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Abstract

Aluminium–silicon alloys are highly regarded for their lightweight and unique mechanical properties, making them 
crucial for various industrial applications. Achieving optimal mechanical behavior in Al-Si-based alloys necessitates 
meticulous control over their microstructure. The research investigated the impacts of heat treatment regimes on the 
microstructure of A356 hypoeutectic alloys by light optical microscope (OM), scanning electron microscope (SEM), and 
energy dispersive spectroscope (EDS). The alloy, produced via stir-casting, underwent homogenization at 540 °C/5 h, 
one-step (200 °C for 0.5–8 h (T1)) and two-step (T2 (200 °C/0.5 h/180 °C/0.5–8 h)), and T2L (200 °C/0.5 h/160 °C/0.5–8 h)) 
aging processes. The findings revealed significant microstructural changes due to heat treatment. Homogenization 
reduced the average grain size of eutectic silicon by 20.5%. The T1 treatment increased the grain size and changed the 
grain morphology with prolonged aging, negatively impacting the mechanical properties. The T2 and T2L treatments 
resulted in finer, more uniform grain structures. The T2L treatment produced the finest eutectic silicon and the most 
uniform grain distribution, indicating the superior potential for mechanical performance. Overall, this study underscores 
the importance of tailored heat treatment regimes to optimize the microstructure and enhance the structural sensitive 
properties of Al-Si alloys, benefiting automotive and aerospace industries.

Article Highlights

• Significant Microstructural Refinement: Homogenization at 540 °C/5 h reduced the eutectic silicon grain size by 20.5%, 
from 4.4 µm to 3.5 µm, demonstrating adequate refinement of the alloy’s microstructure.

• Impact of Aging Treatments: One-step aging at 200 °C increased grain size and changed grain morphology from 
rounded to dendritic, while two-step aging treatments showed varying degrees of grain refinement, with finer struc-
tures observed at lower secondary aging temperatures (160 °C).

• Optimization for Industrial Applications: The study emphasizes the importance of optimizing aging times to balance 
grain refinement, highlighting the potential for tailored alloy microstructure development to enhance performance 
in aerospace and automotive sectors.
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1 Introduction

Aluminium–silicon (Al-Si) alloys stand out in materials science owing to their lightweight and unique mechanical prop-
erties, making them indispensable for various industrial applications [1–6]. Among these alloys, the Al-7Si-2 Mg-1Cu 
alloy system has attracted significant attention because of its favourable combination of mechanical strength and 
processability.

Previous studies have extensively explored various aspects of Al alloys, with emphasis on the impact of the character-
istics of the Al-matrix and eutectic structure on the properties of the alloys. Shaha et al. [7] and Liu et al. [8] investigated 
the impact of V, Cu, Ti, and Fe on the microstructure of Al-Si alloys. Transition metal (TM) elements including Zr, V, and Ti 
promoted the formation of strengthening phases, leading to finer microstructures and improved mechanical properties 
[9–11]. Additionally, incorporating Fe-based amorphous alloys, Mg, and Sb resulted in significant reduction in the size of 
the α-Al matrix and eutectic silicon phases [12–14]. Various grain refinement techniques have been explored, including 
friction stir processing (FSP), warm rolling (WR), selective laser melting (SLM), and master alloys [15–18]. FSP and WR 
effectively disrupted the eutectic structure and reduced the porosity, leading to fine grain precipitation and a uniform 
dispersion of microstructural constituents. The incorporation of master alloys; Al5Ti1B and Al5Ti0.62C1.07La resulted 
in microstructural changes, improving the properties of the alloy [18, 19]. Grain refinement and modification strate-
gies consistently induce high mechanical performance of Al alloys [18–30]. Liao et al. [31] and Wu et al. [32] obtained 
enhanced eutectic silicon characteristics in AlSiMg alloys through a controlled solidification process and 0.1 wt% (Zr and 
V) additions, respectively. These factors led to significant improvements in the mechanical performance of the alloys.

Several studies [9, 33–35] have investigated the effects of metallurgical processes including solution treatment, aging, 
and stress relief on the microstructure development in Al-Si alloys. Heat treatment enhances the α-Al matrix, eutectic 
silicon, and intermetallic phases characteristics. Recent studies [23, 36–42] have focused on optimizing processing param-
eters such as cooling rates, direct aging, and solution-treated and aging processes to achieve the desired microstructural 
characteristics for improving the mechanical performance of Al-Si. Zhang et al. [43] generated nanosized precipitates in 
an Er-doped Al7Si0.6 Mg alloy through a direct aging heat treatment process. Hwang et al. [44] reported the develop-
ment of internal stress and its adverse impacts on the mechanical behavior of quenched Al–Si–Mg-based alloys. After 
direct aging treatment, the AlSi7Mg alloy demonstrated a poor strengthening effect due to the precipitation of coarse 
primary silicon. Park et al. [45] explored the microstructural characteristics of directly aged and T6-treated AlSiMg alloys. 
The research reported increases in the volume fraction of Si particles post heat treatment. Ming et al. [46] studied the 
grain characteristics of AlSiMg alloys annealed, directly aged, and T6 treated. The direct aged samples exhibited a discon-
tinuous Al-Si network and nanosized Si particles, which became enlarged after annealing treatment. T6 treatment led 
to the precipitation of coarse eutectic silicon with irregular morphology. Wu et al. [47] demonstrated that deformation 
temperature and ratio significantly affected the microstructural characteristics of Al12.5Si0.6Mg0.1Ti alloys, with the 
deformation ratio having a greater effect on the dynamic recrystallization of the  Mg2Si phase.

Achieving optimal mechanical performance in Al-Si-based alloys requires careful control of their microstructure, 
particularly the α-Al matrix and eutectic silicon. The specific effects of heat treatment regimes on the refinement and 
modification of the α-Al matrix and eutectic structure of Al-7Si-2 Mg-1Cu alloys remain unclear. The research aimed to 
establish the impact of various heat treatment regimes on microstructural evolution, thereby contributing to a deeper 
understanding of the heat treatment parameters-microstructure interrelationship in Al-7Si-2 Mg-1Cu alloys. This study 
is crucial for metallurgy and materials engineering because it offers significant insights into how heat treatment regimes 
influence the α-Al matrix and eutectic silicon structure, including size and morphology. The two-step heat treatments 
and their effects on microstructure characteristics are novel, highlighting the benefits of complex heat treatment regimes 
in enhancing alloy performance, a topic less commonly addressed in existing research. These findings are crucial for 
industries such as automotive and aerospace, where fine-tuning the mechanical properties through controlled heat 
treatments can lead to superior component performance and longevity. This study underscores the importance of 
optimizing aging times and demonstrates the potential for tailored alloy microstructure development, distinguishing it 
from other research that typically focuses on more limited aspects of heat treatment effects.

While A356 alloy is a common material investigated under various thermal treatments, the impact of coarse and 
needle-like eutectic silicon in the mechanical performance of A356 alloys remains a challenge to scientific communities. 
Previous studies have focused on the use of master alloys [18–20] and various heat treatment processes like annealing, 
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normalizing, and single aging (T6) to promote eutectic silicon transformation into a spherical grain morphology for 
enhanced mechanical performance in service [15, 19, 33, 35, 43–46]. However, there is notably limited literature on the 
impact of multiple-step heat treatment regimes on A356 alloys. This study explored novel heat treatment processes: 
one-step and two-step heat treatment regimes (200 °C for 0.5 h, 200 °C for 0.5 h followed by 180 °C/0.5–8 h, and 200 °C 
for 0.5 h followed by 160 °C/0.5–8 h). The research analyzed how multiple-step heat treatment regimes affect the mor-
phology, size, and distribution of the eutectic silicon phase in the alloy. It highlights the morphological transition of 
eutectic silicon from dendritic or rod-like forms to fine-rounded structures, particularly under the multiple-step heat 
treatment regime. The study’s findings emphasize the potential for developing customized heat treatment protocols that 
can precisely modify the microstructure of A356 alloys. This approach provides significant advancements in processing 
techniques, optimizing the alloy’s performance for specialized applications in various industries.

2  Experimental procedure

The stir-casting technique was employed in the A356 hypoeutectic alloy (Al-7wt%Si-2wt%Mg-1wt%Cu) development using 
high-grade aluminium, copper, silicon, and magnesium. The A356 alloy samples were cooled slowly to ambient temperature 
in the mold, and the elemental constituents were analyzed by X-ray fluorescence. The cast A356 alloy underwent homog-
enization at 540 °C/5 h and was water-cooled. The alloy underwent various heat treatment regimes presented in Fig. 1. 
T1 depicts a one-step heat treatment regime at 200 °C/ 0.5–8 h. T2 and T2L refer to two-step heat treatment regimes at 
200 °C/0.5 h, followed by aging at 180 °C and 160 °C for 0.5–8 h, respectively. The microstructures were analyzed by light 
optical microscope (OM) and scanning electron microscope (SEM, EVO/NA10) with energy dispersive spectroscope (EDS), 
after undergoing pre-preparation including grinding (with 400, 600, 800, and 1200 μm grits silicon carbide papers), polishing 
(with alumina powder), and etching (with Keller’s reagent; solution of iron (III) chloride, hydrochloric acid, and water). The 
grain size, morphology, and distribution were examined using the linear intercept method (LIM).

Fig. 1  Heat treatment regimes
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3  Results and discussion

3.1  Results

The nominal composition of the as-cast Al-7Si-2 Mg-1Cu alloy was analyzed using X-ray fluorescence. Table 1 presents the 
results of the chemical constituents of the alloy. Figures 2–5 detail the impacts of multiple-step heat treatment regimes on the 
microstructures of the A356 alloy. Figure 2a, b depict the scanning electron microscopy (SEM) image and energy dispersive 
spectrum of the as-cast (AC) A356 alloy. Figure 2c, d reveal the microstructural features (SEM) and the elemental composition 
of the solution-treated and quenched (STQ) A356 alloy. The SEM images of the AC and STQ A356 alloy indicated changes in 
the microstructural features, revealing the impact of STQ on the microstructure of the A356 alloy. Figure 2e, f show the grain 
characteristics of the AC and STQ alloy, revealing the grain size, volume, and distributions. Figure 3 details the microstructural 
features (OM and SEM) of A356 subjected to one-step heat treatment regime (T1) at 200 °C for 0.5, 4, and 8 h after undergo-
ing STQ. Figure 3e, f represent the elemental constituents of the T1 alloy. The images reveal different microstructural features 
compared with the AC and STQ, confirming the significant impact of T on the microscopic level. The OM and SEM images of 
A356 alloy subjected to a multiple-step heat treatment regime (T2; 200 °C for 0.5 h and 180 °C/0.5–8 h) presented in Fig. 4 
reveal grain modification compared with the AC, STQ, and T1. Figure 4e, f depict the EDS and grain features of the T2. Figure 5 
details the impact of a multiple-step heat treatment regime (T2L; 200 °C for 0.5 h and 160 °C/0.5–8 h) on the microstructure 
and grain characteristics of A356 alloy. The grains show different morphology and distributions compared with the AC, STQ, 
SA, and T2. Comparatively, T2 and T2L precipitated modified grains with elongated and rounded characteristics at 4 and 8 h, 
respectively. T1 precipitated networks of dendritic grains which grow in volume and size with aging time [48].

3.2  Discussion

The XRF analysis reveals elements including aluminium, silicon, magnesium, copper, iron, and titanium in the A356 alloy 
(Table 1).

Comparative analysis of OM and SEM microstructures of AC, STQ, T1, and multiple-step heat treated (T2 and T2L) A356 alloy 
demonstrates adequate grain refinement and modification after the multiple-step heat treatment regimes. The SEM micro-
structure of the AC A356 alloy consists of α-Al and eutectic silicon phases. The eutectic silicon exhibits coarse microstructural 
features with an average size of 8.84 µm. The EDS analysis reveals Al, Si, Cu, Mg, Ti, and Fe constituents in the as-cast alloy 
(Fig. 2b). The microstructure of STQ A356 alloy consists of finer grains of eutectic silicon at the microscopic level, as shown 
in Fig. 2c. The grain size decreased from 8.84 µm to 3.5 µm, indicating a 60.4% decrease compared to the as-cast A356 alloy. 
The SEM microstructure reveals a wide range of solid solution regions, indicative of increased dissolution of solutes in the 
aluminium matrix. Analysis of the precipitated phase reveals Al, Cu, Fe, C, and O as presented in the EDS spectrum (Fig. 2d).

Figure 3 shows the microstructural features of the A356 alloy subjected to a one-step heat treatment regime at 200 °C for 
0.5 h (T1). The microstructure at 0.5 h aging time comprised sparsely distributed finer eutectic silicon with an average size 
of 3.7 µm. The eutectic silicon grows into networks of dendritic grains as the aging time increases to 4 h, as shown in Fig. 3b. 
The increase in size and volume of eutectic silicon is due to solute diffusion accompanying the aging process. Analysis of 
Fig. 3a–c reveals changes in grain morphology at the microscopic level compared with the AC and STQ alloy. The dendritic 
networks of eutectic silicon increased further at a longer aging time (8 h) with an average grain size of 4.32 µm. Prolonged 
aging time promotes precipitation of coarse grain, leading to poor mechanical performance of A356 alloy [46, 47]. The EDS 
analysis confirmed the presence of Al, Cu, O, Fe, and Cl as constituents.

Figures 4, 5 depict the microstructural features of A356 alloy subjected to multiple-step heat treatment regimes 
(T2 and T2L). The microstructures of T2 and T2L reveal changes in microstructure morphology compared with the 
AC, STQ, and T1 alloys at 4 and 8 h aging times. The eutectic silicon transformed from a needle-like shape to rounded 
patterns, as shown in Fig. 4c, b. The eutectic silicon morphological change to a spherical or rounded pattern is gov-
erned by the dissolution and sheroidization of eutectic silicon dendritic networks during thermal treatment [48]. The 
microstructure of T2 consists of a finer α-Al phase and short rod-like eutectic silicon with a grain size of 4.05 μm after 

Table 1  Chemical constituents 
of the Al-7Si-2 Mg-1Cu alloys

Elements Al Si Mg Cu Fe Ti

Nominal composition (wt%) 89.80 6.50 2.15 0.9 0.3 0.2
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                          (a)                                                   (b) 

                         (c)                                                          (d) 

                          (e)                                                          (f)  

Fig. 2  SEM microstructures and EDS of A356 alloy (a, b) AC and (c, d) STQ. Grain distribution of A356 alloy (e) AC (f) STQ
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0.5 h aging time. Increasing the aging time to 4 h led to a change in the eutectic silicon morphology from rod-like 
to rounded shape, with an average size of 4.69 μm. The morphology of the eutectic silicon changed further to elon-
gated grains with an average grain size of 5.71 μm as the aging time increased to 8 h. The EDS spectrum identified 
Al, Cu, Fe, C, and O, as shown in Fig. 4e. The OM microstructure of the A356 alloy subjected to a multiple-step heat 
treatment regime (T2L; 200 °C/0.5 h/160 °C/0.5–8 h) consists of a dendritic network of eutectic silicon structure with 
an average grain size of 3.81 μm. The eutectic silicon stricture changed to a rounded structure at increasing aging 
time. The mechanical performance of A356 alloy is enhanced by transforming coarse needle-like eutectic silicon to 
short plate-like or rounded grains after T6 treatment [32, 48]. The precipitation rate and volume fraction of eutectic 
silicon increased with aging time [47]. The grain size distribution curves illustrate an even dispersion of grains within 
the aluminium matrix. Comparatively from the microscopic point, multi-step heat treatment regimes promote better 
grain modification at longer aging compared with the direct aging heat-treated A356 alloys (T6) [49, 50].

                   (a)                                     (b)                                   (c) 

                   (d)                                     (e)                                   (f) 

Eutectic Si 

Eutectic Si 

α-Al matrix 

Fig. 3  OM microstructures of the A356 alloy subjected to T1 (a) 0.5 h, (b) 4 h, and (c) 8 h (d–f) SEM image, EDS spectrum and grain distribu-
tion curve of the A356 alloy aged at 200 °C for 0.5 h
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4  Conclusion

The research investigated the impact of heat treatment regimes on the microstructure of a stir-cast A356 hypoeutectic 
alloy. The study revealed significant changes in microstructure, after homogenization and subsequent aging treatments at 
different temperatures: T1 (200 °C/0.5–8 h), T2 (200 °C/0.5 and 180 °C/0.5–8 h), and T2L (200 °C/0.5 h and 160 °C/0.5–8 h). 
The findings are summarized below:

1. The controlled heat treatment regimes significantly influenced the grain characteristics of the A356 hypoeutectic 
alloy.

2. Homogenization at 540 °C for 5 h significantly reduced the average eutectic silicon size from 4.4 µm to 3.5 µm, indi-
cating grain refinement.

3. T1, T2, and T2L treatment resulted in an increase in eutectic silicon size to 3.7 µm, 4.05 µm, and 3.81 µm, respectively, 
after 0.5 h of aging.

4. Morphological changes from dendritic or rod-like to fine-rounded eutectic silicon phases were observed at T2L with 
increasing aging time, indicating potential enhancements in the mechanical properties.

                   (a)                                     (b)                                   (c) 

                   (d)                                     (e)                                   (f) 

Eutectic Si 

Eutectic Si 

Eutectic Si 

α-Al matrix 

Fig. 4  OM microstructures of the A356 alloy subjected to a T2 (a) 0.5 h, (b) 4 h, and (c) 8 h. (d–f) SEM, EDS and grain distribution curve of the 
A356 alloy for 0.5 h
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5. Prolonged aging leads to grain coarsening, decreasing the mechanical behavior of the alloy.
6. The findings highlight the potential for developing customized heat treatment protocols to enhance the performance 

of A356 alloys in automotive and aerospace industries.
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