoundAlarm
event GoHome
measure personNearby: boolean
measure temperature: numeric
measure windSpeed:

scale(light ,moderate ,strong)
constant ALARM_DEADLINE

def_end

Listing 1: Definition block for our firefighter robot.

temperature sensor or a heart-rate monitor. Others may be inferred
from indirect measures or indeed the fusion of multiple sensors. For
instance, a user’s level of distress may be inferred from heart-rate
monitors, images of the user’s facial expression, and their tone of voice.

Events, measures, and constants have a unique identifier (eventID,
measureID, and constID). By convention, we use identifiers starting
with a capital letter for events, and with a lowercase letter for measures.
For constants, we use identifiers all in capitals. A measure declaration
also defines the type of the values it communicates. The supported
types are boolean, numeric, and ordinal scales, which introduce
some literals and define an order among them. In our example, we
have scale(light,moderate, strong) with the implicit order light <
moderate < strong.

3.2. The rules block

SLEEC rules are defined in a ruleBlock (delimited by the keywords
rule start. . . rule end). A rule has an identifier (ruleID), a trigger, and
response. A trigger is an event and, optionally, a condition (i.e., a

Boolean expression) over measures (mBoolExpr); when the event in
the trigger occurs and the condition, if any, is satisfied, then the rule
specifies the required response, which defines a constraint indicating
the event(s) that must or must not occur. The Boolean expression
can include conjunctions (and), disjunctions (or), and equalities and
inequalities (relOp) over numeric and scale measures.

xample 3.2. In Listing 2, Rule1 is concerned with the privacy of
ersons near the firefighter UAV, when its camera starts recording. The
rigger of Rule1 has the event CameraStart and a condition requiring
he value of the measure personNearby to be true. The response, in

S. Getir Yaman et al.

b

r
o

p

E
h
i
e
t

g
r
s
w
c
S

a
o

E
w

U
a
a
m
T
t
f
c

e
s
o
t

4

g
a
1
t
d
e
C
t
e
d

l
o
s
f
o
c
o
h
n
a
v

4

o
a
t
i
o
t
r
1

p
U

The Journal of Systems & Software 220 (2025) 112229
rule_start
Rule1 when CameraStart and personNearby

then SoundAlarm
Rule2 when CameraStart and personNearby

then SoundAlarm within 2 seconds
Rule3 when SoundAlarm

then not GoHome within 5 minutes
Rule4 when CameraStart then SoundAlarm

unless personNearby then GoHome
unless temperature > 35

rule_end

Listing 2: Sample SLEEC rules for a firefighter UAV

Rule2_a when CameraStart and personNearby
then SoundAlarm within 2 seconds
otherwise GoHome

Listing 3: Extended version of Rule2 with otherwise construct

this case, consists of a constraint that requires SoundAlarm to occur,
to warn the person that recording is underway. □

A distinctive feature of our SLEEC language is that it can be used
to specify rules that impose time constraints: budgets (deadlines) for
responses and required alternative responses in the case of a timeout.
A time budget is specified using the within construct. The timeUnit is
provided based on the context under consideration.

Example 3.3. In Listing 2, Rule2 is a more specific variant of Rule1.
It has the same trigger as Rule1, but gives a time budget for the
response: it must happen within 2 seconds. After all, if the person is
not warned early enough, the recording might already have violated
their privacy by the time the alarm sounds. □

For situations where the response may not happen within its budget,
i.e., when there is a timeout, the otherwise construct can be used to
define an alternative response.

Example 3.4. Revisiting Rule2 from Listing 2, we may realise that
achieving SoundAlarm within 2 s is not guaranteed. The loudspeakers
may be broken, or another SLEEC rule may specify that sounding
the alarm is not a socially or ethically acceptable course of action,
e.g., because the person is too close to the UAV. In this case, an
alternative can be provided as shown in Rule2 a from Listing 3. Here,
the UAV is required to return to base (GoHome) if the alarm cannot
e sounded within 2 s. □

Thus, the otherwise construct allows us to provide a different
esponse, in the particular case of a timeout arising from the definition
f a related within.

Another form of constraint requires an event not to happen. In this
case, a time budget must be defined via the within construct to not
ermanently disable the event.

xample 3.5. Rule3 from Listing 2 is triggered when SoundAlarm
appens. In this case, for social reasons, the ‘‘output’’ event GoHome
s blocked for 5 min. It may be the case, for example, that the teleop-
rators are in the home region, and the UAV should not come close to
hem while the alarm is sounding. □

The environment in which an autonomous agent is deployed is
enerally highly complex and the assumptions that underpin SLEEC
ules may be invalid under certain conditions. To support resilience in
uch environments, we allow the use of defeasible reasoning to cope
ith scenarios leading to circumstances that outweigh or disable a

onstraint (Brunero, 2021). Defeasible reasoning is supported in our

LEEC language via chains of potentially nested unless clauses, which

4
llow normative rules to be modified in light of additional information
btained from measures.

xample 3.6. Listing 2 presents a Rule4 for constraining CameraStart
ith a view different from that in the previous rules. In Rule4, Cam-

eraStart is required to lead to SoundAlarm. We have, however, an
unless clause with a condition depending on the value of the Boolean
measure personNearby. If this measure is true, then Rule4 requires the

AV to GoHome, so as to avoid the anti-social action of sounding an
larm near a person, likely a human firefighter. This is, however, once
gain defeated by a second unless clause based on the temperature
easure. If this measure is greater than 35 ◦C, no response is required.
hat is because such a high temperature is deemed an indication that
here is a fire nearby, which trumps the legal/ethical concerns about
ilming a bystander, and the firefighter UAV is permitted to use its
amera without restrictions. □

Overall, multiple defeaters (grouped, if needed, within curly brack-
ts {…} to indicate the constraint they apply to) alongside time con-
trains and timeouts can be defined in SLEEC rules. So, the semantics
f the rules (formalised in the next section) can be rather subtle, and
he interactions between multiple rules can be unexpected.

. SLEEC semantics

This section defines the semantics of SLEEC using the process al-
ebra tock-CSP, a timed variant of CSP (Roscoe, 1998). CSP is part of
large family of notations for specifying concurrent systems (Milner,

983, 1999; Bergstra and Klop, 1985), and is distinctive in its denota-
ional semantics, giving rise to notions of refinement useful for stepwise
evelopment. A powerful model checker called FDR (Gibson-Robinson
t al., 2014) supports the validation and verification of CSP (and tock-
SP) specifications. In Section 4.1, we give a brief introduction to
ock-CSP. Section 4.2 gives an overview of our semantics, with an
xample. The detailed semantics of SLEEC triggers and responses are
escribed in Sections 4.3 and 4.4, respectively.

We note that alternative formalisms (such as variants of first-order
ogic or temporal logic) could have been used to capture the semantics
f SLEEC rules. However, tock-CSP has the major advantage of easily
upporting both (i) the validation of SLEEC rule sets (to identify con-
licting and redundant rules, see Section 5.1) and (ii) the verification
f autonomous-agent compliance with such rules (see Section 5.3). In
ontrast, other formalisms would only provide immediate support for
ne of these important activities. For instance, first-order logic could
ave been used to validate the consistency of a SLEEC ruleset, but
ot to verify autonomous-agent compliance using model checking. As
nother example, temporal logics could have been used to enable rule
erification, but not ruleset validation.

.1. Overview of tock-CSP

CSP processes specify patterns of interaction via synchronisation
n channels, taking into account (non)determinism, deadlock, livelock,
nd termination. Communications between parallel processes and with
he environment are achieved via channels. These communications are
nstantaneous, atomic CSP events, that can carry values: inputs and
utputs. The dialect tock-CSP, in addition, allows processes to specify
ime budgets and deadlines using a special CSP event called tock. It
epresents the passage of one time unit, which we assume here to be
s.

In Table 1 we summarise the tock-CSP operators that we use in this
aper. To illustrate the notation we present a tock-CSP process for a
AV firefighter’s autopilot.

S. Getir Yaman et al.

a
c
t
a
f
t

A

I

s

The Journal of Systems & Software 220 (2025) 112229
Table 1
List of tock-CSP operators, with basic processes at the top, followed by composite processes: P and Q are metavariables that stand for processes,
d for a numeric expression, e for an event, a and c for channels, x for a variable, I for a set, v for an expression, g for a condition, and X
for a set of events. For a channel c, {|c|} is a set of events; if c is a typed channel then events are constructed using the dot notation, so that
{|c|} = {|c.v0 ,… , c.vn|}, where vi ranges over the type of c.

Process Description

Skip Termination: terminates immediately
Wait(d) Delay: terminates exactly after d units of time have elapsed
e→ P Prefix operator: initially offers to engage in the event e while permitting any amount of time to

pass, and then behaves as P
a?x → P Input prefix: same as above, but offers to engage on channel a with any value, and stores the chosen

value in x
a?x ∶ I → P Restricted input prefix: same as above, but restricts the value of x to those in the set I
a!v → P Output prefix: same as above, but initially offers to engage on channel a with a value v
if g then P else Q Conditional: behaves as P if the predicate g is true, and otherwise as Q
P□Q External choice of P or Q made by the environment
P ; Q Sequence: behaves as P until it terminates successfully, and, then it behaves as Q
P ∖X Hiding: behaves like P but with all communications in the set X hidden
P ∣∣∣ Q Interleaving: P and Q run in parallel and do not interact with each other
P ∣[X]∣Q Generalised parallel: P and Q must synchronise on events that belong to the set X , with termination

occurring only when both P and Q agree to terminate
P ▵ Q Interrupt: behaves as P until an event offered by Q occurs, and then behaves as Q
P ▵d Q Strict timed interrupt: behaves as P, and, after exactly d time units behaves as Q
d ◀P Deadline for visible interaction: engages in an event of P in at most d time units
□ i ∶ I ∙P(i) Replicated external choice: offers an external choice over processes P(i) for all i in I
d
m

d
f
b

E
t
d
d
a
v
t
I
v
F
i
a
t

Example 4.1. In this example, we define a process AP to model
simple autopilot. We use events Navigate and Track to represent

apabilities of the drone to move to an area of interest (Navigate) and
hen search (Track) a fire. In AP, we specify that the autopilot first
ccepts a request to Navigate and then (→) starts Tracking. When a
ire is found, AP behaves as defined in the process FIRE . When FIRE
erminates, in sequence (;) AP recurses.

P = Navigate → Track → FIRE ; AP
FIRE = 0◀ (temperature?t →

if t > 35
then 1◀ (SoundFireAlarm→ Skip)
else Skip)

n FIRE the autopilot reads a value t using a channel temperature
(temperature?t), and then behaves as defined by a conditional. The
process with the communication temperature?t follow by the conditional
is the argument of the operator (◀) that defines a deadline, here 0,
for that process to exhibit visible behaviour. The deadline defines the
number of time units that can pass, that is, the number of tock events
that can occur, before the visible behaviour happens. With the deadline
0, we specify that the input must happen immediately: no tock events
are allowed before the communication on the channel temperature
occurs. In the conditional, if the temperature read (t) is greater than
35 Celsius, then an event SoundFireAlarm is required to happen in at
most 1 time unit (1 s here). So, SoundFireAlarm can happen before
a tock or after at most one tock. Afterwards, FIRE terminates (Skip)
immediately: no more tock events can happen. If t is less than or equal
to 35, FIRE just terminates. □

We note that the CSP event temperature corresponds to the SLEEC
measure temperature in Listing 2. The other events are not mentioned
there. In general, we can expect SLEEC rules to be concerned with
some, but not all, capabilities of an agent. Verification needs to take
that into account, as we discuss in Section 5.3.

4.2. Overview of SLEEC semantics

The semantics of a SLEEC specification as defined in Fig. 2 is
given by a function [[]]𝖲 defined in Table 2. This function maps the
pecification to a tock-CSP process, and is defined in terms of two
5
other functions, [[]]𝖣𝖲 and [[]]𝖱𝖲, which capture the semantics of the
definitions dB and rules rB of the specification. The semantic defini-
tions in Table 2 are mechanised in our SLEEC tool (Getir Yaman et al.,
2023), which automates the generation of the tock-CSP semantics of a
SLEEC specification (see Section 6).

The semantics of definitions from Fig. 2 is given by corresponding
eclarations of channels and constants representing the SLEEC events,
easures, and constants. The types boolean and numeric are given

semantics as Bool and Int. For a scale type, the semantics is a CSP
atatype that declares its literal parameters, and an associated Boolean
unction to record the order between those literals. A SLEEC constant
ecomes a CSP constant.

xample 4.2. In Fig. 3, we present the declarations for the defini-
ions in Listing 1. For each event and measure, we have a channel
eclaration. For the type of the measure windSpeed, we define a
atatype STwindSpeed and a Boolean function STlewindSpeed with
rguments v1windSpeed and v2windSpeed (of type STwindSpeed). If
1windSpeed is the first literal light, then it is guaranteed to be less
han or equal to v2windSpeed, no matter the value of v2windSpeed.
f, however v1windSpeed is moderate, then the inequality holds if
2windSpeed is not light, since it is then at least moderate as well.
inally, if v1windSpeed is strong, then the inequality holds if, and only
f, v2windSpeed is strong too. For model checking, we need to define
value for the constants. In this example, we use 3 as a time unit for

he value of ALARM DEADLINE. □

The recursive definition of [[]]𝖣𝖲 is given by two equations. For
a single definition def, the semantics is given by another function
[[]]𝖣. For a list of definitions def defS, containing a single definition
def followed by a list defS, the semantics is the sequence of CSP
declarations determined by [[𝖽𝖾𝖿]]𝖣 to capture the semantics of def,
followed by the CSP declarations defined by a recursive application of
[[]]𝖣𝖲 to defS. We do not consider the empty list of definitions, since a
SLEEC specification defines restrictions on the use of the capabilities of
the agent, and without a declaration of capabilities, there is no sensible
specification.

The equations defining [[]]𝖣 consider each form of definition sep-
arately. We assume that identifiers in SLEEC satisfy the usual lexical
restrictions adopted in CSP, so that, for example, events and measures
are represented by channels of the same name. For a constant, we

S. Getir Yaman et al.

a
t
[

o

The Journal of Systems & Software 220 (2025) 112229
Table 2
Rules that define a tock-CSP semantics for SLEEC. We use the following metavariables in the definitions of
the rules: 𝖽𝖾𝖿 as a metavariable to stand for an element of the syntactic category 𝖽𝖾𝖿 𝗂𝗇𝗂𝗍𝗂𝗈𝗇𝗌, 𝖽𝖾𝖿𝖲 to stand
for an element of 𝖽𝖾𝖿 𝗂𝗇𝗂𝗍𝗂𝗈𝗇𝗌, 𝖾𝖨𝖣 for an 𝖾𝗏𝖾𝗇𝗍𝖨𝖣, 𝗆𝖨𝖣 for a 𝗆𝖾𝖺𝗌𝗎𝗋𝖾𝖨𝖣, 𝖳 for a 𝗍𝗒𝗉𝖾, 𝖼𝖨𝖣 for a 𝖼𝗈𝗇𝗌𝗍𝖨𝖣, 𝗏 for
a 𝗏𝖺𝗅𝗎𝖾, 𝗌𝗉 and subscripted counterparts for a 𝗌𝖼𝖺𝗅𝖾𝖯𝖺𝗋𝖺𝗆𝗌, 𝗋 for a 𝗋𝗎𝗅𝖾, 𝗋𝗋𝖲 for an element of 𝗋𝗎𝗅𝖾𝗌, 𝗋𝖨𝖣 for a
𝗋𝗎𝗅𝖾𝖨𝖣, 𝗍𝗋𝗂𝗀 for a 𝗍𝗋𝗂𝗀𝗀𝖾𝗋, and finally 𝗋𝖾𝗌𝗉 for a 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾. These metavariables are also used in rules in Tables 3
and 4.

[[def start 𝖽𝖡 def end rule start 𝗋𝖡 rule end]]𝖲 = [[𝖽𝖡]]𝖣𝖲 [[𝗋𝖡]]𝖱𝖲

[[𝖽𝖾𝖿]]𝖣𝖲 = [[𝖽𝖾𝖿]]𝖣
[[𝖽𝖾𝖿 𝖽𝖾𝖿𝖲]]𝖣𝖲 = [[𝖽𝖾𝖿]]𝖣 [[𝖽𝖾𝖿𝖲]]𝖣𝖲
[[event 𝖾𝖨𝖣]]𝖣 = channel 𝖾𝖨𝖣
[[measure 𝗆𝖨𝖣 ∶ 𝖳]]𝖣 = channel𝗆𝖨𝖣 ∶ [[𝖳,𝗆𝖨𝖣]]𝖳
[[constant 𝖼𝖨𝖣 = 𝗏]]𝖣 = 𝖼𝖨𝖣 = 𝗏

[[boolean,𝗆𝖨𝖣]]𝖳 = Bool
[[numeric,𝗆𝖨𝖣]]𝖳 = Int
[[scale(𝗌𝗉𝟣 ,… , 𝗌𝗉𝗇),𝗆𝖨𝖣]]𝖳 = ST𝗆𝖨𝖣

datatype ST𝗆𝖨𝖣 = 𝗌𝗉𝟣 ∣ … ∣ 𝗌𝗉𝗇
STle𝗆𝖨𝖣(v1𝗆𝖨𝖣, v2𝗆𝖨𝖣) =

if v1𝗆𝖨𝖣 == 𝗌𝗉𝟣 then true
else (if v1𝗆𝖨𝖣 == 𝗌𝗉𝟤 then v2𝗆𝖨𝖣 ∉ {𝗌𝗉𝟣}

else …
else v2𝗆𝖨𝖣 == 𝗌𝗉𝗇)

[[𝗋]]𝖱𝖲 = [[𝗋]]𝖱
[[𝗋 𝗋𝖲]]𝖱𝖲 = [[𝗋]]𝖱 [[𝗋𝖲]]𝖱𝖲
[[𝗋𝖨𝖣when 𝗍𝗋𝗂𝗀 then 𝗋𝖾𝗌𝗉]]𝖱 = 𝗋𝖨𝖣 = Trigger𝗋𝖨𝖣 ; Monitoring 𝗋𝖨𝖣 ; 𝗋𝖨𝖣

Trigger𝗋𝖨𝖣 = [[𝗍𝗋𝗂𝗀, 𝛼𝖤(𝗋𝖾𝗌𝗉), Skip,Trigger𝗋𝖨𝖣]]𝖳𝖦
Monitoring 𝗋𝖨𝖣 = [[𝗋𝖾𝗌𝗉]]𝖱𝖣𝖲
t
c

Fig. 3. CSP declarations for the definitions in Listing 1.

ssume that a value is given to enable model checking. The type used in
he declaration of a measure channel is given by the semantic function
[]]𝖳 whose arguments are the type T and the identifier mID of the
measure. The equations defining [[]]𝖳 for boolean and numeric are
straightforward. For a scale type, we use the name of the measure in
defining the corresponding CSP type declarations.

For simplicity, we use an informal notation to represent a scale type
with n parameters sp1 to spn, namely, scale(𝗌𝗉1,… , 𝗌𝗉𝗇). The definition
of a formal generative function for the semantics of a measure with
such a type is, however, straightforward. The name of the datatype
defined is that of the measure, that is, the argument mID, prefixed
with ST . The name of the Boolean function that defines its order is
prefixed with STle instead. The recursive definition of the semantic
function [[]]𝖱𝖲 for a list of rules is similar to that of [[]]𝖣𝖲, but is based
n the semantic function [[]] for a rule. The semantics of each rule
𝖱 𝛼

6
Fig. 4. Semantics of Rule2 in Listing 2.

is given by a process, named after that rule, and defined using two
processes that capture the meaning of its trigger and of its response.
The process for every rule is defined by composing in sequence a Trigger
and a Monitoring process. This reflects the fact that a rule imposes no
constraints until its trigger is observed. At that point, it monitors (that
is, determines) the allowed behaviour to enforce the response.

Example 4.3. For Rule2 in Listing 2, the CSP process that defines
its semantics is shown in Fig. 4. The behaviour of the process Rule2
is initially defined by that of TriggerRule2. When the trigger of Rule2
is observed, TriggerRule2 terminates (via the Skip from the condi-
tional statement), and the process MonitoringRule2 takes over. When the
response happens, MonitoringRule2 terminates and Rule2 recurses. □

In Table 2, the definition of [[]]𝖱 uses the identifier 𝗋𝖨𝖣 of the rule
to assemble the identifiers of the Trigger and Monitoring processes. The
definition of the Trigger process is given by the semantic function [[]]𝖳𝖦
whose arguments are the trigger of the rule, the alphabet of events,
hat is, the set of all events used in the response of the rule, and two
ontinuation processes. The alphabet of events is given by the function
(𝗋𝖾𝗌𝗉). The first continuation process determines the behaviour when
𝖤

S. Getir Yaman et al.

T
T

a
t
h
o
t

p
d
n

d

m

⟨

d
u
t
c

o
i
t

The Journal of Systems & Software 220 (2025) 112229
Table 3
Rules that define a tock-CSP semantics for SLEEC triggers. Additional metavariables used
here are as follows: 𝖠𝖱 for an alphabet (set) of events, 𝗌𝗉 and 𝖿𝗉 for tock-CSP processes,
𝗆𝖡𝖤 for an 𝗆𝖡𝗈𝗈𝗅𝖤𝗑𝗉𝗋, and 𝖬𝖨𝖣𝗌 for a list of 𝗆𝖾𝖺𝗌𝗎𝗋𝖾𝖨𝖣 elements.

[[𝖾𝖨𝖣,𝖠𝖱, 𝗌𝗉, 𝖿𝗉]]𝖳𝖦 = 𝖾𝖨𝖣 → 𝗌𝗉□ (□ 𝖾 ∶ 𝖠𝖱 ∙ 𝖾 → 𝖿𝗉)
[[𝖾𝖨𝖣and 𝗆𝖡𝖤,𝖠𝖱, 𝗌𝗉, 𝖿𝗉]]𝖳𝖦 = let MTrigger = [[𝛼𝖬𝖤(𝗆𝖡𝖤),𝗆𝖡𝖤, 𝗌𝗉, 𝖿𝗉]]𝖬𝖤

within 𝖾𝖨𝖣 → MTrigger □ (□ 𝖾 ∶ 𝖠𝖱 ∙ 𝖾 → 𝖿𝗉)
[[⟨⟩,𝗆𝖡𝖤, 𝗌𝗉, 𝖿𝗉]]𝖬𝖤 = if 𝗇𝗈𝗋𝗆(𝗆𝖡𝖤) then 𝗌𝗉 else 𝖿𝗉

[[⟨𝗆𝖨𝖣⟩ ⌢ 𝗆𝖨𝖣𝗌,𝗆𝖡𝖤, 𝗌𝗉, 𝖿𝗉]]𝖬𝖤 = 0◀ (𝗆𝖨𝖣?v𝗆𝖨𝖣 → [[𝗆𝖨𝖣𝗌,𝗆𝖡𝖤[v𝗆𝖨𝖣∕𝗆𝖨𝖣], 𝗌𝗉, 𝖿𝗉]]𝖬𝖤)
j
s
j

r
t
p

u
𝗇

the trigger happens. In the definition of [[]]𝖱, this is Skip, since the
Trigger process must terminate in this case. The second continuation
process determines the behaviour if the event of the trigger takes place,
but its condition does not hold. In the definition of [[]]𝖱, this is the
rigger process itself, since in this case the Trigger process must recurse.
o define the Monitoring process, we use the semantic function [[]]𝖱𝖣𝖲.

Its argument is the response that is to be monitored.
We define [[]]𝖳𝖦 next, and [[]]𝖱𝖣𝖲 in Section 4.4. Those familiar with

the use of CSP to specify properties might observe that we do not adopt
the usual approach that considers the overall alphabet of events, and
defines a rule that imposes no restrictions outside its own alphabet.
That approach is convenient for verification by refinement, but does not
easily support checks for conflicts and redundancy. With our semantics,
we support validation, and, for verification, we adopt a more elaborate
notion of correctness, using refinement and priorities (cf. Section 5).

4.3. Triggers

The definition of [[]]𝖳𝖦 is given in Table 3. For a trigger that has just
n event eID, the process is a synchronisation on that event followed by
he argument process sp that defines the continuation when the trigger
appens. A choice allows the response events to happen freely, but their
ccurrence leads to a recursion so that the rule is not enforced if the
rigger has not happened.

If the trigger has a Boolean mBE expression on measures, the
rocess is defined using let and within clauses. The actual process is
efined in the within clause, but in its definition we can use processes
amed in the let clause. In the process [[𝖾𝖨𝖣 and 𝗆𝖡𝖤,𝖠𝖱, 𝗌𝗉, 𝖿𝗉]]𝖳𝖦,

we have the synchronisation on eID followed by a process MTrigger ,
efined in the let clause using a semantic function [[]]𝖬𝖤.

Example 4.4. As shown in Fig. 4, if the trigger has a Boolean ex-
pression on measures, MTrigger first reads the values of the measures
urgently. For Rule2 in Listing 2, the condition is just on the measure
personNearby, so MTrigger inputs a value vpersonNearby using the
channel personNearby . Afterwards, a conditional checks the measure
expression. If it holds, the trigger has occurred, and MTrigger termi-
nates, leading to TriggerRule2 terminating as well. Otherwise, MTrigger
recurses back to the Trigger process to wait for the trigger event
again. □

The function [[]]𝖬𝖤 takes the list of measures used in the Boolean
expression as arguments, that measure condition itself, and the continu-
ation processes. In the definition of [[]]𝖳𝖦, the first argument 𝛼𝖬𝖤(𝗆𝖡𝖤)
of [[]]𝖬𝖤 is defined by a function 𝛼𝖬𝖤, similar to 𝛼, but providing just

easure identifiers used in the Boolean expression.
The inductive definition of [[]]𝖬𝖤 considers separately an empty list

⟩ of measures and a list with at least one measure 𝗆𝖨𝖣. In the process
efined by this function, the value v𝗆𝖨𝖣 of each measure 𝗆𝖨𝖣 is read
rgently in sequence (→). That value is then substituted for 𝗆𝖨𝖣 in
he expression 𝗆𝖡𝖤. Once all of the measures are input, a conditional
hecks the value of the resulting expression.

In detail, for a list of identifiers ⟨𝗆𝖨𝖣⟩ ⌢ 𝗆𝖨𝖣𝗌, the definition
f [[]]𝖬𝖤 defines a process that reads the value of 𝗆𝖨𝖣 and records
t into a local variable named v𝗆𝖨𝖣. To make that urgent, it uses
he operator ◀ with deadline 0 over a process that starts with the
7
communication 𝗆𝖨𝖣?v𝗆𝖨𝖣. The behaviour that follows is defined by
the process characterised by a recursive application of [[]]𝖬𝖤.

In that application of [[]]𝖬𝖤, the remaining measures in 𝗆𝖨𝖣𝗌 are
considered. Moreover, the Boolean expression is changed to refer to the
variable v𝗆𝖨𝖣, where the measure 𝗆𝖨𝖣 is used. We use 𝗆𝖡𝖤[v𝗆𝖨𝖣∕𝗆𝖨𝖣]
to denote the Boolean expression obtained by replacing the occurrences
of 𝗆𝖨𝖣 with v𝗆𝖨𝖣. In our example semantics for Rule2 in Listing 2,
personNearby becomes vpersonNearby .

If the first argument of [[]]𝖬𝖤 is the empty list of measures, then all
the relevant measure values have been read, and the Boolean expres-
sion is defined in terms of those values (recorded in local variables).
So, [[]]𝖬𝖤 defines a conditional process that specifies the appropriate
continuation behaviour depending on the measure condition.

The actual condition evaluated is specified using a normalisation
function. In 𝗇𝗈𝗋𝗆(𝗆𝖡𝖤) the SLEEC relational operators applied to literals
of scale types in 𝗆𝖡𝖤 are encoded using the comparator functions
of those scale types. (Strictly speaking, 𝗇𝗈𝗋𝗆() requires an argument
defining the type of the measures and the names of the comparator
functions for the scale types.) Additionally, the use of a measure mID
as a Boolean is transformed to an equality mID == true as required by
the CSP notation.

4.4. Responses

The semantic function [[]]𝖱𝖣𝖲 for response definitions is specified
in Table 4. The semantics of a response enclosed in curly brackets is
ust the semantics of its constraint and defeaters itself. We omit that
imple definition from Table 4. The semantics of a response that has
ust a constraint is given by the function [[]]𝖢.

Example 4.5. Rule2 in Listing 2 provides an example of a response
that has just a constraint, that is, the rule contains no defeaters. The
Monitoring process in its semantics, shown in Fig. 4, captures the time
constraint in the response. It requires that SoundAlarm takes place
within 2 time units (2 s as indicated in Rule2). □

The SLEEC rules can refer to a variety of time units. To give
semantics, we can either assume that tock represents the passage of a
minimal period of time that can be considered (1 ms, for example), or
calculate the greatest common divisor of all periods of time referenced,
and adopt that to define the meaning of tock. Whatever the solution,
when using a time period definition we need to normalise the value to
describe it in terms of a number of tock events. For instance, if tock is
deemed to represent a second, then ‘‘1 min’’ should be normalised to
60. As said, in our examples and in our tool, for simplicity, we take the
view that 1 time unit corresponds to 1 s.

The definition of [[]]𝖢 has one equation for each possible form of
constraint. If it is just an event, the constraint process defined by [[]]𝖢
equires that event to be accepted and then terminates. We recall that
ermination indicates that the constraint has been satisfied, and the rule
rocess can recurse and wait for the next trigger.

If there is a time budget within 𝗏 𝗍𝖴 defining a number 𝗏 of time
nits given by 𝗍𝖴, then the process for the event is included in an
𝗈𝗋𝗆(𝗏, 𝗍𝖴)◀. The deadline 𝗇𝗈𝗋𝗆(𝗏, 𝗍𝖴) is determined using a normal-

isation function to calculate the number of tock events allowed, as
explained above.

S. Getir Yaman et al.

i

(

u

I
c

The Journal of Systems & Software 220 (2025) 112229
Table 4
Rules for the tock-CSP semantics of SLEEC responses. Additional metavariables used here are: 𝖼𝗈𝗇𝗌𝗍 for a 𝖼𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇𝗍,
𝖠𝖱𝖣𝖲 for a set of events, 𝗆𝗉 for a process, 𝗍𝖴 for a 𝗍𝗂𝗆𝖾𝖴𝗇𝗂𝗍, 𝗇 for an index (a natural number), 𝖽𝖿𝗍𝗌 for an element
of 𝖽𝖾𝖿𝖾𝖺𝗍𝖾𝗋𝗌, and 𝖽𝖿𝗍 for a 𝖽𝖾𝖿𝖾𝖺𝗍𝖾𝗋.

[[𝖼𝗈𝗇𝗌𝗍]]𝖱𝖣𝖲 = [[𝖼𝗈𝗇𝗌𝗍]]𝖢
[[𝖼𝗈𝗇𝗌𝗍 𝖽𝖿𝗍𝗌]]𝖱𝖣𝖲 = let [[⟨𝖼𝗈𝗇𝗌𝗍⟩ ⌢ 𝖽𝖿𝗍𝗌↾𝖱𝖯 , 𝟣]]𝖫𝖱𝖣𝖲

within [[𝛼𝖬𝖤(𝖽𝖿𝗍𝗌), 𝖽𝖿𝗍𝗌, #𝖽𝖿𝗍𝗌 + 𝟣]]𝖢𝖣𝖲

[[𝖾𝖨𝖣]]𝖢 = 𝖾𝖨𝖣 → Skip
[[𝖾𝖨𝖣within 𝗏 𝗍𝖴]]𝖢 = 𝗇𝗈𝗋𝗆(𝗏, 𝗍𝖴)◀ (𝖾𝖨𝖣 → Skip)
[[𝖾𝖨𝖣within 𝗏 𝗍𝖴otherwise 𝗋𝖾𝗌𝗉]]𝖢 = (𝖾𝖨𝖣 → Skip) ▵𝗇𝗈𝗋𝗆(𝗏,𝗍𝖴) ([[𝗋𝖾𝗌𝗉]]𝖱𝖣𝖲)
[[not 𝖾𝖨𝖣within 𝗏 𝗍𝖴]]𝖢 = Wait(𝗇𝗈𝗋𝗆(𝗏, 𝗍𝖴))

[[⟨𝗋𝖾𝗌𝗉⟩, 𝗇]]𝖫𝖱𝖣𝖲 = Monitoring𝗇 = [[𝗋𝖾𝗌𝗉]]𝖱𝖣𝖲, provided 𝗋𝖾𝗌𝗉 ≠ NoRep
[[⟨NoRep⟩, 𝗇]]𝖫𝖱𝖣𝖲 = Monitoring𝗇 = Skip
[[⟨𝗋𝖾𝗌𝗉⟩ ⌢ 𝗋𝖾𝗌𝗉𝗌, 𝗇]]𝖫𝖱𝖣𝖲 = [[⟨𝗋𝖾𝗌𝗉⟩, 𝗇]]𝖫𝖱𝖣𝖲 [[𝗋𝖾𝗌𝗉𝗌, 𝗇 + 𝟣]]𝖫𝖱𝖣𝖲

[[⟨⟩, 𝖽𝖿𝗍𝗌, 𝗇]]𝖢𝖣𝖲 = [[𝖽𝖿𝗍𝗌,Monitoring1, 𝗇]]𝖤𝖣𝖲
[[⟨𝗆𝖨𝖣⟩ ⌢ 𝗆𝖨𝖣𝗌, 𝖽𝖿𝗍𝗌, 𝗇]]𝖢𝖣𝖲 = 0◀ (𝗆𝖨𝖣?v𝗆𝖨𝖣 → [[𝗆𝖨𝖣𝗌, 𝖽𝖿𝗍𝗌[v𝗆𝖨𝖣∕𝗆𝖨𝖣], 𝗇]]𝖢𝖣𝖲) [[unless𝗆𝖡𝖤, 𝖿𝗉, 𝗇]]𝖤𝖣𝖲
[[unless𝗆𝖡𝖤, 𝖿𝗉, 𝗇]]𝖤𝖣𝖲 = if 𝗇𝗈𝗋𝗆(𝗆𝖡𝖤) then Monitoring𝗇 𝖾𝗅𝗌𝖾 𝖿𝗉
[[unless𝗆𝖡𝖤 then 𝗋𝖾𝗌𝗉, 𝖿𝗉, 𝗇]]𝖤𝖣𝖲 = if 𝗇𝗈𝗋𝗆(𝗆𝖡𝖤) then Monitoring𝗇 𝖾𝗅𝗌𝖾 𝖿𝗉
[[𝖽𝖿𝗍𝗌 𝖽𝖿𝗍, 𝖿𝗉, 𝗇]]𝖤𝖣𝖲 = [[𝖽𝖿𝗍, [[𝖽𝖿𝗍𝗌, 𝖿𝗉, 𝗇 − 𝟣]]𝖤𝖣𝖲 , 𝗇]]𝖤𝖣𝖲
t
r
j

b

t
n
r
𝛼
e

Rule4_a when CameraStart then SoundAlarm
unless personNearby then GoHome

Listing 4: Simpler version of Rule4

If the possibility of a timeout is considered, via an otherwise clause,
instead of a ◀, we use a timed interrupt (▵) to specify that, if the budget
𝗇𝗈𝗋𝗆(𝗏, 𝗍𝖴) is used up, the process that captures the semantics of the
response associated with the otherwise takes over.

Example 4.6. The MonitoringRule2 a process for the SLEEC Rule2 a
n Listing 3 is shown below.

SoundAlarm→ Skip) ▵2 (GoHome→ Skip)

If after 2 s, for whatever reason, the alarm cannot be sounded, then
GoHome is required. □

Finally, for a constraint that forbids the occurrence of an event, the
semantics is the process Wait(𝗇𝗈𝗋𝗆(𝗏, 𝗍𝖴)) that pauses: only allows time
to pass, that is, tock events to happen, for 𝗏 𝗍𝖴 time units, and then
terminates.

If a response has one or more defeaters, [[]]𝖱𝖣𝖲 defines a process
sing let and within clauses. The let clause defines a number of local
Monitoring processes used in the within clause to define the overall
Monitoring process.

Example 4.7. Consider the simpler version of Rule4 in Listing 4. Its
Monitoring process is as follows.

let

Monitoring1 = SoundAlarm→ Skip
Monitoring2 = GoHome→ Skip

within

0◀ (personNearby?vpersonNearby →

if vpersonNearby == true
then Monitoring2 else Monitoring1)

The constraint in the then clause and the response in the unless
clause are captured by local processes Monitoring1 and Monitoring2.
n the within clause, after reading the relevant measures, the process
hooses a local Monitoring process based on the unless condition. □

The local Monitoring processes are defined by [[]]𝖫𝖱𝖣𝖲, which takes
as argument a list containing the constraint of the response, and the
8
responses in the defeaters dfts. We use 𝖽𝖿𝗍𝗌↾𝖱𝖯 to represent the list of
those responses. For an unless defeater without a response, we get
NoRep. This is a special response defined in the semantics just for the
purposes of simplifying the semantic rules. The additional argument is
a counter for the Monitoring processes used to define their names. In
the definition of [[]]𝖱𝖣𝖲, we define the (initial) value of the counter as
1.

The definition of [[]]𝖫𝖱𝖣𝖲 has two equations for a singleton list of
responses, and a third equation for a list ⟨𝗋𝖾𝗌𝗉⟩ ⌢ 𝗋𝖾𝗌𝗉𝗌 starting with
a response resp followed by a list resps. For a singleton list with a
proper response resp, the Monitoring process is defined by [[]]𝖱𝖣𝖲. For
the special response NoRep, the response is just Skip.

Example 4.8. The Monitoring process for Rule4 in Listing 4 is shown
below. It is similar to that in Example 4.7, but has an extra local
Monitoring3 process since we have an extra unless clause. In thewithin
clause, both relevant measures are read urgently, and then conditionals
identify the right local process to monitor the behaviour.

let

Monitoring1 = SoundAlarm→ Skip
Monitoring2 = GoHome→ Skip
Monitoring3 = Skip

within

0◀ (personNearby?vpersonNearby →

0◀ (temperature?vpersonNearby →

if vtemperature > 35 then Monitoring3
else (if vpersonNearby == true
then Monitoring2 else Monitoring1)))

Monitoring3 corresponds to the unless clause for the condition
emperature > 35, which does not have an associated response. So the
ule imposes no restrictions, and the overall Monitoring process should
ust terminate.

The process in the within clause of a response process (as defined
y [[]]𝖱𝖣𝖲) is specified by a [[]]𝖢𝖣𝖲 function. Its arguments are the

alphabet 𝛼𝖬𝖤(𝖽𝖿𝗍𝗌) of measures of the defeaters 𝖽𝖿𝗍𝗌, the defeaters 𝖽𝖿𝗍𝗌
hemselves, and the number of responses to be handled, namely, the
umber #𝖽𝖿𝗍𝗌 of defeaters, plus 1, to consider the 𝖼𝗈𝗇𝗌𝗍raint in the
ule overall response. The definition of 𝛼𝖬𝖤(𝖽𝖿𝗍𝗌) is similar to that of
𝖬𝖤(𝗆𝖡𝖤), but applies to a list of defeaters, considering the Boolean
xpressions that they use.

The inductive definition of [[]]𝖢𝖣𝖲 is simple. For a list of measures
⟨𝗆𝖨𝖣⟩ ⌢ 𝗆𝖨𝖣𝗌, the process inputs the values v𝗆𝖨𝖣 of the measure 𝗆𝖨𝖣

S. Getir Yaman et al.

d
p

i
M

o

t
p
p

E

5

i
t
(
R
o
s
t
f
a
i
w
r

T
C

t
t
c

l
s
m
m
r
w
w
m

b
t
o

D
e
c

r
m
b
t

o

The Journal of Systems & Software 220 (2025) 112229
urgently and then behaves as the process defined by [[]]𝖢𝖣𝖲 for 𝗆𝖨𝖣𝗌. In
the defeaters used as argument for the recursive application of [[]]𝖢𝖣𝖲,
the references to 𝗆𝖨𝖣 are replaced with v𝗆𝖨𝖣. In Example 4.8, this
efines the two urgent communications to input values of the measures
ersonNearby and temperature.

For an empty list of measures, the process is defined by [[]]𝖤𝖣𝖲.
This is again an inductive definition, whose arguments are the list of
defeaters, the local Monitoring1 process that applies when no defeater
n the list does, and the number of defeaters in that list. We recall that
onitoring1 is the process that captures the behaviour of the overall

constraint of the rule (see definitions of [[]]𝖱𝖣𝖲 and [[]]𝖫𝖱𝖣𝖲). If the
list of defeaters 𝖽𝖿𝗍𝗌 𝖽𝖿𝗍 has more than one defeater, the result is the
application of [[]]𝖤𝖣𝖲 to the last defeater, whose monitoring process is
given by a recursive application of [[]]𝖤𝖣𝖲 to define a process for the
ther defeaters, which applies when 𝖽𝖿𝗍 does not.

If we have just one defeater, then the process is a conditional
hat checks whether its condition applies. It does, the local Monitoring
rocess identified by the counter 𝗇 is used. Otherwise, the continuation
rocess 𝖿𝗉 is used.

xample 4.9.
We show below the use of [[]]𝖤𝖣𝖲 to define the conditional in

Example 4.8.

[[unless vpersonNearby then𝖦𝗈𝖧𝗈𝗆𝖾

unless vtemperature > 35,
Monitoring1, 3]]𝖤𝖣𝖲

=

[[unless vtemperature > 35,
[[unless vpersonNearby then𝖦𝗈𝖧𝗈𝗆𝖾,Monitoring1, 2]]𝖤𝖣𝖲,
3]]𝖤𝖣𝖲

=

[[unless vtemperature > 35,
(if vpersonNearby == true
thenMonitoring2 elseMonitoring1),

3]]𝖤𝖣𝖲
=

if vtemperature > 35
thenMonitoring3
else (if vpersonNearby == true

thenMonitoring2 elseMonitoring1)

□

In the next section, we explain how we use the semantics.

. Validation and verification

When writing SLEEC rules, it is possible to make a mistake and
ntroduce redundant or conflicting rules, especially given the possibility
hat these rules are provided by stakeholders with different expertise
lawyers, ethicists, sociologists, etc.) and comprise complex defeaters.
edundant rules may help stakeholders to understand the consequences
f the rules; for verification, however, these rules are unnecessary and
o should be flagged. Conflicting rules, on the other hand, mean that
here is no implementation that can satisfy them all. They need to be
lagged and the conflicts need to be resolved. In Section 5.1, we present
n approach that uses the semantics of our rules to detect conflicts, and
n Section 5.2, we present redundancy checks. Finally, in Section 5.3,
e discuss the verification of an agent model against a set of SLEEC
ules.

9
able 5
onjunction of rules 𝗋𝟣 and 𝗋𝟤.

[[𝗋𝟣, 𝗋𝟤]]𝖢𝖯 = 𝗂𝖽𝖢𝖢(𝗋𝟣, 𝗋𝟤) = let
Env = ∣∣∣ 𝖾 ∶ 𝛼𝖬(𝗋𝟣, 𝗋𝟤) ∙Env𝖾
Env𝖾 = 𝖾?x → VEnv𝖾(x)
VEnv𝖾(x) = 𝖾!x → VEnv𝖾(x)
within

(𝗂𝖽(𝗋𝟣)∣[𝛼𝖤(𝗋𝟣) ∩ 𝛼𝖤(𝗋𝟤)]∣𝗂𝖽(𝗋𝟤))
∣[𝛼𝖬(𝗋𝟣, 𝗋𝟤)]∣

Env

5.1. SLEEC conflict detection

Two rules 𝗋𝟣 and 𝗋𝟤 are conflict free if there is no scenario in which
both rules apply and the restriction of 𝗋𝟣 makes it not possible to satisfy
the restriction of 𝗋𝟤, or vice-versa. Conjunction is specified in CSP using
parallelism. So, roughly speaking, conflict freedom requires the process
formed by the parallel combination of the processes for 𝗋𝟣 and 𝗋𝟤 never
to reach a state in which the only event that can happen, if any, is
tock. In this case, a system that satisfies both rules cannot make useful
progress.

In practical terms, we only need to check for conflict between rules
that have an overlap in their alphabet of events. If the rules have no
such overlap, the restrictions they impose cannot interfere with each
other. Moreover, overlap in the alphabet of measures is irrelevant, as
rules do not need to agree on the reading of measures. The measures
represent information about the system and the environment that is
available at any time.

Table 5 presents the function [[𝗋𝟣, 𝗋𝟤]]𝖢𝖯, which defines the conjunc-
tion process 𝗂𝖽𝖢𝖢(𝗋𝟣, 𝗋𝟤) for the rules 𝗋𝟣 and 𝗋𝟤. In the within clause of
his definition, we compose the processes 𝗂𝖽(𝗋𝟣) and 𝗂𝖽(𝗋𝟤) (which define
he semantics of 𝗋𝟣 and 𝗋𝟤) in parallel (∣[...]∣), synchronising on their
ommon alphabet of events, i.e., on the intersection alphabets 𝛼𝖤(𝗋𝟣) ∩
𝛼𝖤(𝗋𝟤) of their alphabets. Here, 𝛼𝖤(𝗋) is the set of events of a rule 𝗋, or
more precisely, the set of CSP events that represent the SLEEC events
used in 𝗋.

An additional parallel process Env captures the environment in
which the rules are considered, by recording the values of the measures
for sharing between 𝗂𝖽(𝗋𝟣) and 𝗂𝖽(𝗋𝟤). The definition of Env is given in the
et clause as the interleaving, that is, the parallel combination without
ynchronisation, of processes Env𝖾 for each event 𝖾 in the alphabet of
easures 𝛼𝖬(𝗋𝟣, 𝗋𝟤) of 𝗋𝟣 and 𝗋𝟤. These processes input the value of the
easure 𝖾 when a rule first requires that measure (𝖾?x). They then

ecord the value x input as a parameter for another process VEnv𝖾,
hich outputs x (𝖾!𝗑) whenever a rule needs that measure. With Env
e ensure that, for conflict checking, the rules are considered when the
easures take the same value.

Using [[𝗋𝟣, 𝗋𝟤]]𝖢𝖯, we define conflict freedom for the rules 𝗋𝟣 and 𝗋𝟤
elow. For that, we use the process operator ‘P after t ’, which defines
he process that behaves like P after it has already engaged in its trace
f events t .

efinition 5.1. The rules 𝗋𝟣 and 𝗋𝟤 are conflict free, if, and only if, for
very trace t1 of [[𝗋𝟣, 𝗋𝟤]]𝖢𝖯, there is a trace t2 of [[𝗋𝟣, 𝗋𝟤]]𝖢𝖯 after t1 that
ontains at least one event and at least one event different from tock.

With this definition, we require that, at no point, enforcing both
ules, as defined by the process [[𝗋𝟣, 𝗋𝟤]]𝖢𝖯, leads to a deadlock, so that no
ore events are possible, or to a situation in which there is no deadlock,

ut only the passage of time can be observed. The latter scenario is a
imed deadlock: time can progress, but no event is possible.

Definition 5.1 is given in terms of the semantics, that is, the set
f traces, of the conjunction process [[𝗋𝟣, 𝗋𝟤]]𝖢𝖯. For automation, we

can check conflict freedom using FDR using two assertions. The first
is a standard FDR assertion for deadlock freedom, and the second is

S. Getir Yaman et al.

f
t
u
E
t
r
B
t
t
i
t
t

t

E
f
l
i
t
t
b
t
r
i
o
a
o
o
R

t
f

5

n
t

The Journal of Systems & Software 220 (2025) 112229
Fig. 5. Conjunction process for RuleA in Listing 5 and Rule3 in Listing 2.
w

m

t

n
m
n
p

w
d
f
t
l
t
a
I
c

rule_start
RuleA when BatteryCritical and temperature

< 25 then GoHome within 1 minutes
rule_end

Listing 5: Conflicting rule for a firefighter robot

an assertion based on our mechanisation of a timed-deadlock freedom
check in the context of tock-CSP that is inspired by work in Roscoe
(2013).

Example 5.1. Listing 5 presents another rule (RuleA) for the firefighter
UAV. This rule requires that, if the battery reaches a critical level,
and there is no risk of fire nearby, as indicated by the temperature
measure, then the robot should return to base so that it can continue
to work at a later point. We can imagine that, if there is risk of fire,
the UAV should continue its mission even if it means that it will
exhaust its battery in action. However, RuleA is in conflict with Rule3
rom Listing 2. We show in Fig. 5 the conjunction CSP process for
he two rules. In this case, both rules restrict the GoHome event and
se just one measure, temperature. So, the Env process is just the
nvtemperature process for this measure. The deadlock check (using
he FDR model checker) gives a counterexample that indicates the
eason for the deadlock. Namely, it provides a trace with the events
atteryCritical and temperature.20, and after 13 occurrences of tock, then
he event SoundAlarm, followed by 47 occurrences of tock. We recall
hat we are identifying a time unit with 1 s. So, the counterexample,
ndicates that if RuleA is triggered, and after 13 s, Rule3 is triggered,
hen, after another 47 s, we have a deadlock, as RuleA requires GoHome
o take place, but Rule3 forbids it. □

If the assertion for deadlock freedom holds, there is no guarantee
hat timed deadlock freedom holds.

xample 5.2. Listing 6 presents two other conflicting rules for the
irefighter UAV. In the case of these rules, their conjunction does not
ead to a deadlock. It is the case, however, that there is a situation
n which the only possible behaviour allowed by these two rules is
he passage of time. The check for timed deadlock freedom provides
he following counterexample. First BatteryCritical happens, so that
oth rules are triggered. Afterwards, the measures personNearby and
emperature are read and the values provided are true and 33. So, RuleC
equires the robot to GoHome and RuleD requires it to SoundAlarm
nstead. We do not have a deadlock, as time can pass in the absence
f a deadline. It so happens, however, that RuleC forbids SoundAlarm
nd RuleD forbids GoHome (because the two events are in the alphabets
f both rules, and SoundAlarm is not mentioned in the relevant defeater
f RuleC, while GoHome is not mentioned in the relevant defeater of
uleD). So, neither event can happen. □

If a pair of rules are not conflicting, but their alphabets overlap,
hen one of them may be redundant. We next consider how to check
or redundancy.

.2. Detection of redundant rules

For a pair of rules 𝗋𝟣 and 𝗋𝟤 that have overlapping alphabets and are
ot conflicting, we define redundancy below, using t ↾ E to denote the
race obtained from t by removing all events that are not in the set E .
10
rule_start
RuleC when BatteryCritical

then CameraStart
unless personNearby then GoHome
unless temperature > 35
then SoundAlarm

RuleD when BatteryCritical
then CameraStart
unless personNearby then SoundAlarm
unless temperature > 35 then GoHome

rule_end

Listing 6: Conflicting rule for the firefighter UAV

Definition 5.2. For conflict-free rules 𝗋𝟣 and 𝗋𝟤, we say 𝗋𝟤 is redundant
ith respect to 𝗋𝟣 if, and only if, for every trace t1 of 𝗂𝖽(𝗋𝟣), there is a

trace of t2 of 𝗂𝖽(𝗋𝟤), such that, (1) t1 ↾ 𝛼𝖤(𝗋𝟣) = t2 ↾ 𝛼𝖤(𝗋𝟣), and (2) for
every event e of 𝛼𝖤(𝗋𝟣) in a position i of these traces, for every measure

in 𝛼𝖬(𝗋𝟣), the value of m recorded in t1 and t2 at position i are the
same.

The traces of the process that characterises a rule identify the
behaviours allowed by the rule. So, the smaller that set of traces, the
more restrictive is that rule. In this context, however, the reading of
measures is irrelevant, since, as already said, rules use measures just to
obtain information that indicates how the events are to be restricted.
So, in Definition 5.2, we characterise a rule 𝗋𝟤 as redundant, with
respect to another rule 𝗋𝟣, by considering the traces t1 ↾ 𝛼𝖤(𝗋𝟣), where
1 is a trace of 𝗋𝟣 and 𝛼𝖤(𝗋𝟣), we recall, is the set of events of 𝗋𝟣 or,

more precisely, the set of CSP events that represent the SLEEC events of
𝗋𝟣. These traces characterise the restrictions of 𝗋𝟣. Similarly, the traces
t2 ↾ 𝛼𝖤(𝗋𝟣) characterise the restrictions of 𝗋𝟤. If every behaviour allowed
by 𝗋𝟣 is also allowed by 𝗋𝟤, then 𝗋𝟤 imposes no additional restrictions,
and so is redundant.

Example 5.3. In Listing 2, Rule1 is weaker, as it does not have a dead-
line, and can be eliminated. This can be automatically checked using
the FDR model checker via a trace refinement. Since the refinement
holds, there is no counterexample, but a clear indication of the weaker
rule between the two. □

Normally, a rule 𝗋𝟤 should not be redundant with respect to another
rule 𝗋𝟣 if 𝗋𝟤 involves events not referenced in 𝗋𝟣. This is, however, not
ecessarily the case, since the responses that refer to the extra events
ay be unreachable. So, in general, it is worth checking every pair of
on-conflicting rules with overlapping alphabets of events. It is also
ossible to check for unreachable responses.

Our experience with the case studies presented in this paper and
ith a number of other examples of autonomous agents, as well as
iscussions with SLEEC experts suggest that the number of SLEEC rules
or an autonomous agent will not run into the hundreds: it is more like
ens. Moreover, a single rule is unlikely to have a very long or very deep
ist of defeaters. So, although our checks require a pairwise analysis of
he rules, we expect that the checks for conflicts and redundancy within
SLEEC specification for an autonomous agent will remain tractable.

mportantly, as we avoid dealing with the whole set of rules in a single
heck, model checking is also likely to remain feasible. The treatment

S. Getir Yaman et al. The Journal of Systems & Software 220 (2025) 112229
Fig. 6. Sketch of RoboChart model for a simple firefighter UAV.
of more complex data types provided by measures, however, is likely
to impose a challenge.

5.3. Verification of compliance with SLEEC rules

This section describes our method for checking a system under
verification (SUV) against a SLEEC rule 𝗋 that refers only to events,
that is, capabilities of the SUV, by means of refinement in tock-CSP.
We use the term ‘‘relevant’’ to refer to these rules of interest for the
verification of a given SUV. We note that a relevant rule may use
measures not considered in the SUV, but the rule can only refer to
events representing capabilities of the SUV. This is because, first of all,
if a rule has a trigger not available in the SUV, then it will never apply.
Moreover, if the rule has a response involving an event not available in
the SUV, then it can never be satisfied, if triggered. We do not consider
here the undesirable scenario where the response with the unavailable
capability is unreachable.

To define a notion of conformance for an SUV with respect to a
rule, we assume the existence of a tock-CSP model for the SUV. Such
models can be generated automatically from other design models, or
devised manually by developers with CSP expertise. Here, we consider
examples where a RoboChart (Miyazawa et al., 2019) model for the
agent is available and used as a basis to generate a tock-CSP model SUV
automatically. So, we can use model checking to establish conformance
as defined here.

Our notion of conformance 𝗋 ⊧TT SUV is defined below. In words, it
corresponds to traces refinement in tock-CSP, where the specification
is defined in terms of the process 𝗂𝖽(𝗋) that captures the semantics of 𝗋
(cf. Table 2). Traces refinement in tock-CSP ensures that the events of
the SUV occur in the order and time specified, so that time budgets and
deadlines are respected. Like in the check for redundancy, refinement
disregards the measures; here, however, we require the values of the
measures recorded in the specification and in the SUV to be the same.

Definition 5.3. An SUV conforms to a rule r, written 𝗋 ⊧TT SUV ,
where SUV is the tock-CSP model of SUV, if, and only if, for every
trace t1 of the process SUV ; Stop, there is a trace t2 of 𝗂𝖽(𝗋) such that:
(1) t1 ↾ 𝛼𝖤(𝗋) = t2 ↾ 𝛼𝖤(𝗋) and; (2) for every event e of 𝛼𝖤(𝗋) in a position i
of these traces, for every measure m in 𝛼𝖬(𝗋), the value of m recorded
in t1 and t2 at position i are the same.

We consider the process SUV ; Stop, rather than just SUV , because
the processes that give semantics to a rule do not terminate. If SUV
terminates, subsequent composition with Stop ensures that we do not
11
erroneously flag a problem just because the rule does not allow termi-
nation. According to Definition 5.3, a conforming SUV may engage in
additional events and read additional measures.

As mentioned earlier, the mechanisation of conformance checking is
based on refinement, but the specification is a weakening of 𝗂𝖽(𝗋), with
respect to refinement, to allow occurrence of additional events and any
order in the reading of measures. We illustrate the verification process
using a simplified model of the control software of the firefighting UAV.
In the next section, we consider additional examples.

Example 5.4. As said, for modelling we use RoboChart. In Fig. 6,
we show a RoboChart interface Capabilities that declares those ca-
pabilities of the firefighter UAV identified in the SLEEC specification.
Other interfaces in the model may declare additional capabilities not
related to SLEEC concerns, but needed to implement the firefighter
UAV mission. We also show a RoboChart state machine called UAV
that specifies the control software of our simple firefighter in terms of
these Capabilities and using local variables charged, person, wind,
and temp. In the initial state Init of UAV (the target of the transition
out of the initial junction indicated by a dark circle with an i), an entry
action reads the windSpeed, recording it in the variable wind, and the
temperature, recording it in temp. The notation ‘<{0}’ specifies that
these inputs need to be immediately available. There are two transitions
out of Init. The first has the event BatteryCritical as a trigger. If it
happens, the UAV cannot proceed, and terminates by transitioning to
the final state, indicated by a clear circle with an F. The other transition
has no trigger, but a guard requires the wind not to be strong (wind !=
windScale::strong, where windScale is the enumeration type of wind
defined on the left in Fig. 6), and the temperature to be high (greater
than 35), indicating a possible fire. That transition leads to a composite
state Recording whose entry action starts the camera. Its own state
machine is concerned with whether there is a personNearby and
whether the battery is charged. Every time unit, this machine reads
those measures and records them in the variables person and charged.
Depending on whether there is a person or not, the machine raises
the event SoundAlarm. A transition out of Recording ensures that,
when BatteryCritical is signalled and the battery is not sufficiently
charged, the UAV goes back to base by raising the event GoHome.
The guard ensures that the amount of time since Recording has been

S. Getir Yaman et al.

t
t

t
w
t
b

w
C
b
B

T
G
s
3
s
c
b
h
t
i
f
s

t
t
u
a
m
F
C
i
a
a
a
l

6

I
s
w
T
t
l
o
f
i
e
t
a
o
e
r
t
q

f

The Journal of Systems & Software 220 (2025) 112229
entered (sinceEntry(Recording)) is greater than 0, so that the check for
he presence of a person is always carried out before the robot returns
o base.

There are several simplifications in this example, but our focus is on
he rules in Listing 2. We have identified that Rule1 is redundant, so
e do not need to be concerned with it. Our technique identifies that

he model satisfies Rule2, but not Rule3. The counterexample provided
y the FDR model checker has the following events:

indSpeed.light , temperature.36,
ameraStart , personNearby .true,
atteryCharged.false, SoundAlarm, tock,
atteryCritical,GoHome

his counterexample is a trace that leads to a forbidden event, here
oHome. The trace corresponds to a scenario in which, in the Init
tate, the measures windSpeed and temperature read are light and
6, respectively. With that, in the state Recording, the camera is
tarted, then there is a personNearby and the battery is not sufficiently
harged. So, after one time unit (i.e., one tock), the alarm is sounded,
ut the battery is indicated as critical. In this situation the UAV goes
ome, but Rule3 forbids that for 5 min. Indeed, the projection of
his UAV trace to the events of Rule3 is SoundAlarm,GoHome, which
s not a trace of the process for Rule3 (without the events that re-
er to measures). So, considering Definition 5.3, condition (1) is not
atisfied. □

Before providing additional examples in the next section, we note
hat the relatively low complexity of SLEEC rules is expected to make
he verification of SUV compliance with each individual rule feasible,
nder the assumption that the SUV tock-CSP model is itself of man-
geable size. As is often the case with model checking, this assumption
ay not always hold because of state explosion, in particular as the

DR model checker is not optimised for dealing with timed (i.e., tock-
SP) models despite supporting them. On the positive side, RoboChart

s part of a framework that includes support for alternative verification
pproaches, based on theorem proving, simulation, and testing (Cav-
lcanti et al., 2021). In particular, theorem proving is promising, and
menable to automation if we use automatically generated semantics,
ike that of SLEEC.

. Tool support

We have implemented a tool that allows SLEEC experts with limited
T expertise to specify and edit normative requirements in the domain-
pecific language from Fig. 2. The tool includes a friendly user interface
ith syntax highlighting (Fig. 7), and a parser for the SLEEC language.
he translation of SLEEC documents to tock-CSP is based on the defini-
ions presented in Tables 2–4 and is automated via approximately 700
ines of code written using Xtend (Anon, 2010), a lightweight version
f Java, defining model-to-text transformation rules. Each semantic
unction is implemented as a recursive function in Xtend, so that there
s a direct correspondence between our equations and their Xtend
ncoding. The parameters of the Xtend functions are exactly those of
he functions, and the simple metanotation we use is directly available
nd adopted. The pattern matching, used to identify the different forms
f SLEEC terms considered in the function definitions via different
quations, is captured by conditionals. Local variables are used to
ecord the various elements of the patterns used in the equations. The
arget notation is encoded directly, and distinguished in Xtend using
uotes.

As an example, the implementation of the mechanisation of the
unction [[]]𝖢 from Table 4 is given in Listing 7. The Xtend method

is called C, and its result is a text (CharSequence) defining the CSP
process specified in our equations. The arguments of C are exactly
those of [[]] . The first argument const is an arbitrary Constraint;
𝖢

12
the local variables eID, v, tU, and resp record the (optional) elements
of const used in the definition of [[]]𝖢 from Table 4. In the body of
C, the (nested) conditional determines the equation from Table 4 that
applies to define the semantics of const. If there is no value (that
is, v == null), we have a simple constraint eID, whose semantics is
given by the first equation from Table 4. The resulting text is exactly
as defined in that equation; the guillemots indicate elements of the
metanotation, here eID. Similarly, if there is no response associated
with an otherwise clause (resp == null) and the constraint negates
an event (const.not), the semantics is given by the third equation. If
an event is not negated, the second equation applies. In the FDR syntax
for a deadline, we use a process constructor StartBy, which takes the
process and the deadline as arguments. For the last equation, we use
the FDR constructor TimedInterruptSeq for the timeout operator; it
takes three arguments: the event, the timeout value, and the timeout
process.

With a faithful encoding of the semantic definitions as model-to-
text transformations, our tool validates the semantics as well playing
a key role in validating the SLEEC language. We have carried out
enough tests to provide full coverage of the syntactic structure of SLEEC
specifications, and used FDR to inspect the automatically generated
tock-CSP semantics. Our tests are evidence that our rule definitions
are well typed, that there are enough rules, and that they produce
valid tock-CSP models. Validation that, in addition, the semantics is
appropriate is provided by our examples as discussed in the next
section.

The implementation of 𝗇𝗈𝗋𝗆(𝗆𝖡𝖤) allows seconds, minutes, hours
and days in the concrete syntax and it normalises each value to sec-
onds in the current implementation. The resulting tool is described
in Getir Yaman et al. (2023). All code and the models are publicly
available (Anon, 2023). In addition, a recently extended tool version
that also integrates RoboTool and FDR, and invokes FDR directly for
checking the conformance of a RoboChart model against SLEEC rules
can be found in Getir Yaman et al. (2024).

For the semantics, we translate from the trace-based definitions
of conflict, redundancy, and conformance, to refinement checks via
a mechanisation of tock-CSP (Baxter et al., 2022) for verification us-
ing the CSP model-checker FDR (Gibson-Robinson et al., 2014). This
enables the automatic analysis of SLEEC rules and verification of con-
formance against system models with tock-CSP semantics, such as in
the case of RoboChart models.

Fig. 7 shows a screenshot of our tool, where we can see the encoding
of the SLEEC definitions and rules from Listings 1 and 2 in the left
pane, and the automatically generated tock-CSP script for the SLEEC
specification in the right pane. We note that, because model checking
operates with finite models, measures of the type Int need to be
specified using finite intervals such as {0..35}.

7. Evaluation

We evaluated our notation, processes, and tool by conducting two
case studies aimed at answering the following research questions (RQs).

RQ1 (Expressivity) — Does the SLEEC language support the spec-
ification of rules covering a wide range of SLEEC concerns? With
this RQ, we seek to establish whether the language allows SLEEC
experts (ethicists, lawyers, sociologists, psychologists, etc.) to define the
normative rules for an autonomous agent.

RQ2 (Correctness) — Are the framework’s methods and tools iden-
tifying rule conflicts, redundancies, and violations by an autonomous
agent specification correctly? As a key objective of our work is to
enable consistency validation and verification of a SLEEC rule set,
we examined the results produced by these tool-supported checks for
SLEEC rules defined by multiple stakeholders.

RQ3 (Scalability) — How does the time required to perform rule
validation and verification grow as the number of rules increases? As

S. Getir Yaman et al.

L
r

m
s
g

R
w
a
p

The Journal of Systems & Software 220 (2025) 112229
Fig. 7. Tool for editing and supporting reasoning about SLEEC rules.
v
e
o
o

r
s
u
a
o
S

7

(
o
w
h
o
d
c
(

d
i
t
i
a
m
w
m
s
t
t

pr iva te def CharSequence C(Cons t ra in t) {
val eID = const . event . name
val v = const . value
val tU = const . un i t
va l resp = const . response

//[[eID]] C
i f (v === nu l l)

’ ’ ’≪eID≫ −> SKIP ’ ’ ’
// [[eID within v tU , t r i g , ARDS, mp]] C
e l s e i f (resp === nu l l) {
// [[not eID within v tU]] C

i f (const . not)
’ ’ ’WAIT(≪norm(v , tU)≫) ’ ’ ’

// [[eID within v tU]] C
e l s e
’ ’ ’ S tar tBy (≪eID≫ −> SKIP ,≪norm(v , tU)≫) ’ ’ ’

}
// [[eID within v tU otherwise resp]]C
e l s e {

’ ’ ’ TimedInterruptSeq (≪eID≫ ,≪norm(v , tU)≫ ,
≪RDS(resp)≫) ’ ’ ’

}
}

isting 7: Code snippet in Xtend illustrating the implementation of the
ecursive function [[]]𝖢 defined in Table 4.

odel checking, which underpins our framework, is known to have
calability issues, we assessed its execution time for SLEEC rulesets of
rowing sizes.

Q4 (Usability) – How easy is it for the intended users of the frame-
ork to specify SLEEC rules, to use the tools and process we propose,
nd to understand the output of the tools? As shown in Fig. 1, the

urpose of our framework is to support both the specification and i

13
alidation of normative rules by SLEEC experts with limited technical
xpertise, and the verification of an autonomous agent by its devel-
pers. To assess whether the framework can be used effectively, we
btained feedback from these users.

The first case study was based on the firefighter UAV from our
unning example. The autonomous agent from this case study is de-
cribed in Section 2 and Example 5.4. In the second case study, we
sed an autonomous agent from the robotic assistive-care domain. This
utonomous agent is described in Section 7.1. Our evaluation method-
logy, the results for each RQ, and their discussion are presented in
ection 7.2.

.1. Robotic assistive-care application

We considered in our second case study a robotic assistive-dressing
RAD) system tasked with helping a physically impaired user to put
n a garment, such as a gown or coat. The need for daily assistance
ith dressing is a reality for over 80% of those in skilled nursing
omes (Mitzner et al., 2014). As this need often exceeds the capacity
f the nursing home caregivers, the development of robotic-assisted
ressing solutions has received significant attention from the research
ommunity in recent years, e.g., Camilleri et al. (2022), Jevtić et al.
2018), Zhang and Demiris (2022), Pirhonen et al. (2020).

Our particular RAD system is for use by a person living indepen-
ently at his or her home; it is adapted from the solution presented
n Camilleri et al. (2022), and has the additional function of monitoring
he health of its user, who is liable to fall. When falls are detected, RAD
s expected to contact support services. Health and fall monitoring is
chieved through a smart watch worn by the user, and by visual sensors
ounted on the RAD platform and in the user’s home. To communicate
ith the user, RAD is equipped with voice recognition and speech
odules. RAD can communicate with a support operator located off

ite by transmitting audio and video feeds. Finally, RAD can control
emperature, lighting, and the opening or closing of the room curtains
hrough home automation functionality.

RAD’s control software is specified as a RoboChart model that

ncludes multiple state machines defining parallel behaviour. The two

S. Getir Yaman et al. The Journal of Systems & Software 220 (2025) 112229
Fig. 8. RoboChart state machines of the RAD application.
machines relevant to the discussion here are DressingService and
MonitoringService, depicted in Fig. 8. DressingService specifies the
operation of the control software for user dressing, and interacts with
the platform via events such as DressingStarted and DressingAban-
doned. MonitoringService mediates the opening of the curtains, and
support calls. In what follows, we describe each state machine in further
detail.

DressingService is initially in an Idle state. A transition to a Dress-
ing state is triggered by the event DressingStarted, corresponding
to a request from the user. In that state’s entry action, the current
roomTemperature is input into a local variable temp, and then an
operation Dress is called with the current temperature passed as a
parameter. Here, Dress is a software operation that captures the time
the actual dressing can take, after which it sets the value of a Boolean
variable completed to true. Because Dress is called in a during
action, this behaviour can be interrupted by any of Dressing’s out-
going transitions: either because completed is true, or as a result of
DressingAbandoned being triggered. In both cases, before Dressing
is exited, its exit action is executed: it calls an operation Clear that
sets the variables completed and retry to false followed by an output
on DressingComplete to indicate that dressing has completed, irre-
spective of whether it has succeeded. If the transition out of Dressing
is to the state Abandoned, there is a call to an operation Retry.
This operation captures a protocol for agreeing to retry dressing. If
there is agreement from the user, then retry is set to true and the
transition back to Dressing becomes enabled and is taken. Otherwise,
if no agreement has been reached and more than two minutes have
elapsed since entering Abandoned, the guard over the transition to
Idle becomes true. When that transition is taken there is a call to a
software operation CallSupportDecision that calls support depending
on whether there is user assent for that.

The machine MonitoringService also starts in an Idle state, from
where two outgoing transitions can be triggered by events UserFallen
and CurtainOpenRqt. If a user has fallen, then the operation CallSup-
portDecision is called, followed by the opening of curtains in the entry
action of the state OpenCurtains, and then there is a transition back
to Idle. If there is a request to open the curtains via CurtainOpen-
Rqt, then there are two readings of measures userUnderDressed and
userDistressed to determine if the user is under dressed and their level
of distress. If the user is neither underdressed nor highly distressed,
then the curtains are opened, and otherwise the request is refused as
indicated by the output event refuseRequest.
14
7.2. Evaluation methodology, results and discussion

RQ1 (Expressivity). To answer the first question, we recruited a
group of five SLEEC experts from different disciplines and backgrounds:
(i) Psychology and Ethics; (ii) Law and Ethics; (iii) Ethics; (iv) Moral
Psychology and Law; and (v) Engineering and Goal Modelling.

These experts were asked to define SLEEC rules for variants of
the firefighter UAV and RAD system with the capabilities and func-
tionalities described earlier in the paper and any additional capabilities
and functionality they envisaged for future firefighter UAV and RAD
extensions. We allowed and even encouraged our study participants
to imagine such extensions to significantly expand the range of SLEEC
rules they defined, and thus to assess better the ability of our SLEEC
language to encode a wide variety of such rules.

During the experiment, the experts initially independently estab-
lished the rules, but we encouraged them to engage in negotiation
and collaboration through additional sessions. The resulting SLEEC
specifications for the case studies can be found in our GitHub repos-
itory (Anon, 2023).

Case study 1 (firefighter UAV). The SLEEC experts provided a set of
13 SLEEC rules for the firefighter UAV. We combined these rules with
our four sample SLEEC rules from Listing 2, and carried out a manual
analysis of the resulting set of 17 rules. Through this analysis, we found
that eight of the rules are relevant to the firefighter UAV, and the
remaining nine refer to events and/or measures that do not match the
functionality from the UAV model in Fig. 6. Table 6 depicts a selection
of both types of rules, with the non-relevant rules shown in shaded
rows.

Case study 2 (RAD). By manual analysis, we identified that, among a
total of 14 rules defined by the SLEEC experts, six rules are relevant
to the RAD system (i.e., the capabilities mentioned in the rules are a
subset of the system capabilities), while eight rules involve capabilities
imagined by the experts. We have also created seven synthetic rules to
cover different additional elements of our language. Several rules from
the combined set of 21 rules are presented in Table 7, where Rules 5
and 6 (shaded in the table) are examples of non-relevant rules and the
rest are examples of rules relevant to the RAD capabilities.

Discussion. Our language was observed to be intuitive for expressing
normative rules in a comprehensive manner. However, certain lan-
guage constraints have prompted the experts to modify their rules.
The main constraint discussed was that the specification of negation

S. Getir Yaman et al. The Journal of Systems & Software 220 (2025) 112229
Table 6
Partial set of SLEEC rules for the firefighter UAV.

Rule id SLEEC specification Rule type Implication Relevance

Rule3 when SoundAlarm then not GoHome within 5 minutes ethical ensuring safety ✓

⋯

Rule13 when B a t t e r y C r i t i c a l then GoHome
unles s personNearby and temperature>MAX_TEMP

then SoundAlarm

legal ethical preventing harm ✓

Rule7 when FireConfirmed and temperature > 60 then SprayWater
un les s personNearby and sprayPressure > 100

then InformBystanderAndSprayWater within 45 seconds

empathetic
cultural

promoting well-being ×

⋯

Rule14 when FullyCharged then Tes tE f f i c i encyPre se rved
within 24 hours

legal ensuring operational efficiency ×
Table 7
Partial set of SLEEC rules for the RAD system.

Rule id SLEEC specification Rule type Implication Relevance

Rule1 when Dres s ingS ta r ted and userUnderDressed
then DressingComplete within 2 minutes

un les s roomTemperature < 19
then DressingComplete within 90 seconds

unles s roomTemperature < 17
then DressingComplete within 60 seconds

empathetic
ethical

promotes and supports
user well-being

✓

Rule2 when CurtainOpenRqt then CurtainsOpened
within 60 seconds

unles s userUnderDressed then RefuseRequest
within 30 seconds

unles s u se rD i s t r e s s ed > medium
then CurtainsOpened within 60 seconds

cultural empa-
thetic

respect for privacy and
cultural sensitivity

✓

Rule3 when UserFal len then SupportCal led
within 1 minutes

un les s not assentToSupportCal l s
un les s emergency

legal ethical
social

respect for autonomy and
preventing harm

✓

Rule4 when DressingAbandoned then {RetryAgreed
within 2 minutes

otherwise { SupportCal led
unles s not assentToSupportCal l s }}

legal ethical promoting user benef
icence and respecting
autonomy

✓

Rule5 when UserRequestInfo then ProvideInfo
unles s not in format ionAvai lab le

then InformUserandReferToHumanCarer
un les s in format ionDisc losureNotPermit ted

then InformUserandReferToHumanCarer

legal ethical promoting privacy and
transparency

×

Rule6 when Dres s ingS ta r ted and dressPreferenceTypeA
and genderTypeB then Dress ing inClot ingX

unles s userAdvices
un les s medicalEmergency
unles s clothingItemNotFound then InformUser

cultural
ethical

respecting cultural norms
and values

×

(not) without a timeout is not allowed (as that would block a capa-
bility permanently). The second constraint of note was the inability
to define conjunction of events in the response. Lastly, experts were
asked to indicate time units explicitly rather than relying on temporal
(vague) phrases (e.g., ‘‘in a few minutes’’). Overall, they found the tool
user-friendly and were able to express their requirements using our
DSL.

RQ2 (Correctness). We evaluated the correctness of our SLEEC frame-
work in two stages:

1. In a first stage, we used our consistency validation tool to
identify SLEEC rule conflicts and redundancies across the entire
rulesets mentioned earlier. All identified conflicts and redun-
dancies were then checked with the experts, and the SLEEC

rulesets were manually examined both by our project team and

15
the experts for any additional conflicts or redundancies that the
validation tool might have missed.

2. In a second stage, we retained the expert-defined SLEEC rules
that were relevant to the firefighter UAV and RAD presented in
Fig. 6 and Fig. 8, respectively, and we used our SLEEC verifica-
tion tool to check whether that corresponding autonomous agent
satisfies these rules. The results of this verification were then
manually examined by our project team.

In the first stage, we presented to the experts every pair of rules
that was identified to present a conflict or redundancy as a result of our
analysis in a session of approximately two hours. After examining each
result, we first inquired whether they comprehended the conflict or
redundancy. If so, the expert was asked to propose a resolution action.
This could be removing or modifying a rule, or even combining these

rules. The experts also had the option to choose no further action.

S. Getir Yaman et al.

L

C
S
r
c
w
f
d
r
r
a
a
r
p
s

t
r

O
a
r

f
s
R
b
i
g
s
p
o
i
F

C
A
c
f
t
r

e
r
p
r

1
m
s
t

m
c
w
t
b
c
i
R
s
c

a
o
i
p
t
i
C
t
C
a

w
r
a
a
I
p
S

U
a
r

T
i
D
l

The Journal of Systems & Software 220 (2025) 112229
Rule3 -modified when SoundAlarm
and batteryCharged then not GoHome
within 5 minutes

isting 8: One of firefighter SLEEC rules verified in RQ2

Table 8
RQ2 evaluation results for firefighter UAV.

#Rules Resolution action

Conflicts
8
17

Removing 2 rules,
sanitising the event
and measure names

Redundancies
22
17

Removing 5 rules,
modifying 2 rules,
streamlining defeaters

Non-conformance
1
2

Revising system design

ase study 1 (firefighter UAV). In the first stage, our SLEEC tool from
ection 6 reported eight conflicting rule pairs and 22 pairs of redundant
ules (Table 8). The expert examination of these consistency issues
onfirmed that all were real issues. The large number of redundancies
as due to the limited functionality available for the firefighter UAV

rom our running example, which meant that most study participants
efined similar SLEEC rules for the autonomous agent. Most of these
edundancies were resolved easily by removing five of the rules. The
emaining cases were then resolved by combining a couple of rules,
nd by reorganising rule defeaters. For the conflict resolution, two
dditional SLEEC rules were removed, one rule was split into two
ules, and the names of events and measures were further aligned. This
rocess produced a set of nine valid SLEEC rules at the end of the first
tage.

In the second stage, we considered for verification two rules out of
he nine valid rules obtained in the previous stage. These were the only
ules relevant for the model presented in Fig. 6, and included:

• a modified version of Rule3 from Table 6 (see Listing 8), as
obtained in the first stage of our analysis;

• Rule13 from Table 6, which was not modified as a result of the
analysis.

f these two rules, the system from Fig. 6 satisfied Rule3-modified,
nd failed to satisfy Rule13. We discuss these conformance checking
esults next.

Rule3-modified is concerned with allowing the alarm to be heard
or a sufficient amount of time when the battery is sufficiently charged,
o the drone should not go home within 5 min after the alarm sounds.
ule6, on the other hand, requires the drone to GoHome when the
attery is critical, but if nearbyPerson is detected and the temperature
s higher than MAX_TEMP, then it should sound the alarm instead of
oing home. In the RoboChart model, if the transition out of the
tate Recording is triggered, then the drone will GoHome even if a
ersonNearby is detected at that point, as there is no further checking
f whether a person is nearby, whereas the rule requires that the alarm
s triggered first. Resolving this error requires changing the design from
ig. 6.

ase study 2 (RAD). We identified three conflicts and six redundancies.
ll of these results were acknowledged by the experts as genuine
onflicts and redundancies. Conflicts, in particular, stemmed from dif-
erent experts defining the same rule, but using different names for
he capabilities. Consequently, the experts decided to delete one of the
ules for each conflict. Regarding redundancies, several interferences
 w

16
Fig. 9. RoboChart model for CallSupportDecision.

xisted among different rules. This meant that the removal of a single
ule resolved multiple redundancies. The summary of these results is
resented in Table 9. As a result of these efforts, the overall ruleset
educed from its initial count of 21 rules to a consistent set of 16 rules.

In the second stage, we considered for verification five out of these
6 rules, namely, we considered just the rules that are relevant for our
odel presented in Section 7.1. Of the five rules, the system failed to

atisfy one of them. We present in Table 7 four of these rules and, in
he following, discuss the conformance checking results.

Rule1 is concerned with the time taken by a dressing episode: at
ost 2 min to complete, unless the room temperature is low, in which

ase it should be faster. Rule2 regulates the opening of the curtains,
hich should consider the privacy of the user, but also be sensitive

o the distress that can be caused if a user request for the curtains to
e opened is denied. If a user fall is detected then support must be
alled, but Rule3 requires that assent from the user is available for this
f it is not an emergency case. Finally, if the dressing is abandoned,
ule4 requires that there should be an attempt to retry, and, eventually
upport must be called. Again, however, the user’s assent to make the
all should be gained beforehand.

Using our technique, we get confirmation that the first three rules
re satisfied, but Rule4 is not. The issue is related to the design of the
peration CallSupportDecision(), shown in Fig. 9. Since CallSupport()
s a platform operation, it is asynchronous and does not block, so Sup-
ortCalled is used to flag termination of CallSupport(). In this version,
he design engineer has followed an extra requirement to call support
n no more than 1 min, if the user falls and there is consent. So, in
allSupportDecision() there is a deadline 60 on SupportCalled. With

his deadline, we require that any actions involved in implementing
allSupport(), such as establishing a phone connection and dialling,
re completed within 1 min.

The extra requirement to call support in 1 min is incompatible
ith the requirement to satisfy both Rule3 and Rule4, because Rule4

equires a delay of 2 min before calling support in case dressing is
bandoned. As already mentioned, there is no conflict between Rule3
nd Rule4, so, in principle, they could be both satisfied by a design.
n the context of the extra requirement, however, this is no longer
ossible. The counterexample shown below, which is generated by our
LEEC tool, reveals the issue:

serFallen,DressingStarted,
ssentToSupportCalls.true,CallSupport ,
oomTemperature.−2,DressingAbandoned

his trace indicates that DressingService has gone through Dress-
ngStarted, got the measure −2 for the roomTemperature, but finally
ressingAbandoned occurs. In MonitoringService, UserFallen has

ed to a call to CallSupportDecision(), where assentToSupportCalls
as found to be true, so a call to support is triggered, and then a

S. Getir Yaman et al.

w
r
o
t
S

f
‘
1
t

a
w
a
r
o
t
c
f
t
i
s

The Journal of Systems & Software 220 (2025) 112229
Table 9
RQ2 evaluation results for RAD system.

#Rules Resolution action

Conflicts
3
21 Removing 3 rules,

sanitising event names

Redundancies
6
21 Removing 3 rules

revising 1 defeater

Non-conformance
1
5

Relaxing the deadline

deadline requires SupportCalled to take place in 60 s. At this point,
however, SupportCalled is forbidden by Rule4 for two minutes so that
a RetryAgreed has a chance to occur.

In this situation where the system design violates a SLEEC rule, we
have to consult the SLEEC experts and other requirements stakeholders.
A few outcomes may be possible. In our experiment, a domain expert
agreed that a 1 min deadline is too strict, and, in this case, the design
needs to be changed to relax the deadline.

RQ3 (Scalability). We assessed the scalability of our conflict and
redundancy checking by examining the time required to complete these
operations for SLEEC rulesets of increasing size. As the complete SLEEC
ruleset for the RAD system is larger than the one for the firefighter
UAV, we only ran the scalability experiments for the RAD system. To
that end, we used the 21 RAD SLEEC rules from RQ1 to assemble four
rulesets of increasing size. These rulesets comprised five, 10, 15, and
all 21 SLEEC rules, respectively. The rules included in the first three
sets were specifically chosen to maximise the number of rule pairs
referring to non-disjoint sets of autonomous agent capabilities, and
therefore requiring conflict and redundancy checking — we recall that
two SLEEC rules that refer to disjoint sets of agent capabilities cannot
be conflicting or redundant, so they are trivially consistent with each
other, and thus our consistency validation skips their analysis.

As the scalability of tock-CSP analysis is known to be affected by
the magnitude of the durations (i.e., by the number of tock events in

hich the CSP processes need to engage), we used each of the four
ulesets mentioned above to synthetically create two additional sets
f rules by increasing all the deadlines from every rule by a factor of
wo, four, and eight, respectively. As an example, when starting from a
LEEC ruleset that included Rule1 from Table 7, the deadline ‘within

2 minutes’ from this rule was replaced by ‘within 4 minutes’ in the
irst additional ruleset, by ‘within 8 minutes’ in the second, and by
within 16 minutes’ in the third. In this way, we obtained a total of
6 SLEEC rulesets with different combinations of rule numbers and
imeout magnitudes.

Each of the 16 SLEEC rulesets were analysed separately for conflicts
nd redundancies. All the experiments were run on a Ubuntu server
ith a Dual AMD EPYC 7501 processor and 2.0 TiB of RAM (with
six-hour timeout), and the execution times for these analyses are

eported in Fig. 10. Before discussing these results, we note that, for
ur four rulesets of increasing size, the number of rule pairs that need
o be analysed (because their rules refer to non-disjoint sets of agent
apabilities) grows only slightly faster than linearly, from five rule pairs
or the five-rule set to 12 rule pairs for the 10-rule set, 32 rule pairs for
he 15-rule set, and 49 rule pairs for the 21-rule set. This is a far slower
ncrease in the number of rule pairs than the (quadratic) worst-case
cenario, in which each of the n(n− 1)∕2 rule pairs that can be formed

for an n-rule set contains interdependent rules that need to be analysed.
We expect this sub-quadratic growth in the number of interdependent
rules to be representative of most SLEEC rulesets, as it is unlikely that
some of the agent capabilities appearing in a rule will also appear in
most other rules, especially for large numbers of capabilities and large
rulesets.

For all four deadline magnitudes, the experimental results show an
approximately linear increase in the analysis time for conflict checking,
17
and an exponential increase for redundancy checking as the number of
rule pairs being analysed grows. The exponential growth stems from
rule pairs that make use of more measures and deadlines, mainly
reflected in the times for rule sets with 49 rule pairs. For those pairs, the
experiment with eight-fold longer deadlines did not terminate within
the six-hour timeout, and so its data point is omitted from Fig. 10(b).
Additionally, for all 16 rulesets, the conflict checking completes faster
than redundancy checking (by between ∼ 2 and ∼ 19.7 times). This is
due to the fact that the FDR assertions required to check conflicts are
simpler than those used to check redundancies. For conflicts we use a
deadlock and a divergence-freedom check, and for redundancies, we
use a refinement check. FDR has very efficient algorithms for checking
deadlock and divergence-freedom (Roscoe, 1998), and they involve
just one CSP process, while a refinement check is concerned with two
processes.

Looking now at the effect of increasing deadline magnitudes, we
note that, for every ruleset size, the analysis times (for both types
of consistency checking) increase quickly as the deadline magnitudes
grow from the durations specified by our SLEEC experts. This reflects
a known scalability result for tock-CSP. The number of states of each
tock-CSP process grows linearly with these durations. In our mechanisa-
tion, however, in each time unit, the values of the measures can change.
So, each additional tock event creates a number of states related to the
number of possible combinations of values of the measures. Hence, the
exponential growth observed in Fig. 10.

This scalability issue can be alleviated by using a single tock CSP
event for a number of time units corresponding to the greatest common
factor (GCF) of all timeouts from the pair of SLEEC rules under analysis
(an optimisation not implemented in the current version of our tools).
This cannot, however, eliminate the issue, as the ratio between the
largest deadline and this GCF can still be very large. Another way
of addressing scalability is by restricting the possible combinations
of values of the measures, if there are requirements that invalidate
some combinations. This, however, requires encoding environment
assumptions.

We complete the discussion of the experimental results from Fig. 10
by noting that the combined time required to complete the conflict
and redundancy checking does not exceed 2300 s for the SLEEC rule-
sets assembled using rules with unmodified deadlines, 5517 s for the
SLEEC rulesets assembled using rules with deadlines increased two-
fold, 19123 s for the rulesets assembled with four-fold, and 2485 s
(excluding the ruleset with 49 pairs) for the SLEEC rulesets assembled
using rules with deadlines increased 8-fold. While these analysis times
are significant, they are all acceptable for development-time consis-
tency validation of a set of requirements. Furthermore, the analyses
of different pairs of SLEEC rules can be carried out independently and
therefore in parallel, e.g., using cloud-computing resources.

Finally, the verification time required to check a system under
verification against a SLEEC rule as described in Section 5.3 depends
primarily on the complexity of that system’s tock-CSP model. Evalu-
ating the scalability of analysing tock-CSP system models is beyond
the scope of this article (and is covered elsewhere, e.g. Roscoe, 1998;
Mestel and Roscoe, 2020). As such, we only measured the total FDR
execution time for the conformance checking of the: (i) firefighter
UAV tock-CSP model obtained from the RoboChart state machines in
Figs. 6 against the two relevant SLEEC rules from RQ2; and (ii) RAD
tock-CSP model obtained from the RoboChart state machines in Fig. 8
against the four relevant SLEEC rules from Table 7. This verification
was carried out on the same Ubuntu server as the SLEEC rule conflict
and redundancy analyses described earlier, and took 14 s and 863 s,
respectively. Again, we note that these times are acceptable for an
offline verification activity — and that the verification of different
SLEEC rules can be performed independently (and thus in parallel).

RQ4 (Usability). As previously noted, the stakeholders worked both

individually and in cooperation to formulate the SLEEC requirements.

S. Getir Yaman et al.

b

T
t
l
r
p
p
c
w
a
c
t
c
t

7

The Journal of Systems & Software 220 (2025) 112229
Fig. 10. Execution time for analysing conflicts and redundancies for SLEEC rulesets of different sizes and timeout magnitudes; the horizontal axis shows the number of rule pairs
eing analysed (because they refer to non-disjoint sets of autonomous capabilities) for four rulesets comprising five, 10, 15 and 21 SLEEC rules, respectively.
heir feedback suggests that our language possesses an intuitive struc-
ure, and found value in having a DSL editor that incorporates features
ike highlighting and type checking. The analysis of conflicts and
edundancies was particularly useful in identifying and understanding
roblems with the rules. Notably, they highlighted the usefulness of
airwise analysis, as dealing with issues within an extensive set of rules
ollectively can be overwhelming. Some suggestions for enhancements
ere put forth, including the incorporation of diagnostic capabilities
nd providing more comprehensive feedback e.g. an explaination of the
auses of conflicts. Additionally, users indicated that a guide detailing
he integration of the tool with the whole requirements elicitation pro-
ess would be beneficial. Overall, the users appreciated the help of the
ool for encoding, understanding, and validating SLEEC requirements.

.3. Threats to validity

Construct validity threats may arise due to assumptions made about
the systems from our running example and case studies, or about
their SLEEC requirements. To limit these threats, the two autonomous
systems used in the paper are adapted from the research literature on
firefighting UAVs (Alon et al., 2021; Cervantes et al., 2018; Innocente
and Grasso, 2019) and robotic assistive dressing (Camilleri et al., 2022;
Jevtić et al., 2018; Zhang and Demiris, 2022; Pirhonen et al., 2020),
and the SLEEC rules for these systems were provided by stakeholders
with expertise in social, legal, ethical, empathetic and cultural norms
of such systems (i.e., lawyers, ethicists, psychologists, etc.).

Internal validity threats may stem from bias in establishing cause–
effect relationships in the experiments from our case study. To mitigate
these threats, we used SLEEC experts from multiple disciplines in the
evaluation of our framework’s expressivity and usability, and we car-
ried out the correctness and scalability evaluation using a diverse set of
rules provided by these experts — including rules that cover additional
autonomous agent capabilities proposed by these experts. Furthermore,
we have enabled replication by making all our models, SLEEC rules and
code available in the project’s GitHub repository (Anon, 2023).

External validity threats exist if the SLEEC requirements of other
autonomous agents cannot be expressed in our SLEEC domain-specific
language, if the behaviour of such agents cannot be modelled using
the process algebra employed by our framework, or if their tock-CSP
models are too large and complex to be verified efficiently. We limited
the first threat by developing the language with constant input from
SLEEC experts from other disciplines (in particular lawyers, ethicists,
philosophers, and social psychologists), and assessed its expressiveness
as part of case studies in which we encouraged the participants to
imagine additional capabilities for a robotic assistive-dressing system.,
18
To mitigate the second threat, we chose tock-CSP as the underpinning
modelling paradigm for our framework because tock-CSP models for
a wide range of autonomous agents can be obtained automatically
from RoboChart models developed in an easy-to-use, validated domain-
specific language for robotics (Miyazawa et al., 2019). Nevertheless,
additional case studies are needed to establish the applicability of
our SLEEC framework in domains with characteristics that differ from
those of our running example and case study. The last threat is a
known problem of formal verification/model checking, which can often
be alleviated by using suitable levels of abstraction (to focus on the
relevant aspects of the verified system). Furthermore, the last several
decades of advances in model checking algorithms and tools have
greatly improved the scalability of these techniques, leading to their
wide adoption, including for autonomous agents, e.g., Miyazawa et al.
(2019), Li et al. (2024).

8. Related work

The normative themes found in many recently developed artifi-
cial intelligence (AI) and autonomous systems ethics and guidance
instruments inform a ‘normative core’ of a principled approach to
development, deployment, and adoption (Jobin et al., 2019; UNESCO,
2021; OECD, 2022) of agents whose behaviour relies on the use of
artificial intelligence and autonomous decision-making techniques. Sig-
nificant work has been done in the development of autonomous systems
from the perspective of normative ideas (Dennis et al., 2015; Fjeld
et al., 2020), including work on transparency (Winfield et al., 2022),
explainability, and accountability (Inverardi, 2022). Another research
perspective related to our SLEEC framework proposes a data-driven
personalised tool based on the moral choices of the user (Alfieri et al.,
2022). Our SLEEC framework, however, is concerned with the oper-
ationalisation of norms (Townsend et al., 2022; Solanki et al., 2023),
and defines a formalisation and an automated process for validating
and verifying rules that capture these norms. As such, our work comple-
ments the ongoing research on normative aspects of AI and autonomous
systems.

Requirement consistency checking is an established (Heitmeyer
et al., 1996; Nuseibeh and Easterbrook, 2000) and active (e.g., Bertram
et al., 2023; Gärtner and Göhlich, 2024) area of research. Formal tech-
niques such as SMT-based consistency analysis have been successfully
used to check the consistency of both functional (Filipovikj et al., 2017,
2018; Bendík, 2017) and non-functional requirements (Becker, 2019).
However, none of these approaches has addressed the consistency
checking of normative requirements, which is the focus of our SLEEC

framework.

S. Getir Yaman et al. The Journal of Systems & Software 220 (2025) 112229
There also exists significant research on the development and ver-
ification of cyber–physical and autonomous systems, e.g., Luckcuck
et al. (2019), Nordmann et al. (2014), Menghi et al. (2019), Bennaceur
et al. (2019). Most of these approaches verify the autonomous agents
using formal verification methods, such as model checking and theorem
proving, by introducing new formalisms, but — complementary to our
SLEEC framework — they focus on the safety and reliability require-
ments of the agents. To the best of our knowledge, the use of formal
methods for the consistency validation and for the verification of SLEEC
requirements is novel to our framework.

Concerns regarding some level of ethical constraints and legal as-
pects (Bhuiyan et al., 2020) have been recently studied (Bremner
et al., 2019; Dennis et al., 2016) and investigated from a verification
perspective (Dennis et al., 2015), although not from the perspective
of operationalisation of these requirements. In the approach proposed
in Dennis et al. (2015), verification deals with robots that select their
actions by evaluating the outcomes of these actions using simula-
tion. Bremner et al. (2019) present a technique for verification of trans-
parency and ethical concerns using a belief–desire–intention model and
a simulation module to obtain ethical rules. This line of work is comple-
mentary to ours: we focus on formalisation and validation of rules, prior
to verification, and cover defeasible reasoning and timed properties.
Furthermore, unlike our SLEEC framework, these approaches do not
provide a notation dedicated to the encoding of SLEEC-related concerns
as requirements like we do here.

9. Conclusion

We have introduced a tool-supported framework for the end-to-end
specification, validation and verification of social, legal, ethical, em-
pathetic and cultural requirements for autonomous agents. The frame-
work supports (1) the specification of these requirements as SLEEC
rules formalised in a timed domain-specific language grounded in
defeasible logic (Horty, 2012; Zalta et al., 2005); and (2) the translation
of the rules into the process algebra tock-CSP for redundancy and
conflict checking, and for verifying autonomous agent compliance with
SLEEC rules. By enabling operationalisation of SLEEC requirements
for autonomous agents, our framework complements the significant
international efforts to define ethical principles for AI and autonomous
systems (UNESCO, 2021; OECD, 2022; IEEE Global Initiative for Ethics
of Autonomous and Intelligent Systems, 2019), and our own recent
work to elicit SLEEC rules for autonomous agents by starting from
relevant normative principles and stakeholder needs (Townsend et al.,
2022).

In future work, we will explore several opportunities for extending
the applicability and usability of our SLEEC framework. First, we plan
to augment the SLEEC language with probabilistic constructs, and thus
to provide support for modelling the uncertainty in the environment
and decisions of autonomous agents. Second, we intend to augment our
tool support with a module that converts the counterexample traces
produced by FDR into error messages that are easier to understand
for framework users who do not have FDR expertise. Finally, we plan
to continue to evaluate the framework in additional case studies from
different domains, and with a larger number of SLEEC experts, to
identify and address any remaining applicability and usability issues,
and to assess the scalability and generality of the framework further.

In the longer term, we will consider also extending the framework
with two additional techniques. The first is the runtime verification of
autonomous-agent decisions. Many autonomous systems learn, adapt
and evolve in operation, e.g., in response to changes in their environ-
ment, and therefore cannot be fully verified at development time. The
second technique is the online synthesis of SLEEC-compliant adaptation
plans for autonomous agents.

One final direction of future work involves the extension of the
SLEEC framework with support for multi-user collaboration, enabling
experts from all fields to specify rules together, and even to manage
(in an interactive way) the contradictory and redundant rules that may

emerge.

19
CRediT authorship contribution statement

Sinem Getir Yaman: Conceptualization, Formal analysis, Investiga-
tion, Methodology, Project administration, Software, Validation, Visu-
alization, Writing – original draft, Writing – review & editing. Pedro
Ribeiro: Formal analysis, Software, Validation, Visualization, Writing
– review & editing, Conceptualization. Ana Cavalcanti: Conceptu-
alization, Formal analysis, Investigation, Methodology, Supervision,
Validation, Visualization, Writing – original draft, Writing – review &
editing, Funding acquisition, Software. Radu Calinescu: Conceptual-
ization, Formal analysis, Methodology, Project administration, Super-
vision, Validation, Visualization, Writing – original draft, Writing –
review & editing, Funding acquisition. Colin Paterson: Conceptual-
ization, Methodology, Writing – original draft. Beverley Townsend:
Conceptualization, Methodology, Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The work described in this paper was funded by the EPSRC, United
Kingdom project EP/V026747/1 ‘UKRI Trustworthy Autonomous Sys-
tems Node in Resilience’. The work of Ana Cavalcanti is also funded by
the Royal Academy of Engineering, United Kingdom grant CiET1718/45
and ‘UKRI TAS Verifiability Node EP/V026801/1’. The work of Pedro
Ribeiro is funded by EPSRC RoboTest EP/R025479/1. Last but not
least, we are grateful to the anonymous reviewers for their constructive
comments, which helped us improve the article significantly.

References

Alfieri, C., Inverardi, P., Migliarini, P., Palmiero, M., 2022. Exosoul: Ethical profiling in
the digital world. In: Schlobach, S., Pérez-Ortiz, M., Tielman, M. (Eds.), HHAI 2022:
Augmenting Human Intellect - Proceedings of the First International Conference on
Hybrid Human-Artificial Intelligence. 13–17 June 2022, In: Frontiers in Artificial
Intelligence and Applications, vol. 354, IOS Press, pp. 128–142.

Alon, O., Rabinovich, S., Fyodorov, C., Cauchard, J.R., 2021. Drones in firefighting:
A user-centered design perspective. In: 23rd International Conference on Mobile
Human-Computer Interaction. pp. 1–11.

Anon, 2010. Eclipse XTend. https://www.eclipse.org/xtend/. (Accessed November
2023).

Anon, 2023. SLEECVAL GitHub repository. URL https://github.com/SLEEC-project/
SLEECVAL.

Baxter, J., Ribeiro, P., Cavalcanti, A., 2022. Sound reasoning in tock-CSP. Acta Inform.
59 (1), 125–162. http://dx.doi.org/10.1007/s00236-020-00394-3.

Becker, J.S., 2019. Analyzing consistency of formal requirements. Electron. Commun.
EASST 76.

Bendík, J., 2017. Consistency checking in requirements analysis. In: Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and Analysis.
pp. 408–411.

Bennaceur, A., Ghezzi, C., Tei, K., Kehrer, T., Weyns, D., Calinescu, R., Dustdar, S.,
Hu, Z., Honiden, S., Ishikawa, F., et al., 2019. Modelling and analysing resilient
cyber-physical systems. In: 2019 IEEE/ACM 14th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. SEAMS, IEEE, pp.
70–76.

Bergstra, J.A., Klop, J.W., 1985. Algebra of communicating processes with abstraction.
Theoret. Comput. Sci. 37, 77–121.

Bertram, V., Kausch, H., Kusmenko, E., Nqiri, H., Rumpe, B., Venhoff, C., 2023.
Leveraging natural language processing for a consistency checking toolchain of
automotive requirements. In: Schneider, K., Dalpiaz, F., Horkoff, J. (Eds.), 31st IEEE
International Requirements Engineering Conference. RE 2023, Hannover, Germany,
September 4–8, 2023, IEEE, pp. 212–222. http://dx.doi.org/10.1109/RE57278.

2023.00029.

http://refhub.elsevier.com/S0164-1212(24)00273-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb2
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb2
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb2
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb2
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb2
https://www.eclipse.org/xtend/
https://github.com/SLEEC-project/SLEECVAL
https://github.com/SLEEC-project/SLEECVAL
https://github.com/SLEEC-project/SLEECVAL
http://dx.doi.org/10.1007/s00236-020-00394-3
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb6
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb6
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb6
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb9
http://dx.doi.org/10.1109/RE57278.2023.00029
http://dx.doi.org/10.1109/RE57278.2023.00029
http://dx.doi.org/10.1109/RE57278.2023.00029

S. Getir Yaman et al. The Journal of Systems & Software 220 (2025) 112229
Bhuiyan, H., Olivieri, F., Governatori, G., Islam, M.B., Bond, A., Rakotonirainy, A.,
2020. A methodology for encoding regulatory rules. In: MIREL@JURIX. pp. 1–13.

Boltz, N., Sterz, L., Gerking, C., Raabe, O., 2022. A model-based framework for sim-
plified collaboration of legal and software experts in data protection assessments.
In: INFORMATIK 2022. Gesellschaft für Informatik, Bonn.

Bremner, P., Dennis, L., Fisher, M., Winfield, A., 2019. On proactive, transparent, and
verifiable ethical reasoning for robots. Proc. IEEE PP, 1–21. http://dx.doi.org/10.
1109/JPROC.2019.2898267.

Brunero, J., 2021. Reasons and Defeasible Reasoning. Philos. Q. 72 (1), 41–64. http:
//dx.doi.org/10.1093/pq/pqab013.

Calinescu, R., Cámara, J., Paterson, C., 2019. Socio-cyber-physical systems: Models,
opportunities, open challenges. In: 2019 IEEE/ACM 5th International Workshop on
Software Engineering for Smart Cyber-Physical Systems. SEsCPS, IEEE, pp. 2–6.

Camilleri, A., Dogramadzi, S., Caleb-Solly, P., 2022. A study on the effects of cognitive
overloading and distractions on human movement during robot-assisted dressing.
Front. Robot. AI 9.

Cavalcanti, A., Barnett, W., Baxter, J., Carvalho, G., Filho, M.C., Miyazawa, A.,
Ribeiro, P., Sampaio, A., 2021. RoboStar technology: A roboticist’s toolbox for
combined proof, simulation, and testing. In: Software Engineering for Robotics.
Springer International Publishing, pp. 249–293. http://dx.doi.org/10.1007/978-3-
030-66494-7_9 (Chapter 9).

Cervantes, A., Garcia, P., Herrera, C., Morales, E., Tarriba, F., Tena, E., Ponce, H.,
2018. A conceptual design of a firefighter drone. In: 15th International Conference
on Electrical Engineering, Computing Science and Automatic Control. IEEE, pp.
1–5.

Dennis, L., Fisher, M., Slavkovik, M., Webster, M., 2016. Formal verification of ethical
choices in autonomous systems. Robot. Auton. Syst. 77, 1–14. http://dx.doi.org/
10.1016/j.robot.2015.11.012.

Dennis, L., Fisher, M., Winfield, A.F.T., 2015. Towards verifiably ethical robot
behaviour. arXiv, arXiv:1504.03592.

Filipovikj, P., Rodriguez-Navas, G., Nyberg, M., Seceleanu, C., 2017. SMT-based
consistency analysis of industrial systems requirements. In: Proceedings of the
Symposium on Applied Computing. pp. 1272–1279.

Filipovikj, P., Rodriguez-Navas, G., Nyberg, M., Seceleanu, C., 2018. Automated SMT-
based consistency checking of industrial critical requirements. ACM SIGAPP Appl.
Comput. Rev. 17 (4), 15–28.

Fjeld, J., Achten, N., Hilligoss, H., Nagy, A., Srikumar, M., 2020. Principled artificial
intelligence: Mapping consensus in ethical and rights-based approaches to principles
for AI. Berkman Klein Cent. Res. Publ. 2020–1.

Floridi, L., 2018. Soft ethics and the governance of the digital. Philo. Technol. 31, 1–8.
http://dx.doi.org/10.1007/s13347-018-0303-9.

Gärtner, A.E., Göhlich, D., 2024. Towards an automatic contradiction detection in
requirements engineering. Proc. Des. Soc. 4, 2049–2058.

Getir Yaman, S., Burholt, C., Jones, M., Calinescu, R., Cavalcanti, A., 2023. Specification
and validation of normative rules for autonomous agents. In: 26th International
Conference on Fundamental Approaches to Software Engineering. Springer-Verlag,
pp. 241–248. http://dx.doi.org/10.1007/978-3-031-30826-0_13.

Getir Yaman, S., Ribeiro, P., Burholt, C., Jones, M., Cavalcanti, A., Calinescu, R., 2024.
Toolkit for specification, validation and verification of social, legal, ethical, em-
pathetic and cultural requirements for autonomous agents. Sci. Comput. Program.
236, 103118.

Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A., 2014. FDR3 — A
Modern Refinement Checker for CSP. In: Ábrahám, E., Havelund, K. (Eds.), Tools
and Algorithms for the Construction and Analysis of Systems. In: LNCS, vol. 8413,
pp. 187–201.

Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G., 1996. Automated consistency checking
of requirements specifications. ACM Trans. Softw. Eng. Methodol. (TOSEM) 5 (3),
231–261.

Hoare, C.A.R., 1978. Communicating sequential processes. Commun. ACM 21 (8),
666–677. http://dx.doi.org/10.1145/359576.359585.

Horty, J.F., 2012. Reasons as defaults. Oxford University Press.
IEEE Global Initiative for Ethics of Autonomous and Intelligent Systems, 2019. Ethically

aligned design: A vision for prioritizing wellbeing with autonomous systems and
intelligent systems. Version 2. URL https://standards.ieee.org/wp-content/uploads/
import/documents/other/ead_v2.pdf.

Innocente, M.S., Grasso, P., 2019. Self-organising swarms of firefighting drones:
Harnessing the power of collective intelligence in decentralised multi-robot systems.
J. Comput. Sci. 34, 80–101.

Inverardi, P., 2022. The challenge of human dignity in the era of autonomous systems.
In: Perspectives on Digital Humanism. Springer International Publishing, Cham, pp.
25–29. http://dx.doi.org/10.1007/978-3-030-86144-5_4 (Chapter 4).

Jevtić, A., Valle, A.F., Alenyà, G., Chance, G., Caleb-Solly, P., Dogramadzi, S., Torras, C.,
2018. Personalized robot assistant for support in dressing. IEEE Trans. Cogn. Dev.
Syst. 11 (3), 363–374.

Jobin, A., Ienca, M., Vayena, E., 2019. The global landscape of AI ethics guidelines.
Nat. Mach. Intell. 1 (9), 389–399.

Li, W., Ribeiro, P., Miyazawa, A., Redpath, R., Cavalcanti, A., Alden, K., Woodcock, J.,
Timmis, J., 2024. Formal design, verification and implementation of robotic
controller software via RoboChart and RoboTool. Auton. Robots 48 (6), 1–22.
20
Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M., 2019. Formal specification
and verification of autonomous robotic systems: A survey. ACM Comput. Surv. 52
(5), http://dx.doi.org/10.1145/3342355.

Menghi, C., Tsigkanos, C., Pelliccione, P., Ghezzi, C., Berger, T., 2019. Specification
patterns for robotic missions. IEEE Trans. Softw. Eng. 47, 2208–2224.

Mestel, D., Roscoe, A.W., 2020. Translating between models of concurrency. Acta
Inform. 57 (3–5), 403–438.

Milner, A.J.R.G., 1983. Calculi for synchrony and asynchrony. Theoret. Comput. Sci.
25, 267–310.

Milner, R., 1999. Communicating and Mobile Systems: the 𝜋-calculus. Cambridge
University Press.

Mitzner, T.L., Chen, T.L., Kemp, C.C., Rogers, W.A., 2014. Identifying the potential for
robotics to assist older adults in different living environments. Int. J. Soc. Robot.
6, 213–227.

Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., Woodcock, J., 2019.
RoboChart: Modelling and verification of the functional behaviour of robotic
applications. Softw. Syst. Model. 18, 1–53. http://dx.doi.org/10.1007/s10270-018-
00710-z.

Moor, J.H., 2006. The nature, importance, and difficulty of machine ethics. IEEE Intell.
Syst. 21 (4), 18–21.

Nordmann, A., Hochgeschwender, N., Wrede, S., 2014. A survey on domain-specific
languages in robotics. In: Brugali, D., Broenink, J.F., Kroeger, T., MacDonald, B.A.
(Eds.), Simulation, Modeling, and Programming for Autonomous Robots. Springer
International Publishing, Cham, pp. 195–206.

Nuseibeh, B., Easterbrook, S., 2000. Requirements engineering: a roadmap. In:
Proceedings of the Conference on the Future of Software Engineering. pp. 35–46.

OECD, 2022. Recommendation of the Council on Artifical Intelligence, OECD/LE-
GAL/0449. http://legalinstruments.oecd.org. (Accessed 27 March 2023).

Pirhonen, J., Melkas, H., Laitinen, A., Pekkarinen, S., 2020. Could robots strengthen
the sense of autonomy of older people residing in assisted living facilities?—A
future-oriented study. Ethics Inf. Technol. 22 (2), 151–162.

Roscoe, A.W., 1998. The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science, Prentice-Hall.

Roscoe, A.W., 2013. The automated verification of timewise refinement. In: First Open
EIT ICT Labs Workshop on Cyber-Physical Systems Engineering.

Solanki, P., Grundy, J., Hussain, W., 2023. Operationalising ethics in artificial intel-
ligence for healthcare: a framework for AI developers. AI Ethics 3 (1), 223–240.
http://dx.doi.org/10.1007/s43681-022-00195-z.

Townsend, B., Paterson, C., Arvind, T.T., Nemirovsky, G., Calinescu, R., Cavalcanti, A.,
Habli, I., Thomas, A., 2022. From pluralistic normative principles to autonomous-
agent rules. Minds Mach. 32 (4), 683–715. http://dx.doi.org/10.1007/s11023-022-
09614-w.

UNESCO, 2021. Recommendation on the Ethics of Artificial Intelligence. https:
//unesdoc.unesco.org/ark:/48223/pf0000380455. (Accessed 18 March 2022),
Document code: SHS/BIO/REC-AIETHICS/2021.

Winfield, A., Watson, E., Egawa, T., Barwell, E., Barclay, I., Booth, S., Dennis, L.A.,
Hastie, H., Hossaini, A., Jacobs, N., Markovic, M., Muttram, R.I., Nadel, L., Naja, I.,
Olszewska, J., Rajabiyazdi, F., Rannow, R.K., Theodorou, A., Underwood, M.A., von
Stryk, O., Wortham, R.H., 2022. IEEE Standard for Transparency of Autonomous
Systems. Institute of Electrical and Electronics Engineers (IEEE), p. 52. http://dx.
doi.org/10.1109/IEEESTD.2022.9726144.

Wing, J.M., 2021. Trustworthy AI. Commun. ACM 64 (10), 64–71.
Zalta, E.N., Nodelman, U., Allen, C., Anderson, R.L., 2005. Defeasible Rea-

soning,stanford Encyclopedia of Philosophy. Stanford University, Palo Alto
CA.

Zhang, F., Demiris, Y., 2022. Learning garment manipulation policies toward
robot-assisted dressing. Sci. Robot. 7 (65), eabm6010.

Sinem Getir Yaman is a Postdoctoral Research Associate in the University of York’s
Department of Computer Science. She holds a Ph.D. in Computer Science from
Humboldt University of Berlin. Her research focuses on methods for the modelling and
verification of non-functional requirements, including SLEEC requirements, for software
quality evaluation under uncertainty.

Pedro Ribeiro is a lecturer in Computer Science at the University of York and a
member of the RoboStar centre of excellence. He has over a decade of experience
on formal modelling and verification with applications to modern software engineering
approaches, and is one of the core developers of RoboTool and its integration with the
SLEEC toolkit. He has served on multiple programme committees in the area of formal
methods, and is a co-founder of Formal Method’s Europe communications committee.

Ana Cavalcanti is Professor of Software Verification at the University of York and
Royal Academy of Engineering Chair in Emerging Technologies working on Software
Engineering for Robotics. She currently leads the RoboStar centre of excellence, whose
approach to model-based software engineering complements the current practice of
design and verification of mobile and autonomous robots, covering simulation, testing
and proof.

http://refhub.elsevier.com/S0164-1212(24)00273-5/sb11
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb11
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb11
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb12
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb12
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb12
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb12
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb12
http://dx.doi.org/10.1109/JPROC.2019.2898267
http://dx.doi.org/10.1109/JPROC.2019.2898267
http://dx.doi.org/10.1109/JPROC.2019.2898267
http://dx.doi.org/10.1093/pq/pqab013
http://dx.doi.org/10.1093/pq/pqab013
http://dx.doi.org/10.1093/pq/pqab013
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb15
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb15
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb15
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb15
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb15
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb16
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb16
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb16
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb16
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb16
http://dx.doi.org/10.1007/978-3-030-66494-7_9
http://dx.doi.org/10.1007/978-3-030-66494-7_9
http://dx.doi.org/10.1007/978-3-030-66494-7_9
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb18
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb18
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb18
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb18
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb18
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb18
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb18
http://dx.doi.org/10.1016/j.robot.2015.11.012
http://dx.doi.org/10.1016/j.robot.2015.11.012
http://dx.doi.org/10.1016/j.robot.2015.11.012
http://arxiv.org/abs/1504.03592
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb21
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb21
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb21
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb21
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb21
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb23
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb23
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb23
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb23
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb23
http://dx.doi.org/10.1007/s13347-018-0303-9
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb25
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb25
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb25
http://dx.doi.org/10.1007/978-3-031-30826-0_13
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb29
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb29
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb29
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb29
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb29
http://dx.doi.org/10.1145/359576.359585
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb31
https://standards.ieee.org/wp-content/uploads/import/documents/other/ead_v2.pdf
https://standards.ieee.org/wp-content/uploads/import/documents/other/ead_v2.pdf
https://standards.ieee.org/wp-content/uploads/import/documents/other/ead_v2.pdf
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb33
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb33
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb33
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb33
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb33
http://dx.doi.org/10.1007/978-3-030-86144-5_4
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb35
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb35
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb35
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb35
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb35
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb36
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb36
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb36
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb37
http://dx.doi.org/10.1145/3342355
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb39
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb39
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb39
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb40
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb40
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb40
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb41
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb41
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb41
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb42
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb42
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb42
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb43
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb43
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb43
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb43
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb43
http://dx.doi.org/10.1007/s10270-018-00710-z
http://dx.doi.org/10.1007/s10270-018-00710-z
http://dx.doi.org/10.1007/s10270-018-00710-z
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb45
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb45
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb45
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb46
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb46
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb46
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb46
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb46
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb46
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb46
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb47
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb47
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb47
http://legalinstruments.oecd.org
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb49
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb49
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb49
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb49
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb49
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb50
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb50
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb50
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb51
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb51
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb51
http://dx.doi.org/10.1007/s43681-022-00195-z
http://dx.doi.org/10.1007/s11023-022-09614-w
http://dx.doi.org/10.1007/s11023-022-09614-w
http://dx.doi.org/10.1007/s11023-022-09614-w
https://unesdoc.unesco.org/ark:/48223/pf0000380455
https://unesdoc.unesco.org/ark:/48223/pf0000380455
https://unesdoc.unesco.org/ark:/48223/pf0000380455
http://dx.doi.org/10.1109/IEEESTD.2022.9726144
http://dx.doi.org/10.1109/IEEESTD.2022.9726144
http://dx.doi.org/10.1109/IEEESTD.2022.9726144
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb56
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb57
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb57
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb57
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb57
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb57
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb58
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb58
http://refhub.elsevier.com/S0164-1212(24)00273-5/sb58

S. Getir Yaman et al. The Journal of Systems & Software 220 (2025) 112229
Radu Calinescu is Professor of Computer Science at the University of York, UK. His
research interests include formal methods for self-adaptive, autonomous, secure and
dependable software, cyber–physical and AI systems, and in performance and reliability
software engineering. He is an active promoter of formal methods at runtime as a way
to improve the integrity and predictability of self-adaptive, autonomous and AI systems
and processes.

Colin Paterson is a Senior Lecturer in Computer Science at the University of York,
UK. He holds Ph.D.s in Control Systems Engineering, gained in collaboration with
Jaguar Cars, and Computer Science, in which techniques for the verification of
21
operational processes, using observation data, were developed. His current research
considers techniques for the development and assurance of resilient autonomous and
AI systems operating in uncertain environments.

Beverley Townsend is a BRAID (Bridging Responsible AI Divides) Research Fellow
at the University of York, UK, specialising in the law and ethics of emerging digital
technologies. Her expertise is in data protection and in integrating the law and ethics
into safe and resilient autonomous systems (robots). Her research has focused on digital
health, privacy, data protection law, data sharing and international data transfers,
ethics, human rights, biotechnologies, AI, and regulation and governance.

	Specification, validation and verification of social, legal, ethical, empathetic and cultural requirements for autonomous agents
	Introduction
	Running example
	The SLEEC Language
	The definitions block
	The rules block

	SLEEC Semantics
	Overview of tock-CSP
	Overview of SLEEC semantics
	Triggers
	Responses

	Validation and Verification
	SLEEC conflict detection
	Detection of redundant rules
	Verification of compliance with SLEEC rules

	Tool support
	Evaluation
	Robotic assistive-care application
	Evaluation methodology, results and discussion
	Threats to validity

	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

