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Multi-output prediction of dose–response
curves enables drug repositioning and
biomarker discovery

Check for updates

Juan-José Giraldo Gutierrez1,2,9 , Evelyn Lau3,9, Subhashini Dharmapalan2,3, Melody Parker 4,5,
Yurui Chen 3,6, Mauricio A. Álvarez7 & Dennis Wang 1,2,3,8

Drug response prediction is hampered by uncertainty in the measures of response and selection of

doses. In this study, we propose a probabilistic multi-output model to simultaneously predict all

dose–responses and uncover their biomarkers. By describing the relationship between genomic

features and chemical properties to every response at every dose, our multi-output Gaussian Process

(MOGP) models enable assessment of drug efficacy using any dose–response metric. This approach

was tested across two drug screening studies and ten cancer types. Kullback-leibler divergence

measured the importance of each feature and identified EZH2 gene as a novel biomarker of BRAF

inhibitor response. We demonstrate the effectiveness of our MOGP models in accurately predicting

dose–responses in different cancer types and when there is a limited number of drug screening

experiments for training. Our findings highlight the potential of MOGP models in enhancing drug

development pipelines by reducing data requirements and improving precision in dose–response

predictions.

Disease heterogeneity poses an enduring challenge in developing effective
treatments. Each ailment, be it cancer or other diseases, exhibits distinct
molecular and physiological characteristics, demanding tailored therapeutic
strategies1–5. Meticulously assessing chemical compounds in different can-
cers with specific disease targets, drug screening provides a comprehensive
framework to identify promising candidates for further investigation.When
the data is analysed alongside the treated sample’s molecular characteristics
and the drug’s chemical properties, the mechanisms of action and bio-
markers of response are uncovered, facilitating the design of optimised drug
candidates. By implementing large-scale screening platforms and compu-
tational models, researchers can systematically evaluate approved drugs,
expediting the identification of novel therapeutic applications2,6,7.

More recently, machine learning (ML) models played a pivotal role in
making drug screening more efficient by predicting drug response8–11. For
instance, regressionmodels, including support vector machine12 and elastic
net13,14 are applied to predict the drug response by identifying novel mole-
cular markers. Matrix factorisation methods analyse similarities between

drugs and cancer cell lines to predict drug response15–17. Deep learning
methods, owing to their ability to handle high-dimensional features and
capture non-linear relationships, have shown great promise in predicting
drug responses9. Convolutional Neural Networks and Autoencoders have
been employed to derive cell line embeddings from multi-omics data15,16.
Simultaneously, Graph Neural Networks (GNNs) have been utilised to
represent drug chemical features by conceptualising drugs as chemical
graphs17–19. However, these methods require the user to choose a summary
metric of dose–response, such as IC50 andAUC, to evaluate and theydonot
predict the responses at all doses tested20. Functional Random Forest21

predicts dose–response curves but faces computational constraints andmay
not capture significant variations due to its smoothing approach. Another
limitation of the current ML models is that their performance often
diminishes in cross-study tests, where training and testing are done on
different datasets, due to overfitting and inconsistency in drug response
profiling22. These limitations are difficult to overcome because of inherent
noise and variability in the drug screening experiments. Supplementary
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Table 1 compares the attributes of our model to other ML drug-prediction
methods.

Model interpretation and identification of themost predictive features
of drug sensitivity are important for translation to patients.MLmodels have
identified biomarkers of response, such as the EGFR mutations linked to
lapatinib sensitivity23, by measuring feature importance with Shapley
values24,25. Harun et al.25 applied the bootstrap analysis to determine the
confidence intervals around SHAP values derived from their XGBoost
model, which was developed to quantify the exposure-response relation-
ship. These approaches are also limited by uncertainty in the dose–response
measures and molecular profiling. Therefore, it is crucial to provide con-
fidence intervals and estimate the probability of biomarkers. We previously
introduced a probabilistic framework with a Gaussian Process (GP) model
to address variability from experimental standards and curve fitting
uncertainties11. Though GPs are typically used for non-linear regression
with a focus on single-output, they have benefits inmulti-output regression.
Instead of treating outputs independently, integrating their correlations
directly into the GP model enhances predictive accuracy, especially with
limited samples. Multi-output GP (MOGP) models have been successfully
used for prediction in spatio-temporal datasets26, sensor networks27,
robotics27,28, among other fields. They have also been used in dose–response
modelling, but only for extrapolating curves and not for describing the
relationship with molecular biomarkers or drug chemistry29.

In this study, we show that MOGP can be used to model
dose–responses using genomic features of samples and the chemical

features of the drugs used in vitro experiments. Unlike previous
studies that modelled summary statistics extracted from
dose–response curves, we built MOGP models to describe the
responses at all doses, which enables the assessment of any
dose–response summary statistic. We also introduce a novel
approach for detecting biomarkers of response in MOGPs by com-
paring probability distributions and show its robustness in two
pharmacogenomic drug screens. Finally, we show that MOGP can
accurately predict dose–responses in multiple cancer types with
minimal training data.

Results
Multi-Output Gaussian Process (MOGP) models describe drug
response at multiple doses
Weretrieved dose–response and genomics data from theGenomics ofDrug
Sensitivity in Cancer (GDSC), which included dose–responses obtained
from the treatment of ten drugs: Vorinostat, Axitinib, PLX-4720,MK-2206,
Pictilisib,AZD8055, SB590885,TW37,Trametinib, andDabrafenib, on442
human cancer cell lines representing ten distinct cancer types (Fig. 1). These
cancer types were among those with the largest response sample size when
tested with these ten drugs in the GDSC datasets.

Given the promising clinical outcomes observed with BRAF inhi-
bitor (BRAFi) therapy in BRAF-mutated melanoma, we directed our
initial focus to the dose–response profiles associated with inhibitor
compounds targeting the BRAF kinase within the ERK/MAPK pathway.

M

Ac AcAc

Fig. 1 | Overview of experiment to train and test machine learning prediction of

dose-response across 10 cancer types.Two datasets, GDSC1 (only SKCM cell lines;

N = 52) and GDSC2, were constructed by consolidating dose–response data for ten

drugs (Vorinostat, Axitinib, *PLX-4720, MK-2206, Pictilisib, AZD8055,

*SB590885, TW 37, Trametinib and *Dabrafenib) across 442 human cancer cell

lines, sourced from the GDSC database. These ten drugs target pathways including

ERK/MAPK signalling, PI3K/MTOR signalling, RTK signalling, apoptosis regula-

tion and chromatin histone acetylation. Dose–response data for drugs marked with

an asterisk (*) were obtained from both GDSC1 and GDSC2, while data for the

remaining drugs are fromGDSC2 only. Both datasets consist of multiple cancer cell

lines (N = number of unique cell lines) representing each of ten different cancer

types (BRCA, COREAD, SCLC, LUAD, SKCM, PAAD, ESCA, HNSC, OV and

ALL). Molecular features characterising these cell lines (genetic variations, copy

number alterations, DNA methylation) and the chemical properties of these drugs

(sourced from PubChem) were also included. These comprehensive datasets served

as input for the MOGP model for estimating the relative importance of these input

features based on KL divergence and predicting full dose–response curves. Pre-

diction of a full dose–response curve enables the extraction of various drug response

metrics such as Emax, IC50 and area under the dose–response curve (AUC), which

describe and quantify the potency and efficacy of different drugs. Differences in their

maximum achievable effect (Emax) can be observed despite having similar potency

and overall activity (similar IC50 and AUC values) (Supplementary Fig. 1).

Understanding this distinction is crucial for determining the most appropriate drug

that offers themost significant therapeutic benefits whileminimising adverse effects

and achieving the desired therapeutic outcomes. Figurewas createdwith BioRender.
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Specifically, we selected dose–response data from the treatment of three
BRAF-targeted drugs: i) Dabrafenib, ii) PLX-4720 and iii) SB590885
across multiple cancer cell lines from GDSC1 (comprising only skin
cutaneous melanoma (SKCM) cell lines; N = 52) and GDSC2 (N = 279)
datasets. All SKCM cell lines from the GDSC1 were also incorporated in
the drug screening process of GDSC2, thus also among the cell lines
included in the GDSC2 dataset used in this study. Cell lines represent the
top five cancer types with the largest response sample size when tested
with these three drugs in the GDSC2 datasets: breast invasive carcinoma
(BRCA), colon/rectum adenocarcinoma (COREAD), small cell lung
cancer (SCLC), lung adenocarcinoma (LUAD) and SKCM. Three types
of molecular features; genetic variations in high-confidence cancer
genes, copy number alteration (CNA) status of recurrent altered chro-
mosomal segments (RACSs), and DNA methylation status of informa-
tive CpG islands (iCpGs) for these cancer cell lines were also extracted
from the GDSC database, along with chemical features specific to the
aforementioned three drugs from the PubChem databases. Using a

multi-output Gaussian process (MOGP) model together with a ranking
features method based on the Kullback-leibler (KL) divergence (Fig. 2a),
we elucidate the relationships between genomic features and drug
response curves of SKCM cell lines treated with these three BRAF-
targeted drugs frombothGDSC1 (N = 52) andGDSC2 (N = 54) datasets.
TheMOGPmodels the cell viabilities for various dose concentrations as
outputs, while the KL method uses the MOGP predictions to determine
the relevance (or importance) of the features. Our proposed KL rele-
vance method was compared against the ANOVA analysis performed in
the GDSC database, focusing on 24 melanoma-specific features
(ANOVA analysis considered only mutation and CNA features).
Additionally, we used the trainedMOGPmodels to predict dose-specific
response in new experiments (Fig. 2b). We assessed the prediction
performance across cell lines fromBRCA,COREAD, LUAD,melanoma,
and SCLC cancers in GDSC2, examining model performance when
trained across different cancer types and with increasing training sam-
ple sizes.

Fig. 2 | Overview of the multi-output model for identifying biomarkers and

predicting dose-response. a Kullback-Leibler relevance determination to estimate

feature importance. To compute the relevance of a feature w.r.t a data observationwe

have to make two predictions, one for the original observation x, and another where

such an observation is subtly modified by a small Δ on the p-th feature, xΔp
. The

MOGP outputs two distributions, one for input x and another for xΔp
; then the

DKL½:jj:� module computes a Kullback-Leibler divergence between both predictive

distributions and then a normalisation applies the operation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DKL½:jj:�
p

=Δ to

obtain the relevance of the p-th feature (see section Kullback-Leibler Relevance

Determination for additional details). b Prediction of full dose–response curves

using MOGP. The input vector x� is composed of: the cell line genomic features,

mutation, methylation and copy number, and the drug compounds. The vector x�

feeds two blocks of the MOGP prediction, such blocks generate a predictive Gaus-

sian distribution, Gðy�jμðX�Þ; SðX�ÞÞ, with mean μðx�Þ (red-ish vector) and covar-

iance Sðx�Þ (red-ishmatrix); both blocks are a pictorial representation of Eqs. (3) and

(4). The last panel to the right hand side shows the prediction of a melanoma cancer

cell line (COSMIC ID: 1240226) from the GDSC2 dataset and treated with PLX-

4720. The mean vector μðx�Þ has a size ofD ¼ 7, each of its entries represent the cell

viability of the d-th drug concentration (black dots). The covariance matrix Sðx�Þ
encodes the uncertainty of the prediction; it can (loosely) be expressed as the dashed

red line that accounts for a confidence interval of two standard deviations. The

multiple coloured functions amongst the dashed red line depict random samples

taken from the predictive Gaussian distribution to exemplify the stochastic nature of

the MOGP prediction.
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Biomarkers of BRAF inhibitor response identified by their rele-
vance in MOGP models
In the first experiment, we compared the importance of genomic features in
theMOGPmodels for describing dose–response, as determined by the KL-
Relevance, with features ranked by the feature p values derived from the
ANOVA analysis conducted using a linearmodel, as reported in the GDSC
database. This analysis was performed using the responses of three different
drugs targeting BRAF: i) Dabrafenib, ii) PLX-4720 and iii) SB590885, and
the same set of melanoma-specific features used in the ANOVA analysis.
ANOVA was employed to assess the association between cancer features
anddrug responses, using the IC50metric. A total of 24 cancer featureswere
ranked based on the effect they have on the model’s prediction using the
computed average KL-Relevance scoring values, compared with the
resulting p-values obtained from the ANOVA analysis of both GDSC1 and
GDSC2 dataset (Fig. 3).

Among the 24 cancer features frequently found inmelanoma cell lines,
BRAF mutation was shown to be the most important genomic feature for
SB590885 dose–response, and second for drug Dabrafenib and PLX-4720
using the KL-Relevance approach. The top ranked feature,BRAFmutation,
along with the mutation of its upstream activator in the same signalling
pathway, NRAS, were consistently among the most statistically significant
features associated with the responses to all three BRAF inhibitors by
ANOVA analysis. This observation is correlated to the fact that all of these
three drugs are designed to inhibit BRAF mutants. However, the highly
ranked feature of NRAS mutation by ANOVA was only being detected as
the most important feature for Dabrafenib drug responses prediction, but
not PLX-4720 and SB590885 in KL-Relevance. Similarly, CDKN2A muta-
tion was found to have less impact on both PLX-4720 and SB590885
response prediction. Furthermore, the loss of chr9p24.3 region, where the
CDKN2A gene is located, emerged as an important feature for predicting
SB590885 responses.

Interestingly, the EZH2 gene mutation emerged as the second-highest
ranked feature in the KL-Relevance model for drug SB590885. This feature
also appeared as the fifth and seventh most important feature in the case of
PLX-4720 and Dabrafenib, respectively. However, it was found to be the
least or not significantly associated with differential responses to all three
drugs in the ANOVA analysis. To further evaluate the impact of this novel
predictive biomarker identified by KL-Relevance approach, we then asses-
sed drug responses in four melanoma cell lines under varying EZH2 and
BRAF statuses treated with PLX-4720 (Fig. 4a, b). It was evident that the
treatment of the PLX-4720 drug yielded different response outcomes across
the four distinct melanoma cell lines. Treatment of drug PLX-4720 in cell
lines with BRAF mutation (BRAFMUT) were more sensitive compared to
BRAF wild-type (BRAFWT) cell lines, as expected for its use in BRAF-
targeted therapies. In addition,BRAFmutant cell lines withEZH2mutation
(EZH2MUT) were found to be less responsive to PLX-4720 than EZH2wild-
type (EZH2WT) cell lines. The presence ofEZH2 somaticmutations has been
observed in a subset of melanoma cases, as shown in The Cancer Genome
Atlas (TCGA) dataset (Fig. 4c). The EZH2 mutational status may indeed
impact sensitivity to BRAF inhibition, providing a potential explanation for
the development of resistance to BRAF inhibition in certain mela-
noma cases.

Although the KL-Relevance determination method is typically com-
puted on the same dataset used for MOGP model training, we have also
performed reverse tests by using the MOGP model trained on GDSC1 to
determine KL-Relevance on the GDSC2 test dataset and vice versa, aiming
to evaluate the method’s robustness across different drug screening studies.
Supplementary Fig. 2 shows the feature rankings obtained from these tests
consistently highlighted BRAF and EZH2 mutations, as well as loss of
chr10q23.33 region, as important features in predicting the dose–response
of drug PLX-4720.

To further broaden our comparative results, we also included features
ranking using the Shapley additive explanations approach (SHAP)30. Sup-
plementary Fig. 3 shows a ranking comparison between the ANOVA, our
KL-Relevance and SHAP drawn from the same set of melanoma-specific

features used in the ANOVA analysis from the GDSC2 dataset tested with
drugs Dabrafenib, PLX-4720 and SB590885. It is evident that there is a
notable difference between the rankingvalues obtainedby theKL-Relevance
methodcompared toANOVAandSHAP, regarding theweights assigned to
the features. The KL-Relevance method generally assigns relevance values
that decrease gradually from the most relevant to the least relevant. On the
contrary, ANOVA and SHAP tend to rank a few features with high values
and aggressively weigh the others with relatively small relevance values. For
drugs PLX-4720 and SB509885, there is a good consensus between KL-
Relevance and ANOVA in assigning high relevance to the BRAFmutation
feature. However, this is not the case for drug Dabrafenib, where the BRAF
mutation was not ranked in the top three, even though KL-Relevance
considers this featuremoderately important. BothKL-Relevance and SHAP
considered the loss.cna.chr9p24.3 feature as relevant, but SHAP assigned
this feature a higher ranking value than KL-Relevance. All three methods,
KL-Relevance, ANOVA and SHAP, highlighted the significance of the
BRAF mutation feature for drug PLX-4720. On the other hand, features
such as NRAS mutation, gain.cna.chr3p14.1 and TP53 mutation showed
inconsistent rankings across the methods. It is also worth noting that the
SHAPmethod relies partly on the predictions from theMOGPmodel since
it is not taking into account the (co)variance uncertainty measure provided
by the MOGP. To highlight, the EZH2 mutation consistently emerged as
one of the relevant features identified by the KL-Relevance method.

Prediction of dose–response is robust between screening
studies
Next we tested the ability of the MOGP models to predict dose–response
data using genomic and drug chemistry features. We trained two MOGP
models using dose response data of SKCM cell lines treated with PLX-4720:
one trainedwithGDSC2and testedonGDSC1,while theotherusedGDSC1
as the training dataset withGDSC2 as the testing dataset. GDSC1 comprises
40 melanoma cell lines, while GDSC2 consists of 50 melanoma cell lines,
with 37 cell lines common to both datasets. Drug responsemetrics such as i)
Emax, ii) IC50, and iii) AUC were derived from the dose–response curves
(DRCs) predicted using theMOGPmodel. The values of these threemetrics
were also computed from the DRCs fitted using the sigmoid function with
four parameters, andwere then comparedwith the values obtained from the
MOGP-predicted dose–response curves. We compared summary metrics
of Emax, IC50 and AUC for the cell lines common between GDSC1 and
GDSC2 (Fig. 5a). By using these three metrics, we assessed the variability in
the dose–responses for identical cell lines treated with PLX-4720 between
GDSC1 and GDSC2. Emax values obtained from the MOGP-predicted
dose–response curves have the highest R2 score of 0.41, followed by AUC
with an R2 score of 0.38, and the lowest R2 score of 0.28 for IC50.Whilst the
R2 score achievedon IC50 andAUCwas 0.32 and0.36 respectively onvalues
derived from observed DRCs, the R2 on Emax was only around 2. Overall,
the R2 scores for all metrics, whether from observed or predicted
dose–response curves, remained consistently in the range of 0.3–0.4. This
observation strongly implies the existence of variations in dose–responses
between GDSC1 and GDSC2, even when they are the same cell line-
drug pairs.

We then further evaluated the predictive performance of the MOGP
model by computing Pearson correlation coefficients betweenmetric values
derived from predicted and observed DRCs across all cell lines common
between GDSC1 and GDSC2, and also those unique to either GDSC1 and
GDSC2 (Fig. 5b, c). Of all three drug response metrics, AUC provided the
most consistent and highest predictive performance with the best correla-
tion of 0.54 in both GDSC1 and GDSC2. Generally, most cell line pairs
demonstrated good correlations between Emax, IC50, and AUC values
derived from predicted dose–responses and those from observed curves in
GDSC2, with correlation coefficients exceeding 0.50. In GDSC1, on the
other hand, IC50 showed a correlation of 0.44 while for Emax was merely
0.36. These correlations indicated that the prediction of dose–responses in
GDSC2 performed marginally better than that in GDSC1, particularly for
metrics such as Emax and IC50. However, the differences we observed here
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Fig. 3 | Melanoma-specific molecular features ranking using the KL-Relevance

approach. Feature importance ranking, based on the average KL-Relevance scoring

values between three drugs: Dabrafenib, PLX-4720 and SB590885, were computed

using drug responses from GDSC1 and GDSC2, and compared with ANOVA test

associated p-values for the same features. The number of cell lines (N) treated with

each drug used in this dose–response dataset of SKCM is as follows: Dabrafenib

(GDSC1:N = 39 ;GDSC2:N = 47), PLX-4720 (GDSC1:N = 40; GDSC2:N = 50) and

SB590885 (GDSC1: N = 35; GDSC2: N = 45). The asterisk (*) denotes melanoma-

specific features that were omitted from the ANOVA analysis of the GDSC1 or

GDSC2 dataset because they were not present in a minimum of 3 cell lines. Cancer

features are sorted according to the average KL-Relevance values obtained fromboth

GDSC1 (trained on GDSC1) andGDSC2 (trained onGDSC2) datasets, presented in

descending order. The greatest score represents the cancer feature of highest

importance, as identified by the KL-Relevance approach, in modulating cell

responses to specific drug treatments.
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in Emax and IC50 could be attributed to the noises arising from the
variability in drug responses between the common cell line pairs in GDSC1
andGDSC2 (Fig. 5a). Importantly, these potential technical noises appeared
to have minimal, if any, impact on the accuracy of our model’s predictions
using the AUC metric. The predictive performance of our model on
dose-–response in a small number of cell lines present only in GDSC1 or
GDSC2 was suboptimal, showing weak to moderate correlations that were
not statistically significant (Supplementary Fig. 4).

Drug response prediction across cancer types with varying
training set sizes
Given the challenges in obtaining samples from certain cancer types and the
substantial costs involved in drug screening experiments, our second
experiment was designed to evaluate the predictive capabilities of the
MOGP model across five distinct cancer types. We examined how the
model’s prediction performance varied with different numbers of DRCs for
training, and subsequently reported the performance over the test set. We
used six different random seeds to sample each training set that was

gradually incrementing in size. The error in the MOGP’s predictions was
computed when the number of DRCs in training is varied at each of the
seven dose concentrations (Supplementary Fig. 5) and across all doseswhen
evaluating summary metrics AUC, Emax and IC50 (Fig. 6).

Increasing the number of DRCs in training, our model’s prediction
performance improves for the BRCA, COREAD and SKCM cancers; by
averaging along doses there is a reduction in their absolute error from the
smallest to largest number of DRCs in training of 0.029 ± 0.010,
0.025 ± 0.011 and 0.073 ± 0.015, respectively. On the other hand, the LUAD
and SCLC cancers do not improve much, presenting almost a flatten
behaviour whilst increasing the DRCs in training.

We have benchmarked our MOGP with 3 DL methods (DeepCDR17,
GraphDRP18, and NeRD16) and 3 non-DL based ML methods (SRMF23,
Lasso Regression, and Elastic Net31). The previous methods had previously
been trained and tested across all cell lines (pan-cancer), but here we con-
duct the experiment in each cancer type separately. The detailed informa-
tion of these models is introduced in Supplementary Table 1 and Methods
Section: Benchmark Methods. Among the DL models, GraphDRP, which

Fig. 4 |Differential drug responses inmelanoma cell lineswith distinct BRAFand

EZH2mutational status.Dose response curves of cell lines treated with PLX-4720,

categorised by BRAF and EZH2 mutation status as follows: i) BRAFWT/EZH2WT

(N = 8), ii) BRAFWT/EZH2MUT (N = 1), iii) BRAFMUT/EZH2WT (N = 27), iv)

BRAFMUT/EZH2MUT (N = 2), obtained from a GDSC1 (N = 37) and b GDSC2

(N = 38) screening. A total of 37 melanoma cell lines were tested with PLX-4720 in

both GDSC1 and GDSC2, except for cell line COSMIC ID: 909726 (BRAFWT/

EZH2MUT), which was only in GDSC2. c The top 22 human cancer types with

frequent genetic alterations in the EZH2 gene. The EZH2 gene exhibited alterations

in 7.2% (mutation: 4.7%) of the 444 melanoma cases in TCGA PanCancer Atlas

dataset, obtained from cBioPortal58–60 (accessed September 2023).
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uniquely relies on the mutation data, demonstrated the most favourable
results within its category but still lagged behindMOGPand theMLmodels
in overall efficacy. With the largest number of DRCs, GraphDRP achieves
AUC average-MAE values between 0.2 and 0.25, while NeRD, integrating
multi-omics data, shows AUC average-MAEs between 0.25 and 0.35.
DeepCDR records themost unfavourable performance, withAUC average-
MAE scores greater than 0.3 across all cancer types studied.

On the other hand, non-DL methods show robust prediction perfor-
mance,with SRMFandMOGPmethods improving accuracy as thenumber
of DRCs increases. Nonetheless, when trained with fewer than 25 DRCs,
MOGP significantly outperforms SRMF in prediction error across many
cancer types. For instance,MOGP’s average-MAE for AUC ranges between
0.02 and 0.15, while SRMF ranges between 0.2 and 0.42. Similarly, MOGP’s
average-MSE for IC50 ranges between 0.001 and 0.41, whereas SRMF’s
ranges between 0.1 and 0.75. Since BRAF inhibitors are more effective in
SKCM, we measured prediction error in this cancer split by the drug non-
responsive and responsive cases. Supplementary Fig. 6 shows that for both

cases the MOGP model reached a salient performance close to BERK,
whereas SRMF struggled.

Scaling up analysis tomultiple cancer types and a broader range
of drugs targeting different biological pathways
To evaluate the performance of our MOGP model in predicting
dose–response curves of a diverse range of drug compounds across cell lines
representing multiple cancer types, as commonly observed in drug
screening studies, we expanded our analysis to include additional training
and testing on independent data sourced fromGDSC2 datasets. In addition
to the five cancer types used in our previous experiments above (SKCM:
N = 456, BRCA: N = 441, COREAD: N = 429, LUAD: N = 537 and SCLC:
N = 501), this analysis also included dose responses of five additional cancer
types: pancreatic adenocarcinoma (PAAD): N = 253, ovarian serous cysta-
denocarcinoma (OV): N = 292, head and neck squamous cell carcinoma
(HNSC): N = 305, acute lymphoblastic leukaemia (ALL): N = 244, and
oesophageal carcinoma: N = 319. We divided the drug response data for

Fig. 5 | Evaluation of the MOGP model predictive performance in melanoma

using three drug responsemetrics: Emax, IC50, andAUC. aEach dot in thefigures

represents a specific melanoma cell line treated with drug PLX-4720 in GDSC1 (1)

(N = 37) versus GDSC2 (2) (N = 37). These metric values were obtained from pre-

dicted (blue) and observed (grey) dose–response curves of melanoma cell lines

treated with drug PLX-4720 common between GDSC1 and GDSC2. Coefficient of

determination, R2, was used to evaluate the variability levels of the drug responses of

the common cell line across GDSC1 andGDSC2 using the computed dose–response

metrics. Evaluation of the predictive performance of MOGP in predicting

dose–responses of numerous melanoma cell lines in b GDSC1 (N = 40; WT = 8,

Mut=32) and cGDSC2 (N = 50;WT = 13,Mut = 37) treated with drug PLX-4720, in

relation to BRAF mutation status (wild-type: green; mutation: pink). The values of

three different drug response metrics: i) Emax, ii) IC50, and iii) AUC were obtained

from predicted dose–responses and compared with values derived from observed

curves. The predictive power of the MOGP model was measured using Pearson

correlation coefficient, r, to compare the values of MOGP-predicted and observed

dose–response metrics.
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each cancer type into 70% and 30% for training and testing our MOGP
model, respectively. These dose responseswere obtained from the treatment
of ten different drugs: Vorinostat, Axitinib, PLX-4720, MK-2206, Pictilisib,
AZD8055, SB590885, TW 37, Trametinib and Dabrafenib, targeting dif-
ferent biological pathways, including ERK/MAPK signalling, PI3K/MTOR
signalling, RTK signalling, apoptosis regulation and chromatin histone

acetylation. It is worthmentioning thatwe split the datasets by ensuring that
70% of DRCs per drug is present in the training set and 30% of DRCs per
drug is present in the testing set; i.e., if there are 10DRCs for drugdabrafenib
and 20DRCs for drugPLX-4720 in the dataset, thenwe guarantee that there
will be 7 and 14 DRCs for training, and 3 and 6 DRCs for testing from
dabrafenib and PLX-4720, respectively. By means of a cross-validation
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process, we trained 44 models for each cancer type. The training of each
model was implemented using anADAMoptimiser in aHigh Performance
Computing system with 32 CPU cores and 24 GB of memory.

Supplementary Figs. 7–11 show the performance of theMOGPmodel
over the test sets of each cancer regarding the Emax, IC50 and AUC sum-
mary metrics. The results demonstrate across the ten cancer types that the
Emax is the metric with the highest Pearson correlation performance with
average and standard deviation of 0.783 ± 0.069, followed by AUC with
0.717 ± 0.051 and IC50 with 0.653 ± 0.125. We further assessed the per-
formance of our MOGP model in predicting the dose response curves for
drugs targeting various pathways. In Supplementary Fig. 12a, COREAD
cell-drug pairs targeting the ERK/MAPK or PI3K/MTOR pathway showed
robust correlations between the predicted and observed values of Emax,
IC50 and AUC, with correlation coefficients nearing 0.7. Similarly, in
another cancer type SCLS, we observed strong correlations (r ≥ 0.6)between
predicted and observed metric values for similar drugs targeting the PI3K/
MTORpathway (Supplementary Fig. 12b), but not for those drugs targeting
the ERK/MAPK signalling pathway. This limitation could arise due to the
limited availability of sensitive response data from the treatment of ERK/
MAPK-targeted drugs on these SCLC cell lines in the training dataset,
potentially impacting the predictive power of these drugs’ response curves
on these cell lines (Supplementary Fig. 13).

Discussion
Our study shows that the MOGP approach was able to rank the impact of
genomic features on melanoma cell lines’ responses to three BRAF inhibi-
tors, identifying BRAF and NRAS mutations as consistently critical pre-
dictors while also highlighting the previously underappreciated role of
EZH2 mutations that might offer insights into differing drug sensitivities
and potential resistance pathways in melanoma therapies. MOGP models
were trained on the GDSC1 and GDSC2 datasets separately to predict drug
responses (Emax, IC50, AUC) that were substantially correlated with
observed responses, R² scores ranging between 0.3 and 0.4. They demon-
strated a slightly better predictive performance in GDSC2, particularly for
Emax and IC50 metrics, while maintaining that AUC remains the most
robust metric for predicting dose–responses across both datasets, showing
the least susceptibility to potential technical noises. MOGP model’s per-
formance in predicting drug responses was also robust and we did not see a
significant decrease in performance using smaller training sets (as low as 9
cell lines) of dose–response curves in different cancer types. This was evi-
denced when assessing response at each individual dose and when com-
paring to other benchmarks.

The discovery of the genomic feature related to EZH2 through the KL-
Relevance approach highlights its impact on drug responses and potential
involvement in drug resistance in cancer cells. EZH2, known for silencing
critical tumour suppressor genes32,33, has been implicated in BRAF-targeted
therapy resistance in melanoma34,35. Modulation of EZH2 has shown pro-
mising results in addressing resistance to BRAF inhibitors35. Furthermore,
our findings have also highlighted the distinct genomic feature effects on
responses to three different BRAF inhibitors, likely dependent on their
respective biochemical mechanism and their conformation in which they
stabilise the RAF kinase36,37. Dabrafenib exhibits greater efficacy in sup-
pressing the growth of cancer cell lines with NRASmutations compared to

Vemurafenib (its analogue, PLX-4720), which aligns with our KL relevance
ranking38–40. Treatment with PLX-4720/Vemurafenib or SB590885 have
been shown to enhance MAPK activation, even in wild-type BRAF
expressing cells, through RAF dimerisation and transactivation38,41,42.
Consequently, the impact of CDKN2A mutation on the efficacy of PLX-
4720/SB590885 treatment appears to be less significant in this context,
considering dysregulation of cell-cycle signalling through the upstream
MAPK pathway activation. Our method has also identified the loss of the
chr9p24.3 region, containing both CDKN2A/B genes responsible for cell
cycle regulation, as a significant feature associated with drug sensitivity of
SB590885. This observation aligns with previous findings on disruptions in
the regulatory components of the cell cycle progression pathway, con-
tributing to SB590885 resistance in BRAFV600-mutatedmelanoma43. Our
KL-Relevance method exhibited modest enhancement over ANOVA or
SHAP in identifying significant genomic features contributing todifferential
drug responses with specific drugs, uncovering insights not previously
detected by ANOVA.

Modelling the complete curve response by means of a MOGP model
might become prohibitive in the context of large numbers of drugs and cell
lines. This is due to having a computational complexity for a regression task
of OðN3D3Þ, where N refers to the number of data observations, i.e., dose
responses in our case; and D represents the number of outputs, i.e., the
number of drug concentrations in our datasets withD ¼ 9 for GDSC1 and
D ¼ 7 for GDSC2 datasets. Although, there exist sparse MOGPmodels44,45

that allow scalability when N is large by means of approximations of the
exact MOGP model, they present a limited performance when applied to
scenarios where the input features are much bigger than hundreds46. Thus,
investigating the applicability of sparse approaches formassive genomic and
drug compounds features could be a challenging venue for future research.
We preferred to avoid such sparse approximations and opted for the exact
MOGP model to explore how accurately it would perform; anyhow, its
application is a feasible choice in a context of hundreds or even thousands of
dose responses. Supplementary Fig. 14 shows an example of the time dis-
tribution for training theMOGPmodel to predict the DRCs of ten different
cancer datasets that present differentN sizes. On the other hand, we noticed
that most of the DRCs behave as non-responsive with respect to the drugs
causing an unbalanced distribution along the dose concentrations. There-
fore, though we have achieved relevant results by applying our MOGP
model, using a different type of likelihood in Eq. (1) that accounts for the
data unbalanced behaviours might help to improve the predictions11,26.
Apart from the experiments presented in this main manuscript, we inves-
tigated the performance of the MOGPmodel to predict the response curve
of a cancer A that emulates a rare cancer with a very small number of DRCs
available for training (Supplementary Fig. 15). We wanted to understand if
the data information known from common cancers could be transferred to
improve predictions on a rare cancer, i.e. if the predictive performance of
our MOGP model that targets the dose–response of a cancer A (with very
few observations) could be improved by means of feeding the model with
dose–responses from cancers different to such a cancer A. We found that
increasing the training dose–responses from other cancers overfits the
model, so the training error improves while the testing error over cancer A
degrades. We believe that the current modelling structure of the MOGP
model should be rebuilt in order to deal with this type of rare cancer

Fig. 6 | Performance of predictive methods.MOGP, SRMF, DeepCDR,

GraphDRP, NeRD, Lasso Regression (LR) and Elastic Net (Enet) were assessed with

respect to the summary metrics AUC, Emax and IC50 when increasing the number

of DRCs in training. Training and prediction was performed on each cancer type

separately. From left to right: BRCA ðN ¼ 110Þ, COREAD ðN ¼ 108Þ, LUAD
ðN ¼ 139Þ, SKCM ðN ¼ 142Þ and SCLC ðN ¼ 133Þ; 30% of each cancer dataset is

used as testing. Each subfigure shows dots aligned vertically that correspond to the

Mean Error of themethods per seed; the dots correspond to the six different random

seeds used to sample each training set that was gradually incrementing in size. The

gradual increment of the DRCs for training the model is as follows:

{8,16,27,42,58,74} for BRCA, {7,15,26,42,57,72} for COREAD, {10,19,34,53,72,91}

for LUAD, {10,20,35,54,74,93} for SKCM and {9,18,32,51,69,87} for SCLC. Each

increment of curves in training yields sixMean Errors as per the six seeds, thus, along

the number of DRCs in training, the solid line interpolates the averages of Mean

Errors between the seeds at each increment. A strong benchmark (BERK) error

metric for each of the summarymetrics is obtained as the error between GDSC1 and

GDSC2 screens for the same drugs and cell lines; we report the mean and median

BERK error. LR-mut Lasso regression with mutation profiles, LR-meth Lasso

regression with methylation profiles, LR-cna Lasso regression with copy number

alterations, Enet-mul Multi-task learning Elastic Net with all the omics data and

drug features.
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scenario. For instance, works like47 and48 introduce feasible ideas for
transferring learning between source domains of data (like the common
cancers in our application) to improve the predictive performance on a
specific target domain that lacks data (like the rare cancer A in our
experimental case).

Although DL methods have been studied to show stronger perfor-
mances against conventional ML methods in large scale drug response
datasets9, they exhibited inferiorperformance compared tobothMOGPand
the selected ML algorithms within the constraints of limited training data
(less than100 training samples).Our analysis revealed that the integrationof
multi-omics genomic features by NeRD and DeepCDR did not inherently
enhancemodel performance in the context of training andpredictingwithin
a singular cancer type. This outcome can be attributed to the inherent
complexity of DLmodels. Despite the strategic implementation of an early-
stopping criterion on validation set performance to prevent overfitting and
facilitate optimal convergence, DL models struggled to achieve a better
behaviour than non-DL models in a limited training data scenario. A
challenging setting in the benchmarking process was the inclusion of only
three drugs, constraining the capacity of drug encoders to adequately learn
and predict drug responses. It is important to recall that DL models are
generally fed with large amounts of data to achieve a salient performance;
nonetheless, in regimes of few data observations they are prone to poorly
generalise. As shown in our experiments, simpler models like Elastic-net
and Lasso regression can even reach better error metrics than models with
more complex architectures. It is worth emphasising that most cell lines are
non-responsive to the drugs tested, except in SKCM cell lines, indicating
that the IC50mayexist beyond themaximumconcentration tested.We set a
hard maximum of IC50 = 1.5 in those cases, which may introduce bias into
thedata anddistort performance evaluation.Thealternative is to extrapolate
the dose–response curves beyond the maximum concentration, but it has
been previously shown that there is too much uncertainty in these extra-
polate IC50 estimates to be used for drug assessment or biomarker
detection11. Although the MOGP did not always achieve the highest per-
formance in all the cases, it stands out by its training on observed drug
responses at varied doses but not on specific summarymetrics. Unlike other
models that treat IC50, Emax, and AUC as separate tasks and require
individual training sessions for each metric, MOGP concurrently predicts
these drug response summary metrics within a unified framework and
achieves competitive results.

Given our understanding of the uncertainty associatedwithmeasuring
drug response and molecular features, it is crucial for models that predict
drug response to provide full dose–response curves and probability esti-
mates, not just summary point estimates. Utilising probabilistic multi-
output models presents a forward-leaning approach in precision medicine,
offering a nuanced understanding of drug efficacy across various dose
metrics. This approach is notably beneficial when the available training data
is scant, as it enables the capture of underlying response trends across all
doses, fostering a granular understanding of drug efficacy. By encompassing
a comprehensive dose spectrum, researchers can meticulously decipher the
varying response dynamics exhibited at distinct dose levels, potentially
unveiling novel insights into the drugs’mechanismof action. Importantly, it
sidesteps the limitations seen in models exclusively trained on summary
metrics like IC50, Emax, orAUC, by offering insights across a continuumof
dose–responses, thus potentially uncovering intricate response patterns and
facilitating amore comprehensive understandingof thepharmacodynamics
involved. This approach harbours significant promise in enhancing drug
development pipelines by economising on data requirements while simul-
taneously elevating the precision in predicting dose–response relationships.

Methods
Dose–response
Drug responsedatawere extracted from theGenomics ofDrug Sensitivity in
Cancer (GDSC), which contained two pharmacogenomic screens; GDSC1
and GDSC2. GDSC1 includes data from 2010 to 2015 whilst GDSC2 is
newer and includes screens conducted post-2015. Hundreds of compounds

have been screened across approximately 1000 cell-lines with two key stu-
dies published using GDSC1. We used version 8.4 of the datasets released
July 2022 in this study. In short, 403 compounds have been screened across
970 cell-lines to produce 333292 IC50s inGDSC1 and 297 compoundswere
screened across 969 cell-lines giving 243,466 IC50s in GDSC2.The two
datasets also use different assays for screening with GDSC1 using Syto60
(Resazurin) and GDSC2 using CellTitreGlo. The duration for both these
assays is 72 h.

In the GDSC1 dataset, dose–response data was generated
through drug screening with two different concentration protocols:
one involving 9-dose (2-fold dilutions) and the other with 5-dose (4-
fold dilutions) concentrations. For the dataset used in our study, only
dose responses of SKCM cell lines treated with three BRAF-targeted
drugs (Dabrafenib, PLX-4720 and SB590885) were included, pri-
marily with 9-dose concentrations. If a drug was screened at both 5-
and 9-dose concentrations, dose responses with 5-dose concentra-
tions were excluded. Also, dose responses in GDSC1 were excluded
from the dose-specific drug responses prediction experiment in ten
different cancer types. In contrast, GDSC2, which was used specifi-
cally for the dose-specific drug responses prediction in these ten
cancer types, utilised a 7-dose concentration protocol. This protocol
included a 7-point dose curve with a half-log dilution step covering a
1000-fold range and another 7-point dose curve with 2 × 2-fold
dilutions followed by 4 × 4-fold dilutions, covering a 1024-fold range.
However, only the 7-point dose curves with the 1000-fold range drug
treatment is included in our study. The raw screening data from both
GDSC1 and GDSC2 were processed using the R package, gdscIC50.
This R package was used to process raw data in the GDSC database
and fit dose–response curves for obtaining the AUC and IC50 values
presented on the GDSC website (http://www.cancerrxgene.org). In
our study, this R package was only used for several data pre-
processing steps: data filtering, viability data normalisation, and
normalisation of the drug treatment concentration scale. Briefly,
screening data with any missing drug information or having failed
internal quality control processes indicated by a “FAIL” tag, were first
removed. The remaining raw viability data were then normalised
with the negative (viable cells with media in GDSC1 or media and
compound vehicle in GDSC2) and positive (no viable cells) controls
of each tested plate, identified using tags (e.g. neg_control = “NC-0”
or “NC-1”, pos_control = “B”) present in the dataset. Distinct drug
treatment concentration ranges used in the screening of different
individual drugs were then normalised on a single scale in each
dataset to make them comparable across all drug
concentrations used.

Drug chemistry
In addition to the genomic features, a total of 27 chemical features relating to
drug molecules such as molecular weight, hydrogen bond donor and
acceptor counts and formal charge were initially used. These were extracted
from PubChem using PubchemPy and the definitions for each feature can
be found under “Computed Properties” for any compound on PubChem.
Additionally, the presence and absence of elements in each compound has
been encoded and used as binary features. These include boron, nitrogen,
phosphorous, platinum, iodine, chlorine, oxygen, sulphur, bromine and
fluorine.Thefinal set of chemical features comprises 12 features, as shown in
Supplementary Table 2.

These chemical features or molecular descriptors can vary in dimen-
sionality (1D, 2D, 3D and so on) and quantitatively illustrate molecular
properties of a chemical compound49. For the purposes of this project, only
2Ddescriptorswere used alongside encoded elements. These 2Ddescriptors
represent information gathered from the structural formula of the com-
pound and include many subdivisions such as topological indices and
simple counts50. The latter, as the name suggests, refers to features in a
compound that can be described by simple counts such as hydrogen bond
donors andmolecular weight. The former refers to descriptors derived from
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2D graphs of the molecules or compounds and includes features such as
complexity.

Molecular data
The status of three molecular features: i) genetic variations in high con-
fidence cancer genes, ii) CNA status of RACSs and iii) DNA methylation
status of iCpGs for cancer cell lines in the GDSC database were identified
using cancer functional events (CFEs) found in the primary tumour samples
by combining data across all tumours (pan-cancer) or for each specific
cancer type.

For comparative analysis between ANOVA and KL-relevance: i)
analysis of variance (ANOVA) and ii) KL-Relevance used to determine the
contributions of specific cancer features to the variability in drug responses
in skin cutaneous melanoma cell lines, a multi-omics binary event matrix
(MOBEM) containing the status of a total of 24 melanoma-specific CFEs
(genetic variations and CNAs) detected in the associated cell lines were
extracted, which were used as input for ANOVA statistical analysis to
determine associations between cancer features and drug sensitivity in the
GDSC database (Supplementary Data 1). Among the complete set of 24
melanoma-specific CFEs, only those that occurred in at least 3 cell lines in
GDSC1 or GDSC2 were taken into account for the ANOVA analysis.
Details can be found in the Data Availability section.

For dose-specific prediction of drug responses across different cancer
cell lines representing 10 cancer types, genomic annotationdata of a panel of
1001 human cancer cell lines were obtained from the GDSC1000 resource
site https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources//
/Data/BEMs/CellLines/CellLines_Mo_BEMs.zip (Supplementary Data 2).
The set of pan-cancer CFEs in a binary event matrix consisted of 1073
molecular features in total (genomic variants: N = 310, CNAs: N = 425,
DNA methylation: N = 338). Briefly, genetic variants, CNAs and DNA
methylation status of the selected cancer cell lines were identified as
described31. Individual genetic variants foundwithin a coding region of a set
of 470 high confidence cancer genes, based on their frequent occurrence in
COSMIC v68 (http://cancer.sanger.ac.uk/cosmic/), were identified. The
mutational status of these genetic features in the cancer cell lines were then
determined. For CNAs, focal amplification/deletion of chromosomal
regions were identified for all cell lines in the panel. Only amplified regions
spanning at least a gene or deletion events of an exon were included.
Identification of iCpGs, regions where beta signals are distributed bimod-
ally, was carried out in each specific cancer type separately due to the highly
tissue specificity of the DNAmethylation profiles. DNAmethylation status
of these iCpGs were then determined and only hypermethylated sites in the
gene promoter region were included. The presence or absence of these
different features in the selected cell lines were encoded with binary values.
These binary features of cell lines were then used in the MOGP modelling
for drug response prediction. The cancer features of the 279 cancer cell lines
were first extracted from this set of pan-cancer CFEs for use in the afore-
mentioned analysis (Supplementary Data 3). Similar dose–response pre-
dictions were further expanded to include an additional 436 cell lines from
the GDSC2 dataset representing additional cancer types (N = 10), and a
wider range of drug compounds (N = 10) targeting 5 biological pathways.
The molecular features of the additional cell lines used in the analysis are
presented in Supplementary Data 4).

Multi-output Gaussian process regression model
AGaussianprocess (GP)51 is a distributionover functions generally used as a
non-parametric prior for a probabilistic model. Here, we apply a prob-
abilistic regression model based on GPs to predict the dose–response of
different drugs applied to a particular type of cancer. We have a set of N

input data observations X ¼ ½xT1 ; :::; xTN �
T
, where each data observation xn

is a multi-modal vector of P features; they are a combination of genomics
and drugs features. We apply the Multi-output GP (MOGP) model where
eachoutput is associatedwith adose concentration52, i.e., there is a particular

d-th output vector, yd ¼ ½yd;1; :::; yd;N �T , that stacksN data observations of

the dose–response for the d-th drug concentration. We can express a joint
distribution for a MOGP regression models as:

pðy; f jXÞ ¼
Y

D

d¼1

Y

N

n¼1

Gðydjf dðxnÞ; σ2Þpðf Þ; ð1Þ

where Gðydjf dðxnÞ; σ2Þ is a Gaussian distribution with mean f dðxnÞ and
variance σ2; f ¼ ½f T1 ; :::; f

T
D�

T
is a vector built with f d ¼ ½f dðx1Þ;

:::; f dðxN Þ�T , where each latent function is derived from an intrinsic cor-
egionalization model53, f dðxÞ ¼

PR
i¼1ad;iu

iðxÞ, for which each ui is an
independent and identically distributed (IID) sample taken from a GP, i.e.,
u � GPð0; kð:; :ÞÞ, with kð:; :Þ accounting for a kernel covariance; R repre-
sents the number of IID samples taken from the GP; ad;i is a linear com-
bination coefficient; and σ2 is a noise parameter that aims to model the
uncertainty of each dose–response yd . The noise parameter σ2 accounts for
thenoise variance of thedose–responses yd . Such anoise parameter emerges
from the construction of the regression model from a probabilistic per-
spective.We can think of the dose–response yd as an output generated by a
function of the inputs x and corrupted by noise: y ¼ f ðxÞ þ ϵ, where ϵ �
Nð0; σ2Þ is a Gaussian noise, with noise parameter σ2, that corrupts the
output y. Therefore, instead ofmodelling the outputs yd as a point estimate,
it is more realistic to allow the output yd to be modelled with some uncer-
tainty encoded in the parameter σ2.

It is worth mentioning that the kernel covariance, kð:; :Þ, generally
depends on a set of hyper-parameters, for instance an Exponentiated
Quadratic (EQ) kernel, kðx; x0Þ ¼ σ2EQ exp � jx�x0 j2

2l2

� �

, relies on the length-
scale l and variance σ2EQ.

Training a MOGP regression model consists on maximising the log
marginal likelihood:

log pðyjXÞ ¼ �ND

2
logð2πÞ � 1

2
log jK þ σ2Ij � 1

2
yT ðK þ σ2IN Þ

�1
y;

ð2Þ

w.r.t to the kernel hyper-parameters, the coefficients ad;i and the noise
parameter σ2; here y ¼ ½yT1 ; :::; yTD�

T
is the output vector that stacks all D

drug concentrationoutputs; IN is an identitymatrix of sizeN ×N ; andK is a
covariancematrix which entries are built with evaluations of the covariance,
kMOðx; x0Þ ¼ cov½fdðxÞ; fd0 ðx0Þ�, for all pairs of input data observations X,
and all pairs of outputsD. In order to make predictions for a new set of N�
input data observations X�, we just need to evaluate the predictive dis-
tribution, Gðy�jμðX�Þ; SðX�ÞÞ, with mean and covariance:

μðX�Þ ¼ K�ðK þ σ2IÞ�1
y; ð3Þ

SðX�Þ ¼ K�� � K�ðK þ σ2IN Þ
�1
KT

� þ σ2I�; ð4Þ

where K� is a matrix built with evaluations of the kMOð:; :Þ between the X�
andX;K�� is amatrix builtwith evaluations of the kMOð:; :Þ between all pairs
of observations in X�; and I� is an identity matrix of size N� ×N�. The
equations above provide uswith amean prediction μ and covariancematrix
S to quantify the uncertainty of our prediction.

Kullback-Leibler relevance determination
In order to build a measure of predictive relevance of a p-th input feature is
necessary to compute the MOGP predictive distribution from Eqs. (3) and
(4) over a training data observations xn: Then, one compares how such a
distribution differs when is recomputed with a subtle modification of the
p-th feature of xn. We can express the relevance of the p-th feature with
respect to the data observation xn by calculating the divergence of the
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predictive distributions:

rðn; p;ΔÞ ¼
d½Gðy�jμðxnÞ; SðxnÞÞjjGðy�jμðxn þ ΔpÞ; SðxnþΔpÞÞ�

Δ
; ð5Þ

where d½:jj:� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DKL½:jj:�
p

; with DKL½:jj:� as a Kullback-Leibler diver-
gence, and Δp as a vector of zeros with Δ on the p-th entry. This kind of
relevance determination has been previously studied in the context of single
output Gaussian processes by54, here we extend the application of the
relevance metric to the context of multiple-outputs, where y� represents a
vector prediction of D points of cell viability associated with the drug
concentrations. Therefore, the divergence DKL½:jj:� is computed between
multivariate distributions with parameters μ 2 RD and S 2 RD×D. Since we
calculate the relevance pern-th datapoint, we can compute an average of the
predictive relevance for a p-th feature along all the data observations,

KLp ¼
1

N

X

N

n¼1

rðn; p;ΔÞ; ð6Þ

and use this estimate to rank the P features of the input data observationsX
by their average relevance.

Dataset for BRAF biomarker identification in melanoma
For all our experiments we selected three types of drugs that are highly
correlated to the BRAF features: drugPLX-4720, SB590885 andDabrafenib.
There are two types of experiments: the first type mainly focuses on mod-
elling the dose–response of melanoma cancer and identifies the relevance
ranking of the features; we compare the ranking with the ANOVAmethod
applied to the same data in the GDSC database for computing the degree of
association between the genomic features (coding mutations and recurrent
copy number alterations) of cancer cell lines and drug sensitivity measured
by IC50 values. The second type of experiment aims to provide insights
about the fundamental question ofwhat is the threshold amount of cell lines
or dose–response curves necessary for obtaining a robust predictive model
for a particular type of cancer; we apply our model to BRCA, COREAD,
LUAD, SKCM and SCLC cancers with dose–responses from drugs PLX-
4720, SB590885 and Dabrafenib.

Dataset forKL-relevanceofBRAFdrugs tocomparewithANOVA
For the first experiment we use cell lines of melanoma cancer from both
GDSC1 and GDSC2 datasets. The details are the following: GDSC1 has
N ¼ 40 dose–responses for drug PLX-4720, N ¼ 35 for drug SB590885,
and N ¼ 39 for drug Dabrafenib; the number of input features is P ¼ 24.
These features are the same24 input featuresused in theANOVAanalysis in
the GDSC database, where only features found in at least three cell lines of a
specific cancer (SKCM) were included in the analysis. GDSC2 has N ¼ 50
dose–responses for drug PLX-4720, N ¼ 45 for drug SB590885, and N ¼
47 for drugDabrafenib; thenumber of input features is alsoP ¼ 24 (also the
same used in the ANOVA analysis). The number of drug concentrations is
seven (D ¼ 7) in theGDSC2 dataset for all drugs, but in theGDSC1 dataset
is nine (D ¼ 9) for drugs PLX-4720 and SB590885, and five ðD ¼ 5Þ for the
drug Dabrafenib.

Dataset for training, across cancer types and increasing size of
training sets
For the second experiment we use cell lines of BRCA, COREAD, LUAD,
SKCM and SCLC cancers from the GDSC2 dataset; their dose–responses
are produced by the drugs PLX-4720, SB590885 and Dabrafenib. Thus, our
dataset consists of BRCA (N ¼ 110), COREAD (N ¼ 108), LUAD
(N ¼ 139), SKCM (N ¼ 142) and SCLC (N ¼ 133); we split each cancer
dataset into 70% training and 30% testing, guaranteeing the number of
drugs appearing in training and testing is proportional to the original
number in the whole dataset. This dataset contains a total of 780 unique
molecular features after filtering out those that have the same values across
all dose–responses of specific drug-cell line pairs, which include 279

mutations, 418 CNAs, 71 related to DNA methylation and 12 chemical
features of drug compounds. These P ¼ 780 input features are used to
predict seven drug concentrations (D ¼ 7) that form the dose–response
curve. In this second experiment, we examine how the MOGP model’s
prediction performance varies with different numbers of DRCs for training
and report the performance over the test set. The gradual increment of the
DRCs for training the model is as follows: f8; 16; 27; 42; 58; 74g for BRCA,
f7; 15; 26; 42; 57; 72g for COREAD, f10; 19; 34; 53; 72; 91g for LUAD,
f10; 20; 35; 54; 74; 93g for SKCM and f9; 18; 32; 51; 69; 87g for SCLC.

Training of MOGP
In order to train the MOGP model we have to maximise the log marginal
likelihood of Eq. (2) w.r.t the kernel’s length-scale hyper-parameter, the
coefficients ad;i and the noise parameter σ2. For the covariance kernel, when
having a variety of input features as it is our case of genomicswhere different
clusters of data might be identified; for instance as mutation (mu),
methylation (met), copy number (cn) and/or drugs’ compounds (dc); the
application of a covariance kernel parameterised with a unique length-scale
results restrictive to the model. Restrictive in the following sense: let us
suppose that the features among the mutation group smoothly covariate
then a large length-scale could appropriately account for their covariance
behaviours, whilst the features among methylation aggressively covariate
thena short length-scalemight adequately explain such abehaviour.Thus, if
we chose to fit the model with a unique hyper-parameter length-scale this
might not be able to sufficiently account for the contrastive behaviours
amongmuandmet features.Hence, a particular kernel per groupof features
allows the model to have more flexibility by introducing a length-scale
hyper-parameter to account for each type of feature. Therefore, instead of
using a unique length-scale along all the features we build our kernel
through a product of EQ kernels of the form55,

kðx; x0Þ ¼ kmuðx; x0Þ � kmetðx; x0Þ � kcnðx; x0Þ � kdcðx; x0Þ;

kðx; x0Þ ¼ exp � jxmu�x0muj2
2l2mu

� �

� exp � jxmet�x0met j2
2l2met

� �

� exp � jxcn�x0cnj2
2l2cn

� �

� exp � jxdc�x0
dc
j2

2l2dc

� �

;

ð7Þ

where each kernel has a sub-index label to indicate its particular operation
over the features related to the label, for instance kmuðx; x0Þ only operates
over the mutation features, kmetðx; x0Þ only operates over the methylation
features and so on. The application of a particular kernel per type of feature
allows the model to have more flexibility by introducing a length-scale
hyper-parameter to account for each type of feature, instead of using a
unique length-scale along all the features.

For the first experiment we built a model per each drug using cross
validation with Kfolds = 20, the rank R was cross-validated from f1; :::;Dg,
the coefficients ad;i were sampled from a normal distributionNð0; 1Þ, each
length-scale hyper-parameter was sampled from a uniform distribution
with range ð0:01; 3

ffiffiffiffiffi

24
p

Þ; we used a total of 840 seeds for sampling the
coefficients ad;i and length-scales. It is important to highlight that for the
kernel product in Eq. (7), we used only two kernels, kmuðx; x0Þ for mutation
features (11 features) and kcnðx; x0Þ for copy number features (13 features);
this is due to the benchmark ANOVAmethod only having been applied to
those types of features.

For the second experiment we built a model for each cancer type, we
split the data in 70% training and 30% testing dose curves, ensuring that the
amount of drugs present in the complete dataset is proportional to the
amount in the training and testing sets. From the training data we per-
formed a process of increasing the number of dose–response curves used for
fitting the MOGP model. The increment of the dose–response curves for
fitting the MOGP is as follows: f8; 16; 27; 42; 58; 74g for Breast,
f7; 15; 26; 42; 57; 72g for COREAD, f10; 19; 34; 53; 72; 91g for LUAD,
f10; 20; 35; 54; 74; 93g for melanoma and f9; 18; 32; 51; 69; 87g for SCLC;
the dose–response curves are randomly selected from the complete training
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set, we run six different random seeds to sample each value of increment. To
find the best model for each increment (at each random seed) we cross
validatedwithKfolds= 5, the rankRwas cross-validated from f1; :::;Dg, the
coefficients ad;i were sampled from a normal distribution Nð0; 1:5Þ; each
length-scale hyper-parameter was sampled from a uniform distribution
with range ð0:05; 1:5

ffiffiffiffiffiffiffi

780
p

Þ; we used a total of 108 seeds for sampling the
coefficients ad;i and length-scales. Unlike the type-1 experiment, for this
type-2 experiment we have all the categories of features, mutation ðmuÞ,
methylation ðmetÞ, copy number ðcnÞ and drugs’ compounds ðdcÞ; thus we
apply the kernel productpresented inEq. (7),where kmuðx; x0Þ operatesover
279 features, kmetðx; x0Þ over 418 features, kcnðx; x0Þ over 71 features, and
kdcðx; x0Þ over 12 features (refer to the “Range selection for the uniform
distributions to initialise the length-scale hyper-parameters” section for
detailed information on the initialisation of the length-scale hyper-
parameters”).

For both types of experiments we optimised the kernel hyper-para-
meters, the coefficients ad;i and the likelihood noise parameter σ2 bymeans
of the LBFGS optimiser56. All the training of the MOGP models was per-
formed using the python library: GPy (version 1.0.7) and Numpy (ver-
sion 1.21.2).

Range selection for the uniform distributions to initialise the
length-scale hyper-parameters
The choice of ranges for the uniformdistributions of the length-scale hyper-
parameter is based on the fact that we expect the length-scale to be positive
and up to a certain value that covers possible covariances between the input
space features (genomics and drug compounds features in our case). For
instance, the choice of ð0:05; 1:5

ffiffiffiffiffiffiffi

780
p

Þ; ranges from a small length scale
0:05 up to 1:5

ffiffiffiffiffiffiffi

780
p

; where the upper limit is selected as a rule of thumb
when dealing with high dimensionalities, in this case the dimensionality is
P ¼ 780. This rule of thumb provides a sensible way to initialise a length-
scale thatfits the spreadof the input features across all dimensions.With this
approach we assume that a length-scale proportional to

ffiffiffi

P
p

¼
ffiffiffiffiffiffiffi

780
p

is
feasible for capturing covariances in a high dimensional space. On the other
hand, the choice of number of seeds is just the number of possible models
that we run in a High Performance Computing (HPC) server to cross-
validate and select the best model. The number of seeds used to cross-
validate was a trade-off between the time complexity of themodel andHPC
resources available. The more HPC resources one can access the more
alternative initialisation models one can cross-validate. Nonetheless, we
found that among the different models cross-validated we were able to find
various of them with similar and salient performances.

Prediction on GDSC1 and GDSC2 and vice versa
In the interest of analysing the capabilities of our model, we explore two
scenarios of the type-1 dataset: for the first scenario, we assume the GDSC1
dataset as the training source and the GDSC2 as the testing one; for the
second scenario we assume the contrary, GDSC2 is assigned as the training
source and GDSC1 as the testing. It is worth mentioning that the drug
concentration doses are not the same for GDSC1 andGDSC2, thus we have
to measure the prediction just at the region where both curves overlap.
Supplementary Figure 16 shows an example of the different concentrations
in the drug response curves for GDSC1 and GDSC2 datasets. The MOGP
models would predict the cell viability per drug concentration, i.e., for
GDSC1 the MOGP would predict D ¼ 9 outputs, and for GDSC2, D ¼ 7
outputs. We interpolate the outputs to render the full curves in order to
extract the summary metrics AUC, IC50 and Emax.

Estimating AUC, IC50 and E-max for observed and predicted
dose–responses
To compute the Area Under the Curve (AUC), the drug concentration
to achieve 50% cell viability (IC50), and the fraction of viable cells at the
highest drug concentration (Emax), is necessary to evaluate a function
f ðcÞ that describes the dose–response curve amongst the range of
minimum drug concentration and maximum drug concentration, i.e.,

c ¼ ½MinDC;MaxDC�. One can compute the AUC through the trape-
zoidal rule,

AUC ¼
Z b

a

f ðcÞdc �
X

I

i¼1

f ðci�1Þ þ f ðciÞ
2

4 ci; ð8Þ

where each ci represent the i-th value of a grid that partitions the range ½a; b�
into I þ 1 points with partition size,4ci ¼ ci � ci�1; and the range’s values
are a ¼ MinDC and b ¼ MaxDC. To compute the AUC presented in the
equation aboveweused the function ‘auc’ from the pythonpackage:metrics,
implemented in the library scikit-learn (version 1.0.2). On the other hand,
we can compute the IC50 by just finding the drug concentration value cIC50
for which f ðcIC50Þ ¼ 0:5, and the Emax is just the value of the function
f ðcMaxDCÞ evaluated at cMaxDC ¼ MaxDC:

Measuring observed dose–response curves
For eachof the cell lines of our datasetswe applied the sigmoid functionwith
four parameters (Sig4) as the evaluating function f ðcÞ that describes our
observed dose–response curves. This Sig4 function is our reference
dose–response curve from which we extract the true labels AUC, IC50 and
Emax for each cell line. The Sig4 can be expressed as:

f ðcÞ ¼ 1:0

Lþ expð�τ � ðc� c0ÞÞ
þ d; ð9Þ

whereL; τ; c0 and d are the four parameters that describe the curve, and c is
the drug concentration for which we expect to evaluate the
range, c ¼ ½MinDC;MaxDC�57.

Measuring predicted dose–response curves
On the other hand, the MOGP model predicts the cell viability at D con-
centrations as per theGDSCdataset, i.e., theMOGPgeneratesD predictions
that can be expressed as f̂ ðc1Þ; :::; f̂ ðcDÞ; where cd represents the d-th drug
concentration. In order to compute the summary metrics AUC, IC50 and
Emax as previously described, one needs to interpolate such D predictions
and obtain a continuous f̂ ðcÞ function that describes our predicted
dose–response curves.We applied the piecewise cubic hermite interpolating
polynomial (PCHIP)method to obtain f̂ ðcÞ. It is a shape preservingmethod
that reduces oscillating behaviours in the interpolation. We used the func-
tion ‘pchip_interpolate’ from the pythonpackage: interpolate, implemented
in the library scipy (version 1.0.2). From such an interpolated function f̂ ðcÞ
we can then obtain the predicted AUC, IC50 and Emaxmetrics in the same
way as for the observed dose–response curves.

It is worth mentioning that for our experiments we split the IC50
metric between non-responsive and responsive behaviours as follows:
IC50>1:0 isnon-responsive and IC50 ≤ 1:0 is responsive.Also, for thedrug
response curves, we used a normalised range of drug concentrations
between 0:1428 or 0:1111 as theminimumdrug concentration forD ¼ 7 or
D ¼ 9 respectively and 1:0 as themaximumdrug concentration. Any value
higher than the maximum is considered non-responsive and we label it as
IC50 ¼ 1:5 by default. When studying themelanoma cancer, a cancer very
responsive to the drugs PLX-4720, SB590885 and Dabrafenib, we also split
the AUC and Emax metrics between non-responsive and responsive
behaviours as follows: AUC ≤ 0:55 is responsive and AUC > 0:55 is non-
responsive, and Emax ≤ 0:5 is responsive and Emax >0:5 is non-
responsive.

Benchmark methods
SRMF. SRMFwas used to benchmark ourmethod. Thismethod does not
use train and test datasets, but instead takes as input a response matrix
containing a mix of response values and NaN values. It then utilises the
known values to predict a whole new drug response matrix. To work
around this difference, for each pair of test and train datasets, we overrode
a copy of the test matrix with NaN values and concatenated it with the
train dataset. This was used as the input drug response matrix. This
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ensured that only values from the test datasets were seen, and thus used,
by the model when making predictions, while still including the test data
observations in the prediction. We then compared the test data drug
response values to their corresponding predicted values from the SRMF
output. The original SRMF model was designed for IC50, however, we
also ran it for AUC and Emax values (we did not take the log of these
beforehand). Pearson correlation was used to create the similarity matrix
inputs for both cell lines and gene properties. As we used genetic features
for our model rather than gene expression, to be consistent, we also used
genetic featureswhen calculating cell line similaritywhen running SRMF.
The hyperparameter Kwas left at its default as it was originally chosen for
GDSE data.

Lasso regression and elastic net. Lasso and Elastic Net have been
implemented as the baseline methods. Lasso regression is the linear
model with L1-normwhile Elastic Net takes together the L1 and L2-norm
as the penalty in loss function. We built the linear models under two
different settings:
1. The model is trained and predicted separately on different drugs with

one type of the genomics features;
2. The model is trained and predicted with multi-omics features and

together with drug chemical features.

In setting 1, we aimed to investigate the contribution of different omics
data in predicting the drug response31. In setting 2, we built the linearmodel
in a multi-task learning fashion8, where multiple drugs are trained and
predicted in one model by taking the drug chemical features. We provided
the performance metrics for both the single-task-single-omics and multi-
task-multi-omics models.

DeepCDR. DeepCDR is a deep learning (DL) method integrating gene
expression, mutation, and DNA methylation profiles. In our investiga-
tion, we opted for mutations, copy number alterations, and DNA
methylation profiles as our cell line input features. To ensure a consistent
comparison, we replaced gene expression with copy number alteration.
For the drug encoders, we applied the uniform-graph convolutional
neural networks as is designed in the original paper. Throughout the
training phase, we implemented a 3-fold cross-validation strategy with
early stopping. The performance evaluation was conducted on a test set
that was distinct from the training and validation sets yet identical to the
test sets used in benchmarking with other methods.

GraphDRP. GraphDRP is a DL method taking mutational profiles and
drug chemical graph as input to predict the drug response. In the original
implementation, three GNNs are compared as the drug encoder: GCN,
GAT and GIN, while GIN was reported to have the best performance.
Consequently, GIN was selected for encoding drug features in our ana-
lysis. The same cross-validation and early stop as DeepCDR is applied
during the training phase. Performance evaluation was systematically
conducted on the same test sets, ensuring comparability of results.

NeRD. NeRD is a DL model that uses miRNA and copy number as cell
line features, while both chemical graph and drug fingerprints are used
for drugs. In our evaluation,mutation profiles substitutedmiRNAdata to
align with our benchmark. The same cross-validation and early stop as
DeepCDR is applied during the training phase. The performance is
evaluated on the testing set.

Data availability
The drug response data is downloaded from the Genomics of Drug
Sensitivity in Cancer (http://www.cancerrxgene.org). Drug chemistry
data is downloaded from the pubchem website (https://pubchem.ncbi.
nlm.nih.gov/). 24 melanoma-specific CFEs (genetic variations and
CNAs) detected in the associated cell lines were obtained from https://
ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/release-8.4/GDSC

tools_mobems.zip. The ANOVA statistical analysis to determine asso-
ciations between cancer features and drug sensitivity, reported in the
GDSCdatabase is downloaded from (https://cog.sanger.ac.uk/cancerrxg
ene/GDSC_release8.4/ANOVA_results_GDSC1_24Jul22.xlsx and https:
//cog.sanger.ac.uk/cancerrxgene/GDSC_release8.4/ANOVA_results_
GDSC2_24Jul22.xlsx). Genomic annotation data of a panel of 1001
human cancer cell lines were obtained from the GDSC1000 resource site
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources///
Data/BEMs/CellLines/CellLines_Mo_BEMs.zip. The paper and the
Supplementary Information contain all necessary data to assess the
conclusions. Supplementary data are provided with this paper.

Code availability
All source code topreprocess the data,fit themodels and generate the results
shown in this paper is publicly available at https://github.com/
juanjogg1987/MOGPs_for_Dose_Response_Predictions.
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