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Abstract

The development and application of artificial intelligence-based computer vision systems in medicine, environment, and

industry are playing an increasingly prominent role. Hence, the need for optimal and efficient hyperparameter tuning

strategies is more than crucial to deliver the highest performance of the deep learning networks in large and demanding

datasets. In our study, we have developed and evaluated a new training methodology named deep multi-metric training

(DMMT) for enhanced training performance. The DMMT delivers a state of robust learning for deep networks using a new

important criterion of multi-metric performance evaluation. We have tested the DMMT methodology in multi-class (three,

four, and ten), multi-vendors (different X-ray imaging devices), and multi-size (large, medium, and small) datasets. The

validity of the DMMT methodology has been tested in three different classification problems: (i) medical disease clas-

sification, (ii) environmental classification, and (iii) ecological classification. For disease classification, we have used two

large COVID-19 chest X-rays datasets, namely the BIMCV COVID-19? and Sheffield hospital datasets. The environ-

mental application is related to the classification of weather images in cloudy, rainy, shine or sunrise conditions. The

ecological classification task involves a classification of three animal species (cat, dog, wild) and a classification of ten

animals and transportation vehicles categories (CIFAR-10). We have used state-of-the-art networks of DenseNet-121,

ResNet-50, VGG-16, VGG-19, and DenResCov-19 (DenRes-131) to verify that our novel methodology is applicable in a

variety of different deep learning networks. To the best of our knowledge, this is the first work that proposes a training

methodology to deliver robust learning, over a variety of deep learning networks and multi-field classification problems.

Keywords DenRes-131 � Classification � Chest X-rays � COVID-19 � Robust learning � Weak learning

1 Introduction

The development of AI-based medical systems, as well as

their translation to medical practice, is playing an

increasingly prominent role in the treatment and therapy of

patients [13, 28]. Along with the automated methods that

rely on blood test results or biomarkers for diagnosis

[2, 3, 22, 35, 38], an increasing number of deep learning-

based methods, specifically the convolution neural network

(CNN)-based models [7, 14, 24, 29, 32], are being imple-

mented and used to develop accurate, robust, and fast

detection techniques to fight against COVID-19 and other

respiratory diseases. In the environmental and industrial

domains, there are studies that explore the utilisation of

deep neural networks (DNNs) to approximate solutions for

partial differential equations (PDEs) in computational

mechanics, emphasising the energetic format of PDEs and

demonstrating their efficacy in various engineering appli-

cations [36]. Furthermore, there are studies highlighting the

use of CNNs and artificial intelligence in geoscientific,

meteorology, and climate science applications [26, 27].

As the prevalence of deep learning applications con-

tinues to grow exponentially in medical, environmental,

and industrial domains, the imperative for effective

hyperparameter tuning strategies becomes crucial. Ensur-

ing optimal performance of networks on large datasets,

while concurrently managing training times, is essential for

advancing the capabilities of these applications.

A widely used method for training neural networks is to

apply a loss early stopping (LES) criterion and a maximum
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number of epochs for training [25, 31, 34, 46]. Typically,

the dataset is divided into a training set, a validation set,

and a test set. During training, it is common to observe that

the validation set reaches a local (or even global) minimum

of the network’s loss function, indicating that further

training may lead to overfitting. To prevent this, a criterion

is applied to monitor the loss function for the validation set

during training, with the user specifying the maximum

number of epochs for training and the number of permitted

epochs to continue without a change in the minimum loss

value. Once either of these conditions is met, training is

terminated, and the network’s weights that lead to the

minimum loss value for the validation set are used [34].

However, we argue in this paper that the LES approach

may not always be the optimal solution. While the loss

function can reach a minimum for the validation set, other

evaluation metrics may continue to improve. For example,

in certain medical applications it may be important to

achieve a sensitivity threshold above a certain value,

meaning that positive patients are correctly identified as

positive. In practice, there are even requirements on mul-

tiple metrics, such as on both sensitivity and specificity

[30]. In these cases, assuming overfitting based solely on a

loss function may not be appropriate. Thus, we propose

evaluating multiple metrics during training and advocate

for the benefits of training for a longer duration. We

develop a new method, called deep multi-metric training

(DMMT) that utilises heuristics to automate the evaluation

of multiple metrics. Our approach aims to optimise mul-

tiple criterion separately, rather than using a single loss

function or aggregating multiple loss functions for opti-

misation. In case of combining multiple loss functions into

a single function, changes in one component can interact

with changes in another, leading to a stabilising effect on

the overall criterion. Consequently, an aggregated criterion

may exhibit early stopping behaviour, which should be

mitigated if the loss functions are evaluated separately.

Therefore, evaluating multiple metrics independently dur-

ing training can yield more accurate and robust models. To

facilitate this study, we introduce new terminology sum-

marised in Table 1.

The proposed methodology introduces a new important

criterion of multi-metric performance evaluation to deliver

robust learning for a network in a dataset. Our methodol-

ogy involves evaluating network performance using a

protocol that incorporates both independent identical dis-

tribution (i.i.d.) cohorts and out-of-distribution (o.o.d.)

cohorts. In medical applications, this evaluation protocol is

crucial as it tests the network’s ability to generalise and

remain robust across different datasets. Our ultimate

objective is to create a training methodology that delivers a

reliable and robust AI network, capable of consistently

providing precise results across a range of imaging sce-

narios (medical environmental, ecological, etc.). To

achieve this, we propose testing the established training

methodology, which employs the LES approach, alongside

our own approach. To evaluate our methodology, we test it

in a classification problem on four different kinds of image

datasets (COVID chest X-rays from two different datasets,

weather data, and animal species). Furthermore, to show

the robustness, we apply five state-of-the-art deep learning

networks, namely DenseNet-121 [17], ResNet-50 [15],

VGG-16, VGG-19 [37], and DenResCov-19 [29]. The

DenResCov-19 has consistently superior performance in all

applications as compared to the other networks, and hence,

to generalise its application we rename it to DenRes-131.

Here, the ‘131’ represents the total number of layers in the

model.

To the best of our knowledge, this is the first develop-

ment and utilisation of a deep multi-metric training

methodology in a variety of different state-of-the-art deep

learning networks. To this end, the main contributions of

this study are:

1. Justifying the importance of multi-metric (AUC-ROC,

recall, precision, F1, etc.) utilisation to achieve robust

learning and avoid state of weak learning in deep

learning networks;

2. Evaluating the performance and robustness of estab-

lished deep learning networks over heterogeneous

Table 1 Terminology introduced in the current study

Concept Definition

State of weak

learning

When one or more metrics during training of the network are still in a transitional state of training, i.e. not fluctuating

around a constant value for a specific number of epochs, based on monitoring each metric on the validation set

State of robust

learning

When all metrics during training of the network are in a converged state of training, i.e. with small fluctuations around a

constant value for a specific number of epochs, based on monitoring each metric on the validation set
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medical imaging, environmental, and ecological data-

sets with multi-class labels;

3. Comparing the new DenRes-131 network with the

DenseNet-121, ResNet-50, VGG-16, and VGG-19

established networks in multi-field, multi-size, multi-

vendors, and multi-class validation schemes in both

independent identical distribution (i.i.d.) cohorts and

out-of-distribution (o.o.d.) cohorts; and

4. Finally, a proposed methodology that exhibits superior

performance compared to the established training

methodology that employs the LES criterion.

The rest of the paper is organised as follows: Sect. 2 pre-

sents a brief overview of the related works. Section 3

describes the proposed methodology and summarises its

implementation, along with a brief description of the

imaging datasets. Numerical results of the performance of

proposed methodology are presented in Sect. 4, and a

detailed discussion is provided in Sect. 5. The paper con-

cludes in Sect. 6.

2 Related work

There are two main hyperparameter optimisation approa-

ches: manual (e.g. grid search, random search) and auto-

matic (e.g. Bayesian optimisation). More recently in the

literature, new automatic strategies and approaches for

optimal searching are developed.

[47] describe the Orthogonal Array Tuning Method and

evaluate it by using recurrent neural networks and CNNs.

Their method decreases the tuning time compared to pre-

vious state-of-the-art methods and delivers high perfor-

mance of the results.

[20] describe a method utilising genetic programming to

deliver both optimal activation functions and optimisation

techniques. To evaluate their method, they implemented a

neural network with the activation function and an opti-

misation technique that the algorithm chooses per iteration.

Their method performed superior compared to conven-

tional methods.

[49] determine a hyperparameter selection process with

high diversity, investigating the optimal joint hyperpa-

rameter configuration on network structure and training to

evaluate road image classification tasks. They showed that

their approach can deliver an optimal architecture with an

associated training configuration, to deliver a consistent

and accurate performance of the network.

[10] propose a hyperparameter optimisation method,

which searches for optimal hyperparameters based on an

initial sequence and utilises an action-prediction network

leveraged on continuous deep Q-learning. They evaluated

their algorithm on different benchmarks, presenting its

superior performance.

[39] introduce the application of the fractal decompo-

sition-based algorithm to the optimisation of the hyperpa-

rameter of deep neural network architecture, in order to

deliver state-of-the-art results.

[40] discuss empirical comparisons of the optimisers.

Their investigation revealed that incorporating relation-

ships between optimisers is crucial in practical scenarios,

especially in adaptive gradient methods. Through their

work, they raised some concerns about fairly benchmark-

ing the optimisers for neural network training.

It is important to mention here that some of the studies

discussed the importance of hyperparameter tuning in fine-

tuning and not just during the training process [23, 39, 40].

New trends regarding optimisation approaches are the

automated machine learning (AutoML) [11, 16, 44] and the

no-new-UNet (nn-Unet) [18]. Both of these methodologies

try to deliver the optimal accuracy solution in more than

one step of deep learning training, such as pre-processing,

post-processing, hyperparameters, and identification of the

optimal structure. As COVID-19 has become an important

area of research in the last years, there have been some

attempts to apply hyperparameter strategies in COVID-19

classification and detection benchmarks [1, 4, 19, 41, 42].

These studies generally focus on efficient ways of search-

ing the optimal values of hyperparameters.

[45] and [5] propose deep multi-metric learning meth-

ods, utilising cost functions involving multi-metric scores.

The disadvantage of these studies is that they used only the

cost function minimisation approach to determine the

optimal solution.

On the contrary, here we advocate the involvement of

more than one evaluation metric (multi-metric) score dur-

ing the training process, in order to consider them sepa-

rately, and a different total cost function minimisation

criterion. To this end, the optimisation criterion of hyper-

parameters takes into consideration the performance of the

network in terms of important evaluation metrics (AUC-

ROC, recall, precision, and F1-score, as will be introduced

later) depending on the computer vision application prob-

lem. As a result, the optimisation approach of the hyper-

parameter values, namely learning rate, epochs, batch

number, patch number, etc., delivers robust learning results

for the network. For our classification tasks, we have

chosen the AUC-ROC, recall, precision, and F1-score

evaluation metrics, due to their wide usage in the literature.

To the best of our knowledge, this study is the first to

deliver the development and evaluation of a new training

methodology combining multiple quantitative metrics and

a cost function minimisation criterion.
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3 Methods

In this section, we present the algorithm and associated

implementation details of the proposed DMMT method.

Furthermore, a description of the network architectures that

we use to evaluate the training methodology is presented.

Algorithm 1 The deep multi-metric training

3.1 DMMT methodology

To explain the idea of DMMT methodology, we present the

parameter and variable definitions in Table 2 and the

algorithm in Algorithm 1. The DMMT algorithm requires

choosing the N multiple metrics of the training M1, M2, . . .,

MN , the epoch checkpoint interval Dt, the maximum

epochs for training tmax, the acceptable variation of the

moving average metric value to define as equal Dk, and the

loss cost function value at the tth epoch, losst.

Algorithm 1 presents the novel mathematical approach

of the DMMT methodology for training the deep learning

networks based on the multi-metric criterion. We utilise a

combination of the cost function minimisation and multi-

metric curve evaluation criterion. The training procedure

initialises the model with random weights or transfer

weights. The user sets the number of multi-metric evalu-

ation scores, the epochs period Dt where the algorithm will

check the convergence of the multi-metrics, and the max-

imum number of epochs for training. The convergence of

the multi-metrics is achieved when the score of the metric

is within Dk variation as defined by the user. The end of the

training is achieved when either the algorithm reaches the

maximum number of epochs or when all the multi-metrics

converge and the loss value, losst, is higher than or equal to

the previously stored value, lossprev (local minimum).

In Fig. 1, the second row and last column illustrate all

the criterion employed in the DMMT methodology. We

can observe that the loss function has been optimised, and

all four evaluation metrics—M1, M2, M3, and M4—have

stabilised. The results shown in Fig. 1 correspond to the

performance of the Resnet-50 network in the weather

evaluation dataset, as determined by the converged multi-

metrics criterion and the loss function within the DMMT

(green line). It is crucial to note that these outcomes differ

from those obtained using the LES criterion (red line).

The metrics are often prone to large statistical fluctua-

tions. To dampen these, we use an averaging procedure

based on the simple moving average (SMA). For a quantity

A, the SMA is defined as

SMAt
nðAÞ ¼

1

n

Xn�1

i¼0

At�i ð1Þ

where At is the value of the quantity at epoch t and n is the

number of instances averaged. We define the metrics recall,

precision, and F1-score as

Recall ¼
TP

TPþ FN
ð2Þ

Precision ¼
TP

TPþ FP
ð3Þ

F1-score ¼
2� Precision� Recall

Precisionþ Recall
ð4Þ

where TP is the true positive results, TN is the true negative

results, FP is the false positive results, and FN is the false

negative results. We also define AUC-ROC as area under

the receiver operating characteristic (ROC) curve that

combines TP, TN, FP, and FN. In order to discretise the

ROC curve, a set of thresholds evenly distributed along a

linear scale is employed to determine pairs of recall and

18844 Neural Computing and Applications (2024) 36:18841–18862
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precision values. The height of the recall is multiplied by

the FP to measure the final AUC-ROC metric. Equation (1)

is used to compute the moving average of each of the

metrics in Eqs. (2)–(4) and the AUC-ROC.

3.2 Network architectures

To test the DMMT methodology, we use four established

networks, namely VGG-16, VGG-19, DenseNet-121, and

ResNet-50, and a state-of-the-art deep learning model

DenRes-131.

Table 2 Hyperparameters, variables, and functions of the DMMT algorithm

User’s hyperparameters: � The optimisation algorithm of the loss cost function (Adam, SGD, etc.)

� N: number of available metrics. The user also has to define each of the N metrics

� Dt: stride of computing averages

� Dk: acceptable variation of the moving average for each metric k 2 f1; . . .;Ng

� tmax: maximum number of epochs for training

Algorithm variables � Ns: number of stable metrics

� t: current epoch

� T: check point number of current epoch, T ¼ t=Dt

� k: current metric index

� Mk: value of metric k

� Mk: value of the moving average of metric k

� losst: loss cost function at epoch t

Fig. 1 Proposed DMMT methodology illustrated on the weather data:

The user determines the number N and choice of multi-metric curve

evaluation scores (here N ¼ 4, with M1: AUC-ROC, M2: recall, M3:

precision, and M4: F1-score), the epoch interval where the algorithm

will check the convergence of the multi-metrics (here every 100

epochs), and the maximum number of epochs for training (here 1500).

The function SMAt
DtðMkÞ is used to compute the simple moving

average (SMA) between two checkpoints t and t � Dt for each of the

metrics Mk . A few sample SMAs are indicated in the graphs. The

convergence of the multi-metrics is achieved when the score of the

metric is within Dk variation of this average, as defined by the user

(here D1 ¼ D2 ¼ D3 ¼ 0:04 and D4 ¼ 0:08). The end of training is

achieved when either the algorithm reaches the maximum number of

epochs or when all the multi-metrics converge and the loss value

(losst) is higher than the previous stored (lossprev). The red lines at

200 epochs are the result of the traditional technique of loss early

stopping. The green lines at 1000 epochs are the result of the proposed

DMMT algorithm
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VGG-16 and VGG-19 are two well-established convo-

lutional neural networks (CNNs) with a combination of

pooling and convolution layers [37]. ResNet-50 is a deep

network, in which all layers have the same number of fil-

ters as the number of the output feature size. In case the

output feature size is halved, the number of filters is dou-

bled, thus reducing the time complexity per layer [15].

DenseNet-121 is an efficient topology of convolutional

network. The network comprises of deep layers, each of

which implements a nonlinear transformation. [17] intro-

duced a unique connectivity pattern information flow

between layers to direct connecting any layer to all sub-

sequent layers.

DenRes-131 network [29] is a concatenation of four

blocks from ResNet-50 and DenseNet-121 with width,

height, and frames of 58� 58� 256, 28� 28� 512,

14� 14� 1024, and 7� 7� 2048, respectively. Each of

the four outputs feeds a block of convolution and average

pooling layers. Thus, the initial concatenated information

can be translated into the convolution space. [29] used

some level of concatenation-CNN block techniques to

create kernels that deliver a final layer of soft-max

regression, so that the network can conclude in the clas-

sification decision.

3.3 Datasets

We evaluate our methodology on five different image

datasets. We use two large datasets of COVID-19 and

abnormal lung screening, two large datasets of animal

species classification, and one relatively small dataset of

weather classification. The evaluation tasks are: three-class

classification (normal, abnormal, or COVID-19 in medical

imaging dataset; cat, dog, or wild in ecological dataset),

four-class classification (cloudy, rainy, shine, or sunrise in

environmental dataset), and ten-class classification tasks

(CIFAR-10 dataset, second ecological dataset).

The first dataset, which we refer to as BIMCV, is gen-

erated by combining the BIMCV COVID-19? [8] and the

BIMCV-COVID19-PADCHEST data [4] for medical

imaging application. BIMCV COVID-19? contains the

normal and COVID-19 cases, while BIMCV-COVID19-

PADCHEST contains the abnormal cases, which is a

reorganisation of the PadChest dataset [4] related to

COVID-19 pathology. In total, we use 4740 lung X-ray

images classified as abnormal, 4456 as normal, and 2646 as

COVID-19 positive.

For the second medical imaging dataset, named Shef-

field hospital, we use a Sheffield hospital COVID-19

dataset of lung X-ray images. Here, we use 2011 chest

X-ray images classified as abnormal, 2861 as normal, and

2263 images as COVID-19 positive.

The third dataset, concerning animals species, is a large

collection of 16, 122 publicly available images for the

three-class species classification into cats, dogs, and wild

animals [6]. The dataset is a collection of 5153, 4731, and

4738 images of cats, dogs, and wild animals, respectively.

The fourth one, called the multi-class weather dataset, is

a collection of images for environmental classification [12].

It consists of 357 sunrise, 253 shine, 215 rainy, and 300

cloudy images.

For the evaluation of the three classification tasks, we

first split the total images into 70% and 30% as the training

and testing datasets, respectively. The training dataset is

further split into 70%:30% as the final training and vali-

dation datasets. As we need to evaluate the generalisation

of our training algorithm, we test the deep learning net-

works in an identical independent distribution (i.i.d.) cohort

of a collection of 500 images from each of cats, dogs, and

wild animals (excluded before the splitting) and in an out

of the distribution (o.o.d.) cohort by training on the

BIMCV dataset and testing on the Sheffield hospital

dataset. In this way, we verify that the DMMT can achieve

highly accurate and robust results compared to the tradi-

tional LES criterion training technique [34].

We conduct a sensitivity analysis of the LES ‘patience’

(early stop criterion) hyperparameter and the DMMT Dt

hyperparameter, using the publicly available CIFAR-10

dataset (https://paperswithcode.com/dataset/cifar-10). The

CIFAR-10 dataset is a subset of the Tiny Images dataset

and comprises 60,000 32� 32 colour images. Each image

is labelled with one of 10 mutually exclusive classes,

including aeroplane, automobile (excluding trucks or

pickup trucks), bird, cat, deer, dog, frog, horse, ship, and

truck (excluding pickup trucks). The dataset is structured

with 6,000 images per class, split into 5,000 training

images and 1,000 testing images per class.

3.4 Datasets pre-processing image analysis

Image analysis techniques are applied to all slices to reduce

the effect of noise and increase the signal-to-noise ratio

(SNR). We use noise filters such as binomial deconvolu-

tion, Landweber deconvolution [43], and curvature aniso-

tropic diffusion image filters [33] to reduce noise in the

images. We normalise the images by subtracting the mean

value from each image and dividing by its standard devi-

ation. Finally, we use data augmentation techniques

including rotation (around the centre of the image by a

random angle from the range ½�15�; 15��), width shift (up

to 20 pixels), height shift (up to 20 pixels), and ZCA

whitening (add noise in each image) [21].

18846 Neural Computing and Applications (2024) 36:18841–18862
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3.5 Hyperparameters initialisation

After random shuffling, each dataset is partitioned for

training, validation, and testing of the models. We use the

categorical cross-entropy as the loss function. The loss

function is optimised using the stochastic gradient descent

(SGD) method with a fixed learning rate of 0.001 for both

the LES and DMMT methodologies. We apply transfer

learning techniques to the networks using the ImageNet

dataset [9] (https://www.image-net.org). The ImageNet

dataset consists of over 14 million images, and the task is

to classify the images into one of almost 22, 000 different

categories (cat, sailboat, etc.).

Table 2 summarises the main user’s hyperparameters.

We want to establish the efficiency of the algorithm for

different hyperparameters to validate its robustness. To do

so we vary the number of available metrics N from 3 to 4.

Moreover, we use different values of Dk and epoch

checkpoint T for each of the classification tasks. The

parameters in the DMMT algorithm are taken to be Dt ¼

10 and Dk ¼ 0:04 for the considered metrics in the medical

image datasets (recall, precision, and AUC-ROC). For the

ecological and environmental datasets, the parameters are

chosen as Dt ¼ 100, D1 ¼ D2 ¼ D3 ¼ 0:04, and D4 ¼ 0:08
(Fig. 1) for the considered metrics recall, precision, AUC-

ROC, and F1-score, respectively. The reason for the usage

of D4 ¼ 0:08 for the fourth metric (F1-score, Fig. 1) is that

the F1-score metric produces large fluctuations and there-

fore, the DMMT does not converge earlier than the max-

imum epochs (tmax) within the narrow window of

D4 ¼ 0:04. For LES, we use an early stopping of 10 con-

tinuous epochs (‘patience’). For both methodologies, the

maximum epochs for training tmax are 1500 for all datasets.

For the sensitivity analysis of the LES ‘patience’ and the

DMMT Dt hyperparameters, we vary them over the values

of 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, and 100 epochs,

using the ResNet-50 network architecture.

3.6 Software

The code developed in this study is written in the Python

programming language using Keras/TensorFlow (Python)

libraries. For training and testing of deep learning net-

works, we use an NVIDIA cluster (JADE2) with 4 GPUs

and 64 GB RAM memory.

4 Results

In this section, we examine the performance of the net-

works for the traditional LES criterion and proposed

DMMT methodology. We present the performance of the

established networks of VGG-16, VGG-19, ResNet-50, and

DenseNet-121 and the new state-of-the-art network

DenRes-131 [29].

4.1 Evaluate DMMT in multi-field classification

To generalise the applicability of the DMMT, we first need

to verify the importance of quantitative multi-metric

evaluation in different computer vision applications as

compared to the commonly used LES criterion [34]. To

this end, we compare both methodologies in multi-field

classification problems, namely on (1) medical imaging,

(2) environmental, and (3) ecological datasets.

4.1.1 Medical imaging computer vision task: chest X-rays

classification

We first evaluate the recall, precision, and AUC-ROC

metrics for the networks and test the stability of the training

in these metrics (equilibrium point of a metric training/

testing curve) on the medical imaging datasets, so that we

can justify a weak or robust level of training performance

(state of weak learning and state of robust learning).

Table 3 highlights the quantitative evaluation metrics on

the test datasets of the BIMCV and Sheffield hospital

datasets. Both VGG-16 and VGG-19 networks follow a

specific pattern of high variability of the metric values

(from 57.17 to 97:26%) with some high and some low

values for the LES criterion. For the DMMT, this vari-

ability is smoothed, and the networks appear to converge

for all evaluation metrics, with a small deviation of �5%.

ResNet-50, DenseNet-121, and DenRes-131 follow a dif-

ferent pattern of performance compared to the previous two

networks, with low values and low dispersion between the

metrics during the LES, which increase significantly for the

DMMT. Figures 2 and 3 present the behaviours of the

training and validation curves for the recall, precision, and

AUC-ROC metrics in BIMCV and Sheffield hospital

datasets, respectively.

Based on the AUC-ROC metric alone, the network

models for the Sheffield hospital dataset (Fig. 3) seem to

have virtually converged after LES (as shown with the red

dashed lines). However, for the precision and recall metrics

the models are still in a transitional state of training (state

of weak learning). Nevertheless, a converged state of the

models is achieved by DMMT in all three metrics (green

dashed line). The same pattern is observed in Fig. 2 for the

BIMCV dataset. The number of epochs in which all metrics

are in equilibrium (here in 800) determines the state of

robust learning. Figures 4 and 5 illustrate the ROC curves

of the deep learning networks on BIMCV dataset and

Sheffield hospital dataset, respectively.
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To conclude, in this subsection we have justified the

need to monitor more than one metric (recall, precision,

and AUC-ROC) to determine the convergence of a network

training in two medical image classification tasks.

4.1.2 Environmental computer vision task: weather

classification

Table 4 shows the quantitative evaluation metrics of

weather classification (cloudy, rainy, shine, or sunrise) for

the LES and DMMT criterion. Figure 6 shows the beha-

viour of training and validation curves for the recall, pre-

cision, AUC-ROC, and F1 metrics. Even if precision and

AUC-ROC metrics justify that the models converge at the

LES (red dashed line), in the majority of the cases in the

recall and F1 metrics the models are still in a transitional

period of training (state of weak learning). However, the

converge state of the models is achieved by DMMT for all

metrics (green dashed line).

Figure 7 shows the confusion matrices of the environ-

mental classification problem for the five networks using

the LES and DMMT criterion. The DenRes-131 achieves

recall of 76.7, 96.9, 90.8, and 92:5% during LES and 76.7,

98.4, 90.8, and 92:5% by DMMT, for the classification of

cloudy, rainy, shine, and sunrise classes, respectively.

DenseNet-121 achieves recall of 74.4, 92.2, 85.5, and

89.7% during LES and 75.6, 93.8, 86.8, and 88.8% during

DMMT. ResNet-50 achieves recall of 72.2, 92.2, 80.3, and

86.9% at LES and 76.7, 95.3, 84.2, and 87.9% with

DMMT. VGG-16 achieves recall of 72.2, 92.2, 85.5 and

90.7% by LES and 71.1, 89.1, 80.3, and 87.9% by DMMT.

Finally, VGG-19 achieves the recall of 75.6, 89.1, 84.2,

and 91.6% during LES and 73.3, 89.1, 84.2, and 86.9%

with the DMMT criterion.

Figure 8 shows the barplots of recall, precision, and F1

metrics for the weather classification problem using five

networks with LES and DMMT criterion. Both Figs. 7 and

8 show the improvement in the DMMT methodology

Table 3 Quantitative evaluation

metrics of different networks on

test datasets for medical image

classification task

Classification performance on BIMCV dataset: COVID-19, abnormal, or normal

Metric (%) VGG-16 VGG-19 ResNet-50 DenseNet-121 DenRes-131

LES/DMMT LES/DMMT LES/DMMT LES/DMMT LES/DMMT

Recall 57.17/70.70 64.75/70.00 49.59/70.65 70.77/71.07 70.73/75.10

Precision 97.26/75.05 88.07/74.16 49.59/75.11 74.82/75.80 70.73/76.21

AUC-ROC sample 72.86/79.07 78.01/78.47 62.19/79.07 79.05/79.45 78.05/82.00

AUC-ROC macro 72.12/78.32 77.35/77.87 62.65/78.20 78.31/78.52 79.80/81.30

AUC-ROC micro 68.91/77.94 76.05/77.94 62.19/77.91 77.98/78.22 78.05/81.00

AUC-ROC weighted 68.81/76.69 74.67/76.14 60.51/76.73 77.14/77.03 76.56/80.00

F1 sample 70.46/72.15 72.52/71.34 49.59/72.14 72.13/72.65 70.73/76.16

F1 macro 72.12/73.86 73.75/73.24 48.91/73.71 73.40/74.23 73.31/77.50

F1 micro 68.82/77.94 71.30/71.10 49.59/71.85 77.98/72.32 70.73/75.71

F1 weighted 68.02/71.93 74.67/71.15 49.55/71.97 77.13/72.44 70.20/75.85

Classification performance on Sheffield hospital dataset: COVID-19, abnormal, or normal

Metric (%) VGG-16 VGG-19 ResNet-50 DenseNet-121 DenRes-131

LES/DMMT LES/DMMT LES/DMMT LES/DMMT LES/DMMT

Recall 58.91/64.69 43.38/66.09 53.73/55.17 65.43/64.97 64.39/67.01

Precision 81.82/65.83 92.46/65.59 53.73/55.17 65.85/65.43 64.39/67.32

AUC-ROC sample 69.35/73.68 66.61/74.69 65.30/66.38 74.17 /73.84 73.29/75.20

AUC-ROC macro 64.48/67.44 60.66/68.78 56.28/57.91 67.87/67.44 66.78/69.01

AUC-ROC micro 69.35/73.52 66.53/74.57 65.30/66.38 74.06/73.73 73.29/75.10

AUC-ROC weighted 67.52/69.68 64.41/70.99 58.60/59.27 70.74/70.09 64.71/72.03

F1 sample 65.95/64.80 58.66/66.26 53.73/55.17 65.57/65.13 64.39/67.03

F1 macro 52.04/53.91 49.81/54.28 37.97/38.86 52.70/52.60 53.36/55.11

F1 micro 63.26/64.81 58.07/66.26 53.73/55.17 52.76/65.13 64.39/66.67

F1 weighted 64.11/65.36 57.32/67.14 55.77/57.61 70.74/66.71 64.71/68.06

Values represent metrics after loss early stopping (LES)/DMMT criterion
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regarding the need of a multi-metric performance evalua-

tion, so that the network reaches a state of robust learning

instead of a state of weak learning.

4.1.3 Ecological computer vision task: animal species

classification

Table 5 shows the quantitative evaluation metrics of ani-

mals species classification (cat, dog, or wild) by LES and

DMMT criterion. Once again, the same trend as in the

medical and ecological applications is observed here. The

models initially deliver a state of weak learning after LES

and more robust learning after DMMT. All networks

deliver higher performance for all metrics in DMMT, as

compared to the LES. Figure 9 shows the behaviour of the

training and validation curves for AUC-ROC, precision,

recall, and F1 metrics. Even if the AUC-ROC and precision

curves (Fig. 9, columns 1-2) show that the models have

converged during the LES (indicated by the red dashed

line), in the majority of the cases in the recall and F1

metrics the models are still in a transitional period of

training (state of weak learning). However, the conver-

gence state of the models is achieved at DMMT for all

metrics (green line). Hence, we justify the need to observe

curves for more than one metric (specifically recall, pre-

cision, AUC-ROC, and F1 here) to determine the state of

robust learning for a deep network in an environmental

classification task.

Figure 10 shows the confusion matrices of the ecologi-

cal classification task for the five networks using the LES

and DMMT criterion. DenRes-131 achieves recall of 93.0,

96.8, and 88.4% at LES and 92.7, 97.3, and 88.3% at

DMMT. DenseNet-121 achieves recall of 92.7, 95.3, and

86.4% after LES and 93.2, 96.0, and 87.8% after DMMT.

ResNet-50 achieves recall of 91.1, 95.8, and 84.9% using

LES and 92.6, 95.5, and 86.6% using DMMT. VGG-16

Fig. 2 Training and validation curves of the deep learning networks

on BIMCV dataset for three metrics (AUC-ROC, precision, and

recall). The red lines at 100 epochs are the result of the traditional

technique of LES. The green lines at 800 epochs are the result of the

DMMT algorithm. The red line represents a state of weak learning

and the green a state of robust learning
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achieves recall of 94.0, 97.6, and 91.3% at LES and 94.8,

97.3, and 90.9% at DMMT. Finally, VGG-19 achieves the

recall of 94.0, 97.5, and 89.4% using the LES and 94.3,

97.3, and 90.3% using the DMMT criterion.

Figure 11 highlights the barplots of the animal species

classification for the five networks using the LES and

DMMT. Both Figs. 10 and 11 show the proposed criterion

of DMMT methodology, regarding the need of a multi-

metric performance evaluation so that the network reaches

a state of robust learning.

4.2 Evaluation of networks’ generalisation:
effect of DMMT

In this section, we present the results of two evaluation

tests in an i.i.d. and o.o.d cohorts for the LES and DMMT

criterion, in order to study their generalisation.

4.2.1 Evaluation of networks in i.i.d. cohorts: effect

of DMMT

The first evaluation to examine the generalisation of the

DMMT algorithm is an i.i.d. evaluation of the deep

learning models in the animals testing dataset with 500

images per class. Table 6 shows the quantitative evaluation

metrics without meta-learning or domain adaptation tech-

niques in the unseen cohort of animals dataset for both LES

and DMMT criterion. Once again, the networks follow the

same performance patterns as in the test cohort of the

animals dataset (Table 5) described in the previous

subsection.

Fig. 3 Training and validation curves of the deep learning networks

on Sheffield hospital dataset for three metrics (AUC-ROC, precision,

and recall). The thick dashed red line at 100 epochs is the results of

the established technique of LES. The thick green dashed lined at 800

epochs is the results of the DMMT algorithm. The thick red dashed

line presents a state of weak learning and the green a state of robust

learning
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4.2.2 Evaluation of networks in o.o.d. cohorts: effect

of DMMT

To strengthen the justification and the generalisation of the

importance of multi-metric evaluation, we validate the

deep learning networks using the LES and DMMT criterion

on an unseen test dataset (trained on BIMCV cohort and

tested on Sheffield hospital cohort) to examine their clas-

sification performance. Table 7 shows the quantitative

evaluation metrics without meta-learning or domain

Fig. 4 ROC curves of the deep learning networks on BIMCV dataset. Row 1: VGG-16, VGG-19, and ResNet-50; row 2: DenseNet-121 and

DenRes-131

Fig. 5 ROC curves of the deep learning networks on Sheffield hospital dataset. Row 1: VGG-16, VGG-19, and ResNet-50; row 2: DenseNet-121

and DenRes-131
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adaptation technique in the unseen Sheffield hospital

dataset for both LES and DMMT. Once again, the net-

works follow the same performance patterns as in the test

set of BIMCV dataset (Table 3 top) described in the pre-

vious subsection.

4.3 Statistical significance analysis of DMMT
criterion

To demonstrate the effectiveness of the proposed DMMT

methodology, we perform a statistical significance analysis

between the metrics of the performance criterion in the

Table 4 Quantitative evaluation

metrics of different networks on

test set of the weather dataset

Classification performance on weather dataset: cloudy, rainy, shine, or sunrise

Metric (%) VGG-16 VGG-19 ResNet-50 DenseNet-121 DenRes-131

LES/DMMT LES/DMMT LES/DMMT LES/DMMT LES/DMMT

Recall 82.78/82.20 83.08/85.16 82.19/85.16 86.64/87.24 87.01/87.83

Precision 82.78/82.20 83.08/85.16 82.19/85.16 86.64/87.24 87.01/87.83

AUC-ROC sample 88.52/88.13 88.72/90.10 88.13/90.10 91.09/91.49 91.43/91.90

AUC-ROC macro 88.78/88.32 88.70/89.86 88.67/90.04 91.43/91.49 91.51/92.11

AUC-ROC micro 88.52/88.13 88.72/90.10 88.13/90.10 91.09/91.49 91.42/91.90

AUC-ROC weighted 88.46/88.16 88.70/90.13 88.20/90.08 91.09/91.40 91.48/91.90

F1 sample 82.79/82.19 83.08/85.16 82.19/85.16 86.64/87.24 87.23/87.89

F1 macro 82.78/81.89 82.77/84.66 82.13/84.91 86.75/87.24 87.19/87.83

F1 micro 82.78/82.19 83.08/85.16 82.19/85.16 86.64/87.24 87.21/87.85

F1 weighted 82.49/82.37 82.90/85.15 81.89/85.04 86.52/87.12 87.12/87.70

Values represent metrics using LES/DMMT criterion

Fig. 6 Training and validation curves of the deep learning networks on the weather dataset for four metrics (AUC-ROC, precision, recall, and

F1). The red dashed lines are the convergence results of the traditional LES technique. The green lines are the results of the DMMT algorithm
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Fig. 7 Confusion matrices of the classification performance of five deep learning networks on Weather dataset. Row 1: LES criterion, row 2:

DMMT criterion
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state of weak learning (LES criterion) and the state of

robust learning (DMMT criterion). We present our results

as boxplots in Fig. 12, with red boxplots showing LES

results and cyan boxplots the DMMT, for all quantitative

metrics in Tables 3 and 7. The cyan boxplots show sig-

nificant difference from the red, with reduced quartile

deviation and higher median value for the majority of the

metrics. This can verify our criterion of multi-metric con-

vergence in the proposed DMMT methodology for all

metrics. For the quantitative evaluation of the statistical

significance analysis, we incorporate the one-tailed paired

t test, with level of significance 0.05.

Table 8 shows the results of statistical significance

analysis using the paired t test between the state of weak

learning and state of robust learning for the recall, preci-

sion, AUC-ROC, F1, and the combination of all metrics.

We only consider the medical imaging application here,

since we have more samples for the statistical significance

analysis (two large datasets for five networks). From the

results, we can see that the state of robust learning is

providing statistically significant improvement over the

state of weak learning for the recall, AUC-ROC, F1, and

combined metrics (with p values 0.009, 0.014, 0.04, and

0.009), while no significant difference is observed for the

precision metric (with p value 0.253). Therefore, it justifies

Fig. 8 Barplots for the classification performance of five deep learning networks on the Weather dataset

Table 5 Quantitative evaluation

metrics of different networks on

test set of the Animals dataset at

the LES and DMMT criterion

Classification performance on the Animals dataset: cat, dog, or wild

Metric (%) VGG-16 VGG-19 ResNet-50 DenseNet-121 DenRes-131

LES/DMMT LES/DMMT LES/DMMT LES/DMMT LES/DMMT

Recall 94.00/94.44 93.70/94.04 90.70/91.67 91.50/92.45 92.78/93.01

Precision 94.00/94.44 93.70/94.04 90.71/91.67 91.50/92.45 92.78/93.01

AUC-ROC sample 95.80/95.83 95.28/95.53 93.04/93.75 93.60/94.34 94.57/95.03

AUC-ROC macro 95.81/95.86 95.34/95.57 93.10/93.80 93.72/94.40 94.65/95.11

AUC-ROC micro 95.80/95.83 95.28/95.53 93.04/93.75 93.61/94.34 94.57/95.03

AUC-ROC weighted 95.83/95.88 95.36/95.59 93.15/93.84 93.73/94.42 94.67/95.14

F1 sample 94.00/94.44 93.70/94.04 90.71/91.67 91.54/92.45 92.76/93.01

F1 macro 93.96/94.38 93.63/93.97 90.60/91.58 91.45/92.37 92.68/92.93

F1 micro 94.00/94.44 93.70/94.05 90.71/91.67 91.55/92.45 92.78/93.03

F1 weighted 94.23/94.45 93.70/94.06 90.74/91.69 91.56/92.47 92.79/93.07

Values represent metrics at the LES/DMMT criterion
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the need for multi-metric evaluation in order to achieve

robust learning.

4.4 Sensitivity analysis of DMMT and LES
parameters

The detailed sensitivity analysis of the LES ‘patience’ and

the DMMT Dt hyperparameters using the ResNet-50 net-

work over the CIFAR-10 dataset are presented in Supple-

mentary Material (Figures 1, 2, 3 and 4 and Tables 1, 2).

For LES, the best performance metrics are: 1.429 (valida-

tion loss), 0.845 (F1), 0.213 (AUC-ROC), 0.196 (sensi-

tivity), 0.129 (precision), 0.621 (accuracy), and 0.645

(specificity). For DMMT, the corresponding metrics are:

1.425, 0.860, 0.245, 0.220, 0.134, 0.455, and 0.395.

Overall, DMMT outperforms LES in five out of seven

metrics. However, these results reflect the best perfor-

mance from each methodology, rather than a single trained

model. To assess robustness, we consider the parameter

settings that consistently yields top results across multiple

metrics. The best outcomes for LES are observed with a

‘patience’ setting of 15, whereas for DMMT, the optimal

results come with a Dt parameter of 20. Notably, DMMT

achieves superior performance in five out of the seven

metrics at this setting, indicating greater robustness and

consistency.

Furthermore, DMMT shows improved results in key

metrics such as F1, AUC-ROC, sensitivity, and precision.

This improvement in terms of both consistency and per-

formance metrics indicates a more robust learning state for

the network when employing the DMMT methodology.

Although LES occasionally achieves higher results in

specific metrics (like accuracy and specificity), its perfor-

mance is less consistent across different parameter settings,

thus highlighting the robustness and overall reliability of

DMMT over LES.

4.5 DenRes-131: a superior network again?

DenRes-131 is a new network introduced by [29], with

promising state-of-the-art performance. The authors

claimed that the network provides superior performance

Fig. 9 Training and validation curves of the deep learning networks on Animals dataset for four metrics (AUC-ROC, precision, recall, and F1).

The red lines are the convergence results of the traditional LES technique. The green lines are the results of the DMMT algorithm
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Fig. 10 Confusion matrices of the classification performance of five deep learning networks on the Animals dataset. Row 1: LES criterion, row

2: DMMT criterion
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over established networks such as ResNet-50, DenseNet-

121, and VGG-16. In this study, we justify the claim, since

the DenRes-131 achieves superior performance in two

medical imaging cohorts (BIMCV and Sheffield hospital)

and in the o.o.d. evaluation scheme (Sect. 4.2.2) for all

evaluation metrics, as presented in Tables 3 and 7. The

DenRes-131 network achieves better results in terms of the

ROC curve in Figs. 4 and 5, with 80.81, 98.38, and 82.23%

Fig. 11 Barplots for the classification performance of five deep learning networks on the Animals dataset

Table 6 Quantitative evaluation

metrics of different networks on

i.i.d. test set of the Animals

dataset using the LES and

DMMT criterion

Classification performance on i.i.d. Animals dataset: cat, dog, or wild

Metric (%) VGG-16 VGG-19 ResNet-50 DenseNet-121 DenRes-131

LES/DMMT LES/DMMT LES/DMMT LES/DMMT LES/DMMT

Recall 93.77/93.55 85.87/93.88 90.11/90.44 90.33/91.88 89.88/93.43

Precision 93.77/93.55 85.87/93.88 90.11/90.44 90.33/91.88 89.88/93.43

AUC-ROC sample 94.25/95.28 88.83/95.16 92.33/92.84 92.50/93.66 92.16/95.14

AUC-ROC macro 94.25/95.28 88.87/95.21 92.35/92.83 92.49/93.85 92.24/95.24

AUC-ROC micro 94.23/95.16 88.83/95.16 92.33/92.84 92.49/93.66 92.16/95.13

AUC-ROC weighted 94.23/93.58 88.83/95.16 92.35/92.83 92.53/93.80 92.19/95.14

F1 sample 93.77/93.58 85.44/93.88 90.11/90.44 90.54/91.88 89.88/93.33

F1 macro 93.78/93.52 85.46/93.91 90.10/90.44 90.45/91.86 89.90/93.33

F1 micro 93.77/93.55 85.42/93.88 90.11/90.44 90.55/91.88 89.88/93.33

F1 weighted 93.77/93.58 85.42/95.16 90.17/90.44 90.56/91.91 89.87/93.34

Values represent metrics at the LES/DMMT criterion

Neural Computing and Applications (2024) 36:18841–18862 18857

123



AUC-ROC in the BIMCV dataset and 69.76, 74.45,

83.11% AUC-ROC in the Sheffield hospital dataset for

abnormal, COVID-19, and normal classes, respectively.

Furthermore, the DenRes-131 attains superior perfor-

mance for the classification tasks in the environmental and

ecological cohorts. Tables 4 and 5 show that DenRes-131

delivers state-of-the-art results and outperforms the other

deep learning networks. More thoroughly, the DenRes-131

achieves 87.83% recall and precision, 91.90% AUC-ROC,

and 87.70% F1 metric values in the Weather cohort and

93.01% recall and precision, 95.14% AUC-ROC, and

93.07% F1 metric values in the Animal species cohort. For

the ROC curves, DenRes-131 outperforms all classes’

scores compared to the VGG-16, VGG-19, ResNet-50, and

DenseNet-121 networks for the environmental and eco-

logical classification problems.

Figures 7, 8, 10, and 11 show the performance of the

networks based on true positive and true negative

Table 7 Quantitative evaluation

metrics of different networks for

medical image classification

task without meta-learning on

the o.o.d. Sheffield hospital

dataset

Classification performance on o.o.d. dataset: COVID-19, abnormal, or normal

Metric (%) VGG-16 VGG-19 ResNet-50 DenseNet-121 DenRes-131

LES/DMMT LES/DMMT LES/DMMT LES/DMMT LES/DMMT

Recall 34.61/35.69 32.92/39.01 31.66/31.11 38.03/38.76 28.26/39.33

Precision 76.06/35.69 62.67/39.01 31.66/31.11 38.03/38.76 28.26/39.33

AUC-ROC sample 51.58/51.77 50.06/54.26 48.74/48.33 53.52/54.07 50.41/55.25

AUC-ROC macro 51.85/48.50 46.80/48.98 46.34/48.15 49.75/49.22 46.20/51.44

AUC-ROC micro 51.59/51.77 50.06/54.26 48.74/48.33 53.52/54.07 50.42/55.25

AUC-ROC weighted 52.48/48.23 48.73/52.11 46.72/48.31 49.99/49.09 46.20/52.14

F1 sample 46.83/35.69 42.81/31.14 38.04/38.76 28.26/32.33 27.32/33.43

F1 macro 44.63/28.72 32.86/26.06 16.14/21.03 27.66/23.70 15.29/28.50

F1 micro 47.14/35.69 43.56/39.01 31.66/31.11 38.04/38.76 28.26/39.33

F1 weighted 47.77/40.48 48.52/49.42 47.93/42.52 45.52/50.77 43.53/46.74

Values represent metrics at the LES/DMMT criterion

Fig. 12 Boxplots for the state of

weak (LES criterion, red

boxplots) and robust training

(DMMT criterion, cyan

boxplots) in deep learning

networks. The results include

the performance of all five deep

learning networks on two large

medical imaging datasets

Table 8 Statistical significance

analysis between the state of

weak learning of LES criterion

and state of robust learning of

DMMT criterion on the medical

imaging application

Parameter Recall Precision AUC-ROC F1 Combined

Mean	 59.88/67.54 73.87/70.35 71.88/76.17 64.37/68.90 59.88/67.54

Standard deviation	 9.04/5.43 16.05/7.03 5.84/4.44 7.97/6.14 9.04/5.43

t-statistic �2.861 �0.689 �2.602 �1.969 �2.861

Critical value one-tailed 1.833 1.833 1.833 1.833 1.833

p value one-tailed 0.009 0.253 0.014 0.040 0.009

	Values represent metrics at weak learning (LES)/robust learning (DMMT)
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predictions and recall, precision, and F1 metrics for the

state of weak learning (LES criterion) and the state of

robust learning (DMMT criterion). The DenRes-131 out-

performs the other established networks in the environ-

mental classification problem and achieves the similar level

of performance compared to the leading VGG networks in

the ecological classification problem. We did not expect

DenRes-131 to outperform the VGG networks in this

cohort, as the VGG networks perform significantly better

than both ResNet-50 and DenseNet-121 networks in this

dataset. This probably happens because the VGG structures

outperform the complex structures of ResNet and Dense-

Net for less complicated classification problems such as the

animal species classification [48].

5 Discussion

We have developed a new deep multi-metric training

(DMMT) methodology to avoid the state of weak learning

of a deep learning network for medical, environmental, and

ecological classification tasks. The convergence criterion

of the DMMT methodology is defined as the optimal

number of epochs for achieving equilibrium in the user-

defined multi-metric performance (recall, precision, AUC-

ROC, F1, etc.). One important limitation of this study is the

utilisation of one computer vision task, namely classifica-

tion, to verify the optimal training methodology. To gen-

eralise the proposed methodology, a study involving

different computer vision tasks (e.g. semantic segmenta-

tion, regression, object detection, etc.) is required. Another

less important limitation of this study is that the classifi-

cation experiment has been applied on medical, environ-

mental, and ecological datasets. A further investigation on

some other fields such as automation and industrial clas-

sification problems could be beneficial. The main advan-

tage of this study is the simplicity of the converge criterion

to deliver state of robust learning performance for a deep

network (criterion of multi-metric performance

evaluation).

In the second part of this study, we have examined the

performance of DenRes-131 compared to other established

networks of VGG-16, VGG-19, ResNet-50, and DenseNet-

121. DenRes-131 was first introduced in [29] with

promising state-of-the-art performance, and it provided

superior results compared to established networks of

ResNet-50, DenseNet-121, and VGG-16. The DenRes-131

was initially tested in small size cohorts due to the lack of

available large COVID-19 datasets. Thus, one of the aims

of this study has been to further evaluate its performance in

larger COVID-19 datasets (BIMCV COVID-19? and

Sheffield hospital datasets). In addition, we are interested

to study the performance of the network in multi-field

classification problems such as environmental and eco-

logical classification tasks. The network outperforms the

established networks in the environmental problem and

provides similar performance with the leading VGG-16 and

VGG-19 networks in the ecological task.

In our future study, we want to focus on the generali-

sation of the DMMT methodology for robust learning in

different computer vision tasks such as semantic segmen-

tation, regression, and object detection. We wish to eval-

uate the performance of DenRes-131 in industrial

classification problems and present an ablation analysis

study of the network structure. We are also interested in

evaluating the performance of Bayesian optimisation when

combined with the DMMT.

6 Is faster always better? Concluding
remarks on DMMT methodology

In this study, we have proposed the DMMT methodology,

which incorporates a convergence criterion that defines the

optimal number of epochs for achieving an equilibrium

point in multi-metric performance, including recall, AUC-

ROC, precision, F1, and others. Unlike most existing

methodologies, which rely on loss early stopping (LES) or

evaluation of the network’s training based solely on

accuracy metric results, our approach demonstrates a dis-

tinct advantage. In validation protocols, we have demon-

strated that our proposed methodology outperforms the

established training methodology that employs the LES

criterion. Our findings indicate that achieving the point of

equilibrium for the multi-metrics evaluation methodology

may require deeper epochs, suggesting that faster training

is not always the optimal solution. Overall, our research

offers a valuable contribution by providing a more effec-

tive and efficient methodology for achieving generalised

and robust performance of deep learning networks. More-

over, we have verified the superior performance of the deep

learning network DenRes-131 [29] on four large imaging

datasets.

Our study has revealed that in our analysis faster train-

ing is not the best approach for achieving optimal accuracy

performance in multi-metrics evaluation. We have

observed the point of equilibrium may only be reached

after training for deeper epochs, suggesting that a slower

and more deliberate approach to training may be more

effective.
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