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Abstract 30 

Rehabilitation of patients with lower limb movement disorders is a gradual process, 31 

which requires full-process assessments to guide the implementation of rehabilitation 32 

plans. However, the current methods can only complete the assessment in one stage and 33 

lack objective and quantitative assessment strategies. Here, we develop a full-process, 34 

fine-grained, and quantitative rehabilitation assessments platform (RAP) supported by 35 

on-skin sensors and a multi-task gait transformer (MG-former) model for patients with 36 

lower limb movement disorders. The signal quality and sensitivity of on-skin sensor is 37 

improved by the synthesis of high-performance triboelectric material and structure 38 

design. The MG-former model can simultaneously perform multiple tasks including 39 

binary classification, multiclassification, and regression, corresponding to assessment 40 

of fall risk, walking ability, and rehabilitation progress, covering the whole 41 

rehabilitation cycle. The RAP can assess the walking ability of 23 hemiplegic patients, 42 

which has highly consistent results with the scores by the experienced physician. 43 

Furthermore, the MG-former model outputs fine-grained assessment results when 44 

performing regression task to track slight progress of patients that cannot be captured 45 

by conventional scales, facilitating adjustment of rehabilitation plans. This work 46 

provides an objective and quantitative platform, which is instructive for physicians and 47 

patients to implement effective strategy throughout the whole rehabilitation process. 48 
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1. Introduction 49 

Many diseases such as stroke, Parkinson's disease, hemophiliac arthritis, etc., affect 50 

the human body in the form of abnormal gait, resulting in the rising prevalence of lower 51 

limb movement disorders, which cause great inconvenience or even life-threat to the 52 

large number of patients[1]. For instance, there are about 10 million new cases of stroke 53 

alone every year in the world, of which more than 70% of patients suffer from 54 

movement disorders. Modern medical theory and clinical medicine have proved that 55 

apart from early surgical and pharmacological treatment, scientific rehabilitation 56 

training is equally important for patients with lower limb movement disorders[2]. In 57 

particular, gait analysis and walking ability assessment are critical components in 58 

rehabilitation medicine that allow physicians to assess ambulatory ability, diagnose 59 

diseases, and formulate personalized rehabilitation programs[3]. However, conventional 60 

gait analysis and walking ability assessment depend on the observation of physicians 61 

regarding patients' movement, resulting in subjective results, while assessments based 62 

on conventional scales lack fine-grained results[4]. For example, the conventional 63 

Brunnstrom scale consists of only six levels, and the Tinetti gait assessment scale can 64 

only give integer values within 0-12 points, which is difficult to capture the slight 65 

progress made by patients in rehabilitation[5]. Besides, the assessment process is usually 66 

carried out manually by physicians, which is difficult to meet the growing needs of 67 

rehabilitation due to the workload burden[6]. 68 

The rapid development of sensing technology has rendered gait analysis and 69 

rehabilitation assessments more convincing with the support of quantitative data, which 70 

provides a new assessment approach for clinicians to formulate more refined training 71 

programs[7]. Among them, vision-based motion capture systems acquire spatial-72 

temporal parameters during walking, which can provide comprehensive information 73 
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about human movement[8]. Nonetheless, the motion capture systems are usually 74 

complex and expensive, requiring skilled operators, and the recognition results can be 75 

significantly affected by camera position and ambient light intensity[5a]. In terms of 76 

wearable devices, inertial measurement units (IMUs) or pressure sensors are widely 77 

adopted solutions to obtain information of human gait[9]. However, the gait monitoring 78 

devices equipped with IMUs are bulky and inflexible, causing not only discomfort but 79 

also errors in velocity and position data due to noise and signal drifting, while utilizing 80 

plantar pressure distribution information alone is inadequate for those who require more 81 

detailed gait information[10]. Besides, the surface electromyography (sEMG) combined 82 

with kinematic and kinetic data is an effective approach to further assess muscle activity 83 

levels and gait coordination[11]. Nevertheless, the weak sEMG signal strength (in 84 

microvolts) and low signal-to-noise ratio affect the accuracy of assessment[12]. A 85 

potential solution to address the above challenges lies in triboelectric sensors, which 86 

are widely used to sense human motion and physiological activities by the high-quality 87 

electric signals[11b, 13]. Fundamentally, the surface charge density induced by the 88 

difference in electron affinity between two triboelectric materials greatly determines 89 

the performance of triboelectric sensors[14]. Therefore, synthesis and optimization of 90 

triboelectric materials are essential to achieve high electron affinity differences to 91 

enhance the output performance of triboelectric sensors[15]. 92 

Artificial intelligence technology has been widely adopted for disease diagnosis and 93 

rehabilitation assessments, which has greatly promoted major progress in the field and 94 

provided more reliable yet simpler solutions to complicated tasks. Previous studies have 95 

utilized multi-feature fusion methods or support vector machines (SVM) by integrating 96 

dynamic and physiological data to distinguish different walking patterns in stroke 97 

patients. However, the multi-feature fusion and SVM require prior feature selection and 98 



 

5 

extraction, which may be suboptimal for time-series data, such as complex gait 99 

signals[16]. Although deep learning approaches including convolutional neural networks 100 

(CNN) and long short-term memory (LSTM) can automatically learn gait features, the 101 

quantitative assessment of patients' walking ability cannot be achieved [17]. Besides, the 102 

current algorithmic models can only perform a single-task in one stage of rehabilitation, 103 

which hardly meets the needs of full-process rehabilitation assessments[18]. Hence, a 104 

full-process and fine-grained rehabilitation assessments platform to quantitatively 105 

assess the walking ability of patients is still highly desired. 106 

In this work, we develop cost-effective on-skin sensors and an MG-former model to 107 

build a full-process, fine-grained, and quantitative RAP for patients with lower limb 108 

movement disorders. The on-skin sensors based on the coupling effect of contact 109 

electrification and electrostatic induction are attached on the surface of dominant 110 

muscle/tendon groups in lower limb to detect the deformation of skin during dynamic 111 

gait movements and generate a series of electric signals. In addition, the signal quality 112 

of the on-skin sensor is improved by synthesized triboelectric material and structure 113 

design, with an average peak amplitude approximately 470 times higher than that of 114 

traditional biopotential electromyography methods, demonstrating a promising method 115 

for diagnosis and rehabilitation assessments. Based on the tasks of binary classification, 116 

multiclassification, and regression performed by the MG-former model, the RAP can 117 

complete the fall risk assessment, walking ability assessment, and rehabilitation 118 

progress assessment, which covers the whole rehabilitation cycle and realizes full-119 

process rehabilitation assessments (Stage 1-3 in Figure 1a). By means of continual 120 

learning, the MG-former model achieves an iterative update that improves the 121 

assessment accuracy of the RAP from 90.67% to 93.33%. Besides, the results of the 122 

RAP-based assessment of 23 hemiplegic patients match the scores obtained by 123 



 

6 

experienced physician according to the conventional Tinetti gait assessment scale. 124 

Furthermore, the rehabilitation progress assessment of patients with lower limb 125 

movement disorders for three consecutive weeks is completed to capture the slight 126 

progress based on the regression prediction task of the MG-former model, which is 127 

instructive for enhancing the patients' motivation and adjusting the rehabilitation plans. 128 

 129 

2. Results 130 

2.1 Overview of the RAP and working principle 131 

Figure 1a serves as a proof-of-concept demonstration of the full-process, fine-grained, 132 

and quantitative RAP based on on-skin sensors for gait diagnosis and rehabilitation 133 

assessments of patients with lower limb movement disorders, including fall risk 134 

assessment (Stage 1), walking ability assessment (Stage 2), and rehabilitation progress 135 

assessment (Stage 3), respectively. The flexible on-skin sensors are positioned on key 136 

muscle groups in the lower limb, which monitor overall movement patterns and 137 

behaviors of the patients, providing valuable data for gait diagnosis and rehabilitation 138 

assessments. The RAP integrates time-frequency domain analysis and MG-former 139 

model to perform multiple tasks such as binary classification (Task 1), 140 

multiclassification (Task 2), and regression (Task 3), corresponding to fall risk 141 

assessment, walking ability assessment, and rehabilitation progress assessment, 142 

respectively (Figure 1d). Here, a pair of high-elasticity triboelectric materials 143 

(polydimethylsiloxane/CaCu3Ti4O12 nanoparticles (PDMS/CCTO) composite film and 144 

electrically conductive composites (ECC)) were developed to ensure the sensor can be 145 

conformally attached to detect subtle deformation resulting from lower limb movement 146 

during gait monitoring and rehabilitation assessments. Figure 1b presents a schematic 147 

diagram of the on-skin sensor, which consists of upper and lower layers. The upper 148 
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layer is formed by a PDMS encapsulation layer, a PDMS/CCTO composite triboelectric 149 

layer, and a silver nanowires (AgNWs)-based top electrode. The uppermost PDMS film 150 

can be used as an encapsulation layer to protect AgNWs, which can reduce the 151 

interference of charges carried on external objects and improve the sensing accuracy. 152 

Figure S2a illustrates the scanning electron microscopy (SEM) image of AgNWs, 153 

which clearly shows that the single AgNW with a diameter of about 60 µm and the 154 

AgNWs are interspersed with each other to form a conductive network, improving the 155 

ductility of electrodes. The lower layer of on-skin sensor consists of ECC as bottom 156 

electrode and triboelectric layer, and a PDMS substrate with arc-shaped protrusions 157 

arranged in a circumferential array[19]. Notably, the arc-shaped protrusions were utilized 158 

as the support structure for better separation after contact between the two triboelectric 159 

layers.  160 

Figure S2b shows the cross-sectional diagram of the ECC, where the thicknesses of 161 

PDMS substrate and ECC electrode are about 220 μm and 50 μm, respectively, which 162 

facilitates the conformal adhesion of on-skin sensor to skin surface to effectively 163 

perceive the deformation of muscle/tendon. Besides, the side contacted with 164 

PDMS/CCTO composite film presents a rough surface (Figure S2c), which increases 165 

the effective contact area of the triboelectric layers, improving the signal quality. Both 166 

the materials of the triboelectric pair in our study are highly stretchable and flexible 167 

(maximum tensile limit of about 100%), enabling the accurate monitoring of skin 168 

deformation (Figure S2d and e). More importantly, the ECC can be prepared with the 169 

same polymer as the substrate, such as PDMS, to ensure strong adhesion between 170 

interconnects and the substrate. Figure 1c-i and c-ii display the front and side optical 171 

images of the on-skin sensor, respectively, and the specific fabrication details are 172 

displayed in Section 4 and Figure S1a and b. Figure S2f-h show the on-skin sensor 173 
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during various mechanical deformation such as stretching, twisting, and bending, 174 

demonstrating its good flexibility. Notably, all of the materials for building the key 175 

components of the on-skin sensor are low-cost and fabricated through inherently 176 

scalable and cost-effective methods. The fabricated on-skin sensor can actively capture 177 

somatosensory signals by muscle motion (flexion and extension) and convert them into 178 

distinguishable electric signals based on the coupling of triboelectrification and 179 

electrostatic induction effect. The detailed working principle is elaborated in Figure S3 180 

and Note S1, Supporting Information.  181 
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 182 
Figure 1. Schematic illustration of the RAP. a) The proof-of-concept demonstration of 183 
the full-process rehabilitation assessments platform. b) Schematic diagram of the on-184 
skin sensor. c-i and c-ii) The front and side optical images of the on-skin sensor. d) 185 
Schematic diagram of the full-process rehabilitation assessments for patients with lower 186 
limb movement disorders based on MG-former model. 187 
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2.2 Performance optimizations and characterizations of the on-skin sensor 188 

Typically, the output of the triboelectric sensor is inextricably related to the surface 189 

charge density of the triboelectric material[15]. The maximum surface charge density (σ) 190 

is proportional to εr/d (
r

d

ε
σ ∝ ), where εr and d are the relative dielectric constant and 191 

effective dielectric thickness of the triboelectric layer[20]. Based on literature review 192 

results (Table S10)[15, 21], CCTO with a significantly higher dielectric constant (εr = 193 

7500) was selected as the dopant to improve the performance of the on-skin sensor. The 194 

CCTO is typical cubic-shape nanocrystal with an average particle size of ∼300 nm, 195 

which are demonstrated by the SEM, transmission electron microscopy (TEM) and X-196 

ray Diffraction (XRD) results (Figure 2a-c)[21e]. The inset of Figure 2a shows that 197 

elemental mapping was performed by energy dispersive spectroscopy (EDS) 198 

measurement to confirm the distribution of Ti, O, Cu, and Ca. Figure 2d shows the εr 199 

of composite films with different weight percentages (wt%) of CCTO. The results 200 

indicate that the addition of CCTO can significantly improve the εr of the PDMS/CCTO 201 

composite film. Specifically, compared to pure PDMS, the εr of PDMS/CCTO 202 

composite film is greatly enhanced from 4.7 (0wt% CCTO) to 8 (20wt% CCTO) at a 203 

frequency of 1k Hz. The incorporation of high dielectric constant materials, such as 204 

CCTO, into the base material (PDMS) enhances the dielectric constant by strengthening 205 

the polarization effect. This is attributed to the strong electric dipoles and high charge 206 

densities in the molecular structure of these materials, which facilitate charge 207 

redistribution and rearrangement under an external electric field[15]. The formation of 208 

strong polarization interfaces between the high dielectric constant materials and PDMS 209 

further enhances the polarization effect, leading to an increase in the dielectric constant 210 
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of the composite films. Figure 2f displays the dependence of εr on temperatures ranging 211 

from 25 ℃ to 125 ℃ at frequency of 1 kHz, where εr decreases slightly with increasing 212 

temperature, which suggests that the PDMS/CCTO composite films exhibit excellent 213 

thermal stability. The surface roughness of the PDMS/CCTO composite films is shown 214 

in Figure 2g. It can be observed that the surface roughness of composite films increases 215 

with the increase of the content of CCTO. This can be attributed to the fact that as the 216 

doping concentration of CCTO increases, some CCTO particles tend to aggregate and 217 

cluster on the surface of the PDMS/CCTO composite film, leading to an increase in 218 

surface roughness[21d]. The surface potential of the composite films was also examined 219 

by Kelvin probe force microscopy (KPFM) to further clarify the relationship between 220 

the doping content and the surface potential of the composite films. The contact 221 

potential difference (VCPD) between the testing sample and platinum (Au) tip is 222 

determined by the equation:[22] 223 𝑉஼௉஽ = ఝ೟೔೛ିఝೞೌ೘೛೗೐ି௘                                                           (1) 224 

where φtip and φsample represent the work function of the tip and the sample, 225 

respectively, e is electronic charge (1.6 × 10-19 C). Since φtip is constant, the work 226 

function of the sample increases with the decrease of VCPD value. The increase in work 227 

function renders the electron energy level lower, leading to easier reception of electrons 228 

on the PDMS/CCTO composite films during contact electrification. Figure 2h-i depicts 229 

that the VCPD of pure PDMS is only -2.53 V, demonstrating the weak electron reception 230 

ability. By gradually adding CCTO powder into PDMS with gradient, the VCPD value 231 

of the composite films was changed from -3.04 V (4%) to -5.51 V (20%), leading to a 232 

significant improvement in the charge-attracting property (Figure 2h-ii to Figure 2h-vi). 233 
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 234 

Figure 2. Characterizations and optimizations of the PDMS/CCTO composite films. 235 
The a) SEM, b) TEM, and c) XRD of CCTO nanoparticles. d) The εr and e) leakage 236 
current density of PDMS/CCTO composite films with the CCTO content from 0 to 20 237 
wt%. f) The εr as a function of temperature at 1 kHz. g-h) The surface roughness and 238 
surface potential of  the PDMS/CCTO composite films with different content of CCTO. 239 
 240 

To evaluate the effect of CCTO content on the surface charge density of the 241 

composite film, the performance of the on-skin sensor made from composite films with 242 

different doping ratios were systematically characterized. As can be seen from Figure 243 

3a-c, the open circuit voltage (VOC), short circuit current (ISC), and short circuit transfer 244 

charge (QSC) increase initially followed by an obvious decrease from wt% of 0% to 245 

20%. The highest value of the VOC, ISC, and QSC is 11.4 V, 0.4 μA, and 3.11 nC, 246 

respectively, at the doping ratio of 16%. Besides, when the content of CCTO is 0% (i.e., 247 

pure PDMS), the VOC, ISC, and QSC are only 6.99 V, 0.23 µA, and 2.02 nC, which is 248 

increased by 64%, 73%, and 53%, respectively, when the wt% reaches 16%. This is due 249 
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to the increase of εr for composite film to capture charges, which improves the 250 

performance of the on-skin sensor. In other words, the more negative the surface 251 

potential value of PDMS/CCTO composite films, the more electron receiving ability 252 

can be enhanced, which is consistent with the corresponding electrical output 253 

characteristics of the electron (Figure 2h). Nevertheless, it is worth noting that the VOC, 254 

ISC, and QSC decreased obviously at a CCTO content of 20%, which is due to the fact 255 

that a high content of CCTO leads to a significant increase in the leakage current inside 256 

the composite film (Figure 2e), thereby canceling out the triboelectric charges and 257 

ultimately decreasing the output performance[20]. In addition, we also further 258 

investigated the output performance of the on-skin sensor under different external 259 

forces (Figure S5a-c), a linear motor (Figure S6) controlled by computer programming 260 

was used to provide different loads and observed that output performance increased 261 

gradually with increasing external force from 3.7 V, 0.14 μA, and 1.41 nC at 5 N to 11.4 262 

V, 0.4 μA, and 3.11 nC at 25 N. This is because the increase in the external force 263 

increases the effective contact area between the two triboelectric layers, resulting in 264 

more charge transfer to enhance the output performance. 265 

Optimizing the performance of the on-skin sensor involves not only analyzing the 266 

influence of triboelectric materials, but also considering the structure of the sensor. Here, 267 

the shape of the on-skin sensor was designed to be circular because the curvature of the 268 

circular boundary is the same, which results in a small and uniform stress distribution[23]. 269 

The height of the arc-shaped protrusion (h) and the size of the central angle (α) were 270 

chosen as key parameters to further investigate the subtle relationship between the on-271 

skin sensor structure and its performance. Figure 3d shows the stress distribution of on-272 

skin sensors with different α, which were analyzed by finite element analysis. Clearly, 273 

the stress is relatively more uniform when α is decreasing at the same applied pressure 274 
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(1 N). However, a relatively smaller central angle (10°) results in a smaller area for each 275 

arc-shaped protrusion, which leads to poor adhesion with the upper layer and affects 276 

the durability of the on-skin sensor. Therefore, 15° is selected as the center angle in this 277 

work. This carefully selected angle ensures that the stress distribution remains relatively 278 

uniform while maintaining a sufficient area for each arc-shaped protrusion, thereby 279 

promoting robust adhesion and durability. The height of the arc-shaped protrusion 280 

determines the distance between the two triboelectric layers. Figure 3e describes the 281 

influence of the height of the arc-shaped protrusions (0.4, 0.8, and 1.8 mm) on the 282 

output signal of the on-skin sensor. Specifically, the on-skin sensor with h of 0.8 mm 283 

achieved the best sensitivity, reaching 0.79 V/N, higher than the other two sensors in 284 

the same force range (0.5-3 N). In addition, the signal obtained by the on-skin sensor 285 

was compared with the commercial sEMG electrode to further demonstrate the 286 

superiority of the on-skin sensor to retrieve muscle/tendon movement information. 287 

Figure 3f shows the placement of an on-skin sensor (position 1) and the commercial 288 

sEMG electrodes (position 1-3) on the right lower limb, which demonstrates the 289 

convenience of the on-skin sensor. It is evident that the signal of the on-skin sensor 290 

(1124 mV) displays more distinctive feature than sEMG signal (2.39 mV) during 291 

dorsiflexion of foot movement, with an average peak amplitude approximately 470 292 

times higher than sEMG (Figure 3g). Furthermore, the quality of the on-skin sensor 293 

signal exhibits a significantly higher signal-to-noise ratio (SNR) of 34.07 dB in 294 

comparison with the sEMG device's SNR of 18.34 dB (Figure 3h). The on-skin sensor's 295 

higher sensitivity allows it to capture more subtle signals, but it may also amplify the 296 

noise floor, resulting in a smaller difference in SNR compared to sEMG. Therefore, 297 

although the average amplitude of the on-skin sensor is much larger than that of the 298 

sEMG signal, the SNR of the on-skin sensor is not significantly increased compared 299 
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with the sEMG signal due to large signal noise. The more in-depth derivation and 300 

calculation can be obtained from Note S2, Supporting Information. Figure 3i depicts 301 

that the response and recovery time of on-skin sensor under the same pressure are only 302 

53.6 ms and 64.2 ms, respectively, which further ensure the effective capture of human 303 

gait-related triboelectric signals. The performance of the on-skin sensor remains almost 304 

constant after about four months (Figure S7a) and 4, 000 cycles under different loading 305 

forces (Figure 3j and Figure S7b-f, corresponding to 4 N, 5 N, 10 N, 15 N, 20 N, and 306 

25 N, respectively.), which proves the great stability and reliability of the on-skin sensor 307 

as a feasible method for long-term rehabilitation monitoring applications. Besides, 308 

Figure S7b and g-i illustrate the relationship between the humidity and the output 309 

performance of the on-skin sensor. It is worth noting that although the increase in 310 

humidity inhibits the active ability of some of the electrons, resulting in a slight 311 

decrease in performance, the output of the on-skin sensor remains relatively stable at 312 

54% humidity. 313 
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 314 

Figure 3. Characterizations and optimizations of the on-skin sensor. a-c) The VOC, ISC, 315 
and QSC of the on-skin sensor with different content of CCTO. d) The stress distribution 316 
of the on-skin sensor with different α were analyzed by finite element analysis. e) The 317 
influence of the height of the arc-shaped protrusions on the output signal of the on-skin 318 
sensor. f) The schematic illustration showing the placement of the on-skin sensor and 319 
the commercial sEMG electrodes on the right lower limb. g) The corresponding output 320 
voltage signals generated by the on-skin sensor and the sEMG electrodes, respectively. 321 
h) The SNR value of the on-skin sensor and sEMG electrodes. i) The response and 322 
recovery time of the on-skin sensor. j) The stability testing of the on-skin sensor. 323 
 324 
2.3 Diagnosis and symptom analysis of abnormal gait 325 

As one of the most common behavioral characteristics, gait is not only instinctively 326 

controlled by human joints, muscles, and nervous system, but also affected by key 327 
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information such as biomechanical and kinematic parameters[24]. According to the 328 

muscle functions of each part in Table S1, the rectus femoris (RF), vastus lateralis (VL), 329 

tibialis anterior (TA), and gastrocnemius (GM) were selected as signal source muscles 330 

for diagnosis and rehabilitation assessments (Figure S8)[25]. Figure S9a and b illustrate 331 

the optical images of the on-skin sensors on the lower limbs, respectively. The on-skin 332 

sensor is firmly adhered to the skin surface by a medical waterproof polyurethane (PU) 333 

film[26]. Besides, a pair of force sensing resistors (FSR) labeled FSR1 and FSR2 were 334 

arranged on the front and back sides of a shoe to capture plantar pressure signals during 335 

walking (Figure S9c).  336 

As depicted in Figure 4a and b, the gait phase of one lower limb, which can be 337 

divided into stance phase (Pre-stance, Mid-stance, and Ter-stance) and swing phase 338 

(Pre-swing and Ter-swing) by plantar pressure signals, where the stance phase is 339 

characterized by the stability of body's center of gravity, while the swing phase involves 340 

the active forward swing of lower limb[27]. Figure 4b and Figure S10a illustrate the gait 341 

signals generated by a healthy subject (H1) walking on a treadmill at regular speed. It 342 

can be seen that most of the signals of on-skin sensors generated by muscle triggering 343 

occur in swing phase, which is due to the fact that during the swing phase, the human 344 

body needs to quickly adjust the posture and orientation as well as maintain the body 345 

balance. Specifically, during the stance phase the muscles are in a contracted state 346 

causing the two triboelectric layers to contact each other so that no charge transfer 347 

occurs (Figure S3i). In contrast, the muscle relaxation during the swing phase causes 348 

the two triboelectric layers to separate, generating a variable electric field that drives 349 

the flow of free electrons in an external circuit to form a current (Figure S3ii). As can 350 

be observed from Figure 4b, the time interval (T) between voltage signal peaks can 351 

represent step frequency (1/T), while the signal amplitude reflects the strength of 352 
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contraction or propulsion force generated by the muscle. Meanwhile, the duration of 353 

stance phase is about 60% of the whole gait cycle, which can also be demonstrated by 354 

the experimental results of two other subjects (Figure S10b and c). We further 355 

investigated the attachment of the on-skin sensor to the skin and evaluated its stability 356 

and potential skin irritation or discomfort during long-term wear. It can be seen that 357 

after 2 hours of continuous wear, there is no adverse reaction, irritation or discomfort 358 

on the part of the human skin in contact with the sensor or PU film (Figure S10e and f). 359 

Besides, the human skin in contact with the sensor can be recovered to the initial state 360 

in about 8 minutes (Figure S10h-j), which again demonstrates that the on-skin sensor 361 

does not cause irritation or discomfort to the skin even if worn for a long time. Moreover, 362 

the upper and lower layers of the on-skin sensor are connected tightly without any 363 

delamination (Figure S10g). The stability of the on-skin sensor was demonstrated 364 

through long-term testing of the subject wearing the on-skin sensor (e.g., tibialis 365 

anterior (TA)), as shown in Figure S10d. The result shows that there is no obvious decay 366 

or degradation of the output voltage during gait data collection, which validates good 367 

stability and reliability of on-skin sensor. 368 

In general, the impact of many diseases on the human body is exhibited in the form 369 

of abnormal gait. For instance, the gait of the patient with post-stroke hemiplegia 370 

(Figure 4c) is mostly characterized by instability, poor symmetry, abnormal rhythm, 371 

and reduced balance and coordination[6]. Figure 4d and e present the gait signals of two 372 

post-stroke hemiplegic patients (P1 and P2, as shown in Figure S11a and b, 373 

corresponding to Movie S1 and Movie S2.) during walking at an adaptive speed on a 374 

treadmill. As shown in Figure 4f and Movie S1, the peak-to-peak value of the on-skin 375 

sensor signal generated by GM muscle deformation (VPP-GM) is the highest in a normal 376 

person, followed by the unaffected side of P1, while the affected side of P1 is the lowest. 377 
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Notably, the power spectral densities of VPP-GM also exhibit a similar trend, which can 378 

give a key feature to assess the progress made by the patients during rehabilitation. This 379 

difference is mainly due to the reduced or even loss of motor ability on the side of body 380 

caused by the damage of central nervous system (CNS), while the muscle strength on 381 

the unaffected side is relatively stronger, which renders the muscle deformation more 382 

pronounced during walking and enhances the amplitude of the triboelectric signals[28]. 383 

Besides, as presented in Figure 4d-i and d-ii, the duration of the stance phase on the 384 

affected side is slightly shorter than that on the unaffected side (t1U > t1A), while the 385 

swing phase shows the opposite trend (t2U < t2A). This is because hemiplegia has 386 

reduced weight-bearing capacity on the affected side, which cannot provide adequate 387 

support during walking. In order to maintain the stability of the body, it is necessary to 388 

rely on the unaffected side to compensate for part of the weight[6, 29]. Therefore, patients 389 

with post-stroke hemiplegic walk with a shorter duration of stance phase and a longer 390 

duration of swing phase on the affected side compared to the unaffected side, 391 

demonstrating an asymmetry in the spatiotemporal parameters of gait. For P2 (Movie 392 

S2), the gait signal on the unaffected side presents the same irregular characteristics as 393 

the affected side, which can be reflected by the low amplitude and chaotic oscillatory 394 

signals from the sensors (Figure 4e-i and e-ii). This is because the P2 is more severely 395 

than P1 and requires orthosis to maintain correct posture and provide stable support in 396 

daily life. Clearly, long-term compensation for the loss of muscle function on the 397 

affected side also affect the function of the unaffected side.  398 
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 399 
Figure 4. Diagnosis and symptom analysis of patients with post-stroke hemiplegia (P1 400 
and P2). a) Schematics of a typical gait cycle and b) the corresponding signals of normal 401 
walking. c) Schematic diagram of walking for a stroke patient with hemiplegia. The 402 
gait signals on the unaffected side d-i) and affected side d-ii) of P1. The gait signals on 403 
the unaffected side e-i) and the affected side e-ii) of P2. f) The voltage signals (top) 404 
generated by the GM of H1, the unaffected side, and affected side of P1, respectively, 405 
and their power spectral densities (bottom).  406 
 407 
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2.4 The full-process rehabilitation assessments platform based on MG-former 408 

model 409 

The full-process rehabilitation assessments (Stage1-3: fall risk, walking ability, and 410 

rehabilitation progress assessment) are indispensable parts of the rehabilitation process 411 

for patients with lower limb movement disorders, which is of great importance in 412 

guiding rehabilitation programs and ensuring patients safety. Falls, as one of the 413 

common adverse events in the rehabilitation process of patients with lower limb 414 

movement disorders, have a serious impact on the subsequent rehabilitation of 415 

patients[30]. Therefore, the fall risk assessment is the first part of the assessment, which 416 

is considered as the foundation of fall prevention. Besides, the quantitative and 417 

objective walking ability assessment is essential to accurately understand a patient's 418 

current level of rehabilitation, which is crucial for making personalized rehabilitation 419 

plans[5a]. Furthermore, the fine-grained rehabilitation progress assessment can capture 420 

the slight progress made by patients, which is beneficial for enhancing the patient's 421 

motivation and adjusting the rehabilitation plans. 422 

Here, we proposed an MG-former model to take advantages of potential relationship 423 

between multiple tasks to improve performances on multiple interrelated tasks. Figure 424 

5a demonstrates the schematic structure of the MG-former model, which can 425 

simultaneously perform multiple tasks including binary classification (Task 1), 426 

multiclassification (Task 2), and regression (Task 3). The MG-former model based on 427 

self-attention mechanism of transformer can provide rich and robust contextual 428 

information when processing sequential data, which is beneficial to accurately capture 429 

local or global features in the gait signal and adaptively learn the correlation between 430 

different parts[31]. During the data collection process, we employed a 30 Hz low-pass 431 

filter using an NI data acquisition card to remove high-frequency noise and interference. 432 
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This filtering step is crucial in obtaining high-quality gait signals from the on-skin 433 

sensors. The signals with periodicity from on-skin sensors and FSR, which contain 434 

diversified information about a dynamic gait cycle, e.g., stride frequency and contacting 435 

force between feet and shoes, are cut into a sequence of patches. The size of the patch 436 

is closely related to the accuracy of the modelling algorithm, which is set to 100 samples 437 

(0.1 seconds × 1000 Hz). Then, the patch sequences are fed into the MG-former model, 438 

which consists sequentially of linear projection of patches, position embedding, stacks 439 

of transformer encoders, and multitask heads. Each transformer encoder encompasses 440 

layer normalization, multi-head self-attention, and multi-layer perceptron (MLP). 441 

Finally, the walking ability assessment results are generated from the corresponding 442 

task heads. To provide sufficient depth and modelling capability for gait data, the 443 

structure of the 8-layer transformer encoder stack was designed. Specifically, each 444 

encoder has an 8 attention heads, a forward propagation dimension size of 512, and an 445 

MLP with a single layer dimension size of 2048. In addition, the gaussian error linear 446 

unit (GELU) was used as the activation function as well as maintaining a dropout rate 447 

of 0.1. With each subject, the whole data was divided into the training set (60%) and 448 

testing set (40%). The detailed description of the MG-former model is presented in Note 449 

S3, Supporting Information.  450 

2.4.1 Task 1: The screening for abnormal gait for fall risk assessment (Stage 1) 451 

Many diseases affect the human body in the form of abnormal gait, leading to 452 

increased risk of falls due to balance dysfunction in patients. Therefore, abnormal gait 453 

screening can be utilized for fall risk assessment, which is of great significance for 454 

physicians to implement early interventions to ensure patient safety. Here, an attending 455 

physician from the department of rehabilitation medicine with 10 years of clinical 456 

experience in rehabilitation assessment was invited to assess the  fall risk of patients 457 
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according to the conventional Berg Balance Scale (BBS), which served as the golden 458 

standard[32]. Specifically, the total score of the BBS is 56 points, with a lower score 459 

indicating weaker balance function, and the score less than 40 points indicates the 460 

greater risk of falling (Table S2). The results of fall risk assessment from the 461 

experienced physician for 15 post-stroke hemiplegic patients (P1-P15, Table S3) in 462 

Table S4. Based on the gold standard from the experienced physician, the patients were 463 

categorized into two distinct groups: individuals with a lower risk of falling (The score 464 

of BBS greater than 40 or equal to 40 points) and those with a higher risk (The score of 465 

BBS less than 40 points). Through analyzing the gait data of the patients, the MG-466 

former model enables automated fall risk assessment through binary classification 467 

(Task 1). This process identifies the high-risk population promptly, facilitating timely 468 

interventions and preventive measures. 469 

In order to visualize the overall clustering of the entire gait dataset, we introduced t-470 

distributed stochastic neighbor embedding (t-SNE) in the 2D feature space. The two 471 

different colors represent subjects at lower fall risk (light blue) and higher fall risk (rosy 472 

red) and each point refers to a sample of gait data projected from the high-dimensional 473 

to two dimensions. Figure 5b and c illustrate the t-SNE distributions of subjects with 474 

lower and higher fall risk in output layer of the MG-former model before and after 475 

training when performing the binary classification task (Task 1). The results 476 

demonstrate that there is an optimal feature clustering after training with the MG-former 477 

model, in which subjects with higher and lower fall risk display less overlap and strong 478 

interclass separability. 479 

2.4.2 Task 2: The objective and quantitative walking ability assessment (Stage 2) 480 

After performing the fall risk assessment, the experienced physician was invited to 481 

assess the walking ability of the patient according to the conventional Tinetti scale 482 
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(Table S5)[5a].  483 

Firstly, the walking ability of the patients (P1-P15) was assessed by the experienced 484 

physician based on the Tinetti scale (0-12 points) as the gold standard (Table S6) for 485 

the assessment of the MG-former model. Each point on the Tinetti scale is considered 486 

a category in 13 categories, where the higher score represents the better walking ability 487 

of the subject. Then, the MG-former model combines the high-quality gait signals 488 

captured by the on-skin sensors with the gold standard to achieve quantitative 489 

assessment. Specifically, a 13-category classification task (Task 2: multiclassification) 490 

based on the MG-former model was also implemented to quantitatively assess the 491 

walking ability of 9 healthy subjects and 15 post-stroke hemiplegic patients by 492 

supervised learning. Finally, the output category of the model is the prediction score of 493 

the corresponding patients. 494 

Since the gait signal is a periodic time-sequence signal, an appropriate sliding 495 

window length is crucial for capturing the signal features of the complete gait cycle. At 496 

the same time, it can effectively avoid the computational complexity caused by a large 497 

sliding window length and the incomplete signal feature capture due to a short sliding 498 

window length. Figure 5d demonstrates the effect of different sliding window lengths 499 

on the accuracy of gait assessment, which corresponds to a maximum of 96.18% 500 

accuracy when the sliding window length is 15 s. As presented in Figure 5e and Figure 501 

S12, the results of walking ability assessment by means of the RAP are almost identical 502 

to the scores given by the physician based on the conventional Tinetti gait assessment 503 

scale, which demonstrates the validity of the RAP. It is worth noting that the results of 504 

the walking ability assessment using RAP are presented in the form of mean and 505 

standard deviation. This is because each subject's data is divided into multiple samples 506 

using a sliding window, as mentioned earlier. Then, these samples are sequentially input 507 
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into the MG-former for assessment, and the average value and standard deviation of 508 

each subject's assessment results are calculated. A smaller standard deviation indicates 509 

lower variability in the assessment results, which implies more reliable outcomes. 510 

Figure 5f illustrates the training process of MG-former model, highlighting the changes 511 

in accuracy and overall loss function, as well as demonstrating that the neural network 512 

can quickly obtain high recognition accuracy and exhibit good stability.  513 

As shown in Figure S14a-e, different types of classification algorithms including 514 

CNN, LSTM, fully connected networks (FCN), SVM, and random forest (RF) were 515 

used to assess the walking ability of hemiplegic patients with stroke (P1-P15). By 516 

comparing the different algorithms, it is found that the accuracy of MG-former model 517 

is better than other models (Figure 5g), which indicates that MG-former model shows 518 

clear advantages in processing sequential data. This is because the MG-former model 519 

is attention mechanism-based and elucidates the nature of the input sequence, 520 

dispensing with recurrence and convolutions entirely, thereby allowing input 521 

dependencies modeling without regard to distance and enabling the assessment of 522 

complex long-range correlations[31]. Meanwhile, the MG-former model enjoys 523 

significant parallelizability and global receptive field thanks to self-attention. Therefore, 524 

the MG-former model tends to achieve superior performance in large-scale and 525 

complex sequential data tasks, especially gait signals. Clinically, hemiplegic gait 526 

usually exhibits common characteristics such as decreased step length and gait velocity, 527 

as well as increased bilateral asymmetry. However, there are also differences in age, 528 

physical condition, and severity that inevitably lead to individual differences in gait of 529 

hemiplegic patients. Therefore, it is difficult to build a comprehensive dataset for the 530 

gait of hemiplegic patients at one time. Continual learning of the model is an optimum 531 

strategy to solve the above problems. The detailed description of the iterative update of 532 
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the MG-former model is presented in Note S4, Supporting Information.  533 

 534 

Figure 5. Rehabilitation assessments based on the MG-former model. a) The schematic 535 
structure of the MG-former model. b-c) The t-SNE distributions of subjects with higher 536 
and lower fall risk in output layer of the MG-former model before and after training 537 
when performing the binary classification task. d) The effect of different sliding 538 
window lengths on the accuracy of assessment. p-Values were calculated using a one-539 
way ANOVA program with Tukey’s multiple comparisons post hoc test. (*p < 0.05, 540 
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**p < 0.01, ***p < 0.001, and ns = no significant difference). Data in d) are presented 541 
as mean values ± SD, n = 5. e) The comparison of the results of walking ability 542 
assessment by an experienced physician and RAP for 15 post-stroke hemiplegic patients 543 
(P1-P15). Data in e) are presented as mean values ± SD, n = 3. f) Loss-accuracy curve 544 
during model training. g) The comparison of walking ability assessment results based 545 
on different types of machine learning model. 546 
 547 
2.4.3 Task 3: The fine-grained rehabilitation progress assessment (Stage 3) 548 

Rehabilitation progress assessment (Figure 6a) plays an essential role in making 549 

rehabilitation plans, preventing complications, and assessing progress during the long-550 

term rehabilitation process. However, conventional rehabilitation progress assessment 551 

methods struggle to capture these subtle advances, as they usually fall below the 552 

minimum precision discernible by such scales. Therefore, in order to further precisely 553 

and quantitatively track the progress made by the patients in rehabilitation process, the 554 

MG-former model performs the third task (Task 3), i.e. regression prediction (Figure 555 

6b). As shown in Figure 6c-i and c-ii, two patients (PL1 and PL2, Table S9) with lower 556 

limb movement disorders, were invited to perform monitoring for three consecutive 557 

weeks. As shown in Figure 6d-f and Movie S3-S5, the VPP-GM of PL1 gradually increased 558 

from 0.6 V to 5.11 V after 3 weeks of rehabilitation and the average energy also 559 

gradually increased (Figure S18), which indicated that the muscle strength of patient 560 

was improved, as well as indirectly proved the effectiveness of the implemented 561 

rehabilitation strategy. As presented in Figure S19a, by observing the pressure signals 562 

of FSR (VFSR) of PL2, it was found that the patient exhibited an abnormal gait during the 563 

walking, characterized by simultaneous elevation and descent of the heel and the toe. 564 

Excitingly, the abnormal gait of PL2 was recovered after three weeks of rehabilitation 565 

training, and the value of FSR2 gradually increased to FSR1, indicating an even 566 

distribution of force between the heel and toes during walking (Figure S19a-c and 567 

Movie S6-S8). Furthermore, the comparisons of the VPP-GM of PL2 over three weeks 568 

reveals a clear increase in the amplitude and the average energy of the triboelectric 569 
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signal (Figure S21), suggesting that the level of muscle strength of the patient has been 570 

improved. The detailed descriptions of PL1 and PL2 is presented in Note S5, Supporting 571 

Information.  572 

As for the MG-former model, it allows each task to benefit from co-training with 573 

other related tasks, which jointly improves the generalization of the model. Thus, the 574 

Task 3 can utilize the gait information from Task 1 and Task 2, especially the gait data 575 

from the previous 23 patients (P1-P23), to achieve efficient learning under inexact 576 

supervision. Specifically, the regression task head of the MG-former model 577 

incorporates an additional 8 decoder layers to further capture the slight progress of the 578 

patient's rehabilitation process, which includes both time-domain information (Figure 579 

6g and Figure S20) and frequency-domain information (Figure S18 and S21). At the 580 

same time, the gait data excluding PL1 and PL2 were used as the training set and the 581 

mean square error of minimizing the assessment scores was taken as the objective 582 

function. After training, the MG-former model assessed the walking ability of PL1 and 583 

PL2 based on their multiple sets of sliding window data over three weeks and output a 584 

continual value (in the range of 0-12 points) as the result of the walking ability of the 585 

patients. The mean of the patient's walking ability assessment results of each week was 586 

used as the final result for that week to obtain a more objective assessment. Therefore, 587 

the score indicates the walking ability of the patient, where higher score demonstrates 588 

better physical recovery. In contrast to the discrete values (integer values in the range 589 

of 0-12 points) output from performing the classification task (Task 2), the MG-former 590 

model can output continual value (continuous values in the range of 0-12 points) when 591 

performing the regression task (Task 3), which can assess the slight progress of patients 592 

in the rehabilitation process that cannot be captured by conventional scales. Figure 6h 593 

and i display the fine-grained rehabilitation progress assessment results based on MG-594 
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former model within 3 weeks for PL1 and PL2, respectively. Clearly, the assessment 595 

results of PL1 within three weeks were 7.94, 7.89, and 8.42 points respectively, which 596 

showed that the rehabilitation progress was not obvious in the first and second weeks, 597 

but there was a greater improvement in the third week. For PL2, the walking ability of 598 

the patient was steadily improving during the rehabilitation period, gradually increasing 599 

from 7.9 to 8.1 points. By capturing the slight progress made by PL2 in the rehabilitation 600 

process through the RAP, the PL2 are encouraged to actively participate in rehabilitation 601 

and enhance his self-confidence. Specifically, the VFSR2 gradually increased from 0.46 602 

V to 1.41 V close to the VFSR1 after 3 weeks of rehabilitation (Figure S19a-c). It is worth 603 

noting that, compared with the coarse-grained assessment results of the conventional 604 

Tinetti gait assessment scale (integer values in the range of 0-12 points, e.g., 7 or 8 605 

points), the RAP based on the regression task of the MG-former model can capture the 606 

slight progress of the patient's rehabilitation process with fine-grained assessment 607 

results (continuous values in the range of 0-12 points, e.g., 7.9 or 8.1 points), which is 608 

beneficial for adjusting the rehabilitation plans and improving the patient's motivation. 609 

Moreover, the fine-grained assessment results provided by RAP can identify potential 610 

issues in the rehabilitation process for early intervention and prevention of 611 

complications. This is important for patients with lower limb movement disorders, 612 

where small improvements can have a significant impact on their overall quality of life. 613 

In addition, slight improvement shown by fine-grained assessment results can also 614 

improve self-confidence and encourage the patients to be more active to participate in 615 

rehabilitation.616 
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 617 

Figure 6. The fine-grained rehabilitation progress assessment based on the MG-former 618 
model. a) The diagram of rehabilitation tracking. b) The schematic structure of the MG-619 
former model performs the regression prediction. c-i and c-ii) The photos of patients 620 
(PL1 and PL2) with lower limb movement disorders. d-f) The complete gait signals on 621 
the affected side of PL1 for 3 weeks during rehabilitation. g) The evolution of the time 622 
intervals (T) and VPP-GM for PL1 with the rehabilitation period. h-i) The rehabilitation 623 
progress assessment results of PL1 and PL2 for three consecutive weeks based on the 624 
MG-former model. Data in h) and i) are presented as mean values ± SD, n = 3. 625 
 626 
3. Discussion 627 

In summary, we have reported a full-process, fine-grained, and quantitative RAP for 628 

patients with lower limb movement disorders, which covers the whole rehabilitation 629 
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cycle and realizes an objective and quantitative rehabilitation assessments. Compared 630 

with existing methods that can only perform a single-task in one stage of rehabilitation 631 

and hardly meet the needs of full-process rehabilitation assessments, this work provides 632 

a quantitative and fine-grained approach, which can perform multiple tasks including 633 

binary classification, multiclassification, and regression, corresponding to fall risk 634 

assessment, walking ability assessment, and rehabilitation progress assessment, 635 

respectively, which is beneficial for physicians and patients to implement effective and 636 

timely plans throughout the whole rehabilitation process. The flexible and lightweight 637 

on-skin sensors allow for direct contact with human skin to enhance the wearing 638 

comfort, and the signal quality of on-skin sensor is improved by material and structure 639 

design, resulting in a higher SNR compared with commercial sEMG electrodes. By 640 

continual learning, the MG-former model achieves an iterative update that allows the 641 

RAP to quantitatively assess the walking ability of 23 hemiplegic patients, and the 642 

results agree with the scores given by the physician according to the conventional 643 

Tinetti gait assessment scale, verifying the accuracy of the method. It is noteworthy that 644 

the application of machine learning not only renders the results of rehabilitation 645 

assessment more objective and precise, but also saves a considerable amount of labor 646 

costs. Furthermore, the RAP based on the regression task of the MG-former model can 647 

accurately assess the patient's slight progress in the rehabilitation process with fine-648 

grained assessment results, outperforming the coarse-grained assessment of 649 

conventional walking ability assessment scales. The fine-grained rehabilitation 650 

progress assessment of patients with the support of RAP was carried out for three weeks, 651 

which provided timely feedback to the physicians for developing more effective next 652 

step of rehabilitation program.  653 

 654 
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4. Methods 655 

Fabrication of the on-skin sensor 656 

Firstly, the PDMS (Dow Corning 184) solution was prepared by pouring the curing 657 

agent to the base (with a 10:1 mixture of silicone prepolymer and curing agent). The 658 

PDMS mixture was supplemented with CCTO nanoparticles at varying weight 659 

percentages (0, 4, 8, 12, 16, and 20 wt%) and stirred uniformly for 20 minutes. Secondly, 660 

the PDMS/CCTO composite film was fabricated by spinning the coating solution onto 661 

an acrylic plate (diameter of 1cm) with a pattern at a spinning rate of 350 rpm for 45 s 662 

and then cured at 70 °C for 80 min. The composite film was stripped and the AgNWs 663 

solution (Nanjing XFNANO Materials Tech Co., Ltd) sprayed on the surface of the 664 

patterned side as the top electrode of the on-skin sensor. After curing the AgNWs, a 665 

layer of PDMS was spin-coated on the surface as an encapsulation layer. Then, the 666 

PDMS solution was dropped onto an acrylic mold (diameter of 1cm) with circular 667 

indentations, followed by placing it in a vacuum and allowing it to settle for 20 minutes 668 

to ensure complete filling of the PDMS. The width of the arc-shaped protrusion was 669 

fixed at 1 mm. Next, spin-coating was performed at a rate of 350 rpm to ensure a smooth 670 

surface of the PDMS and cured in an oven at 70 °C for 60 min. After curing, the 671 

prepared ECC was coated on its inner surface as the positive triboelectric layer and the 672 

bottom electrode. Finally, the upper and lower layer of the sensor were assembled using 673 

PDMS as an adhesive to form the on-skin sensor with a diameter of 1 cm. 674 

Fabrication of the ECC 675 

After being repeatedly washed with anhydrous ethanol, the silver powder was mixed 676 

with PDMS matrix in a grinding bowl at a mass ratio of 3:1 and homogenized by 677 

grinding for 10 minutes to achieve a uniform mixture. 678 

Characterizations and electrical output measurements 679 



 

33 

The programmable high-impedance electrometer (Keithley Instruments Model 6514) 680 

and a commercial force sensor (Xiamen Enlai Automatic Technology Co. Ltd.) were 681 

connected to the USB-6536 data acquisition card (National Instruments) to measure the 682 

electrical outputs of the on-skin sensor. The force of 5-25 N was obtained by adjusting 683 

the contact separation distance of the linear motor (LinMot, PS01-23 × 80-R). The 684 

surface and cross-section morphology of ECC, AgNWs, and CCTO powder were 685 

obtained by SEM (Hitachi SU3900). The dielectric properties were measured via a LCR 686 

meter (TZDM-RT-1000) over a frequency range of 1 kHz to 300 kHz. The 687 

crystallographic structure of the CCTO powder was tested using X-ray diffraction 688 

(XRD, Bruker D8 Advance) with Cu Kα radiation (2θ range: 20◦–90◦). The surface 689 

roughness and surface potential of composite film were characterized by KPFM (Park 690 

Systems, XE100). 691 

The MG-former model with continual learning 692 

There were three tasks in the MG-former model, and each task had the same input 693 

space (input data), which can be expressed as 𝑿 = ൛𝒙௝ൟ௝ୀଵ௡ , where 𝑛 represented the 694 

number of samples. The output space (predicted values) for each task varies, denoted 695 

as 𝒀௜ = ൛𝑦௜,௝ൟ௝ୀଵ௡ , 𝑖 = 1,2,3 . The learning goal of MG-former model was to find the 696 

optimal functions 𝑓௜ to minimize the following cumulative multitask loss: 697 ℒ = ∑ ∑ 𝛼௜ℒ௜൫𝑓௜൫𝒙௝൯, 𝑦௜,௝൯௡௝ୀଵଷ௜ୀଵ                                      (2) 698 

where ℒ௜൫𝑓௜൫𝒙௝൯, 𝑦௜,௝൯ ≜ 𝒞௜൫𝑓௜൫𝒙௝൯, 𝑦௜,௝൯ + λ௜‖𝑓௜‖ଶ , 𝒞௜  was a cost function for task 𝑖 , 699 ‖𝑓௜‖ଶ was the regularization term with parameter λ௜ to control overfitting. The 𝛼௜ were 700 

the trade-off parameters among tasks. 701 

When new data 𝑿′ = ൛𝒙௝′ൟ௝ୀଵ௡ᇱ  , 𝒀௜′ = ൛𝑦௜,௝′ൟ௝ୀଵ௡ᇱ  was collected, a knowledge 702 

distillation method based on teacher-student framework was introduced into the MG-703 
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former model. 704 

The cumulative loss of the student model on the new data was as follows: 705 ℒ′ = ∑ ∑ 𝛼௜ℒ௜൫𝑓௜′൫𝒙௝′൯, 𝑦௜,௝′൯௡ᇱ௝ୀଵଷ௜ୀଵ                                        (3) 706 

However, direct minimization causes the student model to forget the old knowledge. 707 

Therefore, the teacher model was still needed to guide the learning process by 708 

minimizing the distillation loss: 709 ℒௗ௜௦௧௜௟௟௔௧௜௢௡ = ଵ௡ᇱ∑ 𝑑 ቀ𝒛௜′൫𝒙௝′൯, 𝒛௜൫𝒙௝′൯ቁ௡ᇱ௝ୀଵ                                   (4) 710 

where 𝒛௜(𝒙)  and 𝒛௜′(𝒙)  donate the output layer representations of the teacher model 711 

and student model at input 𝒙, respectively. The function 𝑑(∙,∙) computes the similarity 712 

between two representations, which was defined as the Euclidean distance in this paper. 713 

Then, the overall loss of the student model was defined as: 714 ℒ௦௧௨ௗ௘௡௧ = 𝛽ଵℒ′ + 𝛽ଶℒௗ௜௦௧௜௟௟௔௧௜௢௡                                            (5) 715 

where 𝛽ଵ and 𝛽ଶ were trade-off parameters that control the balance between multi-task 716 

cumulative loss and distillation loss. The detailed description was presented in Note S4, 717 

supporting information. 718 
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Statistical Analysis 725 

All data were processed and analyzed in Microsoft Excel, MATLAB (MathWorks), 726 

and Origin. All data were presented as the mean ± the standard deviation (SD) with at 727 

least 3 samples unless reported elsewise. Statistical significance of the variance was 728 
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evaluated by the GraphPad prism (Version 7.0) using the one-way analysis of variance 729 

(ANOVA) program with Tukey’s multiple comparisons post hoc test. Values of *p<0.05, 730 

**p<0.01 and ***p<0.001 were considered statistically significant. And "ns" mean no 731 

significant difference.  732 
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