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Abstract

This note establishes the characterization, existence and uniqueness of equi-normalized polytopic robust positively invariant
sets for linear difference inclusions. The computation of this set results in a nonconvex optimization problem. Although this
may be reformulated exactly as a mixed integer linear programme, we propose a more practical and tractable alternative in
the form of a fixed-point iteration based on linear programming. Convergence of the algorithm is established.
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1 Introduction

Set invariance is an important technique in the analy-
sis and synthesis of systems under constraints and un-
certainty [1], the popularity of which has been particu-
larly amplified by its multifaceted use in model predic-
tive control [2]. The theory and computation of invari-
ant sets in various settings have led to a number of fun-
damental contributions addressing, inter alia, maximal-
ity [3–7] and minimality [6, 8] issues as well as approxi-
mation [9,10] and representation [7,11]. A more detailed
overview of numerous important contributions in set in-
variance and its use in model predictive control can be
found in the comprehensive monographs [1, 2].

A conceptually flexible and computationally promising
notion of equi-normalized polytopic robust positively in-
variant sets has emerged recently [12–14]. The theory
of these sets for linear systems is reasonably complete:
characterization and existence, in the setting of linear
systems controlled by continuous and positively homo-
geneous state feedback, were addressed in [12], while the
uniqueness aspect was addressed in [13] for the setting
of autonomous linear dynamics. Computational issues
are also well understood: for a given design collection of
points, the equi-normalized polytopic robust positively
invariant set can be computed by a standard fixed point
iteration [12] or by a single linear programme when the
dynamics are linear [13]. A systematic design of suitable

1 E-mail: sasa.v.rakovic@gmail.com. Tel.: +447799775366.

collections of points that generate equi-normalized poly-
topic robust positively invariant sets for linear dynamics
has also been recently developed [14]. The importance
of these sets stems from their uniqueness and minimal-
ity, with respect to set inclusion, over all polytopic ro-
bust positively invariant sets generated by a considered
design collection of points.

It is well known—see e.g. monographs [1, 2] and a re-
cent article [15] for a detailed discussion and numerous
references—that linear difference inclusions represent an
important and frequently deployed mathematical model
for parametrically uncertain linear dynamics. It is also
well known that the computation of robust positively in-
variant sets for linear difference inclusions is a significant
challenge [1]. This is one of the drivers for this note. An-
other driver is that the versatility of the equi-normalized
polytopic robust positively invariant sets would be con-
siderably enhanced if it were possible to generalize the
related theoretical and computational aspects to this set-
ting. The main contribution of this note is therefore the
study of equi-normalized polytopic robust positively in-
variant sets for linear difference inclusions. In terms of
theory, the characterization, existence and uniqueness
of such sets is established. In terms of computation, we
show that the natural formulation of the problem of find-
ing the equi-normalized robust postively invariant set
is nonconvex. Although this may be recast, exactly, as
a mixed-integer linear programming problem, we show
that a fixed-point iteration, based on linear program-
ming, offers a tractable and more practical alternative
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with guaranteed convergence.

Note Structure: Section 2 outlines the setting, notions,
and objectives. Section 3 establishes the characteriza-
tion, existence and uniqueness of the equi-normalized ro-
bust positively invariant sets for linear difference inclu-
sions, while Section 4 addresses the corresponding com-
putations. Section 5 provides a concluding discussion.

Nomenclature, Definitions and Conventions: The
sets of non-negative integers and reals are denoted by
N and R≥0. A compact and convex subset S of Rn that
contains origin in its interior is a proper C-set in R

n.
The intersection of finitely many closed half-spaces is a
polyhedral set. A polytopic set is a bounded polyhedral
set. The Minkowski sum of nonempty sets S1, S2 in R

n is

S1 + S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.

The image of a set S under a matrix M of compatible
dimensions, or a scalar M , is

MS := {Ms : s ∈ S}.

The convex hull of a set S is denoted by convh(S); for a
finite set of points SD = {si ∈ R

n : i ∈ I},

convh(SD) := {
∑

i∈I

λisi : ∀i ∈ I, λi ≥ 0,
∑

i∈I

λi = 1}.

For a finite set of matricesMD = {Mi ∈ R
n×n : i ∈ I},

convh(MD) := {
∑

i∈I

λiMi : ∀i ∈ I, λi ≥ 0,
∑

i∈I

λi = 1}.

The spectral radius ρ(M) of a matrix M ∈ R
n×n is

the largest absolute value of its eigenvalues. The joint
spectral radius ρ(MD) of a finite set of matrices MD =
{Mi ∈ R

n×n : i ∈ I} is

ρ(MD) := lim
k→∞

sup{‖Mi1Mi2 · · ·Mik‖
1/k : Mij ∈ MD}.

The support function h(S, ·) of a nonempty closed con-
vex subset S of Rn is given, for all x ∈ R

n, by

h(S, x) := sup
y
{x⊤y : y ∈ S}.

A nonempty closed convex subset S of Rn can be repre-
sented in terms of its support function h(S, ·) as

S = {x ∈ R
n : ∀z ∈ R

n, z⊤x ≤ h(S, z)}.

We do not distinguish between a variable and its vector-
ized form. Once introduced, Assumptions are utilized in
the subsequent discussion without explicit referencing.

2 Preliminaries

We consider an uncertain discrete time system modelled
as a linear difference inclusion

x+ ∈ F(x) with

F(x) := {Ax+ w : A ∈ convh(AD), w ∈ W}, (2.1)

where x ∈ R
n and x+ ∈ R

n are the current and successor
states, respectively, w ∈ R

n is the current disturbance,
A ∈ R

n×n is an admissible state transition matrix, and
AD is a finite set of matrices in R

n×n. We consider a
setting characterized by the following two assumptions.

Assumption 1 For a finite index set I := {1, 2, . . . , q},

AD := {Ai ∈ R
n×n : i ∈ I}, (2.2)

and the finite set of matrices AD is strictly stable, i.e.,
its joint spectral radius ρ(AD) is strictly less than 1.

Assumption 2 The set W is a proper C-set in R
n.

2.1 Robust Positively Invariant Sets

A proper C-set S in R
n is a robust positively invariant

set for the linear difference inclusion x+ ∈ F(x) specified
in (2.1) if and only if for all x ∈ S, all Ai ∈ AD and
all w ∈ W it holds that Aix + w ∈ S. Thus, the robust
positive invariance property of a proper C-set S in R

n

can be expressed by a system of set inclusions

∀i ∈ I, AiS +W ⊆ S, (2.3)

or by an equivalent system of the functional inequalities

∀z ∈ R
n, ∀i ∈ I, h(S, A⊤

i z)+h(W, z) ≤ h(S, z), (2.4)

which can be equivalently rewritten in a compact form

∀z ∈ R
n, max

i∈I
h(S, A⊤

i z) + h(W, z) ≤ h(S, z). (2.5)

A proper C-set S in R
n is the minimal, with respect to

set inclusion, closed convex robust positively invariant
set for the linear difference inclusion x+ ∈ F(x) speci-
fied in (2.1) if and only if it verifies the fixed point set
equation

convh(
⋃

i∈I

AiS) +W = S, (2.6)

or, equivalently, if and only if its support function h(S, ·)
verifies the following fixed point functional equation

∀z ∈ R
n, max

i∈I
h(S, A⊤

i z) + h(W, z) = h(S, z). (2.7)
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2.2 Polytopic Robust Positively Invariant Sets

A polytopic proper C-set P in R
n can be represented as

P = {x ∈ R
n : ∀j ∈ J , p⊤j x ≤ h(P, pj)}, (2.8)

in which J is a finite index set, {pj ∈ R
n \ {0} : j ∈

J } is a finite collection of points and, for all j ∈ J ,
0 < h(P, pj) < ∞. A polytopic proper C-set P in R

n is
a robust positively invariant set for the linear difference
inclusion x+ ∈ F(x) specified in (2.1) if and only if

∀j ∈ J , max
i∈I

h(P, A⊤
i pj) + h(W, pj) ≤ h(P, pj). (2.9)

A polytopic proper C-set P in R
n is an equi-normalized

robust positively invariant set for the linear difference
inclusion x+ ∈ F(x) specified in (2.1) if and only if

∀j ∈ J , max
i∈I

h(P, A⊤
i pj)+h(W, pj) = h(P, pj). (2.10)

2.3 Main Objectives

The objective of this note is to address the characteri-
zation, existence, uniqueness and computation of equi-
normalized polytopic robust positively invariant sets
for the linear difference inclusion x+ ∈ F(x) specified
in (2.1).

Specifically, for any ϕ = (ϕ1, ϕ2, . . . , ϕr) ∈ R
r
≥0

, we
consider a polytope

P(ϕ) := {x ∈ R
n : ∀j ∈ J , p⊤j x ≤ ϕj} with

J := {1, 2, . . . , r}, (2.11)

in which the r normal vectors to the defining halfspaces

{pj ∈ R
n \ {0} : j ∈ J }. (2.12)

are already chosen and meet the following assumption.

Assumption 3 For the finite collection of points
{p1, . . . , pr} there exists a ϕ = ϕ̂ ∈ R

r
≥0

such that

P = P(ϕ̂) satisfies (2.9).

This assumption requires the normals {p1, . . . , pr} to be
chosen in order that the set P(ϕ) can be made robust
positively invariant by suitable choice of ϕ; existence,
but not necessarily knowledge, of ϕ̂ is assumed. The de-
sign of a suitable set of points is discussed in [14], albeit
in the context of linear dynamics; design in the linear
difference inclusion case is a topic for future research.

The objective is then to determine the ϕ ∈ R
r
≥0

in or-

der that the polytopic proper C-set P(ϕ) satisfies the

equi-normalized form of the robust positive invariance
condition (2.10) (i.e., condition (2.9) with equality):

∀j ∈ J , h(P(ϕ), pj) = ϕj , and (2.13)

max
i∈I

h(P(ϕ), A⊤
i pj) + h(W, pj) = h(P(ϕ), pj). (2.14)

Such a ϕ, if it exists, defines a polytope P(ϕ) that is
minimal, with respect to set inclusion, among all robust
positively invariant polytopic sets generated by the same
points {p1, . . . , pr}.

3 Characterization, Existence and Uniqueness

To compactly discuss the characterization, existence
and uniqueness of the solution to the fixed point equa-
tion (2.13) and (2.14), let, for all j ∈ J ,

ψj := h(W, pj) and ψ := (ψ1, ψ2, . . . , ψr), (3.1)

as well as, for all j ∈ J and all ϕ ∈ R
r
≥0

,

fj(ϕ) := max
i∈I

h(P(ϕ), A⊤
i pj) and gj(ϕ) := fj(ϕ) + ψj , and

f(ϕ) := (f1(ϕ), f2(ϕ), . . . , fr(ϕ)) and

g(ϕ) := (g1(ϕ), g2(ϕ), . . . , gr(ϕ)). (3.2)

We now outline the most relevant facts that enable an
adequate utilization of the results established in [12,13].

Proposition 1 Suppose Assumptions 1, 2 and 3 hold.
Consider the vector ψ ∈ R

r and the functions f (·) and
g (·) defined in (3.1) and (3.2), respectively.

(i) 0 < ψ ≤ ϕ̂ and, for all ϕ ∈ R
r
≥0

, 0 ≤ f(ϕ) < ∞ and

0 < ψ ≤ g(ϕ) <∞.
(ii) f (·) : R

r
≥0

→ R
r
≥0

and g (·) : R
r
≥0

→ R
r
≥0

are
continuous and monotonically non-decreasing.

(iii) f (·) : R
r
≥0

→ R
r
≥0

is positively homogeneous of the
first degree, i.e., for all ϕ ∈ R

r
≥0

and all α ∈ R≥0,

f(αϕ) = αf(ϕ).
(iv) For all ϕ ∈ R

r
≥0

and all j ∈ J , h(P(f(ϕ)), pj) = fj(ϕ)

and h(P(g(ϕ)), pj) = gj(ϕ).

In light of Proposition 1(iv), the fixed point equa-
tion (2.13) with condition (2.14) is equivalently given by

f(ϕ) + ψ = ϕ i.e., g(ϕ) = ϕ, (3.3)

which yields directly the following characterization.

Theorem 1 Suppose Assumptions 1, 2 and 3 hold. A
polytopic proper C-set P(φ) in R

n parameterized as
in (2.11) and specified as in (2.8) is an equi-normalized
robust positively invariant set for the linear difference
inclusion x+ ∈ F(x) specified in (2.1) if and only if
φ ∈ R

r
≥0

verifies the fixed point equation (3.3).
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The existence of the fixed point verifying (3.3) follows
from the Brouwer fixed point theorem [16, Corollary in
Page 176] by an argument in the spirit of [12, Theorem 1].

Theorem 2 Suppose Assumptions 1, 2 and 3 hold. Con-
sider the function g (·) defined in (3.2) and let

G := {ϕ ∈ R
r : 0 ≤ ϕ ≤ ϕ̂}.

There exists a φ ∈ G such that g(φ) = φ.

The identified fixed point is, in fact, unique, which can
be verified by making an adequate, and relatively direct,
use of the arguments of the proof of [13, Theorem 3].

Theorem 3 Suppose Assumptions 1, 2 and 3 hold. Con-
sider the function g (·) : R

r
≥0

→ R
r
≥0

defined by (3.2).

There exists a unique φ ∈ R
r
≥0

such that g(φ) = φ, which

is also such that 0 < g(0) = ψ ≤ g(φ) = φ ≤ g(ϕ̂) ≤ ϕ̂.

The relevance of the properC-polytope P(φ), where φ =
g(φ), is summarized by an analogue of [12, Corollary 1].

Corollary 1 Suppose Assumptions 1, 2 and 3 hold and
let φ ∈ R

q
≥0

be the unique fixed point of (3.3). The proper

C-polytope P(φ) is the unique equi-normalized and the
minimal, with respect to set inclusion, robust positively
invariant set for the linear difference inclusion specified
by (2.1), which is generated via (2.11) by the collection
of points {p1, . . . , pr}.

4 Computation

In the setting of linear dynamics, the computation of the
fixed point φ via a single linear programme was devel-
oped in [13] and slightly expanded in [14]. In our setting,
an optimization problem P for the computation of the
unique solution φ ∈ R

q
≥0

of the fixed point equation (3.3)
takes the form

maximize ς1 + ς2 + . . .+ ςr
with respect to {ςj ∈ R}j∈J and {xj ∈ R

n}j∈J

subject to ∀j ∈ J , ςj ≤ max
i∈I

p⊤j Aixj ,

and ∀j ∈ J , ∀k ∈ J , p⊤k xj ≤ ςk + ψk.

If σ := (σ1, σ2, . . . , σr) is formed from the {ς0j ∈ R}j∈J

part of the maximizer of the optimization problem P
by setting, for all j ∈ J , σj := ς0j , then the unique

fixed point φ ∈ R
q
≥0

solving (3.3) is recovered by set-
ting φ = σ + ψ. Namely, by construction, for all j ∈ J ,
maxi∈I h(P(σ + ψ), A⊤

i pj) = σj , h(W, pj) = ψj and
h(P(σ + ψ), pj) = σj + ψj = φj . Despite this, the opti-
mization problem P is not a linear programme because
the constraints, for all j ∈ J , ςj ≤ maxi∈I p

⊤
j Aixj , de-

fine the hypograph of a set of convex functions.

Problem P may be recast as a mixed-integer linear
programming problem by associating a binary vari-
able with each i ∈ I in each of the r constraints
ςj ≤ maxi∈I p

⊤
j Aixj . Nonetheless, we propose a

tractable and more practical alternative to nonlinear
or mixed-integer optimization in the form of the fixed-
point iteration

∀k ∈ N, ϕk+1 = g(ϕk) i.e., ϕk+1 = f(ϕk) + ψ, (4.1)

with ϕ0 suitably defined. In these dynamics, determina-
tion of ψ as specified in (3.1), given the setW, is via con-
vex optimization prior to initialization of the iterations.
Likewise, given any ϕ, g(ϕ) and f(ϕ) defined in (3.2)
may be evaluated by first solving rq linear programming
problems specified, for each j ∈ J and each i ∈ I, by

h(P(ϕ), A⊤
i pj) = max

x
{p⊤j Aix : ∀ℓ ∈ J , p⊤ℓ x ≤ ϕℓ}

and then taking, for each j ∈ J , the maximum over
i ∈ I of h(P(ϕ), A⊤

i pj), i.e., for each j ∈ J ,

fj(ϕ) = max{h(P(ϕ), A⊤
1 pj), . . . , h(P(ϕ), A⊤

q pj)}.
(4.2)

The following, main result of this section establishes con-
vergence of this iteration from different initial points ϕ0.

Theorem 4 Suppose Assumptions 1, 2 and 3 hold.

(1) If ϕ0 = ψ then, for all k ∈ N,

ψ ≤ ϕk ≤ ϕk+1 = g(ϕk) ≤ ϕ̂.

(2) For any α ≥ 1, if ϕ0 = αϕ̂ then, for all k ∈ N,

ψ ≤ ϕk+1 = g(ϕk) ≤ ϕk ≤ αϕ̂.

Moreover, in either case, the sequence {ϕk}k≥0 converges
monotonically to the unique solution φ of the fixed point
equation (3.3), which is such that ψ ≤ g(φ) = φ ≤ ϕ̂.
Furthermore, if for some k ∈ N, ϕk+1 = ϕk then φ = ϕk.
Moreover, for all ε > 0, there exists a finite k∗ ∈ N such
that, for all k ∈ N, k ≥ k∗, it holds that |ϕk − φ|∞ ≤ ε.

The sandwich theorem helps then to establish asymp-
totic convergence from an arbitrary initial point.

Theorem 5 Suppose Assumptions 1, 2 and 3 hold. For
any α ≥ 1, if ϕ0 is such that ψ ≤ ϕ0 ≤ αϕ̂, then {ϕk}k≥0

generated by (4.1) converges asymptotically to the unique
solution φ of the fixed point equation (3.3).

5 Discussion

The fixed-point iteration results in a convergence to the
unique solution φ of the fixed point equation (3.3) via
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Fig. 1. Illustration of P(φ) (solid), A1P(φ) + W (dashed)
and A2P(φ) +W (shaded) for the (q, r) = (2, 50) case.

solving a sequence of linear programming problems. Ta-
ble 1 demonstrates this convergence for the LDI sys-
tem (2.1) with AD = convh({A1, A2}), with

A1 =

[
0.7216 0.0119

0.0117 0.7096

]
, A2 =

[
−0.0254 0.1530

0.2633 0.7272

]
,

and W = {w : ‖w‖∞ ≤ 0.1}. The points {p1, . . . , pr}
are chosen so that P(1) is the regular r-sided polygon in
R

2; it is verified that ϕ̂ = 1 meets Assumption 3 in this
case. Figure 1 illustrates the equi-normalized set P(φ).

The set AD was augmented with further randomly
generated Ai matrices in a manner that AD remained
strictly stable. Likewise, the set P(1) was refined with
additional, uniformly spaced points to make an r = 50-
sided regular polygon. The results are shown in Table 1.
The number of iterations required for q = 4, r = 50 is
comparable to the (q, r) = (2, 8) case. With q = 8, the
set P(1) does not meet the robust positive invariance
condition and more iterations were required.

In comparison to these results, we found that the mixed
integer linear programming formulation scales poorly
and performs unpredictably: although the (q, r) = (2, 8)
and (8, 8) problems solved in, respectively, 0.1 s and 20 s
using CPLEX 22.1.1, the (2, 50) problem required 18.5 h
to solve on the same platform.

This note has addressed the characterization, existence,
uniqueness and computation of the equi-normalized
polytopic robust positively invariant sets for the linear

Table 1
Results for different q (number of vertices in the system
description) and r (number of halfspaces in the description
of P). The termination criterion was |ϕk+1 − ϕk|∞ < 1e−6.

(q, r) (2, 8) (2, 50) (4, 8) (4, 50) (8, 8) (8, 50)

Iterations 41 47 43 43 95 99

LPs per iter. 16 100 32 200 64 400

ϕ0 meets A3 Yes Yes Yes Yes No No

difference inclusions, which opens up space for their
utilization for the design of improved tube model pre-
dictive controllers. Additional relevant lines for future
research include a systematic design of suitable collec-
tion of points {p1, . . . , pr}, and exploitation of the dual
form of the support functions in order to provide an
accelerated fixed-point iteration.

Appendix A: Proof of Proposition 1. (i) These
facts follow from (3.1) and (3.2). (ii) By the virtue
of [12, Proposition 1], for each j ∈ J and each i ∈ I,
the functions ϕ 7→ h(P(ϕ), A⊤

i pj) are continuous
and monotonically non-decreasing over R

r
≥0

. Thus,

in light of [17, Proposition 1.26(c)], for each j ∈ J ,
the functions ϕ 7→ fj(ϕ) = maxi∈I h(P(ϕ), A⊤

i pj)
and ϕ 7→ gj(ϕ) = fj(ϕ) + ψj are continuous over
R

r
≥0

, and, due to their definitions, the functions

ϕ 7→ fj(ϕ) and ϕ 7→ gj(ϕ) are also monotonically
non-decreasing over Rr

≥0
. (iii) Clearly, for all ϕ ∈ R

r
≥0

and all α ∈ R≥0, P(αϕ) = αP(ϕ), and, in turn,
for each j ∈ J , h(P(αϕ), pj) = h(αP(ϕ), pj) =
α h(P(ϕ), pj). By the same token, for all ϕ ∈ R

r
≥0

and
all α ∈ R≥0, and for each j ∈ J and each i ∈ I,
h(P(αϕ), A⊤

i pj) = α h(P(ϕ), A⊤
i pj). In turn, for all

ϕ ∈ R
r
≥0

and all α ∈ R≥0, and for each j ∈ J ,

maxi∈I h(P(αϕ), A⊤
i pj) = αmaxi∈I h(P(ϕ), A⊤

i pj).
Thus, for all ϕ ∈ R

r
≥0

and all α ∈ R≥0, f(αϕ) = αf(ϕ),

as claimed. (iv) These facts follow from (2.11) and (3.2).

Appendix B: Proof of Theorem 2. By monotonicity
of the function g (·), for all ϕ ∈ G, 0 < g(0) = ψ ≤
g(ϕ) ≤ g(ϕ̂) ≤ ϕ̂, where g(ϕ̂) ≤ ϕ̂ by Assumption 3.
Thus, g (·) maps G to itself. Since g (·) is continuous, G
is a convex and compact subset of Rr

≥0
, and g (·) maps G

to itself, the Brouwer fixed point theorem guarantees the
existence of the claimed point φ ∈ G such that g(φ) = φ.

Appendix C: Proof of Theorem 4. By Theorem 2,
g (·) maps G to itself. Thus, ϕ0 ∈ G implies ϕk ∈ G
for all k ∈ N. If, for any k ∈ N, ϕk ≤ ϕk+1 then, by
monotonicity of g (·), ϕk+1 = g(ϕk) ≤ g(ϕk+1) = ϕk+2.
Thus, ϕk ≤ ϕk+1 implies ϕk+1 ≤ ϕk+2. Clearly, for
0 < ϕ0 = ψ, g(0) = ψ = ϕ0 ≤ ϕ1 = g(ψ) ≤ ϕ̂, so
ϕ0 ≤ ϕ1. Claim (1) then follows by induction. Thus, the
sequence {ϕk}k≥0 is monotonically nondecreasing and
every ϕk ∈ G. Since G is compact and g (·) is continu-
ous, it follows that {ϕk}k≥0 converges to a limit ϕ such
that ϕ = g(ϕ). By Theorem 3 such a point is the unique
fixed point φ and, hence {ϕk}k≥0 converges monotoni-
cally from below to φ. Claim (2) follows by applying the
same arguments starting from the fact that if ϕk+1 ≤ ϕk

then ϕk+2 ≤ ϕk+1, and then noting that, for any α ≥ 1,
ϕ0 = αϕ̂ implies ϕ1 ≤ ϕ0. The finite convergence asser-
tion is hopefully clear, while the numerical convergence
assertion follows directly from the fact that the sequence
{ϕk}k≥0, from either initial point, is convergent.

Appendix D: Proof of Theorem 5. Let ϕ
k
, ϕk, ϕk
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denote the iterates from the respective initial pointsψ =:
ϕ
0
, ϕ0 (such that ψ ≤ ϕ0 ≤ αϕ̂) and αϕ̂ =: ϕ0 with α ≥

1. Since ϕ
0
≤ ϕ0 ≤ ϕ0 monotonicity of g (·) yields ϕ

k
≤

ϕk ≤ ϕk for all k ∈ N. Hence, since g (·) is continuous,
G is compact, and {ϕ

k
}k≥0 and {ϕk}k≥0 are convergent

to the same limit φ = g(φ) ∈ G, the sequence {ϕk}k≥0

is also convergent to the same limit φ = g(φ) ∈ G.
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