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Dynamic Tube Control for DC Microgrids
Grigoris Michos, George C. Konstantopoulos, Paul A. Trodden

Abstract— This paper proposes a dynamic tube control
approach for DC Microgrids (MGs) connected to constant
power loads (CPL) that guarantees boundedness of the
system dynamics, satisfaction of the desired operational
constraints and closed-loop stability. Contrary to many
approaches in the literature, we consider an explicit model
of the dynamics to investigate the geometric effect of the
load demand perturbations on the behaviour of the closed
loop system. Combined with the use of nominal dynamics,
i.e. dynamics parametrized by a constant load demand, this
allows us to formulate, for the first time, necessary condi-
tions for the existence of a tube around a nominal solution
that bounds all possible uncertain trajectories stemming
from perturbations of the load demand. Furthermore, we
show that the computation of the tube follows a fully decen-
tralized approach and its size is dependent on the nominal
dynamics, which we use in the regulation of the nominal
solution to reduce the conservativeness of the controller.
The effectiveness of the proposed control architecture is
illustrated in a simulated scenario.

Index Terms— microgrids, nonlinear control, robust con-
trol, networked systems

I. INTRODUCTION

T
HE DC MG is a key element of the future smart power

grid, exhibiting efficiency and reliability advantages over

its AC counterpart [1]. One of the main challenges faced by

DC MGs is the presence of constant power loads (CPLs) in

the network. CPLs exhibit incremental negative impedance

characteristics that reduce system damping and can introduce

instabilities to the power system [2]. To address this, numerous

studies investigate either small-signal methods [3] or variants

of the droop control that introduce system robustness [4].

However, approximation methods only provide local stability

guarantees, while most of the proposed studies omit explicit

dynamical modelling.

In the context of MGs, system constraints take the form of

current and voltage limits dictated by the physical limitations

of the converters. It is also often desirable to adhere to

predefined operational ranges that provide protection against

large transients; in fact, this is especially important in the

presence of CPLs, which induce high state transients during

abrupt load fluctuations. Robust constrained control, which

permits robustly stable operation within a constraint set, is an
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attractive solution to this problem. Specifically, the concept of

robust tube-based MPC has gained increasing popularity as it

allows to combine the advantages of both robust and optimal

constrained control in a unified framework. In simple words,

tube-based MPC refers to a collection of control schemes that

utilize information on the system uncertainty to bound the

system trajectories in a positive invariant set and drive this

set to a reference subspace. A tube is then the sequence of

sets containing every trajectory emanating from some common

initial point. Substantial work has been devoted in the linear

case, dating back from incorporating the minimum robust

positive invariant set within the tube computation in [5],

which evolved to dynamic tube in the case of parametric

uncertainty in [6]. The linear approaches require the solution

of the system dynamics to compute the constraint sets; this

prohibits the direct extension to the nonlinear case, since a

solution may not even exist. A nonlinear tube-based MPC

was proposed in [7], where the computation of the tube was

based on the global Lipschitz constant of the dynamics. In

[8], feedback linearization was used to cancel the effect of

the nonlinear terms, while in [9] a sliding-mode controller

was used to bound the system trajectories and formulate a

dynamic evolution of the tube. In [10] and [11], control

contraction metrics were used to respectively minimize the

effect of the disturbance on the system dynamics and to define

an incremental Lyapunov function to parametrise the dynamic

tube.

Considering the inherent problems of including CPLs in

the network, a need for the extension of a dynamic tube-

based control architecture arises naturally. To the authors’ best

knowledge, despite the potential advantages, such a control

scheme is yet to be developed for the regulation of MGs. In

contrast to other nonlinear dynamic tube-based approaches,

we focus directly on the regulation of MGs with CPLs to

reduce conservativeness and provide suitable tuning guidelines

that achieve robustness to perturbations of the load demand,

and overall system stability. Furthermore, we adopt an explicit

system model and use this to characterize the geometric effect

of the CPL on the system trajectories. In a previous work

of the authors, a tube-based approach was proposed in [12],

where the tube formulation was based on local input-to-state

stability property of the dynamics, when the maximum effect

of the disturbance was considered. This work was extended in

[13], wherein a tube-based control is proposed considering a

time-invariant size of the tube. In this paper, we significantly

extend this work by incorporating the nominal dynamics, i.e.

the dynamics parametrized by a nominal constant load, inside

the tube computation. Thus, instead of considering the nominal

state as an unknown bounded external input in the computation



of the tube, we allow the tube boundary to evolve according

to the distance of the nominal state from the boundary of the

constraint set. In particular, we investigate the geometric effect

of the load demand on the system dynamics to derive necessary

conditions on the tuning parameters such that a uniform bound

around the nominal dynamics exists and obtains the desired

positive invariance properties. The derivation of the bounding

functions follows a decoupling of the network dynamics to

provide a fully decentralized computation of the dynamic

tube that solely depends on locally available parameters. This

dynamic tube allows us to parametrize the original constraint

sets, such that the true dynamics are always contained within

the desired operational range. We combine the above to intro-

duce a framework for the control of DC MGs, that protects

the converter components even during transients and achieve

a desired network operation.

A. Notation

A MG can be seen as an undirected connected graph

G = (M, E) with set of nodes M representing a collection of

power converters and local loads. The notation ε = (i, j) ∈ E
denotes the edge connecting node i and j, where E ⊆ M×M
is the set of edges and (i, j) is an unordered pair. Then, a ∈ R

n

denotes an n-dimensional vector and [a] ∈ R
n×n is a diagonal

matrix with [a]ii = ai. A continuous function α(·) is said to

belong to class K is it is strictly increasing and α(0) = 0. A

continuous function β(·) is said to be class K∞ if it is class

K and limx→∞ β(x) = ∞.

II. PROBLEM STATEMENT

A common representation of a meshed DC Microgrid is

by a connected, undirected graph consisting of n number

of nodes, where n is the number of local converters of the

network. In this paper, we investigate the case, where each

node i ∈ M := {1, 2, . . . , n} feeds a local CPL. Our aim is

to introduce robustness of the network to perturbations of the

load demand and guarantee restriction of the dynamics in a

predefined operational range. The node voltage dynamics are

formulated as,

Ci

dvi

dt
= iin,i − io,i, (1)

where Ci is the capacitance of the output capacitor, iin,i is

the control input current and io,i is the output current flowing

in the lines of the network and into the local CPL. The

connections among the nodes of the graph can be represented

by the weighted adjacency matrix A(R) ∈ R
n×n, where

aij = R−1
ij , with R−1

ij the admittance of the line between nodes

i and j, and aij = 0 if the edge (i, j) is not incident. It has

been previously shown in the literature that cable inductance

has no effect on the system stability [14]. Therefore, for

simplicity, it is assumed in this study that the lines are purely

resistive. The full topology of the network is represented by

the Laplacian matrix L = [A(R)1n] − A(R). Therefore, the

output network current can be modelled as

io,i =
Pi

vi
+ Liivi +

∑

j∈Ni

Lijvj , (2)

where Pi represents the load demand and is assumed to be

bounded in a compact set as Pi ∈ Pi ⊂ R. The control

objective is to design and analyse a feedback control law

for the current, iin,i, at each node in the MG. The control

laws should stabilize the system currents and voltages, despite

unknown but bounded changes to the load, and moreover

respect predefined operational limits. The latter are formulated

as uncoupled state and input constraint sets denoted Xi and

Ci respectively, where our aim is to guarantee that vi ∈ Xi

and iin,i ∈ Ci at all times.

Assumption 1: It holds that Ci,Xi ⊂ R are compact and

convex and {0} ∈ Ci.

III. A DYNAMIC TUBE-BASED VOLTAGE CONTROL LAW

A. Voltage Control Law

In this paper, we will decompose the dynamics into a

nominal voltage and an error between the nominal and the

uncertain state. We will exploit the form of the dynamics to

show that the error is always contained in a positive invariant

set provided that some conditions on the choice of the control

parameters are satisfied. First, considering a constant nominal

power demand P̄i ∈ Pi, the network dynamics can be rewritten

with respect to the deviation from the nominal load as

Ci

dvi

dt
= iin,i − Liivi −

∑

j∈Ni

Lijvj −
P̄i

vi
−

δPi

vi
, (3)

In order to satisfy the assumption Pi ∈ P we require δPi ∈ Wi

and {P̄i} ⊕Wi ⊆ Pi. Inspired by the tube-based approach to

robust control, we propose and study a voltage control law of

the form

iin,i := −(K1,i +K2,i)ei + ui. (4)

for i ∈ M, where K1,i,K2,i ∈ R>0 are control gains. In

addition,

ei := vi − zi, (5)

is the error between the voltage at node i and a corresponding

nominal voltage, zi, and ui is a nominal control input. The

pair (ui, zi) obey a nominal, i.e. disturbance free, version of

the nodal voltage dynamics that can be written as

Ci

dzi

dt
= ui − Liizi −

∑

j∈Ni

Lijzj −
P̄i

zi
(6)

Therefore, the control law (4) is similar to a tube-based control

law where the nominal input induces the system voltage to

follow a nominal trajectory while the error feedback term

mitigates the effect of uncertainties arising from the unknown

fluctuations in the load being omitted in the determination of

the nominal control input. Our aim is to study and analyse the

use of this control law in the previously defined MG dynam-

ics, and formulate conditions under which the currents and

voltages satisfy the constraints and the voltage errors remain

bounded. To expose the particular challenge, we substitute the

control law (4) into (3) to yield,

Ci

dei

dt
= −(Lii +K1,i +K2,i)ei −

∑

j∈Ni

Lijej

−
P̄i

ei + zi
+

P̄i

zi
−

δPi

ei + zi
, (7)



B. Boundedness of the voltage within a robust positive

invariant set

This section will introduce sufficient conditions on the

controller parameters such that the error dynamics are bounded

within a robust positive invariant RPI set. This section will

initially provide a characterization of a candidate positive

invariant error subspace by employing an energy-like function

of the dynamics. Then, the behaviour of this function will be

investigated in order to deduce sufficient lower bounds on both

the control parameters and the nominal state trajectory, such

that the desired closed-loop behaviour is guaranteed.

Observing the form of the dynamics in (7), it can be seen

that the disturbance δP enters the system as a parametric

disturbance where the magnitude of its effect also depends on

the states ei and zi respectively. Now, for simplicity assume

that (K1,i + K2,i) = (K1,j + K2,j) holds for all (i, j) ∈ E .

Then, consider the network error dynamics given by

C
de

dt
=−

(

L+ [K1,i] + [K2,i]
)

e−

[

P̄i

ei + zi
+

P̄i

zi
−

δPi

ei + zi

]

(8)

where C = diag{C1, C2, . . . , Cn}, and a quadratic energy-

like function V (e) = 1
2e

⊤Ce. Due to the properties of the

Laplacian matrix, it holds that L+[K2,i] ≻ 0 for any arbitrary

small positive value of K2,i. This yields a decoupled upper

bound on the derivative of the energy-like function as

dV

dt
(e) ≤

∑

i∈M

gi(ei, zi), (9)

where

gi(ei, zi) = −K1,ie
2
i +

P̄i

zi(ei + zi)
e2i + wi

|ei|

ei + zi
, (10)

and wi = max |δPi|. Since the upper bound in (9) is a summa-

tion of individual functions at each node, the stability problem

is decoupled and it suffices to investigate the properties of each

scalar function gi(·) to deduce positive invariance of the MG

dynamics. Therefore, the problem of analysing stability and

boundedness of the whole network dynamics is reduced to

that of a single node problem. Next, we will first investigate

the choice of control parameters such that (10) admits real

roots. This will later be helpful to establish the existence of a

closed RPI set around the origin.

Proposition 1: Consider the bound on the time derivative

in (9), if the feedback gain and the nominal state satisfy

respectively

K1,i >

√

(P̄i + 4wi)2 − 12w2
i − 2

√

wi(P̄i + wi)

P̄i + 4wi

and

zi ≥ βi

where

βi =

√

2P̄i + 4wi + 4
√

wi(P̄i + wi)

2K1,i

then (10) admits two negative and one positive non-zero real

roots.

Proof: For now we will assume that the nominal volt-

age is strictly greater than the error and thus gi(ei, zi) is

continuous. However, we will later formulate conditions that

guarantee this property. The non-zero roots of (10) are given

by solving

K1,izi|ei|ei + |ei|(K1,iz
2
i − P̄i)− ziwi = 0. (11)

We distinguish two cases: (a) ei > 0 and (b) ei < 0. For (a)

the above yields

∆1 =
−(K1,iz

2
i − P̄i) +

√

(K1,iz
2
i − P̄i)2 + 4K1,iz

2
iwi

2K1,izi

∆2 =
−(K1,iz

2
i − P̄i)−

√

(K1,iz
2
i − P̄i)2 + 4K1,iz

2
iwi

2K1,izi
.

Note that (K1,iz
2
i −P̄i)

2+4K1,iz
2
iwi is always positive as it is

a summation of positive terms. In order to show that ∆1 > 0,

we require
∣

∣

∣

∣

√

(K1,iz
2
i − P̄i)2 + 4K1,iz

2
iwi

∣

∣

∣

∣

>
∣

∣

∣
(K1,iz

2
i − P̄i)

∣

∣

∣
.

This results in

4K1,iz
2
iwi > 0

which is indeed true and hence ∆1 > 0. Similarly, it can be

shown that ∆2 < 0 which contradicts the assumption ei > 0
and therefore is discarded as a root of the polynomial. Then,

in the case of (b) we obtain

∆3 =
−(K1,iz

2
i − P̄i) +

√

(K1,iz
2
i − P̄i)2 − 4K1,iz

2
iwi

2K1,izi

∆4 =
−(K1,iz

2
i − P̄i)−

√

(K1,iz
2
i − P̄i)2 − 4K1,iz

2
iwi

2K1,izi
.

Here, it is not necessarily true that the term under the square

root is non-negative. In order to guarantee existence of real

roots we impose the condition,

(K1,iz
2
i − P̄i)

2 − 4K1,iz
2
iwi ≥ 0,

or

K2
1,iz

4
i − z2i (2P̄iK1,i + 4K1,iwi) + P̄ 2

i ≥ 0.

The largest root of the above exists and is given by,

βi =

√

2P̄i + 4wi + 4
√

wi(P̄i + wi)

2K1,i

which results in the desired condition for the bound on the

nominal state zi. Consider the special case where zi = βi,

then the requirement ei < 0 yields

−K1,iβ
2
i + P̄i

2K1,izi
< 0.

Solving the above with respect to K1,i and substituting with

the explicit form of βi results in the necessary condition

K1,i >

√

(P̄i + 4wi)2 − 12w2
i − 2

√

wi(P̄i + wi)

P̄i + 4wi

.

Note that the nominator of the above is always positive. Then,

similarly to case (a) it can be shown that both roots ∆3 and

∆4 are negative and ∆4 < ∆3.



The proof of Prop.1 reveals the existence of one negative and

one positive root of gi(ei, zi) around the origin given by the

functions α1, α2 : [βi,∞) → R, where

α1(zi) =
−(K1,iz

2
i − P̄i) +

√

(K1,iz
2
i − P̄i)2 + 4K1,iz

2
iwi

2K1,izi
,

(12a)

α2(zi) =
−(K1,iz

2
i − P̄i) +

√

(K1,iz
2
i − P̄i)2 − 4K1,iz

2
iwi

2K1,izi
.

(12b)

We are now able to define an explicit form of a candidate RPI

set using (12a) and (12b), i.e.

S(zi) := {ei ∈ R
n : α2(zi) ≤ ei ≤ α1(zi)}. (13)

Therefore, the canditate RPI set is “dynamic” in that its size

depends on zi; thus, by regulating zi one can effect the size of

the tube and, equivalently, the extent to which the load uncer-

tainty effects the voltage. In fact, the significance of Prop. 1

is that the tube width is a monotonically decreasing function

of the nominal voltage; thus, the effects of load uncertainty

can be reduced by raising nominal voltage levels. This is

demonstrated by the following result, where we investigate the

behaviour of the bounding functions α1(·) and α2(·), that later

will also be useful in proving the desired positive invariant

result.

Lemma 1: For all zi that satisfy Proposition 1, the function

α1(zi) (resp. α2(zi)) is a strictly decreasing (resp. strictly

increasing) function of zi, which attains a maximum (resp.

minimum) at zi = βi.

Proof: The derivative of (12a) is given by,

∂α1(zi)

∂zi
= −

(

P̄i +K1,iz
2
i

)

(

−γi +
√

γ2
i + 4K1,iz

2
iwi

)

2Kz2
√

γ2
i + 4K1,iz

2
iwi

.

(14)

where γi = K1,iz
2
i − P̄i. We have shown in the proof of

Prop.1 that the second parenthesis of the nominator is always

positive, hence we can conclude that
∂α1(zi)

∂zi
< 0 and α1(zi)

is a strictly decreasing in its domain. Therefore, it immediately

follows that it obtains a maximum at zi = βi. Similarly, we can

show that α2(·) is strictly increasing and obtains a minimum

value when zi = βi.

The next step is to address the continuity issue of the bounding

function (10), i.e. the discontinuity at the point ei = −zi. The

next result establishes that if zi ≥ βi > 0, then ei < zi is

guaranteed; thus, continuity of (10) is established for zi ≥ βi

and ei ∈ S(zi).
Lemma 2: Consider the error (7) and nominal (6) dynamics

respectively, if zi satisfies Proposition 1, then the relation zi >

ei is guaranteed for all ei ∈ S(zi) and all i ∈ M.

Proof: Using Lemma 1, we can formulate the necessary

condition

zi >
K1,iβ

2
i − P̄i

2K1,iβi

.

Using Prop. 1, at worst case scenario we obtain zi = βi, which

yields

K1,iβ
2
i > −P̄ .

This is always true and therefore zi + ei > 0 holds for all

ei ∈ Si(zi) and zi ≥ βi.

We are now ready to present the main result of this paper.

The set S(zi) is a RPI set for the error dynamics, when

the previously established conditions on the choice of tuning

parameters are met. This is shown in the following.

Theorem 1: The set S(zi) is a robust positive invariant set

for the error dynamics (7).

Proof: Using Prop. 1 and Lemma 2, we need to show

that the part of (10) that does not include the disturbance is

strictly negative. We will prove this by contradiction. Assume

that for all ei ∈ S(zi) it holds that

−

(

K1,i −
P̄i

zi(ei + zi)

)

e2i > 0.

This implies that in S(zi) we have

K1,i −
P̄i

zi(ei + zi)
< 0.

Note that in Lemma 2 we have guaranteed that zi(ei+zi) > 0.

Therefore,

ei <
P̄i −K1,iz

2
i

K1,izi
.

Substituting for the bounding function (12b) the above imply

−(K1,iz
2
i − P̄i) +

√

(K1,iz
2
i − P̄i)2 − 4K1,iz

2
iwi

2K1,izi
<

−P̄i −K1,iz
2
i

K1,izi
(15)

and thus

K1,iz
2
i − P̄i +

√

(K1,iz
2
i − P̄i)2 − 4K1,iz

2
iwi < 0.

However, it can be seen that K1,iz
2
i − P̄i > 0 by substituting

zi = βi. This leads to a contradiction as the left hand side

of the inequality is always positive and therefore the nominal

term of (10) is negative for all ei ∈ S(zi). Furthermore, it

is straightforward to show that the derivative of (10) does

not vanish at the boundary points. Finally, using the fact

that the third summand of (10) containing the disturbance is

non-negative, we can conclude that S(zi) is a robust positive

invariant set for the error dynamics. This completes the proof.

The advantage of the proposed technique is that the respec-

tive bounding functions (12a) and (12b) on the local error

dynamics depend solely on locally available information at the

ith node. In addition, the positive invariance property of the

error dynamics can be used to formulate a type of Tube-MPC

control scheme similar to [13], where the uncertainty-free

nominal dynamics are regulated to desired equilibria, while

satisfying a “tightened” version of the original constraint sets,

i.e.

Zi(zi) = Xi ⊖ Si(zi), (16a)

Ui(zi) = Ci ⊖ (−K1,i)Si(zi), (16b)

where Z(z), U(z) are the respective nominal constraint sets.



Remark 1: At this point, it is important to highlight the

interaction between the feedback gain and the sizes of the volt-

age and current constraint sets. Higher values of the gain K1,i

result in a “less tightened” state constraint set, which, however,

inversely affects the size of the input current constraint set.

This can be seen by the constraint set parametrisation in (16).

Therefore, the choice of the gain K1,i needs to made according

to the each individual case-study specifications to achieve the

desired result and guarantee that the above constraint sets are

non-empty. Furthermore, the condition zi ≥ βi needs to be

incorporated inside the constraint set either in a direct manner,

i.e. by intersecting the original constraint set, or indirectly

by enforcing a larger positive lower bound on the nominal

state. While the above may seem conservative, in practice

the majority of the applications require a substantially higher

voltage than the one resulting from the lower bound zi ≥ βi.

Ultimately, this also allows for the consideration of non-

empty constraint sets, since the tube width is a monotonically

decreasing function of the nominal voltage.

C. Closed-loop stability

In the previous section, we have shown boundedness of

the error dynamics by considering the nominal state as an

input. In the sequel, we show how to derive the stability

of the decomposed dynamics. First, we assume the nominal

dynamics can be driven to the desired reference point while

satisfying the parametrised constraint sets from (16). This is

formalised in the following assumption,

Assumption 2: There exist a control law ui(zi), such that

the solution of the nodal nominal dynamics (6) is driven to a

desired, admissible equilibrium point z̄i, while satisfying the

respective input and state constraint sets (16) at all times.

This assumption states that the proposed method can be

combined with any admissible and stabilizing control law for

(6). Initially, this may seem a strong assumption, however

one needs to consider that the uncertainty of the dynamics

is dealt within the proposed control method. Therefore, the

nominal dynamics are uncertainty-free, hence there exist a

plethora of different methods that satisfy Assumption 2, each

with its own merits. For example, one may choose a linear

feedback method to compensate the distance of the nominal

voltage state from some reference value, which however would

result in a relatively small Region of Attraction (RoA). On

the other hand, it is possible to achieve larger RoA of the

system equilibria by adopting more sophisticated methods, e.g.

an MPC-based approach that computes a control action by

considering the constraint requirements [13]. The following

Theorem formalises the fact that adopting the proposed control

method with any control law that satisfies Assumption 2

achieves the desired stability results of the cascaded dynamics.

Theorem 2: Let Assumptions 1 and 2 hold, then the decom-

posed dynamics given by (6),(7) admit asymptotically stable

equilibrium point (ē, z̄) in S(z̄)×Z(z̄) ⊆ X×C, where ui is

given by the control law postulated by Assumption 2.

Proof: Boundedness of the error dynamics follows from

Theorem 1, by considering the nominal state trajectory z(t) as

an exogenous input. Using Assumption 2, the nominal dynam-

ics admit asymptotically stable equilibrium points. Therefore,

1
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Fig. 1. Meshed MG with seven nodes locally connected to a CPL.

Time [ms] a1,7(z7)− a2,7(z7) [V] time-invariant tube [V]

0.15 0.4164 0.4735

0.2 0.4048 0.4735

0.6 0.4033 0.4735

TABLE I

COMPARISON BETWEEN THE DYNAMIC AND TIME-INVARIANT TUBE

WIDTH AT VARIOUS TIME INSTANTS FROM FIG 4.

combining the above and applying [15, Theorem 10.3.1], we

can conclude that the equilibrium pair (ē, z̄) is asymptotically

stable for the cascaded dynamics.

IV. SIMULATIONS

In this section, we illustrate the theoretical properties of

the proposed control scheme in a simulated scenario of a

low-voltage network with topology depicted in Fig. 1. The

network voltages are required to operate in the range 22 V ≤
v ≤ 26 V. The input current magnitude of the converter

is constrained as |iin,i| ≤ 15 A. The nominal load demand

is chosen at 100 W, with maximum perturbations restricted

in |δPi| ≤ 20 W. The tube upper and lower boundaries

for each node are constructed according to Section III, with

K1,i = 4, ∀i ∈ M. The respective lower bounds are computed

according to Proposition 1 as Ki,lb = 0.3786 and βi = 7.72 V.

A MPC setup similar to [13] is used for the regulation of the

nominal dynamics.

Reference changes occur at times t = 0, 0.5, 1 ms. Fig. 3

depicts convergence of the nominal trajectories to their re-

spective reference points, while the true voltage is always

contained within the dynamic tube. A clear demonstration of

the controller properties can be seen in Fig. 2, depicting the

state space of Node 1. Starting from initial state x(t0) =
(v(t0), iin(t0)) the nominal trajectory defines the centre of

the tube, with cross-sections shown by the rectangles, and the

uncertain trajectory is contained within the Cartesian product

of the constraint sets. Table I shows that the tube “shrinks”

as the value of the nominal voltage increases, validating the

conclusion drawn in Lemma 1 regarding the behaviour of

the bounding functions with respect to the nominal voltage

variations. In order to show the advantages of the proposed

approach, a comparison between the time invariant tube ap-

proach from [13] and the dynamic tube are illustrated in Fig. 4

and Table I for the regulation of Node 7. Therein, it is seen

that in the same operating conditions the dynamic tube avoids

activation of the constraint set and results in a faster response.

Despite the small differences in tube sizes, the time-invariant

tube approach demonstrates longer convergence time.
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Fig. 2. State space of Node 1. The constraint set Y = X × C is
depicted as and the tube cross-sections with . The nominal
voltage defining the centre of the tube is depicted with ( ) and the
uncertain trajectory with ( ).
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Fig. 3. Node uncertain and nominal voltages of Node 1 ( , ),
Node 2 ( , ), Node 3 ( , ), Node 4 ( , ), Node 5
( , ), Node 6 ( , ), and Node 7 ( , ). The black
solid lines represent the upper and lower bound respectively of the nodal
constraint set.
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Fig. 4. Voltage comparison between the proposed approach ( )
and the time-invariant tube ( ) from [13].

V. CONCLUSIONS

In this study, we have proposed a dynamic tube-based

control scheme for DC MGs with fluctuating load demand. We

showed that the structure of the dynamics can be exploited to

construct a tube that bounds all possible trajectories, stemming

from different load profiles, around a nominal trajectory gen-

erated by considering a constant nominal load. We formulated

conditions on the tuning parameters and the nominal trajectory

such that existence of the tube is guaranteed. It was revealed

that the size of the tube depends on the evolution of the

nominal trajectory, which was used to reduce conservativeness

arising from assuming a worst-case scenario for the nominal

voltage. The results of this study were demonstrated in a

simulated scenario of a meshed MG, where each node is

locally connected to a CPL. Future approaches aim to include

load forecasting techniques that estimate the magnitude of load

demand perturbations δPi and analyse the estimation effect on

the overall system stability, as well as experimentally test the

approach in medium-high voltage setups.
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