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Abstract

Recent advances in genomics make it possible to predict individual differences in 
education from polygenic scores that are person-specific aggregates of inherited 
DNA differences. Here, we systematically reviewed and meta-analyzed the strength 
of these DNA-based predictions for educational attainment (e.g., years spent in full-
time education) and educational achievement (e.g., school grades). For educational 
attainment (k = 20, n = 16, Ntotal = 314,757), a multilevel meta-analysis showed an 
association with polygenic scores of ρ = .27 (95% CI from .22 to .32). For educa-
tional achievement (k = 19, n = 10, Ntotal = 83,788), the association was ρ = .24 (95% 
CI from .18 to .30). Eurocentric biases were evident with only 15% of estimates 
being reported in samples of non-European ancestry. After accounting for sample 
ancestry, age at assessment, and education measure, the meta-analytic estimates 
increased to ρ = .29 (95% CI from .24 to .33) for educational attainment and ρ = .50 
(95% CI from .39 to .61) for educational achievement, indicative of large effect sizes. 
All meta-analytic estimates were associated with significant heterogeneity. Our find-
ings suggest that DNA-based predictions of education are sizeable but vary across 
samples and studies. We outline three steps to safeguard potential applications of 
polygenic score predictions in education to maximize their benefits for personalizing 
learning, while minimizing the bioethical risks of perpetuating social, cultural, and 
economic inequalities.
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Introduction

Education equips us with the skills and knowledge that we need to navigate 
through and master our lives. People’s differences in educational opportunities 
and outcomes have pervasive, long-term influence on their life-course develop-
ment, including lifetime cognitive functioning (Chen et al., 2019; Lövdén et al., 
2020), socioeconomic status attainment (Mackenbach et al., 2008), the likelihood 
of becoming employed (Oreopoulos & Salvanes, 2011), marriage partner choice 
(Cave et al., 2022), health and wellbeing (Cutler & Lleras-Muney, 2010, 2012), 
and life expectancy (Montez & Hayward, 2014). From the first day of kindergar-
ten, vast differences in children’s educational performance can be observed, and 
these differences magnify as children grow older (Heckman, 2006; Schoon et al., 
2002; von Stumm, 2017; von Stumm et  al., 2019). Understanding the origin of 
people’s differences in educational outcomes is key to improving how we teach 
and learn, which, in turn, will greatly benefit the psychological development of 
both individuals and society at large.

The search for causes of children’s differences in school performance has tra-
ditionally focused on characteristics of students’ learning environments, such as 
their teachers’ expertise (Bardach et al., 2021; Nye et al., 2004), classroom sizes 
(Filges et  al., 2018; Karvonen et  al., 2018), and school quality (Shin & Chung, 
2009; von Stumm et al., 2020). Yet in recent years, the role of genetic propensi-
ties on children’s learning differences has garnered much attention (e.g., Asbury 
& Plomin, 2013; Harden, 2021; Malanchini et  al., 2020; Plomin, 2018). Twin 
studies that compare the phenotypic resemblance of identical twins (i.e., monozy-
gotic) to that of fraternal twins (i.e., dizygotic) documented that differences in 
education are highly heritable (Ayorech et al., 2017; Polderman et al., 2015; Rim-
feld et  al., 2018a, b; see Glossary in Supplementary Table  S1 for terminology 
explanations). Heritability refers to the proportion of differences in a phenotypic 
trait that can be observed between people and attributed to their inherited DNA 
differences (Plomin, 2018; Visscher et al., 2008). For example, 57% of children’s 
differences in children’s learning over the primary school years were heritable in 
a Dutch twin sample of 12-year-olds (Bartels et  al., 2002). That is, 57% of the 
differences in pupils’ scores on the national CITO elementary test that children 
in the Netherlands take at the end of primary school could be attributed to their 
genetic differences, while 43% of their differences in test scores were due to envi-
ronmental factors (e.g., teacher expertise or school quality; Bartels et al., 2002). 
Other studies confirmed that more than half of students’ differences in school per-
formance can be attributed to their genetic differences (Malanchini et al., 2020; 
Polderman et  al., 2015), including analyses of a UK sample of 16-year-olds 
for whom 58% of their differences in end-of-year exam grades were heritable; 
these exam grades indexed pupils’ suitability for further, university-level studies 
(Shakeshaft et al., 2013).

Notwithstanding the many robust and replicable findings from behavior genetic 
studies (Plomin et al., 2016), genetically informed research on psychological or 
behavioral traits is often misinterpreted (Asbury & Plomin, 2013; Crosswaite & 
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Asbury, 2019) and met with skepticism and even hostility (e.g., Lewis-Kraus, 
2021). A common misconception is that finding genetic influences implies that 
people’s differences are “fixed” or “destined,” an idea known as genetic determin-
ism. Yet, genetic influences neither determine destinies nor do they mean that 
people’s differences are immutable. In fact, genetic and environmental influences 
exist in a concerted balance: If environments vary greatly in a population, for 
example when the opportunity to go to school is only available to some but not 
others, genetic influences will only explain a small proportion of that population’s 
differences in education. In this case, the effects of having access to a school 
versus not would be the far stronger predictor of school performance. However, 
if environmental conditions are more equal for people (e.g., when schooling is 
available to or even compulsory for all children), genetics accounts for a greater 
proportion of the differences due to less environmental variance (Knigge et  al., 
2022). Some have argued that this is the reason why heritability could be thought 
of as an index of equality of opportunity: If heritability is high, environmental 
variability is low (Ayorech et al., 2017, 2019), meaning that opportunities are, on 
average, equally available to everybody in the population.

The realization that eradicating environmental inequality will produce greater 
genetic inequality reads somewhat uncomfortable, yet it is true. Heritability 
describes the relative contribution of genetic and environmental influences to phe-
notypic variability in a particular population at a particular moment in time, but it 
says little about a trait’s susceptibility to environmental influences (Maccoby, 2000). 
For example, individual differences in height are highly heritable at about 80% 
(Yengo et al., 2022), and yet, people’s average height has increased across genera-
tions on average by ~ 1 cm per decade (Roser et al., 2013). These gains cannot be 
explained by changes in the population’s gene pool, which evolves over millennia, 
but are likely due to environmental changes, such as improved nutrition and medical 
care (Perkins et al., 2016). Akin to height, steep increases in school enrolment and 
school completion rates have been reported over the past century. People’s mean 
years of schooling has grown from 4 to 12 years in high-income countries (i.e., a 
67% increase) and from half a year to 8 years in low- and middle-income countries 
(i.e., a 94% increase; Lee & Lee, 2016; Ritchie et al., 2023). These gains in educa-
tional attainment stem from the broader availability of education opportunities—an 
environmental change—rather than from changes in populations’ gene pools.

Recent advances in genomic research make it possible to predict people’s differ-
ences in education directly from their inherited DNA variants that we refer to as 
polygenic scores but that are also known as polygenic risk score (PRS), polygenic 
index (PGI), genetic risk scores, or genome-wide score in the literature (Allegrini 
et al., 2020; Cesarini & Visscher, 2017; Lee et al., 2018; Okbay et al., 2016, 2022; 
Rietveld et  al., 2013; Selzam et  al., 2017). Just like heritability estimates, DNA-
based predictions for phenotypic traits do not imply immutability or fixedness, 
nor do they allow per se for causal inferences (Plomin & von Stumm, 2022). They 
reflect a person’s genetic propensity or likeliness to think, feel, and behave in cer-
tain ways (Cesarini & Visscher, 2017; Plomin & von Stumm, 2018). For example, 
children with lower genetic propensities for educational achievement are likely to 
find concentrating on homework more difficult, be less engaged with lessons, and 
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forgo study sessions in favor of other activities more often than children with higher 
genetic propensities for eruditeness. It may therefore take more effort, time, and 
educational support for children with lower genetic propensities for education to 
achieve the same learning success as others with higher genetic propensities, but 
they could nonetheless perform just as well or even better. In other words, children’s 
genetic propensities for education describe learning tendencies or preferences but do 
not determine educational trajectories, akin to the observation that children’s perfor-
mance in secondary school predicts but does not determine tertiary education out-
comes (e.g., university-level studies; Starr et al., 2024).

Polygenic scores reflect not only direct genetic influences but also capture gene-
environment correlations, assortative mating, and population stratification (Plomin 
& von Stumm, 2022). Gene-environment correlations arise, for example, because 
children are recipients of both inherited DNA differences and rearing environments 
from their parents (Wertz et al., 2019). Assortative mating refers to parents’ greater 
genetic resemblance than can be expected for two randomly chosen individuals 
(Horwitz et al., 2023). Population stratification occurs when allele frequencies differ 
systematically across subpopulations, giving rise to heterogenous population struc-
tures (Morris et al., 2020a, b). The effects of gene-environment correlations, assor-
tative mating, and population stratification may account for up to 60% of polygenic 
score predictions of educational outcomes (Selzam et al., 2019), although estimates 
vary substantially across studies that have been published to date in this area (Howe 
et al., 2022).

At present, equal opportunity is the epitome of the education system in merito-
cratic societies that aim to achieve fairness in education by instructing all children 
in the same curriculum, at the same pace, and with the same pedagogical methods 
and approaches. Corresponding education policies favor pedagogies that are thought 
to benefit all students (e.g., Machin & Vignoles, 2006) but because children differ 
in their abilities, skills, and interests, the “equal” learning opportunities that school 
affords them do not translate into equity in learning outcomes (Chmielewski, 2019; 
von Stumm et al., 2022). A more productive way for achieving fairness in education 
is likely prioritizing equity in outcomes over equality in opportunity (Knigge et al., 
2022; Sokolowski & Ansari, 2018), such as assigning more teaching staff to chil-
dren who are at risk of academic failure, while better performing children are looked 
after by fewer teachers (Arold et al., 2022).

Acknowledging and understanding the role of genetics may help improve the fair-
ness of education systems in three ways. The first is that finding genetic influences 
on children’s learning differences advocates for teaching that recognizes children’s 
inherent heterogeneity in abilities, skills, and interests, rather than for “one-size-fits-
all” pedagogical approaches. Effective teaching must be “personalized” to respond 
to and remediate children’s vastly different, individual learning needs (Asbury & 
Plomin, 2013; von Stumm & Wertz, 2021). Some differentiated instructional strat-
egies are already employed by teachers, including individual education plans that 
support students with special educational needs and disabilities (SEND) to monitor 
their learning progress and improve their learning outcomes (Dalgaard et al., 2022; 
Department of Education, 2015; Jørgensen et al., 2020). In 2022, 17% of UK pupils 
received support for SEND, including 4% of pupils who were taught according to 
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personalized education, health, and care plans (EHC; Farquharson et  al., 2022). 
While teachers strongly and unanimously endorse the principles of personalized 
learning, the practical implementation of corresponding pedagogies within current 
schools and education settings remains difficult (Dalgaard et al., 2022; Gunawardena 
et al., 2024; Martschenko, 2019; Williams-Brown & Hodkinson, 2020).

Second, the availability of DNA-based predictors for children’s learning differ-
ences opens possibilities for identifying children at risk for poor educational out-
comes and intervening early before maladaptive learning behaviors have manifested. 
This feature distinguishes DNA from other predictors of learning difficulties, such 
as teachers raising concerns or children agonizing over homework and struggling to 
read, that only become observable after they have emerged. Education interventions 
that involve DNA-based predictors would need to be carefully planned to preclude 
any discrimination against children because of their genetics (Asbury et al., 2021; 
Martschenko et al., 2024). Yet, such interventions resemble in many ways current 
approaches to remediating children’s family background inequality in education: For 
example, in France and in the UK, schools receive extra funding from the state to 
support pupils from under-resourced family homes in mitigating their learning dis-
advantages (Flavier & Moussay, 2014; Roberts et al., 2021). Akin to families’ (lack 
of) resources as predictor of children’s learning support needs, polygenic scores 
could be used to guide the allocation of educational resources to the children with 
the genetic indication for developing learning difficulties (cf. Au, 2022).

Third, a deeper understanding among parents, educators, and policymakers of the 
role of genetics in education could increase tolerance, commiseration, and kindness 
toward the children who struggle with school—as well as reduce envy of and ani-
mosity toward those who breeze through (Asbury & Plomin, 2013; Asbury et  al., 
2021). Prioritizing equity of outcomes will reduce the extent to which children are 
held personally responsible for their academic achievements and failures, an attribu-
tion that prevails in meritocratic education systems (Renoux et  al., 2024). At pre-
sent, children who do well in school are widely believed to “deserve” better lives 
than those who do poorly (Anderson, 1999, 2007; Sandel, 2020)—a rather twisted 
notion of fairness, if we acknowledge that children’s school performance is largely 
a function of circumstances beyond their control, such as their family background, 
including their inherited DNA differences (Harden, 2021; von Stumm et al., 2020; 
von Stumm & d’Apice, 2021).

Notwithstanding the potential benefits that behavioral genetic findings may hold 
for designing fair educational systems, they also bear risks of social separation, pes-
simism, and creating perceptions of unmanageable behavior within the classroom 
(Larsen et al., 2022; Martschenko et al., 2024). Research on how teachers, students, 
and parents might interpret polygenic score feedback is currently sparse, as are find-
ings on how polygenic score predictions may affect students’ academic motivations 
(e.g., Larsen et al., 2022; Matthews et al., 2021).

Our article is structured into four sections. First, we define educational attain-
ment and achievement, review their respective assessments in research studies, and 
discuss what is known about their heritability. Second, we explain what polygenic 
scores are and how they can be used to predict individual differences in education. 
In the third part of this paper, we present meta-analytic findings on the prediction of 
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educational attainment and achievement from polygenic scores. Finally, we embed 
our meta-analytic results in the broader context of the research literature and discuss 
how the benefits of DNA-based predictions of education may be leveraged while 
effectively mitigating their risks.

The Heritability of Educational Achievement and Attainment

Educational achievement refers to students’ relative performance within an educa-
tional setting or level, for example the end-of-year exam grades in school. Educa-
tional attainment pertains to the level of education that a person acquires, ranging 
typically from school leaving certificates to vocational training to tertiary qualifi-
cations, such as university degrees. In putatively meritocratic societies, educational 
achievement and attainment are intertwined because the former regulates the access 
to the latter: Children who achieved relative to others at one educational level (e.g., 
secondary school) will be offered opportunities for further studies (e.g., at univer-
sity), while those who performed poorly at an education level typically fail to qual-
ify for progressing to the next (Schoon et al., 2012; von Stumm et al., 2019).

Twin studies from across the world have reported educational achievement as 
highly heritable: On average, 60% of students’ differences in educational achieve-
ment can be attributed to their inherited DNA differences (Bartels et al., 2002; Pol-
derman et al., 2015; Shakeshaft et al., 2013). The heritability of educational achieve-
ment increases with age due to gene-environment correlations (rGE; Haworth et al., 
2010; Morris et  al., 2018) that result from individuals selecting, adapting to, and 
shaping the environments that correspond to their genotype (Avinun, 2020). Chil-
dren increasingly seek out environments that align with their genetic propensities 
as they grow older, for example when avid readers spend weekends at the library, 
which in turn improves their reading skills; as a result, estimates of genetic influ-
ences on phenotypic development increase (Avinun & Knafo, 2014; Haworth et al., 
2011; Plomin et al., 1977; Scarr & McCartney, 1983).

Twin study heritability estimates for educational attainment tend to be lower than 
those for educational achievement (Branigan et al., 2013; Silventoinen et al., 2020). 
A meta-analysis across 15 populations from seven European countries and Australia 
(Ntotal = 51,545) reported 40% heritability for attainment, which was assessed as 
the number of years that people spent in full-time education or the highest educa-
tional qualification they obtained (Branigan et al., 2013). Similarly, an analysis of 
28 twin cohorts from 16 countries in Europe, North American, Australia, and East 
Asia reported that differences in educational attainment were on average 43% herit-
able (Silventoinen et  al., 2020). The discrepancy in heritability estimates between 
educational achievement and attainment likely reflects the constructs’ discrepancy 
in environmental variance. Educational achievement occurs within defined educa-
tional settings (i.e., a class in school) where students experience broadly comparable 
environments, and thus, their genetic differences gain greater weight (Kovas et al., 
2013). By comparison, education attainment measures subsume different environ-
ments: students who obtain university degrees have experienced different learning 
environments than apprentices, who attended vocational training colleges. It follows 
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that differences in educational attainment are on average less heritable than differ-
ences in educational achievement, notwithstanding their high covariance at the phe-
notypic and genetic levels (Kovas et al., 2005; Plomin et al., 2016).

Polygenic Scores as Predictors of Educational Outcomes

The decoding of the human genome (International Human Genome Sequencing 
Consortium, 2001) and the mapping of the genomic variation in human popula-
tions (Gibbs et al., 2003) in the early 2000s made it possible to identify the DNA 
variants that cause the heritability of phenotypic trait differences. These DNA vari-
ants, known as single-nucleotide polymorphisms (SNPs), mark the smallest unit 
of genetic differences between people (see Supplementary Table S1 for Glossary). 
These SNPs that drive the heritability of a phenotypic trait can be identified in 
genome-wide association studies (GWAS). GWAS test associations between peo-
ple’s differences in a target phenotypic trait and their SNPs across the entire genome 
and produce summary statistics that reflect the strength (i.e., effect size) and direc-
tion with which SNPs are associated with the target phenotype (Choi et al., 2020). 
These GWAS summary statistics enable computing polygenic scores in independent 
samples, for whom genotype data are available, by aggregating the SNPs identified 
in the GWAS, weighed by their effect size (Choi et  al., 2020; Pasaniuc & Price, 
2016). Polygenic scores therefore index person-specific estimates of genetic pro-
pensities for a given target phenotype (Plomin & von Stumm, 2018), while also 
capturing environmental variances due to gene-environment correlations, assorta-
tive mating, and population stratification (Morris et al., 2020a, b). Polygenic scores 
are unique predictors of psychological traits, in the way they are stable across the 
lifespan (i.e., they are as predictive of adult outcomes during childhood as they are 
in adulthood), unaffected by self-report biases (i.e., one cannot inflate or fake their 
polygenic scores), and preclude backward causation (i.e., inherited DNA differences 
are unchangeable by behavioral or environmental factors; Plomin & von Stumm, 
2018). Polygenic scores are normally distributed and can be modeled as continuous 
variables in statistical analyses, just like sum scale scores from psychometric tests or 
other psychological measures. While polygenic scores may be powerful predictors 
of people’s phenotypic differences, they do not necessarily cause these differences. 
They are probabilistic rather than deterministic or causal predictors of phenotypic 
outcomes (Asbury et  al., 2021; Harden, 2021; Plomin & von Stumm, 2022), and 
they also capture environmental influences (Okbay et al., 2022; Selzam et al., 2019).

To date, four large-scale GWAS have sought to identify the DNA variants that 
are associated with people’s differences in educational attainment (Fig.  1), which 
is inferred from the number of years that people have spent in full-time education, 
a coarse yet cost-effective and widely used way of assessing educational attainment 
(Lee et al., 2018; Marioni et al., 2016; Okbay et al., 2022). The first GWAS for years 
spent in education included a discovery sample of N ~ 130,000, and corresponding 
polygenic scores predicted about ~ 2% of the educational attainment variance in inde-
pendent samples (N ~ 3500 and ~ 6800; Domingue et al., 2015; Rietveld et al., 2013), 
a rather modest effect size relative to the twin study estimates of 40% heritability 
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(Matthews & Turkheimer, 2022). The difference between polygenic score predic-
tions and twin study heritability estimates is known as the “missing heritability” gap 
(Manolio et al., 2009), which is likely to due to rare variants that will require GWAS 
discovery sample sizes of tens of millions to be identified (Watanabe et al., 2019). 
The “missing heritability” gap will likely narrow as research progresses, especially 
as larger GWAS samples (Yengo et  al., 2022), whole-genome sequencing (Wain-
schtein et al., 2022), and alternative statistical modeling approaches become avail-
able (Grotzinger et al., 2019).

Fig. 1  Polygenic score prediction of years spent in education across four published GWAS.  Note: For 
each GWAS for educational attainment (EA), the year of publication (in parentheses) is shown along 
the x-axis, and the discovery sample sizes are given above their respective bar. Bars indicate the weighted 
mean proportion of variance (R2) of polygenic score predictions of educational attainment in the inde-
pendent samples that were reported in the original GWAS articles. Error bars reflect 95% confidence 
intervals (CIs) Some 95% CIs were not reported in the original article and were estimated via https:// 
www. danie lsoper. com/ statc alc/ calcu lator. aspx? id= 28 for the weighted mean R2. Gray circles reflect the 
polygenic score prediction from each independent sample, whose N is indexed by circle size (for details 
on the independent samples, see Supplementary Materials section 2)

https://www.danielsoper.com/statcalc/calculator.aspx?id=28
https://www.danielsoper.com/statcalc/calculator.aspx?id=28
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The second GWAS on years spent in education, published 3 years after the first, 
included a discovery sample of N ~ 290,000 adults (Okbay et al., 2016). Correspond-
ing polygenic scores predicted ~ 3% of the variance in educational attainment in two 
independent samples (N ~ 10,000 and ~ 9000 Okbay et  al., 2016), as well as ~ 9% 
of the variance in educational achievement in ~ 3000 British 16-year-olds (Selzam 
et  al., 2017). Quadrupling the prediction effect size for educational achievement 
from the previous GWAS (Krapohl & Plomin, 2016; Selzam et al., 2017) suggested 
that even larger samples were needed to achieve sufficient statistical power for iden-
tifying the SNPs that drive the heritability of education outcomes.

Two years later, a third GWAS on years spent in education surpassed one mil-
lion participants (Lee et  al., 2018). Its polygenic scores accounted for ~ 11% of 
the variance in educational attainment across two independent samples (N ~ 5000 
and ~ 9000; Lee et al., 2018) and ~ 16% in educational achievement in ~ 7000 British 
16-year-olds (Allegrini et al., 2019). These prediction effect sizes are big enough to 
translate into real-life differences: Students with polygenic scores in the 10th percen-
tile and below achieve on average a C + in their end-of-compulsory school grades, 
while students with polygenic scores in the 90th percentile and above achieve an 
A − (von Stumm et al., 2020). The strength of polygenic score predictions for stu-
dents’ educational achievement greatly exceeds that of other predictors, such as 
school quality ratings that explain less than 1% variance in end-of-compulsory 
school grades after accounting for prior school performance and family background 
(von Stumm et al., 2020).

In 2022, a fourth GWAS on years spent in education with a discovery sample of 
N ~ 3 million individuals was published (Okbay et al., 2022). The polygenic scores 
from this GWAS explained on average ~ 14.3% of the variance in educational attain-
ment across two independent samples (N ~ 10,000 and ~ 9000; Okbay et al., 2022), 
as well as ~ 13% of variance in grade point average at age 16  years (N ~ 4000), 
and ~ 8% variance in high school grade rank at age 14 years (N ~ 5000; Okbay et al., 
2022). These findings consolidated that polygenic score predictions for education 
strengthen as GWAS samples sizes increase, potentially to the point that polygenic 
score predictions will approximate the heritability estimates from twin studies 
(Yengo et al., 2022).

To summarize, four GWAS for years spent in education were published between 
2013 and 2022, with their participant numbers growing from N ~ 130,000 to ~ 3 
million, a 23-fold increase in less than 10  years. These GWAS’ polygenic scores 
predicted from ~ 2 to ~ 14% of the variance in educational attainment, a sevenfold 
increase (Fig. 1). It is important to note that each consecutive GWAS builds upon 
the discovery sample of the previous, that is to say their samples are not independ-
ent but overlap. In this sense, an earlier GWAS can be considered outdated when the 
next GWAS on the same target phenotype is published, akin to revised psychometric 
test with improved items rendering its earlier versions obsolete. When we preregis-
tered the current meta-analysis, the fourth GWAS on years spent in education was 
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yet to be published (Okbay et al., 2022). During the writing of this article, the sum-
mary statistics of the fourth GWAS on years spent in education became available to 
some researchers but not all. Thus, we focus here on studies that reported polygenic 
score predictions of education using the third GWAS (Lee et al., 2018), which was 
the largest GWAS for which full summary statistics were broadly available when 
this meta-analysis was completed.

The Current Study

Our meta-analysis aimed to appraise the status quo of the empirical findings on poly-
genic score predictions of educational outcomes, to evaluate corresponding predic-
tion effect sizes, and to inform future research and applications of polygenic score 
predictions in education. To this end, we reviewed empirical studies that reported 
associations between polygenic scores based on Lee et al. (2018) GWAS for years 
spent in education and phenotypic measures of educational attainment and achieve-
ment. We identified a priori three factors that may moderate this association. The 
first is the genetic ancestry or ethnic origin of the study population. GWAS samples 
are typically drawn from populations of European ancestry (Mills & Rahal, 2019, 
2020), and corresponding polygenic scores tend to be more predictive in Euro-
pean than in samples from other ancestral populations (Duncan et al., 2019; Okbay 
et  al., 2022; Wang et  al., 2020). For example, polygenic scores predicted ~ 10.6% 
of the variance in educational attainment in participants who identified as white 
American but only ~ 1.6% in participants who reported to be African American (Lee 
et  al., 2018). The second factor that likely influences polygenic score predictions 
of education is the sample’s age at phenotypic assessment, because genetic influ-
ences on education increase with age as a result of gene-environment correlations 
(Avinun, 2020; Haworth et al., 2010; Plomin et al., 1977). For example, in ~ 3000 
British school pupils, the polygenic score predictions of educational achievement 
increased from 5% at age 7 years to 14% of the variance at age 16 years (von Stumm 
et al., 2020). Polygenic score predictions are therefore likely stronger for educational 
achievement during adolescence than in childhood. The third factor that may affect 
associations between polygenic scores and educational outcomes are cohort effects 
or generational trends. Contemporaneously with the global increase in the access 
and availability of education (Lee & Lee, 2016), polygenic score predictions are 
likely to account for increasing proportions of variance in education attainment in 
later as compared to earlier generations (Herd et al., 2019; Rimfeld et al., 2018a, b). 
One study showed that in US women who were born in the 1930s, polygenic scores 
explained ~ 9.5% of the variance in educational attainment, but in women born two 
decades later in the 1950s, polygenic scores predicted even ~ 13.6% of the variance 
(HRS samples; Herd et al., 2019). This and similar gains in polygenic score predic-
tions of education likely result from greater proportions of women enrolling in and 
completing tertiary education in the 1970s and thereafter, when traditional gender 
roles became less prescribed.
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Methods

Search Strategy

This meta-analysis was performed in line with the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) statement (Page et  al., 2021) 
and preregistered on the Open Science Framework (OSF; https:// osf. io/ xcm43/). We 
included articles that had been published by August 2022 and reported empirical 
associations between phenotypic measures of educational attainment or achieve-
ment and polygenic scores based on the summary statistics from the third GWAS 
for years spent in education (Lee et  al., 2018), whose summary statistics became 
available in July 2018, resulting in a publication period of 49 months (i.e., 4.1 years) 
for this meta-analysis. We identified the publications through the citation record of 
the GWAS (Lee et al., 2018) on Google Scholar and Web of Science, which yielded 
a total of 1329 non-duplicate hits (1257 citations in Google Scholar, 776 citations in 
the Web of Science; flow diagram Fig. 2). We also included the polygenic score pre-
diction estimates that were reported in the original GWAS article (Lee et al., 2018) 
in our review (k = 4).

Study Eligibility Criteria, Screening, and Exclusions

Publications that reported the following were included in our meta-analysis: (1) a 
phenotypic measure of educational attainment (e.g., self-reported years spent in edu-
cation or highest qualification obtained) OR educational achievement (e.g., school 
grades or academic test scores reported by children or teachers), (2) polygenic scores 
based on the summary statistics from Lee et al.’s (2018) GWAS for years spent in 
education, (3) a statistical estimate of association between a phenotypic measure of 
education and the polygenic score, (4) an original empirical study (i.e., no meta-
analyses or review papers) that was (5) published in a peer-reviewed journal.

Two authors independently screened 20% of the 1329 records; because their inter-
rater agreement was perfect (100%, κ = 1; McHugh, 2012), the first author proceeded 
to screen all remaining hits. Overall, 77 articles met our eligibility criteria for reten-
tion, and full texts were downloaded. Further reasons for exclusions were recorded 
(flow diagram Fig. 2; Table S2) before extracting, coding, and recording our target 
variables. Interrater agreement was for coding high (93.75%, κ = 0.64). Overall, 60 
articles did not meet our eligibility criteria and were excluded (Fig.  2), while 17 
publications as well as the estimates reported in the original Lee et al. (2018) GWAS 
article were retained for the meta-analysis.

https://osf.io/xcm43/
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Coding Target Variables

We extracted from the retained publications (1) samples’ ancestry, (2) samples’ birth 
year, (3) samples’ ages at phenotypic assessment, (4) educational outcome type (i.e., 
educational attainment or educational achievement) and measure (e.g., school grades 
or test scores), (5) statistical association estimate (e.g., standardized β coefficient, 
r coefficient, or R2 coefficient), (6) the polygenic score computation method (i.e., 
PLINK, PRSice, LDpred, and lassosum), and (7) whether the association estimates 
were adjusted for age, sex, and the first ten principal components (PC; Table S3). 
These latter adjustments are typical in polygenic score prediction studies because 
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Did not use GWAS (Lee et al., 2018) (n=5)
Did not report polygenic score for an 
educational outcome (n=14)
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Fig. 2  PRISMA flow diagram of the identification of eligible studies.  Note:  n  refers to the number of 
publications; k is the number of estimates
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they help control for population stratification (i.e., systematic differences in geneti-
cally heterogenous populations; Allergini et al., 2019; Ni et al., 2021).

Harmonizing Statistical Estimates

Across studies, different statistical estimates were reported to describe the associa-
tion between polygenic scores and education, including correlation r coefficients 
(k = 21), standardized β coefficients (k = 8), and R2 values (k = 10). We retained sta-
tistical estimates that were reported as r or standardized β coefficients from regres-
sion models that included no other covariates except one or more of the following: 
age, sex, PC (i.e., adjusting for population stratification), and batch and chip (i.e., 
systematic differences within samples due to genotyping methods) (Peterson & 
Brown, 2005). Combining r coefficients and β coefficients in a meta-analysis can 
be problematic and cause bias if predictors and covariates in regression models are 
intercorrelated (Roth et al., 2018). Because polygenic score covariates (i.e., age, sex, 
and PCs) are independent from each other (Tables S6 and S16), this issue does not 
apply here. Where estimates were reported as R2 (k = 10), we transformed them into 
r coefficients using an effect size converter (https:// www. escal. site). We used corre-
lation coefficients as our effect size metric, before transforming them into Fisher’s Ζ 
coefficients, as is common in meta-analyses (Alexander et al., 1989).

Multilevel Meta‑analyses

The R package metafor (R Core Team, 2019; Viechtbauer, 2010) was used to con-
duct two multilevel meta-analyses using the function rma.mv(). We conducted a 
three-level model to address the issue of effect size dependency due to “nestedness” 
(e.g., individual estimates were clustered by study). The multilevel model includes 
three variance components: at level 1, the sampling error at the level of the par-
ticipants; at level 2, the variance within-clusters or within-studies (e.g., individual 
estimates); and at level 3, the variance between-cluster or between-studies. The mul-
tilevel approach allows for effect sizes to vary between participants (level 1), esti-
mates (level 2), and studies (level 3), thereby elucidating the sources of variance.

To investigate heterogeneity, we calculated Q, I2 statistics, and σ2. The Q statistic 
indicates the presence of heterogeneity (Huedo-Medina et al., 2006), and I2 indicates 
the percentage of variability in estimates that can be attributed to each level within 
the model (Higgins et  al., 2003), using metafor companion package dmetar (Har-
rer et al., 2019). The σ2 statistic provides a measure of within- and between-study 
variance (replacing the τ2 statistic of a conventional meta-analysis). σ2 model com-
parisons indicate if the heterogeneity at the within- and between-level is significant 
(Assink & Wibbelink, 2016).

Meta‑regression

To explore the heterogeneity within polygenic score predictions of educational 
attainment and achievement, we fitted meta-regression models with the following 

https://www.escal.site
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moderators: (1) sample ancestry (i.e., binary European versus non-European), (2) 
samples’ mean age and their age range in years at phenotypic assessment; (3) the 
samples’ mid-birth year and birth year range; (4) the polygenic score computation 
method (i.e., PRSice, LDpred, PLINK, and lassosum), with LDpred as the refer-
ence because it was most frequently used across studies; and (5) whether age, sex, 
and the first ten principal components were adjusted for (binary yes/no). Continu-
ous moderators (e.g., age and birth year) were centered before adding them to the 
meta-regression model, to allow for the intercept to be interpretable. We tested each 
moderator in an individual meta-regression model (not preregistered) and retained 
those moderators that were individually significant for multiple moderator meta-
regression models (Tables S6-S23).

Publication Biases

We tested for publication biases in three ways. First, we generated funnel plots to 
visually examine the symmetry of data points in the meta-analysis and in the meta-
regression after modeling moderator effects. Second, we conducted Egger’s regres-
sion tests, using the Standard Errors of the studies’ estimates’ effect sizes as pre-
dictors in a meta-regression model. In the absence of biases and heterogeneity, the 
Standard Errors will be non-significant predictors. Third, we conducted p-curve 
analyses with histograms of the p-values associated with the studies’ estimates 
(Simonsohn et al., 2014a, b), generating p-curves for our estimates using an appli-
cation (http:// www.p- curve. com/ app4/; see Supplementary Materials section  5 for 
details). Across all our models, no signs of biases were detected: The funnel plots 
illustrated no significant degree of asymmetry, the Egger’s regression tests were 
non-significant (Figs. S1 and S2), and the p-curve analysis indicated that individual 
studies’ estimates were truly significant (Figs. S3 and S4, Tables S4 and S5).

Results

Studies’ Description

In total, n = 18 publications were identified that reported associations between 
polygenic scores and educational attainment (n = 11) and/or educational achieve-
ment (n = 12). For polygenic predictions of educational attainment, k = 20 estimates 
from 16 samples were available with Ntotal = 314,757; for polygenic predictions of 
educational achievement, k = 19 estimates from 10 samples were included with 
Ntotal = 83,788. Eighteen of the educational attainment estimates (90%) came from 
European samples across six WEIRD countries (Western, Educated, Industrialized, 
Rich, and Democratic, Henrich et al., 2010), including Hungary (k = 1), Netherlands 
(k = 1), New Zealand (k = 1), Norway (k = 1), UK (k = 5), and US (k = 9; Fig. 3). The 
remaining two estimates (10%) were from samples of African American ancestry 
from the US. Fifteen of the educational achievement estimates (79%) came from 
samples of European ancestry across five WEIRD countries, including Australia 

http://www.p-curve.com/app4/
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(k = 1), Netherlands (k = 1), Norway (k = 1), UK (k = 9), and US (k = 3; Fig.  4); 
the remaining four estimates (21%) were from US samples of African American 
ancestry.

Multilevel Meta‑analysis of Polygenic Score Predications of Educational 

Attainment

After Fisher’s z-transformation, estimates for the association between polygenic 
scores and educational attainment ranged from 0.12 to 0.39 with 95% CIs that 
excluded 0. The meta-analytic association between polygenic scores and educational 
attainment was ρ = 0.27, p < 0.001 (95% CI from 0.22 to 0.32), reflecting a positive 
relation of large effect size (Funder & Ozer, 2019; Table 1., Fig. 5). The Q statistic 
was 881.12 (p < 0.001), with variance being mainly attributed to within-cluster or 
within-study heterogeneity (i.e., individual estimates) (I2

Level 2 = 62.26%). ANOVA 

Fig. 3  Polygenic score correlations with educational attainment across countries, ancestries, and birth 
years. Note: Graph depicts the raw correlation coefficients after harmonizing before Fisher’s z-transfor-
mation. Triangles represent samples of African American ancestry; circles represent samples of Euro-
pean ancestry. For samples that ranged in birth year, the birth year mid-point was plotted; birth year 
ranges were not added to sustain graphical clarity. Symbols’ colors reflect samples’ country of origin, 
and their size reflects the sample size for the correlation estimate. Symbols’ acronyms refer to the respec-
tive sample names (full sample names in Table  S3). The meta-analytic estimate with 95% confidence 
intervals (CI) is shown on the right-hand side
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model comparisons confirmed that the extent of heterogeneity at level 2 was signifi-
cant (σ2.1 = 0.005, p < 0.001) (Table 1.).

Multilevel Meta‑analysis of Polygenic Score Predications of Educational 

Achievement

After Fisher’s z-transformation, estimates for the association between polygenic scores 
and educational achievement ranged from 0.06 to 0.39. All individual estimates, apart 
from one (Rabinowitz et al., 2019), were positive and significant (i.e., their 95% CIs 
excluded 0). The meta-analytic association between polygenic scores and educational 
attainment was ρ = 0.24, p < 0.001 (95% CI from 0.18 to 0.30), reflecting a positive rela-
tion that approximates a large effect size (Funder & Ozer, 2019; Table 1., Fig. 5). The 
Q statistic was 444.135 (p < 0.001). The variance was mainly attributed to between-
study heterogeneity (I2

Level 3 = 61%), but ANOVA model comparisons showed signifi-
cant heterogeneity at both levels 2 and 3 (σ2.1 = 0.004 p < 0.001, σ2.2 = 0.006 p = 0.045) 
(Table 1.).

Fig. 4  Polygenic score correlations with educational achievement across countries, ancestries, and 
birth years. Note: For legend, see Fig. 3. The size of triangles and circles that reflects sample size are 
scaled relative to each other; thus, the size of triangles and circles in Fig. 3  refers to samples ranging 
from N = 406 (FTP) to N = 217,550 (UK Biobank), and in Fig. 4 from N = 402 (MAUES) to N = 26,518 
(MoBa)
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Multilevel Meta‑regression of Polygenic Score Predications of Educational 

Attainment

Individual meta-regressions for each moderator were fitted first to identify indi-
vidually significant moderators (Tables S6-S15). Only sample ancestry emerged 
as significant moderator of polygenic score predictions of educational attainment 
(β =  − 0.209, p < 0.001, 95% CI from − 0.29 to − 0.13), with European ances-
try samples showing stronger polygenic score predictions compared to African 
American samples. Accounting for sample ancestry increased the association 
between polygenic score predictions and educational attainment to ρ = 0.287, 
p < 0.001 (95% CI from 0.242 to 0.332) (Fig. S5). The Q statistic remained sig-
nificant (Q = 851.832 p < 0.001), suggesting that sample ancestry accounted for 
only a small proportion of the total heterogeneity (i.e., 3.34%). Ancestry variance 
was mainly attributed to between-study heterogeneity (I2

Level 3 = 84.41%), and 
ANOVA model comparisons showed the significant remaining heterogeneity at 
both levels 2 and 3 (σ2.1 = 0.001 p = 0.049, σ2.2 = 0.004 p = 0.006).

Table 1  Three-level random 
effects models of polygenic 
score predictions of educational 
attainment and achievement

Ntotal is the total sample size, nstudies refers to the number of publi-
cations retained for analysis, nsamples refers to the number of cohort 
samples that estimates were derived from, kestimate refers to the 
number of individual estimates. ρpooled reports the meta-analytic 
association, and the pooled estimate’s confidence intervals ρ95% CI. 
Q statistic denotes heterogeneity; I2 refers to the percentage of vari-
ability attributed between participants Level 1, within-study Level 2, and 
between-study Level 3; σ indicates the extent of heterogeneity within-
study σ2.1 and between-study σ2.2

Educational attainment Educational achievement

Ntotal 314,757 83,788

nstudies 11 12

nsamples 16 10

kestimates 20 19

ρpooled 0.271 0.238

ρ95% CI 0.222–0.319 0.180–0.295

Heterogeneity Q = 881.120, p < 0.001 Q = 444.135, p < 0.001

I2 Level 1 –-% –-%

I2 Level 2 62.62% 36.47%

I2 Level 3 36.04% 61.0%

σ2.1 0.005, p < 0.001 0.004, p < 0.001

σ2.2 0.003, p = 0.286 0.006, p = 0.045
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Multilevel Meta‑regression of Polygenic Score Predications of Educational 

Achievement

We identified mean age at assessment, measure of educational achievement, and 
sample ancestry as significant moderators in individual meta-regression mod-
els (Tables  S16-S23). When added simultaneously to the meta-regression model, 
the association pooled estimate increased to ρ = 0.50, p < 0.001 (95% CI from 
0.39 to 0.61) (Fig. S5). Two moderators were significant in the model: Mean age 
of assessment (β = 0.014, p < 0.001, 95% CI from 0.007 to 0.021), with polygenic 
score predictions being stronger in adolescents than in younger children, and the 

RE Model

0 0.1 0.2 0.3 0.4 0.5

Attainment Fisher's Z coefficient

Willoughby et al., 2019a

Lee et al., 2018a

Herd et al., 2019d

Lee et al., 2018c

Herd et al., 2019c

Herd et al., 2019b

Herd et al., 2019e

Ayorech et al., 2019

Willoughby et al., 2019b

Belsky et al., 2018c

Belsky et al., 2018b

Trovik et al, 2022

Belsky et al., 2018a

Ujma et al, 2022b

Donnellan et al., 2021

de Zeeuw et al., 2020a

Conley et al., 2019

Lee et al., 2018d

Ujma et al, 2022a

Rabinowitz et al., 2019a

0.41 [0.37, 0.46]

0.38 [0.35, 0.41]

0.37 [0.32, 0.41]

0.34 [0.32, 0.36]

0.34 [0.29, 0.39]

0.34 [0.32, 0.37]

0.33 [0.28, 0.38]

0.33 [0.30, 0.36]

0.32 [0.28, 0.36]

0.31 [0.24, 0.38]

0.30 [0.23, 0.37]

0.29 [0.28, 0.30]

0.28 [0.23, 0.32]

0.22 [0.16, 0.29]

0.22 [0.13, 0.32]

0.21 [0.17, 0.26]

0.20 [0.20, 0.21]

0.13 [0.08, 0.18]

0.12 [0.05, 0.19]

0.12 [0.06, 0.18]

0.27 [0.22, 0.32]

Author and Year Fisher's zr [95% CI]

a) Educational Attainment

RE Model

0 0.1 0.2 0.3 0.4 0.5

Achievement Fisher's Z coefficient

Allegrini et al., 2019b

Lopez et al., 2021c

Lopez et al., 2021b

von Stumm et al., 2020b

Herd et al., 2019a

Lee et al., 2018b

Lopez et al., 2021a

Lopez et al., 2021d

Willoughby et al., 2019c

Allegrini et al., 2019a

Isungset et al, 2022

Bates et al., 2019

von Stumm et al., 2020a

Rabinowitz et al., 2020a

Rabinowitz et al., 2020b

de Zeeuw et al., 2020b

Rabinowitz et al., 2019c

Armstrong et al., 2020

Rabinowitz et al., 2019b

0.41 [ 0.39, 0.44]

0.37 [ 0.33, 0.40]

0.35 [ 0.32, 0.39]

0.33 [ 0.30, 0.36]

0.33 [ 0.30, 0.36]

0.31 [ 0.28, 0.34]

0.29 [ 0.25, 0.32]

0.28 [ 0.24, 0.31]

0.27 [ 0.23, 0.31]

0.27 [ 0.24, 0.29]

0.26 [ 0.24, 0.27]

0.22 [ 0.18, 0.26]

0.20 [ 0.17, 0.23]

0.20 [ 0.10, 0.30]

0.19 [ 0.09, 0.29]

0.14 [ 0.08, 0.20]

0.09 [ 0.03, 0.15]

0.08 [ 0.04, 0.12]

0.06 [−0.00, 0.12]

0.24 [ 0.18, 0.30]

Author and Year Fisher's zr [95% CI]

b) Educational Achievement

Fig. 5  Forest plots of meta-analyses of polygenic score predictions for (a) educational attainment and 
(b) educational achievement. Note: “Author and year” show the first authors’ name and year of publi-
cation for each estimate of polygenic score predictions. Multiple estimates per study were alphabetized 
and reported individually. Effect sizes to the right of the solid vertical line indicate positive associations 
between polygenic scores and educational success. The rectangles represent the individual estimates 
effect sizes, and the horizontal bars represent 95% CIs for each estimate. The dashed vertical line and 
the diamond illustrate the meta-analytic effect size, with the dashed horizontal line representing the cor-
responding 95% CI. No moderator effects were considered in this analysis and plot



Educational Psychology Review          (2024) 36:102  Page 19 of 35   102 

measure of educational achievement (β =  − 0.116, p = 0.025, 95% CI from − 0.206 
to − 0.026), with predictions being higher for school grades than for standardized 
test scores. Sample ancestry was no longer significant (β =  − 0.008, p = 0.884, 95% 
CI from − 0.120 to − 0.104). The Q statistic reduced substantially (i.e., by 65.64%) 
but remained significant (Q = 152.583, p < 0.001), occurring mainly at the within-
study level (I2

Level 2 = 89.91%). Yet, ANOVA model comparisons showed significant 
heterogeneity at both levels 2 and 3 (σ2.1 = 0.003 p < 0.001, σ2.2 = 0.001 p < 0.001).

Discussion

A vast body of empirical studies emerged over the past decade on predicting individual 
differences in psychological and behavioral traits from their inherited DNA differences 
using polygenic score-based approaches (Cesarini & Visscher, 2017; Malanchini et al., 
2020; Plomin & von Stumm, 2018). The potential benefits of DNA-based predictors 
for healthcare and disease prevention, as well as their risks, are widely discussed, and 
some areas have started to apply them. For example, polygenic scores for lifetime risk 
of breast cancer are used to help women make informed decisions about their health-
care (Ho et al., 2022; Jolie, 2013), although they are not (yet) recommended for wider 
clinical use (Martin et  al., 2019; Shah, 2021). The possibility of analogous uses of 
polygenic scores in educational settings has become the central subject of large-scale 
empirical research efforts, fierce debates, and some fervent speculations (Abdellaoui 
& Verweij, 2021; Harden, 2021; Karavani et  al., 2019; Martschenko et  al., 2024; 
Okbay et al, 2022; Plomin, 2018; Polyakov et al., 2022; von Stumm & Plomin, 2021). 
While the current consensus is that polygenic scores are only informative for identi-
fying differences within European ancestries that occur at the population level (i.e., 
inferences based on aggregated individual-level data; Morris et al., 2020a, b; Okbay 
et al., 2022), the possibility for individual prediction is on the horizon.

Our meta-analyses appraised the current literature, focusing on the consistency 
and strength of polygenic score predictions for educational attainment and educa-
tional achievement across studies. Our findings show that people’s genetic propensi-
ties for years spent in education predict their phenotypic differences in educational 
attainment and achievement, with large effect size that suggest substantial explana-
tory power and practical applications (Funder & Ozer, 2019). Indeed, the effect sizes 
of DNA-based predictions of educational attainment and achievement rival that of 
other predictors that have been previously extensively reported on, including chil-
dren’s socioeconomic status (Selvitopu & Kaya, 2021) and their personality traits 
(Mammadov, 2021), teachers’ characteristics and expertise (Bardach et  al., 2021), 
and school belonging and quality (Allen et al., 2018; von Stumm et al., 2020). Our 
meta-analytic results suggest that a SD increase in polygenic scores is associated 
with spending 1.08 more years in full-time education.1 In the UK, an additional year 

1 The SD of years spent in education is thought to be 4 years (Visscher, 2022), and our meta-analytic 
coefficient for educational attainment was ρ = .27 (i.e., 4 years × .27 = 1.08 years). The SD of high school 
GPA has been reported as 0.80 (Lee et al., 2018), and our meta-analytic estimate was ρ = .24 (i.e., 0.80 
GPA × .24 = 0.19).
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of full-time education translates, for example, into obtaining a postgraduate degree 
(e.g., Masters), which forecasts favorable long-term life outcomes (Oreopoulos & 
Salvanes, 2011), including a 10% premium in future lifetime earnings compared 
to those with only an undergraduate degree (OECD, 2001). Our findings also sug-
gested that an SD increase in polygenic scores was associated with obtaining a 0.19 
higher school GPA,3 which may seem small in relative terms but can be critical for 
gaining admission to highly competitive tertiary education programs, such as Ivy 
League schools. Graduating from an Ivy League or similar school is associated 32% 
greater earnings compared to obtaining educational qualifications at other 4-year 
universities (Claybourn, 2023; U.S News & World Report, 2020).

We observed substantial heterogeneity in polygenic score predictions across 
within- and between-study levels. For one, polygenic score predictions for educa-
tional attainment and achievement were reduced by 57% and 50%, respectively, in 
samples that were described as African American compared to those of European 
ancestry, although this effect was only significant for educational attainment. These 
results align with prior findings that polygenic scores based on GWAS in Euro-
pean ancestry populations have limited prediction in populations of other ancestries 
(Duncan et al., 2019; Mills & Rahal, 2020; Popejoy & Fullerton, 2016; Wang et al., 
2020). For the other, polygenic predictions of educational achievement varied by 
type and age of assessment. First stronger predictions emerged for school grades 
than test scores. This difference in PGS prediction strength may reflect that school 
grades capture a broader range of educational skills, such as motivation and intellec-
tual curiosity,  than test scores. Yet, previous studies reported no differential herit-
ability estimates for alternative measures of educational achievement (Bartels et al., 
2002; Shakeshaft et al., 2013). Second, polygenic score predictions were stronger for 
educational achievement during adolescence than in childhood, in line with previous 
findings that the heritability of cognitive traits increases with age (Haworth et al., 
2010; Morris et al., 2018). Even after considering these moderator effects, signifi-
cant heterogeneity remained in our meta-analysis, whose origin future research must 
identify.

Two principal observations emerged about the samples for whom polygenic score 
predictions of education outcomes have been reported. First, only 15% of the sam-
ples were of non-European ancestry; they had been recruited in the US, where 46% 
of all estimates included in this meta-analysis stemmed from. We could not iden-
tify a single study that reported polygenic score predictions in samples drawn from 
non-WEIRD countries (Western, Educated, Industrialized, Rich, and Democratic, 
Henrich et  al., 2010), in line with other behavioral genetics research findings that 
emanate predominantly from Iceland and the US and UK (Mills & Rahal, 2019). 
To disrupt the dominance of eurocentrism in genomic research, funding bodies like 
the National Institute of Health (NIH) now mandate the inclusion of non-European 
ancestry samples in data collection projects, although dedicated funding calls to 
study and foster ancestral diversity remain scarce (Fatumo et  al., 2022; Mills & 
Rahal, 2020). Ethical and practical challenges, as well as substantial time and finan-
cial investment demands, oftentimes hinder collecting genetic and phenotypic data 
from diverse human populations. These challenges are likely to perpetuate eurocen-
trism in genomics for the foreseeable future, at the cost of excluding 84% of the 
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world’s people in genomic studies (only 16% of the global population are of Euro-
pean ancestry; Martin et al., 2019; Mills & Rahal, 2020).

Our second observation was that samples’ birth years and ages at assessment 
range varied greatly across studies. As a result, systematic interpretations of genera-
tion effects and age trends in polygenic predictions of educational outcomes were 
difficult. Knowing when genetic propensities are more or less strongly associated 
with education is likely critical for effectively supporting people in their learning, 
for example by identifying school students’ ages when additional tutoring or mak-
ing educational choices achieve optimal learning outcomes (Harden et al., 2020). To 
better elucidate age and generation trends in polygenic score predictions of educa-
tion, more data are needed. These could also help identify the socio-political condi-
tions under which societies achieve the balance between equality of opportunity and 
equity of outcomes in education.

Bioethics of Polygenic Score Predictions in Education

Applications of polygenic score predictions for psychological and behavioral traits 
at the level of the individual are on the horizon, urging the careful consideration 
of their ethical, legal, and social implications. The bioethics of polygenic scores 
have been discussed across a range of contexts elsewhere (Asbury & Plomin, 2013; 
Chapman, 2023; Chapman et  al., 2019; Linnér & Koellinger, 2021; Martschenko 
et al., 2024). Here, we focus on two concerns that pertain in particular to the imple-
mentation of DNA-based predictors in education: the risk of widening achievement 
gaps in schools, and children’s and families’ psychosocial responses to learning 
about their genetic propensities for educational outcomes.

The greatest fear associated with the use of DNA-based predictors in educational 
settings, as well as elsewhere, is that they could foster genetic discrimination, dimin-
ish support for educational policies that prioritize fairness and inclusion, and reinforce 
genetic essentialist narratives that designate some children as “lost causes” or “unman-
ageable” in the classroom (Lapham et al., 1996; Martschenko, 2019; Tiller et al., 2024). 
For example, students’ differences in their genetic makeup could be (mis)used to justify 
limiting the learning opportunities for children with lower genetic propensities for edu-
cational achievement, while focusing on enhancing the learning experiences for chil-
dren with higher genetic propensities for educational achievement (Larsen et al., 2022). 
In such a scenario, children with lower genetic propensities for educational achieve-
ment may be assigned more often to schools of poorer quality that employ less accom-
plished teachers than children with higher genetic propensities for educational achieve-
ment. Without education policies in place that prohibit these and other forms of genetic 
discrimination, polygenic score predictions could—even inadvertently—contribute to 
creating educational systems that increase rather than reduce achievement gaps. At pre-
sent, laws make it illegal to discriminate against individuals based on their genotypes 
in health insurance or employment contexts (i.e., the 2008 Genetic Information Non-
discrimination Act, GINA), but there is no comparable non-discrimination act that pro-
tects students from being subject to genetic discrimination in their education.
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In meritocratic societies, where power and socioeconomic resources are distributed 
according to demonstrated achievement and attainment, differences in the access to and 
exploitability of educational opportunities become the principal cause of social inequal-
ity (e.g., Keohane et al., 2014; Starr et al., 2024). Education systems that offer greater 
opportunities to students who are predicted to excel deepen social inequalities, regard-
less if the basis of such performance predictions are polygenic scores or prior school 
performance or family wealth (Farquharson et al., 2022; Hanushek & W ößmann, 2006; 
Piketty & Wood, 2024; Wilkinson & Pickett, 2010). Because students’ differences in 
educational opportunities are already conditioned by their family backgrounds (Chmie-
leski, 2019; von Stumm et al., 2022), polygenic score predictions may deepen further 
family background inequalities in education, if no policies are in place that recognize 
and effectively mitigate their perpetuation.

The second bioethical concern that requires addressing is parents’ and children’s 
psychosocial reactions to information about their genetic propensities for educational 
achievement. Parents, who learn of their children’s low genetic propensity for educa-
tional achievement, may feel guilty and attribute blame to themselves for their chil-
dren’s education outcomes, akin to the responses observed in parents who learned 
about the role of genetics in hereditary diseases and in childhood obesity (James et al., 
2006; Persky et  al., 2019; Weil, 2002). Conversely, children, who are told that they 
have low genetic propensities for educational achievement, may take personal responsi-
bility for their struggles or failures in school, resigning from learning opportunities, los-
ing their academic motivation, and lowering their educational efforts (i.e., self-fulfilling 
prophecy; Filippello et al., 2019; Ghasemi & Karimi, 2021; Matthews et al., 2021).

The two bioethical concerns are not independent but may intersect. For example, 
parents with greater financial resources can purchase DNA-based predictions of their 
children’s psychological profiles from various companies that offer direct-to-consumer 
genetic testing (Au, 2022; Martschenko et  al., 2024; von Stumm & Plomin, 2021), 
which is more difficult to afford for families with fewer financial resources. Further-
more, parents with plenty resources can then supply their children with the learning 
support that their polygenic scores may have indicated they need to excel in school (Au, 
2022). Thus, DNA-based predictions of children’s learning may lead to disproportional 
advantages for children from wealthier backgrounds and contribute to widening educa-
tional achievement gaps. We therefore caution that anonymized population-level data 
must not be migrated into personalized education until the benefits of DNA-based pre-
dictions for the individual, the family, and the school can be guaranteed to outweigh 
their risks.

Safeguarding Polygenic Score Predictions in Education

Notwithstanding the bioethical concerns outlined above, DNA-based predictions of 
education have the potential to improve teaching and learning in three ways. First, 
they can help personalizing education to meet students’ different learning needs, for 
example recommending additional classes or tutoring, or allocating more teaching 
staff to students with lower polygenic scores (Arold et al., 2022). Second, polygenic 
scores could serve as an early “warning system” that signals learning difficulties 
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before they have manifested as maladaptive behaviors, such as “learned helpless-
ness” which occurs when students withdraw from educational opportunities after 
experiencing academic setbacks (e.g., Ghasemi & Karimi, 2021). Third, recogniz-
ing that DNA is a core driver of children’s differences in learning, rather than fac-
tors that are under their personal control, may increase society’s compassion for and 
understanding of people’s differences in academic performance (Asbury & Plomin, 
2013; Asbury et  al., 2021; Harden, 2021). To ensure that these potential benefits 
of polygenic score predictions can be realized, while the risks of misapplications, 
misinterpretations, and misattributions are minimized, safeguarding is imperative. 
We propose here three preliminary ways for ascertaining adequate safeguarding for 
polygenic score predictions in education.

First, efforts to teach and inform about genetic predispositions should target 
the wider public rather  than a handful of elite university students, as is currently 
too often the case. The nature and nurture of genetic predispositions can be effec-
tively taught to and understood people from many walks of life (Asbury & Plomin, 
2013; Asbury et al., 2022; Crosswaite & Asbury, 2019; Donovan et al., 2019, 2022; 
Rutherford, 2020) to help preventing misattributions of genetic risks (Driver et al., 
2022). Over 60% of people who learn of their polygenic predictions for mental and 
physical health disorders report experiencing negative emotions, and 75% misinter-
pret their genetic risks (Peck et al., 2021). College students, who imagined receiv-
ing a low-percentile polygenic score for educational attainment, reported afterwards 
lower self-esteem, academic efficacy, and educational competence relative to indi-
viduals, who imagined having a high-percentile score or who did not “receive” a 
polygenic score (Matthews et al., 2021). These findings align with the mixed bless-
ing model that submits that biogenetic explanations can soften public stigma but also 
induce pessimism, avoidance, and helplessness among affected individuals (Haslam 
& Kvaale, 2015; Larsen et al., 2022). As long as the fear of bad news in your genes 
remains a prevalent public opinion (Harden, 2023), polygenic score applications in 
educational contexts risk worsening discrimination, prejudice, and inequality rather 
than translating into benefits.

Second, changing the narrative of genetic influences is—in part—the responsibil-
ity of researchers who apply polygenic score predictions in psychological science. 
In recent years, this responsibility has been met by a number of excellent popular 
science books that accessibly communicated the ins and outs of behavioral genetics 
to broad audiences (e.g., Harden, 2021; Plomin, 2018; Rutherford, 2020). Some of 
these books are specifically aimed at helping teachers (e.g., Asbury & Plomin, 2013) 
and parents to nurture children’s nature (e.g., Dick, 2021; Gopnik, 2016). Another 
way of ensuring that research findings in behavioral genetics are adequately dissemi-
nated is accompanying research article publications with explanations of the find-
ings in lay language (e.g., FAQs: Beauchamp et  al., 2019; Benjamin et  al., 2018, 
2022). These FAQs are mainly used by journalists and science communicators, who 
through their own media contributions influence the consensus of opinions formed 
in public spheres (Garman, 2019; Habermas, 1989). The majority of public commu-
nication efforts by researchers are under- or non-funded, and they often only reach 
a fraction of the population (Office of Science and Technology & Wellcome Trust, 
2000). While some funding agencies have started to mandate public engagement and 
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dissemination strategies (e.g., Asbury et al., 2021, 2022), achieving a fundamental 
change in the public opinion and interpretation of the role of genetics in education 
will require substantial, concerted efforts.

Finally, facilitating more research into the heterogeneity of children’s learning 
abilities is crucial to safeguarding the use of DNA-based predictions for education. 
A central aim of such research should be conducting GWAS for differentiated learn-
ing-related phenotypes, such as reading ability (e.g., Eising et al., 2022) or mathe-
matic skills (Chen et al., 2017; Harden et al., 2020), rather than general “education,” 
to enable pinpointing and differentiating the educational support that will best meet 
a child’s specific learning needs (Procopio et al., 2022). Such GWAS could maxi-
mize the utility of polygenic scores as diagnostic tools or early warning systems for 
learning difficulties (Procopio et al., 2022).

Limitations

A principal limitation of current polygenic score predictions for education is that 
they are somewhat blunt tools that cannot discern children’s specific learning needs 
(Peters & Ansari, 2019), for example struggling with reading versus having difficul-
ties with algebra. Although this limitation is not specific to our meta-analysis, poly-
genic scores for years spent in education may predict general learning difficulties 
but cannot forecast known learning difficulties, such as dyslexia and dyscalculia, for 
which targeted, effective interventions have been developed and validated (e.g., Can-
cer et al., 2020; Youman & Mather, 2013 2015). We view this generality of current 
polygenic score predictions as analogous to the prediction from being eligible for 
free school meals or raised in foster care, two common criteria for receiving extra 
educational support (Flavier & Moussay, 2014; Roberts et al., 2021). Associations 
between free school meals or foster care and educational achievement have been 
broadly documented (Education Endowment Foundation, 2017; Office for National 
Statistics, 2022; Schwartz & Rothbart, 2020), yet they are probabilistic rather than 
causal (Plomin & von Stumm, 2022), akin to our current meta-analytic findings. 
Children eligible for free school meals or in foster care are vastly heterogenous in 
their learning abilities and difficulties, just like children of the same polygenic score 
percentile rank (Allegrini et al., 2019). This heterogeneity prohibits improving chil-
dren’s learning outcomes through “one-size-fits-all” intervention approaches that 
typically follow from broad, general predictors, such as difficult early life experi-
ences and polygenic scores.

Our meta-analysis could not model the interplay between genes and the envi-
ronment, including differentiating polygenic score variance due to gene-environ-
ment correlations (rGE), assortative mating, and population stratification (Nivard 
et  al., 2024; Plomin & von Stumm, 2022; Selzam et  al., 2019; Wertz et  al., 
2019). Comparisons of within- and between-family polygenic score predictions 
have shown genetic effects on educational attainment that are environmentally 
mediated (i.e., passive rGE; Selzam et  al., 2019; Wang et  al., 2021). The most 
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recent GWAS of years spent in education found that only ~ 30% of the predic-
tion of educational attainment was due to direct genetic effects, with environmen-
tal confounding playing a major role (Okbay et  al., 2022). While no studies to 
date reported comparable findings for educational achievement, polygenic scores 
should not be interpreted as reflecting direct genetic effects but as predictors that 
capture genetic and environmental effects (Plomin & von Stumm, 2022).

Conclusion

Our meta-analyses showed that polygenic scores predict educational achievement 
and attainment with large effect sizes. These findings imply that individuals with 
higher genetic propensities perform on average better in school, remain longer in 
full-time education, and obtain higher educational qualifications. Our meta-analy-
ses’ samples came from WEIRD countries, and polygenic score predictions were 
strongest for school grades in adolescents of European ancestry. Polygenic score 
predictions remained heterogenous after accounting for a number of plausible 
moderators, suggesting that at present polygenic scores are neither suitable for 
individual level assessments nor for personalizing education in applied settings.

Our findings underscore the importance of inherited DNA variants for under-
standing and addressing students’ heterogeneity in learning abilities. Applications 
of polygenic scores in education are becoming increasingly tangible, even though 
they are not yet effective tools for improving teaching and learning (Asbury et al., 
2021; Au, 2022; Harden, 2021; Morris et al., 2020a, b). With even more powerful 
polygenic scores for education on the horizon (e.g., Okbay et al., 2022), the interest 
in and potential for applying polygenic scores in education is growing, and with that 
the need for safeguarding and further research. In the words of Marie Curie (cited in 
Curie & Sheean, 1938, p.13): “Nothing in life is to be feared, it is only to be under-
stood. Now is the time to understand more, so that we may fear less.”
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