
This is a repository copy of Probabilistic estimation of vehicle speed for autonomous
vehicles using deep kernel learning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/217491/

Version: Accepted Version

Proceedings Paper:
Apriaskar, E., Liu, X., Horprasert, A. et al. (1 more author) (2025) Probabilistic estimation
of vehicle speed for autonomous vehicles using deep kernel learning. In: 2024 12th
International Conference on Control, Mechatronics and Automation (ICCMA). The 12th
International Conference on Control, Mechatronics and Automation (ICCMA 2024), 11-13
Nov 2024, London, UK. Institute of Electrical and Electronics Engineers (IEEE) , pp. 23-28.
ISBN 979-8-3315-1752-6

https://doi.org/10.1109/ICCMA63715.2024.10843894

© 2024 The Author(s). Except as otherwise noted, this author-accepted version of a
proceedings paper published in 12th International Conference on Control, Mechatronics
and Automation (ICCMA) is made available via the University of Sheffield Research
Publications and Copyright Policy under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution and
reproduction in any medium, provided the original work is properly cited. To view a copy of
this licence, visit http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Probabilistic Estimation of Vehicle Speed for

Autonomous Vehicles using Deep Kernel Learning

Esa Apriaskar∗

School of Electrical and Electronic Engineering

University of Sheffield, United Kingdom

Department of Electrical Engineering

Universitas Negeri Semarang, Indonesia

eapriaskar1@sheffield.ac.uk

Xingyu Liu

School of Electrical and Electronic Engineering

University of Sheffield, United Kingdom

xliu231@sheffield.ac.uk

Amornyos Horprasert

School of Electrical and Electronic Engineering

University of Sheffield, United Kingdom

ahorprasert1@sheffield.ac.uk

Lyudmila Mihaylova

School of Electrical and Electronic Engineering

University of Sheffield, United Kingdom

l.s.mihaylova@sheffield.ac.uk

Abstract—Perception systems of autonomous vehicles (AVs)
play a crucial role in achieving different levels of autonomy and
interpreting information from complex traffic environments. The
inherent uncertainties are a persistent factor. While some envi-
ronmental features can be directly measured by certain sensors,
measuring accurately the velocity of moving vehicles presents
a substantial challenge. To this end, this paper demonstrates
the utilisation of a powerful non-parametric method, Gaussian
process regression, in combination with a method that leverages
deep neural networks, known as Deep Kernel Learning (DKL),
to estimate the vehicle speed using other existing data in the
simulation that are considered feasible in real-world scenarios.

The methodology is experimentally evaluated in a single ring-
shaped traffic simulation where an autonomous vehicle (AV)
drives together with human-driven vehicles (HDVs). The study
reveals that the approach significantly enhances the accuracy
and confidence of speed estimation with 64.58% and 50%
improvements in the root mean square error (RMSE) for 525 and
3000 training data, respectively. It outperforms the conventional
Gaussian processes, which suffer from a large dataset.

Index Terms—autonomous vehicle, Gaussian processes, speed
estimation, deep kernel learning, SUMO

I. INTRODUCTION

Autonomous vehicles (AVs), which have been extensively

studied and developed for decades, have demonstrated promis-

ing potential in traffic smoothing. The control algorithms have

evolved from conventional control methods, which aim to

imitate the human driving behavior [1], to advance machine

learning techniques such as reinforcement learning (RL) [2],

demonstrating outstanding performance in improving the traf-

fic flow across various traffic environments. Despite their

The authors thank the Indonesia Endowment Fund for Education (LPDP)
for the funding support during the PhD research of Esa Apriaskar with
contract no. 20230722299644. We are also grateful to the support from the UK
EPSRC through Project NSF-EPSRC: “ShiRAS: Towards Safe and Reliable
Autonomy in Sensor Driven Systems”, under Grant EP/T013265/1. ShiRAS
was also supported by the USA National Science Foundation under Grant
NSF ECCS 1903466.
∗Corresponding author, ORCID = 0000-0002-2171-1958

differences, these algorithms share one common requirement:

properly perceiving and processing significant environmental

information to execute specific tasks. Modern methods, like

those in [3]–[5], emphasise on the vehicle’s acceleration,

velocity and relative distance between the AV and surrounding

vehicles, which were assumed to be directly measurable.

In real-world scenarios, distance can be easily obtained by

proximity sensors such as ultrasonic sensors, LIDAR, etc.

However, determining the velocity of an observed vehicle

poses a significant challenge, as those sensors cannot directly

measure it but must be inferred through vision-based algo-

rithms similar to those used by stationary speed cameras on

highways [6], which will be a completely different case since

the AVs are non-stationary. The challenge is rarely addressed

in the existing literature on AVs for traffic flow control, which

constitutes the primary focus of this study. One study tried to

incorporate real-time data from a service provider to control

design, but it still encountered significant delays and noise in

the data [7]. It is also worth noting that existing studies less

consider uncertainty awareness, which could potentially be a

critical aspect of RL control design [8].

We are interested in estimating a vehicle’s velocity using

existing information that is easily obtainable in real-world

conditions, where uncertainty is inevitable. To address this

challenge, Gaussian processes (GPs) [9], a powerful stochastic

process used in machine learning that models the underlying

function of a collection of data as a distribution over functions,

can be an option. It allows probabilistic estimation, which

predicts uncertainty through variance rather than only an

explicit value. These capabilities make GPs well-suited for

environments where uncertainty is a significant factor.

While GPs are powerful tools for modelling environments

characterised by uncertainty [10], GPs face significant scal-

ability challenges with large datasets [11]. To address this

limitation, we aim to enhance the performance of GPs by

integrating deep neural networks, particularly within the con-

text of recent advancements introduced in [12], Deep Kernel

Learning (DKL). It offers the ability to addresses the challenge

of scalability while maintaining the expressiveness of GPs.

In this study, we present a unified framework that combines

Gaussian processes with deep learning to enhance uncertainty

quantification. In contrast to [13] where the hyperparameters

are learned by maximum likelihood estimation, this paper

leverages hyperparameters learning with deep layers of neural

networks. We adopt Deep Kernel Learning (DKL) and predict

uncertainty intervals. These are then used to probabilistically

estimate vehicle velocity in a simulation environment. We also

compare the performance of conventional Gaussian processes

as the baseline with the DKL approach, discussing their

respective advantages and limitations.

The remainder of this article is organised as follows: Section

II introduces the background knowledge of GPs, Section III

details the proposed simulation environment and methods.

Section IV discussed the results, and finally, Section V is for

the conclusion and possible enhancement for future work.

II. BACKGROUND METHODOLOGY

A. Gaussian Processes (GP)

GP methods are highly effective tools for modelling the

dynamics of a system by offering probabilistic distributions

over functions. The flexibility of GP methods in data-driven

applications is attributed to their capability to represent com-

plex relationships within data. This is achieved through the

incorporation of uncertainty quantification using mean func-

tions and covariance matrices. The modelling by GP methods

makes them especially advantageous in the field of control

design, where the consideration of uncertainty is of utmost

importance.

The capability of GP methods in such applications relies

on three essential components: prior, posterior, and hyper-

parameter optimisation. The prior distribution represents the

initial beliefs about the function before any new data is given,

whereas the posterior distribution updates these beliefs based

on the newly observed data, resulting in improved estimations.

Hyperparameter optimisation, on the other hand, involves

adjusting the parameters that specify the covariance function

in order to improve the model’s performance and accuracy.

B. GP Prior and Posterior

In the context of predicting the dynamics of a system, the

GP prior assumes that the system behaviour given a set of

existing input can be distributed using a multivariate Gaussian

distribution. It means that any collection of function values

f(x1), f(x2), ...f(xn), which are the system behaviour given

any collection of inputs x1, x2, ...xn, has a joint multivariate

Gaussian distribution as expressed as

p(X;µ,Σ) =
1

(2π)
n
2 |Σ|

1
2

exp

(
(X − µ)⊤Σ−1(X − µ)

−2

)
,

(1)

where µ is the mean of the f(X) value, which is commonly

considered zero (µ0 = 0) for simplicity in GP prior with a

normal distribution. Σ is a covariance matrix, denoted as n x

n matrix, which has to be symmetric positive definite to be

valid for a multivariate Gaussian distribution. To generate the

covariance matrix Σ, a radial-basis-function (RBF) kernel

KRBF(X,X) = K(xi, xj) = a2 exp

(
−

1

2l2
∥xi − xj∥

2

)
, (2)

which is the most common function in GP methods. Thus, in

the GP prior, f(X) ∼ N (µ0,Σ0) with Σ0 can be calculated

using (2) with the existing input x. The GP posterior con-

nects the prior assumption on system behaviour f(X) to our

observation in the output of the system y(X)

y(X) = f(X) + ϵ, ϵ ∼ N (0, σ2) (3)

with σ2 being the variance of the Gaussian noise ϵ.

Note that y(X) is a vector for the observation output

(y(x1), y(x2), ...y(xn))
⊤ and f(X) is the vector for latent

noise-free function values (f(x1), f(x2), ...f(xn))
⊤ as prior

knowledge, which both are indexed by a set of inputs X =
(x1, x2, ...xn). Since f(X) and ϵ are both multivariate Gaus-

sian distributions, y(X) is considered as a sum of two indepen-

dent multivariate Gaussian variables, making the distribution

of y(X) ∼ N (0,Kσ = K(X,X) + σ2I), where K(X,X) is

the RBF kernel function of the inputs X .

Considering a new input data X∗ = (x∗1, x∗2, ...x∗m) that

generates f(X∗), therefore joint distribution over f∗ and y is

obtained as
[
y

f∗

]
∼ N

(
0,

[
Kσ K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
. (4)

From the joint distribution, a conditional distribution of the

new function given the observation output and input data

f∗|y,X,X∗ is obtained using the following equations:

f∗|y,X,X∗ ∼ N (µ∗,Σ∗), (5)

µ∗ = K(X∗, X)K−1
σ y, (6)

Σ∗ = K(X∗, X∗)−K(X∗, X)K−1
σ K(X,X∗). (7)

C. Hyperparameter Optimisation

The process of hyperparameter optimisation involves max-

imising the inference of the Gaussian distribution for the pos-

terior. The objective of this part is to refine the hyperparameter

of the covariance function in order to improve the accuracy

of estimation. It is important to note that within the RBF

kernel, there exist two hyperparameters θ = (a, l). In order

to determine the most optimal hyperparameters (θ), one can

employ a log marginal Gaussian likelihood function

L = −
1

2
y⊤K−1

σ y −
1

2
log |Kσ| −

n

2
log(2π). (8)

Note that in the case where the noise variance σ2 is unknown,

it can be included as additional hyperparameter to optimise.

Gradient-based optimisation methods, such as Adam [14], can

be used to tune the hyperparameters.

III. PROPOSED WORK

A. System Environment

This work focuses on estimating the speed of the vehicle

in front of an AV in a single-ring road environment. The

environment discussed is a single-lane circular road with a

circumference of C = 200 metres with N = 19 vehicles

denoted by v1, v2, . . . , vN , as illustrated in Fig. 1. The AV,

coloured in red, and human-driven vehicles (HDVs), coloured

in white and blue, are driving endlessly in the given road

environment. The driving behaviour of all vehicles is based

on the well-known car following model, the Intelligent Driver

Model (IDM), as presented in [1], but they have different

information. While HDVs only have information about their

own speed and acceleration, the AV can estimate the leading

vehicle speed using the method we propose in this paper. This

additional information is used by the AV control system.

Fig. 1. Single-lane Ring Road Environment. The AV is colored in red, while
the observed HDV is in white. The blue vehicles are unobserved HDVs.

The estimation in this work is performed with uncertainty

awareness in the training data, preparing the leading vehicle

speed (vl) to have noise with variance σ2. We assume that

the methods do not have any information about the value of

σ2, but aim to follow the true value in the training process.

Note that as one of the observed states which are not coming

from the agent vehicle, vl is beneficial in the control design

for vehicular traffic systems [2], [4].

B. Deep Kernel Learning (DKL)

Combining neural networks with the GP approach, deep

kernel learning (DKL) emerges the representational power

and uncertainty quantification ability. While conventional GP

methods may only justify the confidence of predictions given

noise and uncertainty, neural networks enable DKL to learn

more complex non-linear dynamics. The DKL structure is

divided into two parts: the neural network and Gaussian

process parts as depicted in Fig. 2. The parametric multi-layer

perceptron in the hidden layers that follow the input layer

reflects the neural network part. The Gaussian process part is

the following hidden layer that has an infinite number of basis

functions with base kernel hyperparameters (θ), also known as

the Kernel layer.

...

X1

Xn

...

H
(1)
1

H
(1)
LA

...

H
(2)
1

H
(2)
LB

...

H
(3)
1

H
(3)
LC

...

H
(4)
1

H
(4)
LD

...

K1

K∞

y

Input

layer

Kernel

layer

Output

layer

Hidden layers

Fig. 2. The structure of DKL model. Four hidden layers with 1000-500-50-
8 nodes and hyperbolic tangent activation function are utilised prior to the
kernel layer, which generates the output prediction.

The DKL method can be described as a base kernel function,

denoted as K(X,X), which incorporates hyperparameters (θ).

Nevertheless, the application of a non-linear mapping from the

neural network part g(X,w) alters the inputs of this particular

function as demonstrated:

K(X,X|θ)→ K(g(X,w), g(X,w)|θ,w), (9)

where X represents the input of the model, while w denotes

the hyperparameter of the neural network part. The network

is provided with a [4 x 1]-column vector

X =
[
ae, ve, dl,∆dl

]⊤
; y = vl (10)

as input, which represents the AV’s acceleration (ae), speed

(ve), leader distance (dl), and the rate of change of leader

distance (∆dl
). The leader distance, denoted as dl, represents

the spatial separation between the AV and the observed HDV,

referred to as the leading vehicle. The output of the model (y)
in this context is the velocity of the leading vehicle vl.

The RBF kernel, as expressed in (2), is widely employed

as the base kernel function. However, Wilson et al. [15] argue

that a spectral mixture base kernel

KSM (X,X|θ) =

Q∑

q=1

aq |Σq|
1
2 (2π)−D/2

exp

(
−
1

2

∥∥∥Σ
1
2
q (xi − xj)

∥∥∥
2
)
cos⟨xi − xj , 2πµq⟩ (11)

provides greater flexibility than a single kernel only in cap-

turing intricate relationships and patterns. Here, Q denotes the

number of special mixture components and hyperparameters of

the kernel θ = {aq,Σq, µq} are mixture weights, bandwidths,

and frequencies, respectively. In this work, all hyperparameters

γ = {θ,w} are jointly optimised by maximising the log

marginal likelihood L as shown in equation (8), using Adam

optimizer [14].

C. Kernel Approximation

A key variable to take into account when incorporating

DKL and GP methods in this study is the computation of the

kernel matrix. As both methods are categorised as supervised

learning, prior training is necessary. The nature is that higher

number of the training data makes the training result better,

but consequently, the dimension of the kernel matrix is higher,

making the training runtime longer. To fasten the runtime for

large training data, a kernel approximation is conducted using

Lanczos algorithm [16].

Algorithm 1 Lanczos algorithm for kernel approximation

1: Input: Exact kernel matrix Kσ

2: Initialize:
3: k ← 100 ▷ Desired rank
4: v1 ∈ R

n ▷ Initial vector
5: v1: v1 = v1/∥v1∥ ▷ Normalization
6: for t = 1 to k do ▷ Next vector computation
7: u = Kσvt − βt−1vt−1 ▷ Set βt−1 = 0 for t = 1
8: αt = v

⊤

t u

9: u = u− αtvt ▷ Update u

10: βt = ∥u∥
11: vt+1 = u/βt ▷ Next vector
12: end for
13: T = tridiagonal(β1:k−1, α1:k, β1:k−1) ▷ Matrix T
14: V = [v1,v2, . . . ,vk] ▷ Vector V

15: K̃σ ≈ V TV ⊤ ▷ K̃σ approximation

16: Output: Approximated kernel matrix K̃σ

D. Log-likelihood Approximation

The possibility of numerically unstable matrix calculation

in the kernel layer is another essential consideration. It can

result from the computation in (8). Numerical instability of

the matrix may arise when inverse matrix is calculated directly

and the log determinant [9] can be used in such cases. A poor

or ill-conditioned kernel matrix that is challenging to invert

as a result of searching the optimal kernel hyperparameters

may be the source of this instability, which could result in an

imprecise or undefinable variance prediction.

During the hyperparameter optimisation, the use of gradient-

based method requires the gradient of the log marginal likeli-

hood

∂L

∂θ
=

1

2
y⊤K−1

σ

∂Kσ

∂θ
K−1

σ y −
1

2
Tr

(
K−1

σ

∂Kσ

∂θ

)
(12)

which urges the approximation of Tr
(
K−1

σ
∂Kσ

∂θ

)
for the same

reason. All three terms are obtained using the modified batch

conjugate gradients (mBCG) technique described in [17], in

order to circumvent the conditions. Note that Vi is obtained

with Lanczos algorithm and probe vector zi. With this method,

large matrices can also be calculated more quickly using this

method than with the widely used Cholesky decomposition.

IV. RESULTS AND DISCUSSIONS

We conducted two different cases for leading vehicle speed

estimation in single ring-road environment using: 1) 105-

seconds data (equivalent to n = 525 data points), and 2) 600-

seconds data (equivalent to n = 3000 data points) for training,

Algorithm 2 mBCG algorithm for log-likelihood approxima-

tion

1: Input: Approximated Kernel matrix K̃σ , observation y

2: Initialize:
3: t← 10 ▷ The number of random vector zi
4: kc ← 100 ▷ Maximum iterations
5: for i = 1 to t do
6: zi ∼ N (0, I) ▷ Random vectors
7: end for
8: S0 ← K−1

σ [y, z1, . . . , zt] = [0, 0, . . . , 0] ▷ Initial guess
9: R0 ← [y, z1, . . . , zt] ▷ Initial residuals

10: P0 ← R0 ▷ Initial search directions
11: for j = 0 to kc − 1 do

12: Vj ← K̃σPj

13: αc
j ← (Rj◦Rj)

⊤
1

(Pj◦Vj)
⊤
1

▷ Step size for solutions, residuals

14: Sj+1 ← Sj + αc
jPj ▷ Update solution vectors

15: Rj+1 ← Rj − αc
jVj ▷ Update residual vectors

16: βc
j ← (Rj+1◦Rj+1)

⊤
1

(Rj◦Rj)
⊤
1

▷ Step size for search directions

17: Pj+1 ← Rj+1 + βc
jPj ▷ Update search directions

18: end for

19: Ti = tridiagonal

({√
[βc

1
]i

[αc
1
]i

,

√
[βc

2
]i

[αc
2
]i

, . . . ,

√
[βc

k−1
]i

[αc
k−1

]i

}
,

20:

{
1

[αc
1
]i
, 1
[αc

2
]i
+

[βc
1]i

[αc
1
]i
, . . . , 1

[αc
k
]i
+

[βc
k−1

]i

[αc
k−1

]i

}
,

21:

{√
[βc

1
]i

[αc
1
]i

,

√
[βc

2
]i

[αc
2
]i

, . . . ,

√
[βc

k−1
]i

[αc
k−1

]i

})
▷ Matrix Ti

22: log |Kσ| ≈
∑t

i=1 z
⊤

i Vi(log Ti)V
⊤

i zi ▷ log determinant term

23: Tr
(
K−1

σ
∂Kσ

∂θ

)
≈ 1

t

∑t

i=1 z
⊤

i

(
K−1

σ
∂Kσ

∂θ

)
zi ▷ trace term

24: Output: approximated K−1
σ y, log |Kσ|, and Tr

(
K−1

σ
∂Kσ

∂θ

)

which challenge the method to work with a relatively different

size of training data. All the training data are obtained from

a microscopic traffic simulator, SUMO (Simulation of Urban

MObility) [18]. We set the baseline for both cases with a

standard GP methods that uses Lanczos and mBCG algorithms

for kernel and log-likelihood approximation. To generate the

kernel matrix, we utilise spectral mixture Kernel with Q = 4.

The parameters setting of DKL and GP methods in both cases,

along with the environment parameters, are shown in Table I.

TABLE I
METHODS AND ENVIRONMENT PARAMETERS

Parameters Value

Q number of mixtures in SM kernel 4

k rank size of approximated kernel matrix 100

t number of vectors for trace estimation 10

kc maximum iteration of mBCG 100

η learning rate Adam optimizer 0.001

β1 first-moment Adam optimizer 0.9

β2 second-moment Adam optimizer 0.999

ne training epochs 1000

σ standard deviation noise 0.5

C circumference of ring road (m) 200

N number of vehicles 19

δ simulation time-step (s) 0.2

Fig. 3 shows the performance comparison of DKL and the

baseline with a similar number of training epochs (ne = 1000)

Fig. 3. Performance comparison between DKL and baseline methods for leading vehicle speed estimation. Upper (Left to Right): Baseline and DKL methods
for the first case. Lower (Left to Right): Baseline and DKL methods for the second case. The confidence bound represents 95% confidence interval or
equivalent to a 2σ band.

(a) (b)

Fig. 4. (a) Noisy velocity of the leading vehicle (vl) with σ = 0.5 for training data. The first case only takes the first 105 seconds of the data for training, while
the second case takes the whole 600 seconds. (b) Loss value progression over training epochs between DKL and GP methods. The loss value is calculated
from negative log marginal likelihood.

and same optimisation procedure for both scenarios. The two

methods are employed to estimate the velocity of the leading

vehicle over a duration of 35 seconds. The figures clearly

demonstrate that in the first scenario, the DKL performance

surpasses the baseline. Despite the fact that the confidence

bound, established with a 95% confidence interval, covers the

true value, the projected average of the baseline exhibits a

fluctuating trajectory, suggesting a poor performance.

The maximum deviation occurs during the transition from

acceleration to deceleration, potentially associated with the

presence of significant noise in the training data for this

specific transition (as depicted in Fig. 4a at approximately 570

seconds). The DKL estimation also indicates a deviation in the

same transition, although it is not statistically significant when

compared to the baseline.

In the second scenario, when the two methods are trained

using a larger dataset, the training data also exhibits a chang-

ing trend in the stop-and-go speed, as depicted in Fig. 4a.

This pattern increases the complexity of the data. Fig. 3

also demonstrates that both methods exhibit a significantly

accurate mean estimation for the second case, although some

minor oscillations are present in the baseline method. Given

increasing training data size, the DKL method exhibits a

significantly reduced confidence bound. This suggests that the

predicted mean value is highly reliable and solid. In contrast,

the baseline approach has a high confidence bound, indicating

poor uncertainty quantification, despite the predicted mean

being close to the actual value. It suggests that the baseline

method encounters difficulties in capturing the evolving pat-

tern, resulting in a significant level of uncertainty.

An important factor contributing to the observed perfor-

mance of baseline and DKL algorithms is due to the pro-

gressive decreasing value of the loss function during training

iterations. Fig. 4b illustrates that the baseline exhibits a higher

loss value at the end of the iteration in comparison with DKL.

Additionally, based on the convergence of the loss value, DKL

shows more reliable convergence with 1000 epochs than the

baseline. The loss value in this context refers to the negative

log marginal likelihood, specifically the negative value of 8.

This implies that a smaller value indicates a more optimal

hyperparameter solution for the prediction methods.

Fig. 4b also illustrates that the progression of loss values

for both methods improves as the size of the training data

increases. The final iteration achieves a smaller loss value

compared to the first case, which had a smaller number of

training data points. Furthermore, it is observed that DKL

consistently exhibits superior performance, as evidenced by its

smaller loss value. This suggests that DKL is able to provide

well optimised solutions for the hyperparameters. As evident

from Table II, the root mean square error (RMSE) value of

the DKL prediction is consistently lower than that of the

generic GP algorithm. Nevertheless, one drawback of utilising

DKL is the increased computational time required. The DKL

algorithm consistently allocates more time to training and

exhibits a substantial increase in performance when provided

with additional training data points.

TABLE II
COMPARISON OF RMSE AND TRAINING RUNTIME

n
RMSE Training runtime (s)

DKL GP DKL GP

525 (Case 1) 0.17 0.48 70.86 66.20

3000 (Case 2) 0.07 0.14 3992.02 3071.87

V. CONCLUSIONS

This study presents a probabilistic approach to estimat-

ing the speed of the leading vehicle by employing DKL.

This method is designed to address the challenges posed by

uncertain observations and scalability concerns. The results

demonstrate that our trained model successfully improves the

estimation’s accuracy above the baseline. With the inclusion

of larger datasets and the growing complexity of the training

data, our model has the potential to significantly enhance

its accuracy, while the baseline model appears to encounter

difficulties with optimising the confidence bound.

The DKL method offers the advantage of effectively mod-

elling complex and nonlinear systems while also providing un-

certainty quantification with scalability concern. Nevertheless,

it requires extensive training time. Possible future research

directions may involve the incorporation of inducing points

or other approximations within the kernel layer as a means

to mitigate the runtime issue. An enhancement to the network

architecture can also be developed to improve efficiency.

REFERENCES

[1] R. Herman, E. W. Montroll, R. B. Potts, and R. W. Rothery, “Traffic Dy-
namics: Analysis of Stability in Car Following,” Operations Research,
vol. 7, no. 1, pp. 86–106, 1959. Publisher: INFORMS.

[2] Z. Yan, A. R. Kreidieh, E. Vinitsky, A. M. Bayen, and C. Wu, “Unified
Automatic Control of Vehicular Systems With Reinforcement Learning,”
IEEE Transactions on Automation Science and Engineering, vol. 20,
pp. 789–804, Apr. 2023.

[3] C. Wu, A. R. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen, “Flow:
A Modular Learning Framework for Mixed Autonomy Traffic,” IEEE

Transactions on Robotics, vol. 38, pp. 1270–1286, Apr. 2022.
[4] A. R. Kreidieh, C. Wu, and A. M. Bayen, “Dissipating stop-and-go

waves in closed and open networks via deep reinforcement learning,”
in Proceedings of the 21st International Conference on Intelligent

Transportation Systems (ITSC), pp. 1475–1480, Nov. 2018. ISSN: 2153-
0017.

[5] K. Jang, E. Vinitsky, B. Chalaki, B. Remer, L. Beaver, A. A. Malikopou-
los, and A. Bayen, “Simulation to scaled city: zero-shot policy transfer
for traffic control via autonomous vehicles,” in Proceedings of the 10th

ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS
’19, (New York, NY, USA), pp. 291–300, Association for Computing
Machinery, Apr. 2019.

[6] I. Nishitani, H. Yang, R. Guo, S. Keshavamurthy, and K. Oguchi, “Deep
Merging: Vehicle Merging Controller Based on Deep Reinforcement
Learning with Embedding Network,” in Proceedings of 2020 IEEE

International Conference on Robotics and Automation (ICRA), pp. 216–
221, May 2020. ISSN: 2577-087X.

[7] N. Lichtlé, K. Jang, A. Shah, E. Vinitsky, J. W. Lee, and A. M.
Bayen, “Traffic Smoothing Controllers for Autonomous Vehicles Using
Deep Reinforcement Learning and Real-World Trajectory Data,” in Pro-

ceedings of 26th International Conference on Intelligent Transportation

Systems (ITSC), pp. 4346–4351, Sept. 2023. ISSN: 2153-0017.
[8] C. Bogoclu, R. Vosshall, K. Cremanns, and D. Roos, “Deep Gaussian

Covariance Network with Trajectory Sampling for Data-Efficient Policy
Search,” in Proceedings of 2024 International Conference on Artificial

Intelligence, Computer, Data Sciences and Applications (ACDSA), pp. 1–
7, Feb. 2024.

[9] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine

Learning. MIT Press, 2006.
[10] T. Beckers and S. Hirche, “Prediction With Approximated Gaussian

Process Dynamical Models,” IEEE Transactions on Automatic Control,
vol. 67, pp. 6460–6473, Dec. 2022.

[11] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When Gaussian Process Meets
Big Data: A Review of Scalable GPs,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 31, pp. 4405–4423, Nov. 2020.
[12] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep Kernel

Learning,” in Proceedings of the 19th International Conference on

Artificial Intelligence and Statistics, pp. 370–378, PMLR, May 2016.
ISSN: 1938-7228.

[13] X. Liu, L. Mihaylova, J. George, and T. Pham, “Gaussian process upper
confidence bounds in distributed point target tracking over wireless
sensor networks,” IEEE Journal of Selected Topics in Signal Processing,
vol. 17, no. 1, pp. 295–310, 2022. Publisher: IEEE.

[14] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in Proceedings of the 3rd International Conference on Learning Repre-

sentations (ICLR 2015), 2015.
[15] A. Wilson and R. Adams, “Gaussian Process Kernels for Pattern

Discovery and Extrapolation,” in Proceedings of the 30th International

Conference on Machine Learning, pp. 1067–1075, PMLR, May 2013.
ISSN: 1938-7228.

[16] C. Lanczos, “An iteration method for the solution of the eigenvalue prob-
lem of linear differential and integral operators,” Journal of Research of

the National Bureau of Standards, vol. 45, p. 255, Oct. 1950.
[17] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson,

“GPyTorch: blackbox matrix-matrix Gaussian process inference with
GPU acceleration,” in Proceedings of the 32nd International Conference

on Neural Information Processing Systems, NIPS’18, (Red Hook, NY,
USA), pp. 7587–7597, Curran Associates Inc., Dec. 2018.

[18] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wiessner,
“Microscopic Traffic Simulation using SUMO,” in Proc. of the 21st

International Conference on Intelligent Transportation Systems (ITSC),
pp. 2575–2582, Nov. 2018. ISSN: 2153-0017.

