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Deep Reinforcement Learning Method for Control of Mixed Autonomy

Traffic Systems

Xingyu Liu1, Esa Apriaskar2 and Lyudmila Mihaylova3

Abstract— The introduction of autonomous vehicles (AVs)
presents a novel approach to regulating and optimising traffic
flow through the automated control of AVs. In this context,
the AV is defined as the actuator and an optimal control
policy is desired to make control decisions. Deep Reinforcement
Learning (DRL) is a novel method which aims to maximize the
cumulative rewards given by the predefined reward function
by making sequential decisions in a stochastic environment.
In light of the above, we propose a DRL-based vehicular
control method to train an optimal policy for the control of
AV in a model-free fashion, and consequently improve the
traffic efficiency with the obtained control policy. A single-
lane circular road environment with both AV and human-
driven vehicles is selected to serve as the mixed autonomy
traffic system in the Simulation of Urban MObility (SUMO) [1]
traffic simulator, and the Proximal Policy Optimization (PPO)
algorithm is applied for the policy improvement. Simulation
results demonstrate that our strategy is effective in mitigating
the unstable stop-and-go waves, increasing 67.7% of the average
driving speed and reducing 19.3% of the average energy
consumption in a closed-ring road environment.

Index Terms— autonomous vehicles, deep reinforcement
learning, proximal policy optimization, SUMO

I. INTRODUCTION

The rapid development of electronic and communication

techniques makes it possible to induce automation in mobil-

ity systems and give the potential to achieve real-time control

for autonomous mobile systems like Robots and Unmanned

Aerial Vehicles. In traffic systems, the emergence of partial

or full adoption of automation produces an autonomous

vehicle, which is capable of being fully manipulated by

the computer program without the necessity for human

intervention. Because of this characteristic, it is anticipated

that AVs will be employed in traffic systems such as urban

road networks to reduce the impact of unsatisfied human

driving behaviours and optimize global objectives like traffic

efficiency as well as total energy consumption [2]. Based on

this, a promising research direction today is to design the

controller for each AV to attain optimal control in traffic

systems [3].
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While full adoption of AV is nearly impossible in the near

future, a conceivably intermediate scenario could involve

the integration of AVs and human-driven vehicles (HDVs),

creating a mixed-autonomy traffic system. In such a system,

the behaviours of AV will fully or partially influence the

behaviours of other HDVs. For instance, the acceleration and

deceleration of an AV will affect the driving behaviours of

all HDVs behind itself on a single-lane road. It has been

demonstrated that the controlled vehicles are capable of com-

pletely eliminating the stop-and-go wave, a significant source

of traffic congestion, in a ring road environment [4], [5].

Furthermore, it is also proved, from the control-theoretic per-

spective, that a mixed traffic system consisting of HDVs and

AVs in a single-lane ring road is not completely controllable

but is stabilizable [6]. All these evidences provide the feasi-

bility of designing and implementing the controller for AV to

achieve optimal control in mixed-autonomy traffic systems,

where the AV serves as an actuator to intervene in the state of

the entire system. However, the difficulty of modelling and

formulating stochastic traffic dynamics prevents researchers

and practitioners from solving the underlying optimization

problem using the conventional optimal control style.

Deep Reinforcement Learning (DRL) is a branch of ma-

chine learning methods [7] which addresses the problem

of how an intelligent agent makes decisions of actions

to maximize the cumulative reward given by the reward

function in a stochastic environment. In particular, the model-

free DRL method learns an optimal policy which serves as

the controller via the collected dataset generated from the

interaction between the agent and the environment. Thanks to

its model-free property, this approach is believed to achieve

optimal control of mixed-autonomy traffic systems without

the necessity of modelling the implicit traffic dynamics.

Based on this background, we attempt to train and evaluate

such an optimal control policy for the AV with the DRL-

based method to optimize global objectives in the mixed-

autonomy system.

A. Main Contributions

In this article, we present a DRL-based control strategy

to train and evaluate an optimal control policy for the AV

in a simulated mixed autonomy ring road environment, the

simplest benchmark environment as in [6] for the problem of

controlling mixed-autonomy systems as shown in Figure 1.

We use a similar single-ring environment setting to those

in [8], [9] with the objectives of maximizing traffic effi-

ciency, and another hybrid objective is also employed which

considers both traffic efficiency and energy consumption. We



Fig. 1. Single-lane Ring Environment. The AV, HDV and observed HDV
are displayed by the colours of red, white and yellow respectively

apply the Proximal Policy Optimization algorithm [10], an

online and on-policy DRL algorithm to improve the policy,

and an additional policy entropy loss is added to encourage

the exploration during the training process.

In summary, our main contributions are:

1) We propose a PPO-based DRL methodology for the

control of a single-lane ring road mixed-autonomy

environment.

2) To encourage the exploration of PPO during training,

we apply the maximum entropy strategy for policy

improvement.

3) We evaluate the effectiveness of trained policy across

different vehicle densities.

The rest of this article is organized as follows: Section II

introduces related works, Section III presents the problem

we aim to solve, Section IV presents theoretical background,

Section V details our proposed approach, Section VI provides

the evaluation results and Section VII gives the conclusion.

II. RELATED WORKS

A. Road-based Traffic Control

As a serious and ubiquitous problem, traffic congestion has

prompted numerous researchers to design road-based traffic

control strategies to improve time and energy efficiency.

Traffic signal control is a major road-based approach and

has been widely studied and implemented for intersections.

These implementations include fixed-time control strategies

which aim to reduce average delay [11], and adaptive control

strategies which are presented to constantly adjust the traffic

signal timing plan according to the recent traffic condi-

tions [12]. In a specific environment, such as a freeway, ramp

metering acts as the most direct control method to mitigate

the onset of congestion phenomena. It facilitates the merge

of the on-ramp flows with the mainstream, reducing the risk

of collisions and overloaded vehicles on the road [13], [14].

The route guidance control is another strategy that also

aims to enhance traffic efficiency by providing the users

with information about the traffic conditions (e.g. congestion,

accidents, working zones) in the alternative routes or, in

some cases, indicating specific paths to follow [15]. Although

some works indicate that these strategies can increase traffic

efficiency, these traditional strategies rely on human drivers.

With all their humanistic sense, drivers may not always

comply with any suggested action resulting from these con-

trol strategies which can lead to inefficiencies and potential

safety risks. The most recent strategy has been introduced,

considering the emergence of AV. According to [16], AV with

its communication ability to the surrounding environment

offers prospective benefits that can affect driving behaviour,

leading to global traffic efficiency.

B. Model-free Deep Reinforcement Learning

Model-free DRL is a branch of Reinforcement Learning

algorithms that optimizes policies without needing a state

transition model and reward distribution estimations. The

policy gradient methods, derived from the policy gradient

theorem, are a dominating portion in this category. REIN-

FORCE is the first practical policy gradient-based algorithm

that applies the Monte Carlo method to estimate the policy

gradient [17]. After that, the A2C algorithm with an actor-

critic framework was presented to reduce the variance of the

training process introduced by the inaccurate Monte Carlo

estimation [18]. To achieve a monotonic improvement in

each policy update step, the Trust Region Policy Optimiza-

tion (TRPO) [19] was proposed and performed excellently

compared to other policy gradient-based algorithms. TRPO

has the theoretical monotonic improvement property but

suffers from complicated update processes and approxima-

tion errors. For this reason, the PPO algorithm [10] was

invented to simplify the update process of TRPO and ease

the computational load.

C. Model-free DRL for Traffic Control

As a suitable and powerful tool, the model-free DRL

methods have also been studied to implement in road- and

vehicle-based approaches. [20] and [21] applied DRL for

optimizing traffic signal timing. [22] presented a smart re-

routing technique for the AV to increase traffic efficiency

at the intersection, and [23] presented a multi-agent DRL

method to coordinate AVs and minimize the lost time.

To facilitate the design and implementation of vehicular

traffic control with DRL, a modular framework Flow [9]

was published to construct a platform for the control of

mixed autonomy systems. A unified DRL methodology for

mixed autonomy systems [8] which works for several road

scenarios, including several closed and open road networks

was also presented to establish a unified DRL design scheme

using a TRPO algorithm. Based on this background, our

work attempts to implement a PPO algorithm in a ring road

system with a single AV to maximize traffic efficiency. Some



studies, such as [24], [25] have also attempted to implement

PPO extending the work of [9]. Implementation of PPO for

traffic smoothing with different environments and reward

functions are also presented in [26]. In this work, we propose

a different reward function by adding an entropy loss in the

actor’s objective function to increase the exploration of the

standard PPO algorithm.

III. PROBLEM FORMULATION

In the single-ring road system, as shown in Figure 1, a

single-lane circular road with a circumference of C meters

forms the road network. There are N vehicles denoted by

{v1, v2, . . . vN} driving endlessly following a counterclock-

wise direction, and one of these vehicles is defined as AV

and all other vehicles are HDVs. To simulate the driving

behaviours of the human driver, we define HDVs, which

are controlled by the car-following model, and the well-

studied Intelligent Driver Model (IDM) model [27] is applied

to play the control role. Since the single-ring system is

closed and no lane-change action is permitted, the driving

behaviour of each vehicle will at least partially influence

other vehicles’ behaviour, therefore it is feasible to intervene

in the aggregated whole traffic flow’s behaviour as proved

in [6].

The traffic control problem in our single-ring mixed-

autonomy system is how to design a controller to manipulate

the acceleration and deceleration behaviours of the AV to

further improve traffic efficiency and decrease the total

energy consumption. And this problem will be addressed

with our DRL-based strategy.

IV. BACKGROUND METHODOLOGY

A. Markov Decision Process

Markov Decision Process (MDP) serves as a mathematical

representation of the decision-making process of an intelli-

gent agent in a stochastic environment. MDP is defined by

M = (S,A,T , r, ρ0, γ,H) which includes state space S ,

action space A, state transition function T (s, a, s′) = p(s′ |
s, a) for s, s′ ∈ S, reward function r(s, a, s′) ∈ R, initial

state distribution ρ0, discounted factor γ ∈ [0, 1] and horizon

H ∈ Z+. Under the MDP framework, the reinforcement

learning task aims to maximize the following objective

max
a0...aH−1∈A

E s0∼ρ0,
st+1∼T (st,at,·)

[

H−1
∑

t=0

γtr(st, at, st+1)

]

(1)

which represents the expected discounted cumulative reward

and is going to be optimized by selecting a sequence of

the optimal actions a0 . . . aH−1 ∈ A. The reward function

r(s, a, s′) ∈ R is of great importance in giving the appropri-

ate feedback for the agent’s performance in each time step.

B. Proximal Policy Optimization Approach

PPO is a policy-based model-free DRL approach which

trains and updates a parametric stochastic policy πθ with

parameters θ (e.g. weights in a neural network). The policy

parameters θ are optimized to maximize the expected cumu-

lative discount reward

max
θ

Es0∼ρ0,at∼πθ(·|st),
st+1∼T (st,at,·)

[

H−1
∑

t=0

γtr(st, at, st+1)

]

(2)

The policy gradient algorithms update the policy by es-

timating the gradient of the expected cumulative discount

reward

∇θJ(θ) = E [Qπθ
(s, a)∇θlogπθ(a | s)] (3)

and perform gradient ascent on θ in each update step

θk+1 ← θk + α∇θJ(θk). (4)

where α is the step size.

On this basis, the TRPO attempts to have the monotonic

performance improvement of the policy by optimizing the

constrained objective

max
θk+1

Es0∼ρ0,at∼πθk
(·|st),

st+1∼T (st,at,·)

[

πθk+1
(a | s)

πθk (a | s)
Aπθk

(s, a)

]

s.t. E s0∼ρ0,
st+1∼T (st,at,·)

[

DKL

(

πθk(· | s), πθk+1
(· | s)

)]

≤ δ

(5)

where δ is the upper bound of the mean KL divergence [19]

between old policy πθk and new policy πθk+1
to prevent θk+1

from deviating too far from θk. And PPO performs the KL

constraint by optimizing the clipped objective

max
θk+1

E s0∼ρ0,
at∼πθk

(·|st),

st+1∼T (st,at,·)

[

min

(

πθk+1
(a | s)

πθk(a | s)
Aπθk

(s, a),

clip

(

πθk+1
(a | s)

πθk(a | s)
, 1− ϵ, 1 + ϵ

)

Aπθk
(s, a)

)]

(6)

where clip(x, y, z) = max(min(x, z), y), this operation is to

constraint the ratio between old policy and new policy into

[1− ϵ, 1 + ϵ] where ϵ is a hyperparameter.

V. PROPOSED APPROACH

A. MDP Definition

In our vehicle control strategy, the AV acts as the intelli-

gent agent, and each decision-making of the AV is defined

as an MDP. Due to the physical limits on the sensor or

detector assembled on the agent, the state s may not be

fully observable, and only a subset of state space is feasible

to obtain. For example, the AV could hardly detect the

behaviours of vehicles which are far away from it. Therefore,

an observation function z(s) = o ∈ O is added to process the

state s into a portion of the original state information o, and

this also induces the partially observable MDP (POMDP)

denoted by M = (S,A,T , r, ρ0, γ,H,O, z). Overall, in

each training episode1, we perform the POMDPs for the AV,

the state s is composed of the speed, location and all other

information of all vehicles in the ring environment, and the

1In Reinforcement Learning, episode means the recording of actions and
states that an agent performed from a start state to an end state.



observable region is defined as the combination of the speed

of AV, the speed of the vehicle in front of AV and the distance

between AV and its front vehicle.

For the definition of the action space, thanks to the single-

lane property of the ring environment, the lane-changing

does not need to be considered for the AV’s control policy,

and therefore the action space of AV could be defined as a

continuous acceleration space [amin, amax]. The continuous

control tasks normally have the nature of the infinite horizon

length, which is usually impossible to implement in practice,

thereby we convert the continuous control mission to an

episodic task by using a large horizon H to approximate

the infinity.

B. Maximum Entropy Strategy

In our proposed PPO setting, we use an actor-critic

framework [18] consisting of a policy network and a value

network to reduce the variance of the training process, and

the General Advantage Estimation (GAE) [10] is also applied

to estimate the advantage Ât. To encourage the exploration,

we add an entropy loss in the actor’s objective function

Lactor = L(θ) + αH(· | st) (7)

where L(θ) is the clipped objective as defined in equation 6,

and H(· | st) = Eat∼π [− log (π (at | st))] is the policy

entropy to quantify the uncertainty of the probability distri-

bution of policy π (at | st). Maximizing the policy entropy

loss augments the uncertainty of the probability distribution

over action space. Consequently, sub-optimal actions are

more likely to be selected, thereby further increasing the

exploration of the policy.

C. Neural Network Architecture

In our strategy, we construct both the actor and critic as

the Multi-Layer Perceptron (MLP) with three fully connected

layers and a hidden size of 64. To handle the continuous

action space, we apply the Gaussian distribution, which

is fully described by its mean and standard deviation, to

approximate the distribution over the action space. In this

case, the policy network will receive the partially observed

state information and calculate the corresponding mean and

standard deviation via the forward propagation in each time

step. The orthogonal initialization is applied for each network

to avoid vanishing and exploding gradient problems at the

beginning of the training process, and the tanh activation

function is also used to make the networks capture more

nonlinear features.

D. Training

We acknowledge that the Sim2Real gap in DRL is almost

impossible to be solved in the near future, therefore we

finish the training and evaluation parts in the simulator

and do not address the Sim2Real problem. Some works

tried to bring the DRL methods into a real environment in

another environment, such as [28] for autonomous mobile

robot navigation, ensuring that the potential remains open.

SUMO [1] is a microscopic traffic simulator which provides

a framework for the generation and validation of any traffic

scenario which simulates the real environment, including a

road environment with a mixture of HDVs and AVs.

To train a policy across different vehicle densities, we

build several simulation environments with varying numbers

of vehicles in a range of[Nmin, Nmax]. In each episode,

these simulations will be started individually, a warm-up

horizon H0 = 500
δ

with simulation step size δ is used to

initialize each simulation, and an episode H1 = 1000
δ

is

set for the interaction and data collection. We collect N

trajectories in each episode and concatenate these data before

updating the policy. For the reward processing, rather than

the conventional reward normalization, we apply a novel

reward scaling method as presented in [29], which makes

the rewards divided by the standard deviation σ̂R of a rolling

discounted sum of rewards

rscaling =
r(st, at, st+1)

σ̂R

(8)

where σ̂R is the standard deviation of the collected reward.

VI. PERFORMANCE EVALUATION

We train the policy with two objectives:

1) Total Travelled Distance: The reward function

r(s, a, s′) is the average speed of all vehicles in s′.

2) Fuel Consumption: The reward function r(s, a, s′) is

the average speed minus the average fuel consump-

tion multiplied by a coefficient β in s′, which is

r(s, a, s′) = vaverage − βqaverage, where vaverage
refers to the average speed, and qaverage refers to the

average fuel consumption.

We set the baseline for both cases as the situation where

the IDM model controls all vehicles, and separately give the

evaluation results. The hyperparameters setting of PPO and

environmental parameters in both two cases are shown in

Table I.

TABLE I

EXPERIMENTAL PARAMETERS SETTING FOR PPO AND RING

ENVIRONMENT

PPO Hyperparameters Environment Parameters

Discount factor (γ) 0.99 Circumference C 200
GAE discount (λ) 0.95 Maximum of vehicles Nmax 19
Actor learning rate 3e-5 Minimum of vehicles Nmax 16
Critic learning rate 3e-5 Simulation step length δ 0.5
Entropy coefficient (α) 1e-4 Maximum acceleration amax 1.8
PPO Clipping ϵ 0.2 Minimum acceleration amin -2.5
Epochs 10 Number of episodes 100

A. Evaluation of Total Travelled Distance

Figure 2 compares the average speeds between PPO-

controlled and IDM baseline scenarios under different ve-

hicle densities. It is evident that our PPO-trained policy

improved the average speed in the environments where N ∈
[17, 19], surpassing the IDM baseline. In the environments

where N equals 16, our trained policy achieved similar

performance to the baseline. In general, our trained policy



Fig. 2. Average Speed in Different Vehicle Densities. We compute the
average speed by summing the temporary average speed of all vehicles in
each time step and then divided by the cumulative time.

increased 67.7% of the average speed compared to the

baseline. To investigate the effectiveness of our trained

Fig. 3. Velocity Distribution of HDV in Different Vehicle Densities We
select one of HDV to collect and display the simulated velocities throughout
the simulation.

policy, we present the velocity distributions of a selected

HDV as shown in Figure 4. After loading all vehicles in

Fig. 4. Average Speed in Different Vehicle Densities. We compute the
average speed by summing the temporary average speed of all vehicles in
each time step and then divided by the cumulative time.

Fig. 5. Average Fuel Consumption in Different Vehicle Densities. We
compute the average fuel consumption by summing the temporary average
fuel consumption of all vehicles in each time step and then divided by the
cumulative time.

each environment, we first turn off the controller to leave

all vehicles uncontrolled and let them follow the IDM

model, then start controlling after a certain time step. It is

noticeable that before the control policy was involved, the

IDM model resulted in severe stop-and-go waves, and the

velocity decreased to almost zero in some time steps. After

the start time, our trained control policy quickly regulated the

traffic flow and suppressed the unstable stop-and-go waves.

The velocities of the selected HDV gradually changed to

a constant speed, which is the ideal optimal traffic flow

behaviour for the single-lane ring environment.

B. Evaluation of Energy Consumption

Figure 4 shows the average speeds under the energy-saving

objective in different vehicle densities. It is clear that, given a

different reward function, our trained AV could still improve



the overall average speed in most vehicle densities, or at least

achieve a similar performance with the baseline. And Fig-

ure 5 displays the average fuel consumption result in different

vehicle densities. Our trained policy dramatically reduced the

average fuel consumption in most density settings compared

to the baseline. In general, our trained policy reduced 19.3%

of the average fuel consumption compared to the baseline.

VII. CONCLUSIONS

This paper proposes a PPO-based DRL control strategy

for controlling a single-lane mixed-autonomy road system

to mitigate traffic congestion and reduce the total cost of

energy. The simulation results show that our trained policy

effectively improves the average speed of all vehicles. The

unstable stop-and-go waves are greatly weakened and the to-

tal fuel consumption is also largely decreased via controlling

of AV.

The model-free DRL has the advantages of achieving

optimal control for a complex and stochastic dynamical

system and automatically discovering the optimal behaviour.

However, it still suffers from the difficulty of convergence

and is easily stuck in a local minimum. Data efficiency is also

a main drawback of on-policy DRL algorithms. In addition,

the Sim2Real problem affects the real application of DRL-

based methods. Future research directions include extensions

to large-scale road networks and could apply off-policy or

offline DRL algorithms to address data-efficiency problems.
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