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Data‑driven blood glucose level 
prediction in type 1 diabetes: 
a comprehensive comparative 
analysis
Hoda Nemat 1*, Heydar Khadem 1, Jackie Elliott 2,3 & Mohammed Benaissa 1

Accurate prediction of blood glucose level (BGL) has proven to be an effective way to help in type 1 
diabetes management. The choice of input, along with the fundamental choice of model structure, 
is an existing challenge in BGL prediction. Investigating the performance of different data‑driven 
time series forecasting approaches with different inputs for BGL prediction is beneficial in advancing 
BGL prediction performance. Limited work has been made in this regard, which has resulted in 
different conclusions. This paper performs a comprehensive investigation of different data‑driven 
time series forecasting approaches using different inputs. To do so, BGL prediction is comparatively 
investigated from two perspectives; the model’s approach and the model’s input. First, we compare 
the performance of BGL prediction using different data‑driven time series forecasting approaches, 
including classical time series forecasting, traditional machine learning, and deep neural networks. 
Secondly, for each prediction approach, univariate input, using BGL data only, is compared to a 
multivariate input, using data on carbohydrate intake, injected bolus insulin, and physical activity 
in addition to BGL data. The investigation is performed on two publicly available Ohio datasets. 
Regression‑based and clinical‑based metrics along with statistical analyses are performed for 
evaluation and comparison purposes. The outcomes show that the traditional machine learning model 
is the fastest model to train and has the best BGL prediction performance especially when using 
multivariate input. Also, results show that simply adding extra variables does not necessarily improve 
BGL prediction performance significantly, and data fusion approaches may be required to effectively 
leverage other variables’ information.

It is essential to maintain a normal blood glucose level (BGL) when managing type 1 diabetes mellitus (T1DM)1. 
To aid this, one application of artificial intelligence is to predict the BGL of individuals with T1DM utilising the 
current and past  information2. An early warning system for insufficient glycaemic control can be provided by 
BGL  prediction3. However, this prediction is challenging because of some of the physiological factors such as the 
delay in food and insulin absorption, considerable variation between and within patients, and the complexity 
of interference factors such as physical  activity4,5. Hence, despite all the research performed in the field of BGL 
prediction, accurate predictions remain a  challenge6.

Based on the model structure and knowledge requirements, there are three main types of BGL prediction 
algorithms: physiological models (extensive knowledge), hybrid models (intermediate knowledge), and data-
driven models (black-box approaches)2,7,8. Data-driven models have attracted considerable attention and are 
being increasingly explored. These models can be classified into classical time series forecasting (CTF), traditional 
machine learning (TML), and deep neural network (DNN) approaches. Comparing the efficacy of various data-
driven prediction models using different approaches would be beneficial in the advancement of BGL prediction 
performance. However, using different datasets, different inputs, and different model settings has made this 
comparison difficult and limited studies have been published in this regard. Xie and  Wang6 benchmarked a 
classical autoregression with an exogenous input model against ten different machine learning models for BGL 
prediction in T1DM patients. Zhang et al.9, also, compared four different data-driven models to forecast BGL 
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in T1DM. They found that while their sequence-to-sequence Long short-term memory (LSTM) model was the 
most accurate at BGL prediction 30 minutes, in advance, their multiple linear regression model performed best 
to predict BGL 60 minutes, in advance. Moreover, Rodriguez et al.10 compared four different prediction models 
(two TNL and two DNN). According to the R2 and RMSE metrics, they introduced the Bayesian neural network 
as the best model for BGL prediction.

Another essential factor for categorising BGL prediction algorithms is the  input7,11. Common inputs of BGL 
prediction models are the current and past information on BGL, carbohydrate (Carb), bolus insulin (Bolus), 
and physical  activity12. There is some evidence that BGL prediction from CGM data alone facilitates practical 
application in the real world therefore suggesting that there is no need for the extra effort and cost to acquire 
and process data from several sensors and modalities. Hence, several  studies13–20 tried to predict BGL using 
CGM data, only. Conversely, there is evidence that other variables can also contribute to the performance of 
BGL prediction. Hence, other studies used exogenous data, such as Carb, Bolus, and physical activity, along with 
BGL  data21–25. Investigating to what extent other relevant variables can contribute to the performance of BGL 
prediction in different time series forecasting approaches would be another helpful factor in the advancement 
of BGL prediction. Limited attempts have been made to compare different inputs, which has resulted in differ-
ent conclusions. Zecchin et al.26 showed that adding Carb and Bolus data to CGM data can Predict BGL more 
accurately using a neural network in a prediction horizon between 30 and 120 minutes. Also, Nordin et al.27, 
using an LSTM model, showed superior performance of the multivariate model compared to the univariate 
model. While Hameed et al.28 concluded that whilst adding more information about Carb and Bolus adds more 
perturbations, it does not always improve the accuracy of prediction.

Previous studies have not provided an in-depth and comprehensive comparison of different prediction 
approaches or inputs. In addition, the average prediction performance across the data providers was considered 
for the purpose of comparison. However, it would not be meaningful to compare the averages of different data 
sets if they are not  comparable29. Since there is a considerable variation between patients regarding  BGL5, for 
a more valid comparison, statistical analyses need also to be considered. Hence, due to the lack of statistical 
analyses in the previous studies, their conclusions may not be robust. This work comprehensively investigates the 
performance of different personalised data-driven time series forecasting approaches for BGL prediction using 
univariate input (BGL data only) and multivariate input (BGL data along with Carb, Bolus, and physical activity 
data) separately. Also, a comparison between univariate and multivariate inputs is performed for each prediction 
approach to investigate to what extent other relevant variables than BGL can contribute to the performance of 
BGL prediction in prediction horizons of 30 and 60 minutes using different time series forecasting approaches. 
In order to strengthen evidence in this area, regression-based and clinical-based metrics are used to evaluate 
the performance of different cases. Rigorous statistical analyses are then applied to compare and contrast dif-
ferent models’ performance and the effect of additional inputs. The analyses are performed using two approved, 
publicly available Ohio  datasets30,31.

Material and methods
This section gives a brief description of the datasets used, data preprocessing steps, and the developed predic-
tion models from different time series forecasting approaches. Subsequently, applied evaluation and statistical 
analyses are presented.

Dataset
According to the review performed by Felizardo et al.32, the Ohio T1DM  dataset30,31 with replication capability 
is the most frequently used clinical dataset in the literature that is publicly accessible. Hence, to do a reliable 
comparison, in this study, we used the Ohio T1DM dataset. The Ohio T1DM dataset comprises two sets of data 
from 12 people with T1DM. The first dataset related to six T1DM patients was released in 2018 for the first BGL 
prediction  challenge33 (called Ohio_2018). The second dataset related to an additional six patients was released 
in 2020 for the second BGL prediction  challenge34 (called Ohio_2020). Data contributors comprised five females 
and seven males and were aged 20 to 80 years at data collection time. Table 1 provides the details related to the 
gender and age range of participants in both cohorts.

An insulin pump, a CGM sensor, and a fitness band were used by the patients. Along with physiological 
sensors, each individual reported Carb estimations, Bolus, and life events. Participants in both cohorts used a 

Table 1.  Information about the gender and age of contributors to the Ohio_2018 and Ohio_2020 datasets.  
PID patient identity.

Ohio_2018 Ohio_2020

PID Gender Age PID Gender Age

559 Female 40–60 540 Male 20–40

563 Male 40–60 544 Male 40–60

570 Male 40–60 552 Male 20–40

575 Female 40–60 567 Female 20–40

588 Female 40–60 584 Male 40–60

591 Female 40–60 596 Male 60–80
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Medtronic Enlite CGM sensor for measuring their BGL. In the Ohio_2018 dataset, patients wore Basis Peak 
fitness bands that collected heart rate (HR) data, and patients in the Ohio_2020 cohort wore Empatica Embrace 
fitness bands collecting magnitude of acceleration (MA) data. Data were collected over an eight-week period by 
allocating the last 10 days for testing sets and the rest for training sets. BGL data from CGM sensors and HR data 
from the Basis Peak band were collected with a 5-minute aggregation. Data of MA from the Empatica Embrace 
band was collected every minute. Further information about the data collection can be found  in30,31. In this study, 
automatically collected BGL and activity data and self-reported Carb and Bolus data are used.

Preprocessing
There were some mandatory preprocessing steps to overcome many imperfections and missing data when analys-
ing real-world data. Additionally, some data preprocessing was required depending on the forecasting approach 
used (Fig. 1).

Imputation and alignment
The initial preprocessing step was to address the issue of missing BGL and physical activity data. These missing 
values were interpolated in training and extrapolated in testing sets linearly. No reported timestamps for Carb 
and Bolus data were assigned to zero. The following preprocessing step was to align the BGL data with other 
data. Data of MA, with a resolution of one minute, was downsampled to a resolution of five minutes by taking 
the nearest MA data point with a BGL data point and removing the remainder. The HR data, which had the 
same resolution as BGL data, only required to be aligned. Additionally, the unavailable data timestamps at the 
beginning/ending of each set, which occurred due to different times in the wearing sensors, were discarded.

Stationarity
When applying the CTF approach, two common statistical tests were applied to check the primary assumption 
of  stationarity35; the Augmented Dickey-Fuller (ADF)  test36 and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 
 test37. Time series in which both tests confirmed the stationarity were defined as stationary. Since the ADF test 
indicated stationarity for all variables and all patients, integrated differencing was applied to the time series in 
which the KPSS indicated non-stationarity.

Reframing
When applying TML or DNN approaches, the multi-ahead time series forecasting problem should be reframed 
as a supervised learning task. To accomplish this, historical observations were used as inputs, and future obser-
vations were used as outputs.

Time series forecasting approaches
To comprehensively investigate and compare the performance of BGL prediction, different time series forecasting 
categories, including CTF, TML, and DNN, were examined. Also, following the BGL prediction challenges in 
which the participants were asked to predict BGL 30 and 60 min in advance and in line with many papers in the 
 literature6,18,25, 30 and 60 min prediction horizons were considered. There is a pool of models for BGL prediction 
in each category. For the sake of feasibility and in order to minimise the complexity of comparison, for each cat-
egory, a common successful model found in the literature was developed and fine-tuned as a representative. For 
input comparison purposes, each model was first trained as a univariate prediction model; then, its counterpart 
was developed as a multivariate prediction model. The prediction models are briefly described in the following.

Classical time series forecasting (CTF)
CTF is a common approach for the BGL prediction  task6,38. One of the most commonly used models in this cat-
egory is the autoregressive integrated moving average (ARIMA)39. ARIMA is a combination of linear processes of 
autoregression (AR) and moving average (MA) models, as well as integrated differencing. It models the future as 
a linear combination of lags and lagged residual errors in a differenced time series in the case of non-stationarity. 
To develop an ARIMA model, the parameters of the model, including p (AR order), d (differencing order), and 
q (MA order), should be determined. The p and q parameters were optimised for each patient automatically by 
examining each parameter from zero to 36. The d parameter was also determined by considering the stationarity 

Figure 1.  A schematic diagram demonstrating the preprocessing steps.
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tests. An autoregressive integrated moving average with exogenous variables (ARIMAX) was used for the mul-
tivariate prediction, incorporating exogenous variables into the univariate ARIMA model. Table 2 shows the 
optimised parameters for each patient training the ARIMA and ARIMAX models.

Traditional machine learning (TML)
A TML approach has also received significant attention for predicting BGL. Support vector machines (SVMs) 
have been shown to be the most accurate in the BGL prediction task among different classes of machine learn-
ing  algorithms5,40. Also, among different types of SVMs, support vector regression (SVR) is the most commonly 
employed technique for predicting  BGL5. In this study, in line with the successfully developed SVM model for 
BGL prediction in the  literature41, an SVR model with a radial basis kernel was developed. Moreover, vectorised 
multivariate data were utilised as the input for developing multivariate counterparts to have a multivariate predic-
tion using SVM. The hyperparameters of the SVR model, including gamma, C, and epsilon, were chosen using a 
grid search during a tuning process for each patient and each input. Search spaces of {0.1,1, 10, 100}, {0.001,0.01, 
0.1, 1}, and {0.01, 0.1, 1, 10} were explored to optimise gamma, C, and epsilon parameters, respectively. The 
chosen parameters are summarised in Table 3.

Deep neural network (DNN)
As a class of recurrent neural networks, LSTM networks are effective at predicting BGL based on sequential 
 data42–45. In this study, the sequence-to-sequence forecasting task was carried out using an LSTM model recently 
developed by our team, which has been optimised in the Ohio  datasets13,21. The vanilla LSTM network consisted 
of an LSTM layer, a dense layer, and an output layer. The initialiser of He uniform, the activation function of 
ReLU, the optimiser of Adam, and the loss function of mean square error were chosen. Also, an epoch size of 
200 and a batch size of 32 were selected. An initial learning rate of 0.01 was reduced by 0.1 following the usage 
of a ReduceLROnPlateau callback with patience of 20 after stopping validation loss improvement.

Evaluation criteria
In this work, two regression-based and clinically-based evaluation criteria were examined to comprehensively 
investigate BGL prediction performance based on different prediction approaches and inputs. The following 
subsections provide a brief description of these criteria.

Table 2.  The optimised parameters for the ARIMA and ARIMAX models. PID patient identity.

Ohio_2018 Ohio_2020

PID p d q PID p d q

559 6 0 2 540 4 1 2

563 3 0 2 544 5 1 3

570 3 0 2 552 3 1 1

575 4 1 3 567 1 1 2

588 1 1 1 584 2 0 3

591 2 0 4 596 3 1 1

Table 3.  The optimised parameters for the SVR model.  PID patient identity, PH prediction horizon.

PID

Univariate Multivariate

3-14 PH:30 min PH:60 min PH:30 min PH:60 min

3-14 γ c ǫ γ c ǫ γ c ǫ γ c ǫ

Ohio_2018

559 100 10 1 100 10 1 100 10 0.1 100 10 0.1

563 100 10 0.1 100 10 0.1 100 0.01 0.1 100 10 0.1

570 100 1 1 10 1 1 100 1 0.1 100 10 0.1

575 100 0.01 1 100 10 1 100 0.01 0.1 100 10 0.1

588 100 10 0.1 100 10 1 100 1 0.1 100 10 0.1

591 100 10 1 10 0.01 1 100 10 0.1 100 10 0.1

Ohio_2020

540 100 10 1 100 10 1 100 10 0.1 100 10 0.1

544 100 10 1 100 10 1 100 1 0.01 100 10 0.1

552 100 10 1 100 10 1 100 10 0.1 100 10 0.1

567 100 10 1 100 10 1 100 10 0.1 100 10 1

584 100 10 1 100 10 1 100 10 0.1 100 10 0.1

596 100 10 1 100 1 0.1 100 10 0.1 100 10 1
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Regression‑based criteria
According to Eqs. (1) and (2), the overall performance of BGL prediction models was evaluated based on root 
mean square error (RMSE) and mean absolute error (MAE), as two commonly used regression accuracy metrics 
in BG-related  works46–49.

In both equations, N represents the evaluation set size, yi represents the reference, and ŷi represents the prediction.

Clinical‑based criteria
The clinical performance of each model was evaluated using the Matthews correlation coefficient (MCC) and 
surveillance error (SE), which have recently been used for clinical evaluation of BGL  prediction18,43,44. The MCC 
criterion was used to measure whether the models could accurately distinguish adverse glycaemic events from 
normoglycaemic events. Using SE metric, an average of the surveillance error  grid50 interpolated bilinearly, each 
patient was assigned a unique score.

Statistical analyses
The BGL prediction performance measured by evaluation metrics with various prediction approaches or inputs 
was also statistically analysed over data contributors for each dataset. In accordance with the conditions of each 
comparison, appropriate statistical analyses were conducted.

To compare different prediction models, firstly, the Friedman  test51 was conducted in order to find out 
whether at least two approaches differ significantly (with a significance level of five percent). If this was the case, 
the post-hoc Nemenyi  test52 was then performed comparing different approaches’ performance in a pair-wise 
fashion. Also, since multiple comparisons were made, the Holm  procedure53 was applied to correct the signifi-
cance level. A critical difference (CD)  diagram29 was drawn to illustrate the results of each post-hoc test. These 
analyses were performed for each univariate and multivariate input separately.

To compare univariate and multivariate inputs for each prediction approach, the non-parametric Wilcoxon 
signed-ranks  test54, which is an appropriate test for comparing two approaches without the assumption of nor-
mality, was  applied29. This test, with a significance level of five percent was conducted to check the consistency 
of each evaluation metric calculated for univariate and multivariate inputs over the data contributors of each 
dataset. The comparison of input was performed for each prediction approach separately.

Results and discussion
In this section, firstly the evaluation results for both Ohio_2018 and Ohio_2020 datasets and 30-minute and 
60-minute prediction horizons are presented. Then, depending on which factor is being compared, the results 
of relative statistical analyses are presented and discussed in two parts; comparing models’ approaches and 
models’ inputs.

Evaluation results
Tables 4 and 5 provide the evaluation results for BGL prediction models related to different approaches for both 
univariate and multivariate inputs, 30 and 60 min in advance in Ohio_2018 dataset, respectively. Also, Tables 6 
and 7 provide the evaluation results in the Ohio_2020 dataset, for prediction horizons of 30 and 60 min, respec-
tively. It is worth noting that for the DNN approach, due to the random initialization, the average and standard 
deviation of evaluation results over 10 runs are reported. Using evaluation results, to compare different models 
and inputs, statistical analyses were performed. The results are discussed in the following sections.

Moreover, to provide visual clinical insight, colour-coded surveillance error grids are illustrated in Figs. 2, 3, 
4, 5, 6 and 7, which are related to different models and inputs for BGL prediction 30 in advance for patient 570.

Comparing models’ approaches
Different data-driven time series forecasting approaches are compared using univariate and multivariate inputs, 
separately. Firstly, the results of statistical analyses are presented and discussed. Secondly, computational costs 
for different models are compared. Then, according to all presented results, a conclusion is presented.

Statistical result
Univariate input

Table 8 presents p-values of the Friedman test calculated based on evaluation criteria using different BGL 
prediction approaches with a univariate input. The analysis was performed for both prediction horizons of 30 
and 60 minutes, and for both Ohio_2018 and Ohio_2020 datasets, separately. With a significance level of five 
percent, p-values in bold font are related to the cases with probably at least one significant difference between 
the performance of models.

Reviewing Tables 4, 5, 6, 7, and 8, it can be concluded that although there are differences between average 
evaluation metrics related to the performance of different prediction models over data providers of each cohort, 

(1)RMSE =

√

∑N
i=1

(yi − ŷi)2

N

(2)MAE =

∑N
i=1

|yi − ŷi|

N
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these differences are mainly statistically insignificant. Table 8 shows that just three metrics of RMSE, MAE, 
and SE calculated for the 60-minute prediction horizon in the Ohio_2018 cohort may be significantly different 
between at least two prediction models. In those cases, the post-hoc Nemenyi test was performed for pair-wise 
comparisons between prediction models. Results of the Nemenyi tests are then visualised using CD diagrams, 
as shown in Figs. 8, 9, and 10, according to metrics RMSE, MAE, and SE, respectively. In each CD diagram, at a 
significance level of five percent, prediction models that differ insignificantly are linked by a horizontal line. It 
can be seen that while the TML model outperformed the CTF model significantly based on their average ranks 
for the examined metrics, the other pair-wise comparisons were not statistically meaningful.

Table 4.  Evaluation results of different prediction approaches and inputs in Ohio_2018 dataset for prediction 
horizons of 30 min. PID patient identity, PH prediction horizon, RMSE root mean square error, MAE 
mean absolute error, MCC Matthews correlation coefficient, SE surveillance error, CTF classical time series 
forecasting, TML traditional machine learning, DNN deep neural network.

PID Model Input RMSE MAE MCC SE

559

CTF
Univariate 20.07 13.82 0.78 0.19

Multivariate 20.12 13.86 0.79 0.20

TML
Univariate 20.56 14.00 0.81 0.19

Multivariate 19.35 13.34 0.83 0.18

DNN
Univariate 20.19 ± 0.18 14.16 ± 0.13 0.78 ± 0.01 0.21 ± 0.01

Multivariate 20.70 ± 0.41 14.68 ± 0.31 0.80 ± 0.01 0.20 ± 0.01

563

CTF
Univariate 20.14 13.82 0.75 0.20

Multivariate 20.33 13.98 0.75 0.20

TML
Univariate 18.67 13.28 0.75 0.19

Multivariate 18.52 12.89 0.77 0.18

DNN
Univariate 18.93 ± 0.10 13.12 ± 0.13 0.77 ± 0.01 0.18 ± 0.00

Multivariate 20.45 ± 0.32 14.11 ± 0.24 0.76 ± 0.01 0.19 ± 0.00

570

CTF
Univariate 17.01 12.17 0.86 0.12

Multivariate 17.15 12.32 0.85 0.12

TML
Univariate 17.24 11.71 0.87 0.11

Multivariate 16.09 11.20 0.87 0.10

DNN
Univariate 17.11 ± 0.52 11.97 ± 0.45 0.87 ± 0.01 0.11 ± 0.00

Multivariate 18.10 ± 0.40 12.58 ± 0.24 0.86 ± 0.01 0.12 ± 0.00

575

CTF
Univariate 25.17 15.58 0.76 0.23

Multivariate 25.17 15.58 0.76 0.23

TML
Univariate 24.08 14.93 0.74 0.22

Multivariate 24.08 14.93 0.76 0.22

DNN
Univariate 24.42 ± 0.21 15.72 ± 0.24 0.73 ± 0.01 0.24 ± 0.01

Multivariate 25.79 ± 0.49 15.78 ± 0.39 0.72 ± 0.01 0.23 ± 0.01

588

CTF
Univariate 19.62 14.19 0.74 0.19

Multivariate 19.62 14.20 0.74 0.19

TML
Univariate 21.28 15.34 0.69 0.20

Multivariate 18.03 13.09 0.75 0.17

DNN
Univariate 18.84 ± 0.10 13.54 ± 0.07 0.75 ± 0.01 0.18 ± 0.00

Multivariate 18.84 ± 0.35 13.80 ± 0.34 0.76 ± 0.01 0.18 ± 0.00

591

CTF
Univariate 22.65 16.03 0.66 0.27

Multivariate 22.69 16.06 0.65 0.27

TML
Univariate 21.78 15.61 0.65 0.27

Multivariate 21.49 15.50 0.65 0.26

DNN
Univariate 22.87 ± 0.45 16.59 ± 0.48 0.63 ± 0.01 0.29 ± 0.01

Multivariate 22.79 ± 0.31 16.47 ± 0.27 0.64 ± 0.01 0.28 ± 0.01

Avg

CTF
Univariate 20.78 14.27 0.76 0.20

Multivariate 20.85 14.33 0.76 0.20

TML
Univariate 20.60 14.14 0.75 0.20

Multivariate 19.59 13.49 0.77 0.19

DNN
Univariate 20.39 ± 0.26 14.18 ± 0.25 0.75 ± 0.01 0.20 ± 0.00

Multivariate 21.11 ± 0.38 14.57 ± 0.30 0.76 ± 0.01 0.20 ± 0.00
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Multivariate input
Using different forecasting approaches with multivariate input, Table 9 shows Friedman test p-values for each 
evaluation metric. The test was performed separately for each prediction horizon of 30 and 60 min and in each 
cohort. The p-values marked in bold font are considered significant at a significance level of five percent, showing 
that at least two prediction models may differ in the BGL prediction performance.

Considering the presented results in Table 9 and a significance level of five percent, it can be inferred that 
among different examined cases for comparing prediction approaches regarding evaluation metrics, predic-
tion horizons, and datasets, at least two prediction approaches may perform differently for BGL prediction 60 
minutes in advance in both Ohio_2018 and Ohio_2020 datasets based on all the evaluation metrics. Also, there 

Table 5.  Evaluation results of different prediction approaches and inputs in Ohio_2018 dataset for prediction 
horizons of 60 min.  PID patient identity, PH prediction horizon, RMSE root mean square error, MAE 
mean absolute error, MCC Matthews correlation coefficient, SE surveillance error, CTF classical time series 
forecasting, TML traditional machine learning, DNN deep neural network.

PID Model Input RMSE MAE MCC SE

559

CTF
Univariate 36.03 25.76 0.58 0.36

Multivariate 36.24 26.00 0.58 0.36

TML
Univariate 35.69 25.44 0.63 0.33

Multivariate 31.69 22.51 0.69 0.29

DNN
Univariate 35.83 ± 0.45 26.31 ± 0.27 0.62 ± 0.01 0.35 ± 0.01

Multivariate 35.52 ± 0.80 26.02 ± 0.74 0.61 ± 0.02 0.35 ± 0.01

563

CTF
Univariate 33.01 24.39 0.54 0.34

Multivariate 32.84 24.36 0.53 0.34

TML
Univariate 30.32 22.13 0.54 0.31

Multivariate 30.32 21.72 0.59 0.29

DNN
Univariate 32.25 ± 1.22 23.45 ± 1.33 0.52 ± 0.05 0.32 ± 0.02

Multivariate 33.63 ± 0.67 23.97 ± 0.54 0.54 ± 0.02 0.32 ± 0.01

570

CTF
Univariate 30.20 22.84 0.75 0.22

Multivariate 30.37 23.01 0.74 0.22

TML
Univariate 29.50 21.17 0.79 0.19

Multivariate 27.67 19.98 0.79 0.18

DNN
Univariate 29.02 ± 0.62 20.75 ± 0.62 0.80 ± 0.00 0.19 ± 0.00

Multivariate 30.95 ± 0.46 22.23 ± 0.59 0.80 ± 0.01 0.20 ± 0.00

575

CTF
Univariate 39.96 27.51 0.56 0.41

Multivariate 39.97 27.51 0.56 0.41

TML
Univariate 37.09 25.98 0.51 0.39

Multivariate 36.01 25.24 0.56 0.37

DNN
Univariate 38.09 ± 0.30 27.10 ± 0.18 0.50 ± 0.01 0.41 ± 0.00

Multivariate 40.02 ± 0.69 27.60 ± 0.29 0.51 ± 0.01 0.41 ± 0.00

588

CTF
Univariate 33.98 25.15 0.57 0.33

Multivariate 33.98 25.16 0.57 0.33

TML
Univariate 31.43 22.73 0.56 0.29

Multivariate 30.21 22.28 0.59 0.28

DNN
Univariate 31.62 ± 0.16 23.24 ± 0.15 0.54 ± 0.01 0.31 ± 0.00

Multivariate 31.91 ± 0.42 23.31 ± 0.34 0.58 ± 0.02 0.30 ± 0.00

591

CTF
Univariate 36.94 27.53 0.36 0.46

Multivariate 36.98 27.57 0.35 0.46

TML
Univariate 33.58 25.40 0.45 0.41

Multivariate 33.33 25.42 0.41 0.41

DNN
Univariate 36.71 ± 0.80 28.77 ± 0.78 0.38 ± 0.02 0.46 ± 0.01

Multivariate 35.69 ± 0.79 27.53 ± 0.67 0.44 ± 0.02 0.44 ± 0.01

Avg

CTF
Univariate 35.02 25.53 0.56 0.35

Multivariate 35.06 25.60 0.56 0.36

TML
Univariate 32.93 23.81 0.58 0.32

Multivariate 31.54 22.86 0.61 0.30

DNN
Univariate 33.92 ± 0.59 24.94 ± 0.55 0.56 ± 0.02 0.34 ± 0.01

Multivariate 34.62 ± 0.64 25.11 ± 0.53 0.58 ± 0.01 0.34 ± 0.01
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are significant p-values for comparing different prediction models for the 30-minute prediction horizon in the 
Ohio_2018 dataset based on RMSE, MAE, and SE metrics.

The post-hoc Nemenyi test was conducted for each mentioned case to compare the prediction models in a 
pair-wise manner. The results of post-hoc tests are graphically presented in CD diagrams, as demonstrated in 
Figs. 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21. A horizontal line connects prediction models that differ insig-
nificantly (with a significance level of five percent).

Figures 11 and 12 show that the TML model, while performing similarly to the CTF model, outperformed 
the DNN model significantly for predicting BGL in the Ohio_2018 dataset 30 min in advance based on RMSE 
and MAE metrics, respectively. From Fig. 13, 14, and 21 it can be seen that the TML model statistically signifi-
cantly outperformed both CTF and DNN models in the Ohio_2018 dataset based on SE metric for the 30-min 

Table 6.  Evaluation results of different prediction approaches and inputs in Ohio_2020 dataset for prediction 
horizons of 30 min. PID patient identity, PH prediction horizon, RMSE root mean square error, MAE 
mean absolute error, MCC Matthews correlation coefficient, SE surveillance error, CTF classical time series 
forecasting, TML traditional machine learning, DNN deep neural network.

PID Model Input RMSE MAE MCC SE

540

CTF
Univariate 21.46 16.13 0.73 0.25

Multivariate 22.01 16.24 0.74 0.25

TML
Univariate 29.07 18.34 0.71 0.26

Multivariate 23.11 16.83 0.71 0.26

DNN
Univariate 22.58 ± 0.77 16.82 ± 0.45 0.71 ± 0.01 0.25 ± 0.01

Multivariate 21.99 ± 0.89 16.33 ± 0.33 0.70 ± 0.01 0.26 ± 0.00

544

CTF
Univariate 18.93 13.42 0.77 0.19

Multivariate 18.94 13.42 0.77 0.19

TML
Univariate 18.11 12.98 0.79 0.19

Multivariate 18.74 13.32 0.78 0.19

DNN
Univariate 18.14 ± 0.12 12.90 ± 0.13 0.79 ± 0.00 0.19 ± 0.00

Multivariate 19.04 ± 0.19 13.07 ± 0.13 0.78 ± 0.01 0.19 ± 0.00

552

CTF
Univariate 17.42 12.30 0.74 0.21

Multivariate 17.42 12.30 0.74 0.21

TML
Univariate 17.01 12.47 0.74 0.21

Multivariate 16.88 12.88 0.70 0.23

DNN
Univariate 16.89 ± 0.05 12.49 ± 0.10 0.74 ± 0.01 0.21 ± 0.00

Multivariate 18.48 ± 0.77 13.55 ± 0.54 0.70 ± 0.02 0.23 ± 0.01

567

CTF
Univariate 22.39 15.53 0.71 0.24

Multivariate 22.39 15.53 0.71 0.24

TML
Univariate 21.06 14.84 0.67 0.25

Multivariate 21.82 15.38 0.62 0.26

DNN
Univariate 21.22 ± 0.21 15.11 ± 0.23 0.65 ± 0.01 0.26 ± 0.00

Multivariate 20.87 ± 0.30 14.67 ± 0.23 0.65 ± 0.02 0.25 ± 0.00

584

CTF
Univariate 22.53 16.06 0.74 0.22

Multivariate 23.36 16.81 0.73 0.23

TML
Univariate 21.88 15.84 0.77 0.22

Multivariate 21.23 15.40 0.78 0.21

DNN
Univariate 23.16 ± 0.50 17.02 ± 0.43 0.76 ± 0.01 0.23 ± 0.00

Multivariate 22.66 ± 0.59 16.56 ± 0.46 0.77 ± 0.01 0.23 ± 0.01

596

CTF
Univariate 18.88 13.50 0.71 0.22

Multivariate 18.88 13.50 0.71 0.22

TML
Univariate 17.89 12.76 0.74 0.21

Multivariate 16.86 12.21 0.78 0.19

DNN
Univariate 18.17 ± 0.11 12.94 ± 0.10 0.75 ± 0.01 0.21 ± 0.00

Multivariate 18.52 ± 0.38 13.11 ± 0.26 0.75 ± 0.01 0.21 ± 0.00

Avg

CTF
Univariate 20.27 14.49 0.73 0.22

Multivariate 20.50 14.63 0.73 0.23

TML
Univariate 20.83 14.54 0.74 0.22

Multivariate 19.77 14.34 0.73 0.22

DNN
Univariate 20.03 ± 0.30 14.55 ± 0.24 0.73 ± 0.01 0.23 ± 0.00

Multivariate 20.26 ± 0.52 14.55 ± 0.33 0.72 ± 0.01 0.23 ± 0.00
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prediction horizon and based on RMSE for the 60-min prediction horizon, and in Ohio_2020 dataset based 
on SE metric for the 60-min prediction horizon, respectively. Figures 15, 16, 17, 18, and 19 show that while 
the TML model performed similarly to the DNN model, it outperformed the CTF model significantly for the 
prediction horizon of 60 minutes in the Ohio_2018 dataset, based on MAE, MCC, and SE metrics, and also, in 
the Ohio_2020 dataset, based on RMSE and MAE metrics, respectively. Although based on Table 9, the result of 
the Friedman test calculated based on the MCC metric in the Ohio_2020 dataset for the 60-minute prediction 
horizon was significant, Fig. 20 shows that for the mentioned case, there was not a significant difference between 
BGL prediction performance using different prediction models. Also, Table 9 and Figs. 11, 12, 13, 14, 15, 16, 17, 
18, 19, 20 and 21 reveal that the CTF and DNN models performed similarly for BGL prediction 30 and 60 min 
in advance using multivariate input in both cohorts.

Table 7.  Evaluation results of different prediction approaches and inputs in Ohio_2020 dataset for prediction 
horizons of 60 min. PID patient identity, PH prediction horizon, RMSE root mean square error, MAE 
mean absolute error, MCC Matthews correlation coefficient, SE surveillance error, CTF classical time series 
forecasting, TML traditional machine learning, DNN deep neural network.

PID Model Input RMSE MAE MCC SE

540

CTF
Univariate 40.42 31.13 0.52 0.46

Multivariate 42.54 32.46 0.51 0.48

TML
Univariate 44.81 32.49 0.50 0.45

Multivariate 41.42 30.90 0.54 0.44

DNN
Univariate 40.83 ± 1.33 30.98 ± 0.45 0.53 ± 0.01 0.44 ± 0.00

Multivariate 41.75 ± 0.88 31.00 ± 0.48 0.53 ± 0.03 0.44 ± 0.01

544

CTF
Univariate 34.84 25.36 0.57 0.36

Multivariate 34.85 25.35 0.57 0.36

TML
Univariate 32.01 23.42 0.61 0.33

Multivariate 28.25 20.49 0.66 0.30

DNN
Univariate 32.00 ± 0.21 24.69 ± 0.32 0.60 ± 0.01 0.36 ± 0.01

Multivariate 32.33 ± 1.07 22.74 ± 0.69 0.64 ± 0.02 0.33 ± 0.01

552

CTF
Univariate 32.13 22.61 0.57 0.37

Multivariate 32.13 22.61 0.57 0.37

TML
Univariate 29.76 21.49 0.58 0.34

Multivariate 28.87 21.87 0.58 0.35

DNN
Univariate 30.32 ± 0.13 22.71 ± 0.17 0.58 ± 0.01 0.36 ± 0.00

Multivariate 30.98 ± 0.65 23.47 ± 0.54 0.56 ± 0.02 0.37 ± 0.01

567

CTF
univariate 42.34 30.13 0.48 0.46

Multivariate 42.34 30.13 0.48 0.46

TML
Univariate 37.16 27.31 0.40 0.44

Multivariate 37.46 27.40 0.44 0.44

DNN
Univariate 39.23 ± 1.86 30.28 ± 2.12 0.36 ± 0.02 0.51 ± 0.04

Multivariate 36.63 ± 0.13 27.42 ± 0.22 0.38 ± 0.01 0.47 ± 0.00

584

CTF
Univariate 38.93 28.07 0.56 0.37

Multivariate 39.92 28.84 0.56 0.38

TML
Univariate 36.77 27.11 0.63 0.35

Multivariate 33.89 25.28 0.63 0.34

DNN
Univariate 39.83 ± 1.96 30.16 ± 1.78 0.59 ± 0.03 0.40 ± 0.02

Multivariate 38.38 ± 1.71 29.40 ± 1.76 0.57 ± 0.03 0.40 ± 0.02

596

CTF
Univariate 33.20 24.29 0.51 0.38

multivariate 33.20 24.28 0.51 0.38

TML
univariate 30.27 22.18 0.57 0.33

Multivariate 27.82 20.15 0.61 0.30

DNN
Univariate 30.20 ± 0.21 22.22 ± 0.25 0.58 ± 0.02 0.33 ± 0.01

Multivariate 30.38 ± 1.07 22.45 ± 0.98 0.57 ± 0.03 0.33 ± 0.01

Avg

CTF
Univariate 36.98 26.93 0.53 0.40

Multivariate 37.50 27.28 0.53 0.40

TML
Univariate 35.13 25.67 0.55 0.38

Multivariate 32.95 24.35 0.58 0.36

DNN
Univariate 35.40 ± 0.95 26.84 ± 0.85 0.54 ± 0.01 0.40 ± 0.01

Multivariate 35.07 ± 0.92 26.08 ± 0.78 0.54 ± 0.02 0.39 ± 0.01
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Figure 2.  The colour-coded surveillance error grid related to the predictions of CTF approach with univariate 
input 30 min in advance for patient 570.

Figure 3.  The colour-coded surveillance error grid related to the predictions of TML approach with univariate 
input 30 min in advance for patient 570.

Figure 4.  The colour-coded surveillance error grid related to the predictions of DNN approach with univariate 
input 30 min in advance for patient 570.
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Figure 5.  The colour-coded surveillance error grid related to the predictions of CTF approach with multivariate 
input 30 min in advance for patient 570.

Figure 6.  The colour-coded surveillance error grid related to the predictions of TML approach with 
multivariate input 30 min in advance for patient 570.

Figure 7.  The colour-coded surveillance error grid related to the predictions of DNN approach with 
multivariate input 30 min in advance for patient 570.
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Table 8.  p-values of the Friedman test for comparing all prediction models for univariate BGL prediction 30 
and 60 minutes in advance in Ohio_2018 and Ohio_2020 datasets. PH prediction horizon, RMSE root mean 
square error, MAE mean absolute error, MCC Matthews correlation coefficient, SE surveillance error.

PH RMSE MAE MCC SE

Ohio_2018
30 min 1.000 0.607 1.000 0.311

60 min 0.006 0.030 0.513 0.016

Ohio_2020
30 min 0.223 0.607 0.311 0.607

60 min 0.311 0.135 0.311 0.069

Figure 8.  CD diagram of comparing different prediction models with univariate input pairwisely over the data 
contributors of Ohio_2018 dataset for the 60-minute prediction horizon based on RMSE metric.

Figure 9.  CD diagram of comparing different prediction models with univariate input pairwisely over the data 
contributors of Ohio_2018 dataset for the 60-min prediction horizon based on MAE metric.

Figure 10.  CD diagram of comparing different prediction models with univariate input pairwisely over the data 
contributors of Ohio_2018 dataset for the 60-minute prediction horizon based on SE metric.

Table 9.  p-values of the Friedman test for comparing all prediction models for multivariate BGL prediction 30 
and 60 min in advance in Ohio_2018 and Ohio_2020 datasets. PH prediction horizon, RMSE root mean square 
error, MAE mean absolute error, MCC Matthews correlation coefficient, SE surveillance error.

PH RMSE MAE MCC SE

Ohio_2018
30 min 0.006 0.006 0.115 0.011

60 min 0.011 0.009 0.030 0.006

Ohio_2020
30 min 0.223 0.607 0.846 1.000

60 min 0.006 0.009 0.042 0.011



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:21863  | https://doi.org/10.1038/s41598-024-70277-x

www.nature.com/scientificreports/

Computational cost
When comparing different prediction models the computational cost of retraining them needs to be considered. 
The developed models do not have indefinite validity, and readjustments are required following changes in the 
BGL patterns. The computational costs of different prediction models on a standard laptop computer with a 
core i7 2.8 GHz processor, an NVIDIA GeForce GTX 1050 Ti GPU, and a 16 GB RAM were measured. Table 10 
shows the average training time for different models of all data contributors in each cohort for each input and 

Figure 11.  CD diagram of comparing different prediction models with multivariate input pairwisely over the 
data contributors of Ohio_2018 dataset for the 30-min prediction horizon based on RMSE metric.

Figure 12.  CD diagram of comparing different prediction models with multivariate input pairwisely over the 
data contributors of Ohio_2018 dataset for the 60-min prediction horizon based on MAE metric.

Figure 13.  CD diagram of comparing different prediction models with multivariate input pairwisely over the 
data contributors of Ohio_2018 dataset for the 30-min prediction horizon based on SE metric.

Figure 14.  CD diagram of comparing different prediction models with multivariate input pairwisely over the 
data contributors of Ohio_2018 dataset for the 60-min prediction horizon based on RMSE metric.

Figure 15.  CD diagram of comparing different prediction models with multivariate input pairwisely over the 
data contributors of Ohio_2018 dataset for the 60-min prediction horizon based on MAE metric.
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prediction horizon. The results illustrate that the TML model is the fastest and the DNN model is the slowest 
model for retraining purposes.

Summary
Review of the results presented in “Evaluation results”, “Statistical result”, and “Computational cost” shows that in 
more than half of the examined cases regarding evaluation metrics, prediction horizons, and datasets, especially 

Figure 16.  CD diagram of comparing different prediction models with multivariate input pairwisely over the 
data contributors of Ohio_2018 dataset for the 60-min prediction horizon based on MCC metric.

Figure 17.  CD diagram of comparing different prediction models with multivariate input pairwisely over the 
data contributors of Ohio_2018 dataset for the 60-min prediction horizon based on SE metric.

Figure 18.  CD diagram of comparing different prediction models with multivariate input pairwisely over the 
data contributors of Ohio_2020 dataset for the 60-min prediction horizon based on RMSE metric.

Figure 19.  CD diagram of comparing different prediction models with multivariate input pairwisely over the 
data contributors of Ohio_2020 dataset for the 60-min prediction horizon based on MAE metric.

Figure 20.  CD diagram of comparing different prediction models with multivariate input pairwisely over the 
data contributors of Ohio_2020 dataset for the 60-min prediction horizon based on MCC metric.
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using a univariate input, the three models performed comparably in BGL prediction. Among the rest of the cases, 
the TML model achieved the first rank with a significant superiority over at least one other model. In addition, 
the TML model was also the fastest model to be trained. The CTF and DNN models performed similarly for 
BGL prediction in all cases. Overall, the results suggest that the TML model is the superior approach for BGL 
prediction among the different examined data-driven models.

Comparing models’ inputs
In this section, the effectiveness of univariate and multivariate inputs are compared using different CTF, TML, 
and DNN approaches, separately. The outcomes of statistical analyses are given and discussed in the following 
first section. Furthermore, a discussion about the ease and complexity of different inputs for collection and 
processing is presented. The results are then summarised to draw conclusions.

Statistical result
CTF approach Table 11 presents the Wilcoxon test p-values, based on each evaluation metric, prediction hori-
zon, and cohort for examining whether the BGL prediction performance of the CTF model differs statistically 
significantly using different inputs. With a significance level of 5 %, the test outcomes show that exogenous vari-
ables did not affect the BGL prediction performance using the CTF model 60 min in advance in the Ohio_2018 
dataset and both at 30 and 60 min in advance in the Ohio_2020 dataset based on all evaluation metrics. There is 
only one statistically significant difference (marked with bold font) between univariate and multivariate inputs 
using the CTF model, which is related to the RMSE metric for predicting the BGL 30 min in advance in the 
Ohio_2018 dataset.

Considering Tables 4, 5, and 11, it can be concluded that, based on the RMSE metric, the CTF model per-
formed worse with exogenous variables compared to univariate BGL prediction 30 min in advance over patients 
in Ohio_2018 dataset.

TML approach Table 12 displays p-values of the Wilcoxon test for examining if univariate or multivariate 
inputs can make a statistically significant difference in BGL prediction performance by applying the TML model. 

Figure 21.  CD diagram of comparing different prediction models with multivariate input pairwisely over the 
data contributors of Ohio_2020 dataset for the 60-min prediction horizon based on SE metric.

Table 10.  The average training time (seconds) for models using different approaches across all patients in each 
cohort for each input and prediction horizon.  PH prediction horizon, CTF classical time series forecasting, 
TML traditional machine learning, DNN deep neural network.

Model

Univariate Multivariate

PH:30 min PH:60 min PH:30 min PH:60 min

Ohio_2018

CTF 277 289 502 530

TML 10 11 20 16

DNN 2057 2094 2051 2100

Ohio_2020

CTF 323 327 558 569

TML 7 11 14 16

DNN 1948 2099 1963 2149

Table 11.  P-values of the Wilcoxon test for comparing univariate and multivariate input for the CTF 
model for BGL prediction 30 and 60 min in advance in Ohio_2018 and Ohio_2020 datasets.  PH prediction 
horizon, RMSE root mean square error, MAE mean absolute error, MCC Matthews correlation coefficient, SE 
surveillance error.

PH RMSE MAE MCC SE

Ohio_2018
30 min 0.031 0.062 0.438 0.094

60 min 0.312 0.156 0.225 0.094

Ohio_2020
30 min 0.438 0.844 0.500 1.000

60 min 0.219 0.562 0.686 0.219
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The test was performed over the data contributors of each cohort and was based on each evaluation metric and 
for each prediction horizon separately. With a significance level of five percent, the test outcome showed that 
the TML model predicted BGL significantly differently using different inputs for patients in Ohio_2018 dataset 
based on the SE metric for both prediction horizons. While the TML model performed similarly using different 
inputs in Ohio_2020 dataset for both prediction horizons.

Considering Tables 4, 5, and 12, it can be concluded that the TML model predicted BGL better according to 
SE metric using multivariate input compared to univariate input in Ohio_2018 dataset for both 30-minute and 
60-minute prediction horizons.

DNN approach Table 13 displays the p-values obtained from the Wilcoxon test, which was performed based 
on each evaluation metric and for each prediction horizon, over the data contributors of each cohort. The test 
was conducted to determine whether univariate or multivariate input could make a significant difference in 
BGL prediction performance by applying the DNN model. The results showed that with a significance level 
of five percent, there was no statistically meaningful difference in the DNN model performance in predicting 
BGL using univariate or multivariate input in both datasets and for both prediction horizons, according to all 
examined evaluation metrics.

Ease of data
Another important factor to be considered for comparing input for the BGL prediction task would be ease of 
data access. It is essential to consider how convenient data collection and preprocessing would be for each input. 
Developing a BGL prediction model using only data from a CGM sensor, which is a readily accessible tool for 
T1DM patients, requires automatic data collection with minimum human intervention and facilitates practicality 
of implementation regarding computational complications. In BGL prediction using a univariate input, there 
would be no need for extra effort and cost to acquire data from several sensors and  modalities15,16,18–20. Also, 
multivariate input needs further data preprocessing steps, including data scaling up/down and data alignment. 
Moreover, according to Table 10, BGL prediction using multivariate input, needs more computational cost. 
Overall, univariate input is superior to multivariate input in terms of ease of data collection and processing.

Summary
According to the results in “Evaluation results”, “Statistical result”, and “Ease of data” the followings can be 
concluded. There was no conclusive evidence as to whether the use of univariate or multivariate input achieves 
better BGL prediction performance. With the CTF model, adding exogenous variables could make BGL predic-
tions worse. In contrast, with the TML model, multivariate input may improve BGL prediction, or it may not 
significantly affect the performance of the DNN model. Also, BGL prediction performance was not significantly 
impacted by univariate or multivariate input in the Ohio_2020 cohort for the three forecasting models and both 
prediction horizons. Overall, the results reveal that considering exogenous variables, including Carb, Bolus, 
and activity, despite forcing more effort and cost, does not conclusively make a significant improvement in the 
performance of BGL prediction. It is important to note that this conclusion is based on the examined naive 
approaches of including exogenous variables. However, applying advanced data fusion approaches may alter the 
performance of the models and this conclusion.

Table 12.  P-values of the Wilcoxon test for comparing univariate and multivariate input for the TML 
model for BGL prediction 30 and 60 min in advance in Ohio_2018 and Ohio_2020 datasets. PH prediction 
horizon, RMSE root mean square error, MAE mean absolute error, MCC Matthews correlation coefficient, SE 
surveillance error.

PH RMSE MAE MCC SE

Ohio_2018
30 min 0.062 0.062 0.156 0.031

60 min 0.062 0.062 0.156 0.031

Ohio_2020
30 min 0.438 0.562 0.312 0.844

60 min 0.062 0.156 0.156 0.094

Table 13.  P-values of the Wilcoxon test for comparing univariate and multivariate input of the DNN 
model for BGL prediction 30 and 60 min in advance in Ohio_2018 and Ohio_2020 datasets. PH prediction 
horizon, RMSE root mean square error, MAE mean absolute error, MCC Matthews correlation coefficient, SE 
surveillance error.

PH RMSE MAE MCC SE

Ohio_2018
30 min 0.094 0.094 0.688 0.844

60 min 0.312 0.562 0.094 0.562

Ohio_2020
30 min 0.844 0.844 0.688 0.688

60 min 1.000 0.562 1.000 0.688
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Conclusion
This work has comprehensively investigated the performance of different data-driven time series forecasting 
approaches including CTF, TML, and DNN, as well as the performance of different inputs, including univariate 
(BGL data only) and multivariate (BGL data along with Carb, Bolus, and activity) to provide insightful findings 
in the context of BGL prediction. The performance of different prediction approaches and inputs were compared 
for BGL prediction 30 and 60 min in advance. These investigations were performed using two Ohio_2018 and 
Ohio_2020 cohorts separately. Three prediction models related to the three different time series forecasting 
approaches were developed. The models were trained with a univariate input, and their counterparts were devel-
oped to cope with multivariate input. The different cases were evaluated using regression-based and clinical-based 
metrics followed by rigorous statistical analyses.

The obtained results showed that all three prediction models performed comparably in most cases. In the 
remaining cases, the TML model, which was also the fastest model to train, performed significantly better than 
the CTF, the DNN or both especially when using multivariate input. Moreover, comparing different inputs for 
each prediction model showed that adding extra variables, including Carb, Bolus, and activity and converting 
the univariate forecasting task to multivariate does not necessarily improve the BGL prediction significantly. 
In fact, different time series forecasting approaches perform differently for predicting BGL when dealing with 
multivariate data. The CTF model may perform worse by adding exogenous variables, the TML model may 
perform better using multivariate input, and the DNN model performs similarly using univariate or multivariate 
input. From the obtained results it is also can be inferred that to deploy the data of exogenous variables more 
effectively, information extraction and data fusion approaches may be required. Hence, investigating optimal 
approaches for fusion of extra variables with BGL is suggested as future work.

It is worth mentioning that in the current work, we investigated naive multivariate input for incorporating 
exogenous variables. Therefore, investigating effective approaches for leveraging affecting variables could be 
important to make a conclusive decision regarding the input of BGL prediction models. Hence, developing 
some approaches for effectively incorporating exogenous variables would be a future direction. Also, this work 
focused on data-driven approaches and using Physiological models for Carb and Bolus and developing hybrid 
prediction models are suggested. Moreover, it is worth noting that other potentially superior models for BGL 
prediction can be used in each forecasting group. Specifically, in the DNN approach, instead of LSTM, examin-
ing more advanced models with superior performance in handling complex temporal patterns (e.g. PatchMixer 
and SegRNN) could be suggested.

Coding
Implementation of the methodologies was performed using Python 3.6, TensorFlow 1.15.055, and 
Keras 2.2.556, deploying the following packages: Pandas57, NumPy58, SciPy59, Sklearn60, statsmod-
els61, scikit-posthocs62, and cd-diagram63.

Data availability
The publicly available Ohio  datasets30,31 used in this research are accessible, followed by requesting a data use 
agree ment.
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